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Characterization and management of patients admitted for acute coronary syndromes
(ACS) remain challenging, and it is unclear whether currently available clinical and proce-
dural features can suffice to inform adequate decision making. We aimed to explore the
presence of specific subsets among patients with ACS. The details on patients discharged
after ACS were obtained by querying an extensive multicenter registry and detailing patient
features, as well as management details. The clinical outcomes included fatal and nonfatal
cardiovascular events at 1-year follow-up. After missing data imputation, 2 unsupervised
machine learning approaches (k-means and Clustering Large Applications [CLARA]) were
used to generate separate clusters with different features. Bivariate- and multivariable-
adjusted analyses were performed to compare the different clusters for clinical outcomes. A
total of 23,270 patients were included, with 12,930 cases (56%) of ST-elevation myocardial
infarction (STEMI). K-means clustering identified 2 main clusters: a first 1 including 21,998
patients (95%) and a second 1 including 1,282 subjects (5%), with equal distribution
for STEMI. CLARA generated 2 main clusters: a first 1 including 11,268 patients (48%)
and a second 1 with 12,002 subjects (52%). Notably, the STEMI distribution was signifi-
cantly different in the CLARA-generated clusters. The clinical outcomes were significantly
different across clusters, irrespective of the originating algorithm, including death reinfarc-
tion and major bleeding, as well as their composite. In conclusion, unsupervised machine
learning can be leveraged to explore the patterns in ACS, potentially highlighting specific
patient subsets to improve risk stratification and management. © 2023 The Authors. Pub-
lished by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/) (Am J Cardiol 2023;193:44−51)
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TaggedPAcute coronary syndromes (ACS), that is, and ST-elevation
myocardial infarction (STEMI), unstable angina, and non-
STEMI, comprising non−ST-elevation ACS, share athero-
thrombosis as the underlying pathophysiologic mechanism.1−4
This etiologic premise calls into question the rigid distinction
between unstable angina, NSTEMI, and STEMI. Modern arti-
ficial intelligence methods can be leveraged to appraise clus-
tering features.5,6 The Prediction of Adverse Events following
an Acute Coronary Syndrome (PRAISE) study has recently
reported on supervised machine learning to improve the risk
prognostication in patients with ACS.7 We aimed to further
expand the evidence base stemming from the PRAISE dataset
by exploring the clustering features among patients with ACS
and leveraging available clinical and procedural features by
means of established unsupervised machine learning methods,
with the ultimate aim of possibly improving decision making.TaggedEnd
TaggedH1Methods TaggedEnd

TaggedPThe details on the PRAISE study have already been
reported in detail in The Lancet.7 Briefly, the data on adult
patients with ACS were obtained by pooling several interna-
tional registries, including the BleeMACS, FRASER,
RENAMI, and SECURITY studies, with hospitalization
occurring between 2003 and 2019. The diagnosis of ACS
was based on contemporary guidelines, with patient manage-
ment as per guideline-informed institutional practice. The
outcomes of interest, collected up to 2 years of follow-up,
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TaggedEndCoronary Artery Disease/Unsupervised Machine Learning in ACS 45
were death, myocardial infarction (defined according to each
study methods), and major bleeding (defined according to the
Bleeding Academic Research Consortium as type 3 or 5).8TaggedEnd

TaggedPIn keeping with best practice for unsupervised machine
learning, the PRAISE dataset was first investigated for
missing data and the presence of correlated variables. The
correlated features were identified with a heatmap of Pear-
son correlation coefficients. A single variable from each
pair of highly correlated variables was included in the pro-
cess of clustering. The missing data were imputed and hier-
archical clustering of variables was performed. The results
of variable clustering were assessed with the Rand similar-
ity index. A representative variable with the highest squared
loading on the first principal component was selected for
recognized clusters. Furthermore, the clustering tendency
of the dataset was assessed with Hopkins statistic, and the
number of patient clusters was determined using a majority
voting ensemble method. TaggedEnd

TaggedPNext, the Euclidean distance was used for calculating the
dissimilarity matrix, and then, the k-means and the Clustering
Large Applications (CLARA) algorithms were run. K-means
is a commonly used algorithm for partition clustering and the
CLARA algorithm is an extension of the Partitioning Around
Medoids clustering method capable of dealing with large
datasets. Then, the results of clustering were illustrated using
principal components, and their validity was investigated.TaggedEnd

TaggedPThe results are presented as mean (standard deviation)
for continuous and as absolute numbers (%) for categorical
variables. Clusters were then compared in the nonimputed
dataset using frequentist methods. Specifically, the means
of continuous variables were compared using independent
t tests. The chi-square test with Yates continuity correction
was used for comparing the categorical variables between
TaggedEndTable 1

Comparisons of the clusters using the non-imputed original dataset, focusing on p

Characteristic All (N = 23,270) k-means

k1 (n1=21,988) K

Age (year) 63.42 (12.50) 63.29 (12.45) 6

Female (%) 5,466 (23.49) 5,038 (22.91)

Hypertension (%) 12,734 (54.72) 11,986 (54.51)

Dyslipidemia (%) 12,148 (52.20) 11,670 (53.07)

Non-insulin-dependent diabetes (%) 5,518 (23.72) 5,460 (24.84)

Insulin-dependent diabetes (%) 344 (1.48) 139 (0.63)

Peripheral artery disease 1,606 (7.65) 1,503 (7.63)

Prior myocardial infarction (%) 3,349 (14.40) 3,213 (14.62)

Prior PCI (%) 3,312 (14.23) 3,181 (14.47)

Prior CABG (%) 777 (3.34) 725 (3.30)

Prior stroke (%) 1,309 (5.63) 1,255 (5.71)

Prior bleeding (%) 980 (4.62) 964 (4.59)

Malignancy (%) 1,188 (5.57) 1,128 (5.62)

STEMI (%) 12,930 (55.57) 12,191 (55.44)

NSTEACS (%) 9,424 (43.25) 8,881 (43.31)

Creatinine (mg/dL) 97.85 (55.64) 97.60 (54.73) 1

eGFR (mL/min) 90.20 (39.19) 90.29 (39.27) 8

Hemoglobin (g/dL) 1,397.42 (168.46) 1,398.52 (167.31) 1,3

LVEF (%) 52.27 (10.94) 52.63 (10.84) 4

C1 and C2 = Clusters 1 and 2 identified by the CLARA algorithm; CABG = Co

Filtration Rate (Modification of Diet in Renal Disease); k1 and k2 = Clusters 1 an

Fraction; NSTEACS = Non-ST-segment Elevation Acute Coronary Syndrome; P

Myocardial Infarction.
the clusters. The statistical significance was set at 2-tailed
a = 0.05. All data analyses were performed with R version
4.0.2 for Windows (R Foundation for Statistical Comput-
ing, Vienna, Austria). Notably, we used a variety of R pack-
ages for the analysis, including NbClust. TaggedEnd
TaggedH1Results TaggedEnd

TaggedPIn total, 23,270 patients (5,466 women [23.5%]) were
included. The characteristics of the total sample are pre-
sented in Table 1. The mean (standard deviation), mini-
mum, and maximum age was 63.4 (12.5), 23, and
100 years, respectively. Age, serum creatinine, estimated
glomerular filtration rate, hemoglobin, and left ventricular
ejection fraction had been recorded as continuous, and other
features had been recorded as binary variables. Primary
explorations showed that 8% of the data were missing in
the dataset. Figure 1 illustrates the percentages and patterns
of missing data for each 46 clinically informative features. TaggedEnd

TaggedPTo ensure proper imputation and clustering, the dataset
was investigated with respect to the presence of correlated
variables. We considered pairs of variables as highly corre-
lated if the absolute value of their correlations was more
than 0.5. The heatmap of the Pearson correlation coeffi-
cients showed some highly correlated features within the
data (Figure 2). We excluded variables that were a subset of
other features from the clustering process. For example, the
diabetes type was included, whereas noninsulin and insulin-
dependent diabetes variables were excluded (Figure 2).
Overall, the remaining variables included only 9.4% miss-
ing data. Considering this small total percentage of missing
data and the large numbers of variables and sample size,
the missing values were imputed 1 time with the predictive
resenting features (n = 23,270)

p Value CLARA p Value

2 (n2=1,282) C1(n1=11,268) C2 (n2=12,002)

5.62 (13.15) <0.001 66.37 (11.68) 60.65 (12.62) <0.001
428 (33.39) <0.001 2,845 (25.25) 2,621 (21.84) <0.001
748 (58.35) 0.008 9,318 (82.69) 3,416 (28.46) <0.001
478 (37.29) <0.001 6,769 (60.07) 5,379 (44.82) <0.001
58 (4.52) <0.001 3,425 (30.40) 2,093 (17.45) <0.001
205 (15.99) <0.001 205 (1.82) 139 (1.16) <0.001
103 (8.04) 0.627 982 (9.83) 624 (5.67) <0.001
136 (10.61) <0.001 2,220 (19.71) 1,129 (9.41) <0.001
131 (10.22) <0.001 2,175 (19.30) 1,137 (9.47) <0.001
52 (4.06) 0.165 657 (5.83) 120 (1.00) <0.001
54 (4.21) 0.028 761 (6.75) 548 (4.57) <0.001
16 (8.33) 0.022 583 (5.68) 397 (3.63) <0.001
60 (4.68) 0.175 663 (6.43) 525 (4.75) <0.001
739 (57.64) 0.130 2,972 (26.38) 9,958 (82.97) <0.001
543 (42.36) 0.523 7,649 (72.02) 1,775 (15.89) <0.001
01.99 (68.93) 0.027 103.90 (70.06) 92.29 (36.97) <0.001
0.34 (28.62) <0.001 85.25 (33.38) 94.88 (43.48) <0.001
81.01 (184.02) 0.001 1,378.97 (172.26) 1,415.06 (162.80) <0.001
7.06 (11.11) <0.001 53.28 (11.06) 51.25 (10.72) <0.001

ronary Artery Bypass Graft surgery; eGFR (MDRD): estimated Glomerular

d 2 identified by the k-means algorithm; LVEF = Left Ventricular Ejection

CI = Percutaneous Coronary Intervention; STEMI = ST-segment Elevation



TaggedFigure

Figure 1. Missing data description in the whole dataset. AAS = anabolic-androgenic steroids; ACE = angiotensin-converting enzyme inhibitors;

ARB = angiotensin receptor blockers; eGFR (MDRD) = estimated glomerular filtration rate (modification of Diet in Renal Disease), LVEF = left ventricular

ejection fraction; NSTEACS = non-ST-elevation acute coronary syndrome; OAC = oral anticoagulant, PPI = proton-pump inhibitor. TaggedEnd
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mean matching method and the maximum iteration of 10.
Then, we carried out hierarchical clustering of variables
and achieved the maximum stability of 1.0 based on the
mean corrected Rand indexes with 27 clusters and 25 boot-
strap samples. Next, for each cluster, a representative vari-
able with the highest squared loadings on the first principal
component was selected. We repeated the procedure on the
27 remaining variables to get the maximum stability of 0.94
with 15 variables. At the end of the process, we incorpo-
rated hypertension, peripheral arterial disease, prior
TaggedFigure

Figure 2. Heatmaps of Pearson’s correlation coefficients before (left panel) and a

ACE = angiotensin-converting enzyme inhibitors; ARB = angiotensin receptor bl

of Diet in Renal Disease); LVEF = left ventricular ejection fraction; NSTEACS

PPI = proton-pump inhibitor.TaggedEnd
coronary artery bypass graft surgery, major bleeding,
malignancy, STEMI, serum creatinine, thrombolysis, multi-
vessel coronary artery disease, in-hospital reinfarction, ana-
bolic-androgenic steroids, clopidogrel, and oral
anticoagulation use into the clustering algorithms. TaggedEnd

TaggedPThe data were scaled, and the clustering tendency was
confirmed with the Hopkins statistic of 0.984. Figure 3
illustrates the result of principal component analysis.
Because of the high demand for computational resources,
we used a random sample containing 50% of patients to
fter (right panel) excluding variables. AAS = anabolic-androgenic steroids;

ockers; eGFR (MDRD) = estimated glomerular filtration rate (modification

= non-ST-elevation acute coronary syndrome; OAC = oral anticoagulant;

www.ajconline.org


TaggedFigure

Figure 3. (Left panel) scatter diagram of 2 dimensions (Dim1 and Dim2) resulting from principal component analysis of the data. (Right panel) majority vot-

ing for the optimum number of clusters.TaggedEnd

TaggedEndCoronary Artery Disease/Unsupervised Machine Learning in ACS 47
find the number of clusters. The number of clusters was
determined using a majority voting ensemble method
(Figure 3). Overall, we decided to set the number of clusters
to 2 for further analysis. For the whole dataset, we used a k-
means clustering algorithm with 25 random samples and
the maximum iteration of 5 (Figure 4). The Euclidean dis-
tance was used for calculating the dissimilarity matrix. The
algorithm clustered the dataset rows into 2 groups of
21,988 and 1,282 patients. Further investigations with a
scaled 80% random sample of data (17,600 patients from
cluster 1 and 1,016 from cluster 2) showed that within-clus-
ter average distances were 4.71 and 5.48, the between-clus-
ters average distance was 7.05, Dunn 2 index was 1.29, and
average silhouette width was 0.34. Also, we applied the
CLARA clustering algorithm to the whole data set using
100 samples (Figure 4) and the dissimilarity matrix of
Euclidean distances. The CLARA clustered the rows into 2
TaggedFigure

Figure 4. Clusters within the dataset using k-means (left panel) and the CLARA (

cipal components. Multivariate normal distributions have been assumed for drawi
groups of 11,268 and 12,002 patients. The investigations
with a scaled 80% random sample of data (9,008 patients
from cluster 1 and 9,608 from cluster 2) showed that the
within-cluster average distances were 5.00 and 4.46, the
between-clusters average distance was 5.20, the Dunn 2
index was 1.04, and the average silhouette width was 0.10. TaggedEnd

TaggedPTables 1−4 show the results of comparing the 2 clusters
using k-means and the CLARA algorithms. We called the
clusters k1 and C1 for cluster 1 and k2 and C2 for cluster 2,
identified by k-means and the CLARA, respectively. For
the k-means clustering, there was no statistically significant
difference in peripheral artery disease, previous coronary
artery bypass graft surgery, malignancy, STEMI, non−ST-
segment elevation acute coronary syndrome, thrombolysis,
in-hospital reinfarction, and angiotensin-converting enzyme
inhibitors or angiotensin receptor blocker use. Other com-
parisons yielded highly significant results. For the outcome
right panel) algorithms. Observations are represented by points using prin-

ng the 95% concentration ellipses. TaggedEnd



TaggedEndTable 2

Comparisons of the clusters using the non-imputed original dataset, focusing on in-hospital management and outcomes (n=23,270)

Characteristic All (N = 23,270) k-means p Value CLARA p Value

k1 (n1 = 21,988) k2 (n2 = 1,282) C1(n1 = 11,268) C2 (n2 = 12,002)

Thrombolysis (%) 296 (1.49) 296 (1.51) 0 (0.00) 0.155 80 (0.83) 216 (2.12) <0.001
Radial access (%) 9,204 (50.06) 9,158 (50.32) 46 (24.47) <0.001 4,496 (50.82) 4,708 (49.35) 0.048

Multivessel disease (%) 8,668 (46.84) 8,476 (48.35) 192 (19.73) <0.001 6,425 (74.96) 2,243 (22.58) <0.001
Drug-eluting stent (%) 11,578 (50.61) 10,743 (49.14) 835 (82.19) <0.001 5,850 (53.17) 5,728 (48.23) <0.001
Complete revascularization (%) 10,124 (62.83) 9,683 (63.94) 441 (45.51) <0.001 3,462 (48.88) 6,662 (73.77) <0.001
Reinfarction (%) 258 (1.31) 253 (1.30) 5 (2.59) 0.209 147 (1.54) 111 (1.10) 0.008

Bleeding (%) 1,060 (5.35) 1,038 (5.29) 22 (11.40) <0.001 540 (5.59) 520 (5.11) 0.144

Aspirin (%) 21,986 (94.49) 21,986 (100.00) 0 (0.00) <0.001 10,811 (95.96) 11,175 (93.11) <0.001
Clopidogrel (%) 15,075 (64.79) 14,667 (66.71) 408 (31.83) <0.001 7,549 (67.01) 7,526 (62.71) <0.001
Prasugrel (%) 3,281 (14.32) 2,588 (11.96) 693 (54.10) <0.001 1,231 (11.18) 2,050 (17.23) <0.001
Ticagrelor (%) 4,686 (20.45) 4,663 (21.56) 23 (1.80) <0.001 2,353 (21.36) 2,333 (19.61) 0.001

Oral anticoagulant (%) 1,084 (4.75) 924 (4.29) 160 (12.49) <0.001 581 (5.30) 503 (4.24) <0.001
ACEI or ARB (%) 15,245 (76.07) 14,286 (76.15) 959 (74.86) 0.558 7,408 (77.58) 7,837 (74.70) <0.001
Betablocker (%) 15,932 (79.47) 15,283 (81.44) 649 (50.66) <0.001 7,553 (79.09) 8,379 (79.82) 0.210

Statin (%) 19,113 (92.92) 18,013 (93.38) 1,100 (85.87) <0.001 9,010 (91.82) 10,103 (93.92) <0.001
Proton-pump inhibitor (%) 7,859 (60.21) 6,802 (57.47) 1,057 (86.85) <0.001 3,783 (66.09) 4,076 (55.62) <0.001

ACEI = Angiotensin-Converting Enzyme Inhibitors; ARB = Angiotensin Receptor Blockers; C1 and C2 = Clusters 1 and 2 identified by the CLARA algo-

rithm; k1 and k2 = Clusters 1 and 2 identified by the k-means algorithm.

TaggedEndTable 3

Comparisons of the clusters using the non-imputed original dataset, focusing on 2-year outcomes (n=23,270)

Characteristic All (N = 23,270) k-means p Value CLARA p Value

k1 (n1 = 21,988) k2 (n2 = 1,282) C1(n1 = 11,268) C2 (n2 = 12,002)

Death (%) 963 (4.14) 840 (3.82) 123 (9.59) <0.001 538 (4.77) 425 (3.54) <0.001
Reinfarction (%) 739 (3.93) 650 (3.70) 89 (7.17) <0.001 402 (4.47) 337 (3.43) <0.001
Nonfatal reinfarction (%) 548 (3.04) 482 (2.85) 66 (5.90) <0.001 320 (3.75) 228 (2.40) <0.001
Major bleeding (%) 724 (3.17) 647 (3.00) 77 (6.01) <0.001 391 (3.57) 333 (2.80) 0.001

Nonfatal major bleeding (%) 596 (2.72) 548 (2.65) 48 (4.15) 0.003 321 (3.08) 275 (2.40) 0.002

Death or reinfarction (%) 1,511 (6.49) 1,322 (6.01) 189 (14.74) <0.001 858 (7.61) 653 (5.44) <0.001
Death or major bleeding (%) 1,559 (6.70) 1,388 (6.31) 171 (13.34) <0.001 859 (7.62) 700 (5.83) <0.001
Death, reinfarction, or major bleeding (%) 2,072 (8.90) 1,838 (8.36) 234 (18.25) <0.001 1,158 (10.28) 914 (7.62) <0.001
Nonfatal reinfarction or major bleeding (%) 1,109 (4.97) 998 (4.72) 111 (9.58) <0.001 620 (5.78) 489 (4.22) <0.001

C1 and C2 = Clusters 1 and 2 identified by the CLARA algorithm; k1 and k2 = Clusters 1 and 2 identified by the k-means algorithm.

TaggedEnd48 The American Journal of Cardiology (www.ajconline.org)
variable death, the difference between the 2 clusters was
statistically significant (chi-square test with Yates continu-
ity correction x2(1) = 100.360, p <0.001, unadjusted odds
ratio [95% confidence interval] = 2.67 [2.17 to 3.26],
p <0.001]). Other outcome variables were also significantly
TaggedEndTable 4

Comparisons of the clusters using the non-imputed original dataset, focusing on 2

Characteristic 4-level clu

k1 and C2 (n = 11,175) k1 and

Death (%) 351 (3.1%) 4

Reinfarction (%) 285 (3.2%) 3

Nonfatal reinfarction (%) 189 (2.2%) 2

Major bleeding (%) 283 (2.6%) 3

Nonfatal major bleeding (%) 246 (2.3%) 3

Death or reinfarction (%) 540 (4.8%) 7

Death or major bleeding (%) 597 (5.3%) 7

Death, reinfarction, or major bleeding (%) 774 (6.9%) 1,0

Nonfatal reinfarction or major bleeding (%) 423 (3.9%) 5

C1 and C2: Clusters 1 and 2 identified by the CLARA algorithm; k1 and K2: Cl
different between k1 and k2. This confirmed that we faced
2 clinical entities with respect to mortality in patients with
the acute coronary syndrome. For the CLARA algorithm,
there were no statistically significant differences in
b-blocker use and in-hospital bleeding between C1 and C2.
-year outcomes (n=23,270), using a 4-level clustering approach

stering group (k=k-means, C=CLARA) p Value

C1 (n = 10,813) k2 and C2 (n = 827) k2 and C1 (n = 455)

89 (4.5%) 74 (9.0%) 49 (10.8%) <0.001
65 (4.3%) 52 (6.5%) 37 (8.4%) <0.001
93 (3.6%) 39 (5.4%) 27 (6.9%) <0.0001
64 (3.5%) 50 (6.1%) 27 (6.0%) <0.001
02 (3.0%) 29 (3.9%) 19 (4.7%) <0.001
82 (7.2%) 113 (13.7%) 76 (16.7%) <0.001
91 (7.3%) 103 (12.5%) 68 (15.0%) <0.001
64 (9.8%) 140 (16.9%) 94 (20.7%) <0.001
75 (5.6%) 66 (8.8%) 45 (11.1%) <0.001

usters 1 and 2 identified by the k-means algorithm.

www.ajconline.org


TaggedEndTable 5

Multivariable analysis of the clusters using the non-imputed original dataset, focusing on 2-year outcomes (n=23,270), using a 4-level clustering approach

(similar results were obtained when using repeatedly 2-level clustering according to k-means and CLARA)

Characteristic 4-level clustering group (k=k-means, C=CLARA)* Lowest p Value

k1 and C2

(n = 11,175)

k1 and C1

(n = 10,813)

k2 and C2

(n = 827)

k2 and C1

(n = 455)

-

Death (%) Reference 0.99 (0.73-1.35) 3.50 (0.66-18.52) 0.69 (0.20-2.42) 0.141

Reinfarction (%) Reference 1.01 (0.73-1.40) Not estimable 1.46 (0.43-4.94) 0.545

Nonfatal reinfarction (%) Reference 1.08 (0.76-1.54) Not estimable 2.04 (0.60-7.00) 0.255

Major bleeding (%) Reference 1.37 (1.02-1.83) 2.23 (0.28-17.68) Not estimable 0.039

Nonfatal major bleeding (%) Reference 1.42 (1.04-1.95) 3.46 (0.43-27.53) Not estimable 0.027

Death or reinfarction (%) Reference 1.04 (0.82-1.32) 2.25 (0.46-11.05) 1.10 (0.44-2.77) 0.318

Death or major bleeding (%) Reference 1.21 (0.97-1.51) 3.41 (0.87-13.39) 0.50 (0.15-1.68) 0.079

Death, reinfarction, or major bleeding (%) Reference 1.17 (0.97-1.43) 2.57 (0.67-9.85) 0.85 (0.34-2.09) 0.717

Nonfatal reinfarction or major bleeding (%) Reference 1.26 (0.99-1.60) 1.94 (0.25-15.20) 0.98 (0.29-3.28) 0.059

C1 and C2 = Clusters 1 and 2 identified by the CLARA algorithm; k1 and K2 = Clusters 1 and 2 identified by the k-means algorithm.

* adjusting for age, diabetes mellitus, peripheral artery disease, prior bleeding, malignancy, estimated glomerular filtration rate, hemoglobin concentration,

left ventricular ejection fraction, multivessel disease, drug-eluting stent implantation, and discharge therapy with angiotensin-converting enzyme inhibitors,

angiotensin receptor blockers, and statins, and reported as odds ratio (95% confidence interval).

TaggedEndCoronary Artery Disease/Unsupervised Machine Learning in ACS 49
For radial access, the result of the chi-square test was sig-
nificant (p = 0.048); however, because of the large sample
size and increased likelihood of type I error, we considered
the difference as practically nonsignificant. Other compari-
sons yielded highly significant results. TaggedEnd

TaggedPFor the outcome variable death, the difference between
the 2 clusters was statistically significant (chi-square test
with Yates continuity correction x2(1) = 21.980, p <0.001,
unadjusted odds ratio (95% confidence interval) = 0.73 [0.64
to 0.83], p <0.001; Table 4). Other outcome variables were
also significantly different between C1 and C2. This showed
that the 2 clusters are different with respect to mortality.TaggedEnd

TaggedPTo describe the resulting clusters more practically, we
developed 2 models for predicting cluster membership
using logistic regression with 10-fold cross-validation. No
synthetic data were used for cluster profiling. First, the pre-
dictors with severe imbalance (less than 10% in 1 of their
levels) were excluded. Second, the highly correlated pairs
of features were removed by selecting 1 variable from each
pair. Third, the cases with missing data were filtered out.
For the outcome variable, k-means cluster membership, the
class imbalance was eliminated by random down-sampling
of the majority class. Furthermore, for the k1 cluster
(n = 21,988) and for the k2 (n = 1,282), 7.1% and 13.1% of
predictor data were missing, respectively. This additional
inequality in missing data affected the process of model
development for k-means. The resulting models suggested
good predictive ability for both models
(Supplementary Table 1). However, the Hosmer-Lemeshow
test indicated a poor fitness for the k-means model. Also,
the Brier calibration score was not satisfactory for the k-
means algorithm. The Akaike information criterion was
smaller for k-means; whereas, Nagelkerke R2 was larger for
the CLARA. Both models showed favorable sensitivity,
specificity, predicted values, and C-statistic. The model
specification for k-means suggested that higher age, female
gender, STEMI, and particularly being treated with a drug-
eluting stent (DES) were associated with the high-risk clus-
ter (Supplementary Table 2). Conversely, patients with dys-
lipidemia, previous myocardial infarction, and particularly
noninsulin-dependent diabetes were more categorized in
the low-risk cluster. For the CLARA algorithm, the model
was highly affected by STEMI. Other variables, except for
female gender, were more associated with the low-risk clus-
ter. TaggedEnd

TaggedPWe finally appraised the incremental predictive role of
cluster assignment, distinguishing 4 different categories
based on the k-means and CLARA clustering approaches
(Table 5). This 4-tier classification system proved the lim-
ited incremental prognostic accuracy in comparison to other
clinical features (p >0.05) for death, reinfarction, or their
composite. However, it proved significantly associated with
the risk of major bleeding, even at extensive multivariable
adjustment (p = 0.039 for fatal or nonfatal bleeding,
p = 0.027 for nonfatal bleeding). TaggedEnd
TaggedH1Discussion TaggedEnd

TaggedPThis study originally provides insights on the pros and
cons of machine learning techniques in profiling patients
with unstable coronary artery disease. In particular, we
found that unsupervised machine learning can promisingly
be leveraged to explore patterns in such individuals, poten-
tially highlighting specific patient subsets to improve risk
stratification and management. TaggedEnd

TaggedPIndeed, we conducted this study to find if there are clini-
cally meaningful clusters in patients with ACS beyond the
current descriptions. Our study showed that there are 2 clin-
ical entities among those patients. We used 2 known algo-
rithms for clustering our data: k-means and the CLARA. In
general, k-means clustering showed that patients in k2 were
at 2 to 3 times greater risk for poor outcomes than k1. The
mean glomerular filtration rate and the percentage of glo-
merular filtration rate more than 60 ml/min were higher in
k1. Noninsulin-dependent diabetes, dyslipidemia, prior cor-
onary artery problems (particularly multivessel disease),
radial access, thrombolysis, and complete revascularization
were more frequent in k1. They all used anabolic-andro-
genic steroids and also used ticagrelor, clopidogrel, and
b-blockers more than patients in k2. The percentage of
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women was higher in k2. Patients in k2 had insulin-depen-
dent diabetes, a previous history of major bleeding, in-hos-
pital events, and DES use more frequently. They used
prasugrel, oral anticoagulation, b-blockers, and proton-
pump inhibitors more commonly. None of the patients in
k2 used anabolic-androgenic steroids. TaggedEnd

TaggedPThe CLARA showed that patients in C1 were more
prone to poor outcomes. Overall, most of the patients in C1
had non-ST-segment elevation acute coronary syndrome.
The percentage of women was higher in C1, and com-
monly, they were older patients with arterial hypertension,
lower hemoglobin concentration, and increased serum cre-
atinine. Although the mean glomerular filtration rate was
lower in C1, the percentage of glomerular filtration rate
more than 60 ml/min was higher than in C2. Noninsulin-
dependent diabetes, dyslipidemia, previous coronary artery
problems, particularly multivessel disease, were also more
frequent in C1. They used proton-pump inhibitors more
than C2. Patients in C2 had STEMI, complete revasculari-
zation, thrombolysis, and prasugrel use more frequently
and their mean hemoglobin and glomerular filtration rate
were higher than patients in C1. TaggedEnd

TaggedPFurthermore, model performance and specification were
not favorable for both models. For the k-means model, this
might be due to class imbalance and missing data, and for
the CLARA model, it might be because of the crucial
impact of infarction type on the whole model. In turn, the
missing data in the high-risk k-means cluster might be
explained as the deficiency of information that is commonly
is seen in patients experiencing poor outcomes. Reassessing
these concepts in a further study using another separate
dataset would delineate the effects of clustering in evaluat-
ing the prognosis of patients with ACSs. TaggedEnd

TaggedPThe idea of applying unsupervised machine learning,
including cluster analysis, to distinguish the specific patient
subsets with cardiovascular disease is not novel, and indeed, it
holds the promise of proving potentially beneficial to guide pre-
vention, diagnosis, risk stratification, prognosis, management,
and rehabilitation.9 However, most reports on the use of this
powerful analytic techniques focus on stable coronary artery
disease, heart failure, COVID-19, or features that only indi-
rectly affect patient outcomes (e.g., climate).10−14 For instance,
unsupervised machine learning analyses aimed at improving
the characterization of patients with heart failure have been
recently reported, albeit leveraging samples of limited size.15,16

Jani and colleagues have appraised the diagnostic and prognos-
tic value of specific echocardiographic features in patients hos-
pitalized for COVID-19, despite leveraging a relatively small
dataset of 176 patients.11 Koo et al12 and Testa et al13 have
instead independently appraised the environmental features
that may pose, in general terms and in specific patient subsets,
an increased risk of acutemyocardial infarction or stroke. Nota-
bly, no recent and adequately sized work has been previously
published focusing on unsupervised learning among patients
with ACSs, and this holds even truer when focusing on the fea-
tures encompassing also those available at discharge.TaggedEnd

TaggedPA number of important considerations should be perused in
detail to avoid misinterpreting our present findings.17 First, a
key first novelty of our work is, on 1 hand, the focus on patients
at discharge after an ACS rather than at admission. Accord-
ingly, in-hospital events can be viewed as pieces of clinical
history (despite them being recent) capable of poignantly char-
acterizing the patients.18 The second strength of our work is the
reliance on an unsupervised machine learning approach, which
considers all patient features possibly relevant to define specific
subsets, such that patients belonging to each subgroup are
much more homogeneous among themselves rather than in
comparison to other subgroups. This approach exploits infor-
mation-rich variables, irrespective of their pathophysiologic or
clinical premises, including but limiting itself to baseline fea-
tures, procedural details, and short-term outcomes. Indeed, the
reliance on proxy variables, which are associated with other
features, despite not being mechanistically linked to them, is
not a rare occurrence in cardiovascular research. For instance,
it has been reported that ear lobe creases are associated with
increased cardiovascular risk, but evidently, this is simply due
to a correlation phenomenon.19TaggedEnd

TaggedPSecond, the key rationale of unsupervised machine
learning is indeed the lack of any a priori relation between
a variable and a pathophysiologically relevant mechanistic
proxy or a clinical outcome. Indeed, we know, for instance,
that dyslipidemia is associated with adverse outcomes
thanks to the hundreds of studies detailing on this associa-
tion and consider it, by default, relevant. The cluster analy-
sis instead leverages a specific variable, such as insulin-
dependent diabetes mellitus, only if it is capable of discrim-
inating the different subtypes of patients within the dataset
at the end.20 Thus, the lack of explicit focus on pathophysi-
ologic credibility or clinical impactfulness is not a weak-
ness per se but rather an explicit property of the approach
we have showcased in our study. TaggedEnd

TaggedPThird, several potential explanations for the unexpected
higher prevalence of apparently detrimental risk factors, such
as dyslipidemia, previous myocardial infarction, and noninsu-
lin-dependent diabetes, in clusters exhibiting a lower risk of
events at long-term. Indeed, the unsupervised machine learning
perspective uses each patient feature, such as hypertension, as a
marker to characterize patients, and thus, it may indeed occur
that patients with dyslipidemia could have a lower prevalence
of other more severe risk factors (this could apply for instance
to noninsulin-dependent diabetes because this feature would
compete by definition with the presence of insulin-dependent
diabetes). Pathophysiologically, another potential explanation
is that some risk factors, such as dyslipidemia, could be, at least
in part, treatable and thus suitable for prognostic improvement.
Indeed, an ACS in a patient without dyslipidemia would likely
have a better long-term prognosis than anACS in a patient with
dyslipidemia. However, an ACS in a patient with dyslipidemia
who gets an optimally intensive lipid lowering therapy could
eventually display a better outcome than an ACS in a patient
without dyslipidemia. Focusing instead on management strate-
gies, such as the apparent association between DESs and
adverse outcomes, wemay speculate that this being an observa-
tional study spanning a long period of time, DESs were selec-
tively used in patients with more complex lesions and diffuse
disease (e.g., left main disease, bifurcation lesions, chronic total
occlusions, and so forth).TaggedEnd

TaggedPDespite our work novelty and the meaningful sample
size, our work has many drawbacks. First, it should be
viewed as a case study highlighting the potential pros of
novel approaches at characterizing patients with ACSs
rather than a conclusive piece demonstrating a specific
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hypothesis.17 Second, there is no algorithm for unsuper-
vised machine learning, which is inherently superior to
others, and thus, our methodologic framework and the
accompanying results can be viewed as relevant and valid
but do not exclude other analytic approaches and conclu-
sions. Third, any unsupervised machine learning algorithm
may provide spuriously precise results because it cannot in
any way, despite its refined features, eliminate issues in the
originating dataset. Thus, it is crucial to pay attentive scru-
tiny to the PRAISE dataset and its strengths and limitations
when interpreting our own results.7 Indeed, additional
details on risk baseline features, clinical variables upon pre-
sentation, and in-hospital therapies, as well as complica-
tions, would have provided additional insights on the
population features and possibly impacted on the results of
the analysis. However, the PRAISE study was designed
with a specific pragmatic data collection protocol, and such
additional variables were not collected, as clearly stated in
the main study.7 Finally, the fact that most of the predictive
input from clusters was lost at the multivariable analysis
suggest that the cluster analysis cannot discover any hidden
and secret feature capable of distinguishing patients accord-
ing to their prognosis but rather that it can be viewed as a
different yet potentially more succinct way at disentangling
complex data patterns. TaggedEnd

TaggedPUnsupervised machine learning may provide crucial
insights in the comparative features of patients with ACSs,
which can prove useful for clinicians to improve decision mak-
ing, and to researchers to open new avenues for investigation.TaggedEnd
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