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Abstract. In the context of Semantic Web, one of the most important
issues related to the class-membership prediction task (through induc-
tive models) on ontological knowledge bases concerns the imbalance of the
training examples distribution, mostly due to the heterogeneous nature
and the incompleteness of the knowledge bases. An ensemble learning app-
roach has been proposed to cope with this problem. However, the majority
voting procedure, exploited for deciding the membership, does not con-
sider explicitly the uncertainty and the conflict among the classifiers of an
ensemble model. Moving from this observation, we propose to integrate
the Dempster-Shafer (DS) theory with ensemble learning. Specifically, we
propose an algorithm for learning Evidential Terminological Random For-
est models, an extension of Terminological RandomForests along with the
DS theory. An empirical evaluation showed that: (i) the resulting mod-
els performs better for datasets with a lot of positive and negative exam-
ples and have a less conservative behavior than the voting-based forests;
(ii) the new extension decreases the variance of the results.

1 Introduction

In the context of Semantic Web (SW), ontologies and the ability to perform
reasoning on them, via deductive methods, play a key role. However, standards
inference mechanisms have also shown their limitations due to the incomplete-
ness of ontological knowledge bases deriving from the Open World Assump-
tion (OWA). In order to overcome this problem, alternative forms of reasoning,
such as inductive reasoning, have been adopted to perform various tasks such
as concept retrieval and query answering [1,2]. These tasks have been cast as
a classification problem, consisting in deciding the class-membership of an indi-
vidual with respect to a query concept, to be solved through inductive learning
methods that exploit statistical regularities in a knowledge base. The resulting
models can be directly applied to the knowledge base or mixed with deductive
reasoning capabilities [3]. Although the application of these methods has shown
interesting results and the ability to induce assertional knowledge that is not
logically derivable, these methods have also revealed some problems due to the
aforementioned incompleteness. In general, the individuals that are positive and
negative instances for a given concept may not be equally distributed. This skew-
ness may be stronger when considering individuals whose membership cannot
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be assessed because of the OWA. This class-imbalance setting may affect the
model, resulting with poor performances.

Various methods have been devised for tackling the problem, spanning from
sampling methods to ensemble learning approaches [4]. Concerning the specific
task of instance classification for inductive query answering on SW knowledge
bases, we investigated on the usage of ensemble methods [5], where the resulting
model is built by training a certain number of classifiers, called weak learners,
and the predictions returned by each weak learner are combined by a rule stand-
ing for the meta-learner. Specifically, we proposed an algorithm for inducing
Terminological Random Forests (TRFs) [5], an ensemble of Terminological Deci-
sion Trees (TDTs) [6]. The method extends Random Forests and First Order
Random Forests [7,8] to the case of DL representation languages. When these
models are employed, the membership for a test individual is decided according
to a majority vote rule (although various strategies for combining predictions
have been proposed [9–11]): each classifier returning a vote in favor of a class
equally contributes to the final decision. In this way, some aspects are not con-
sidered explicitly, such as the uncertainty about the class label assignment and
the disagreement that may exist among weak learners. The latter plays a crucial
role for the performance of ensemble models [12]. In the specific case of TRFs,
we noted that most misclassifications were related to those situations in which
votes are distributed evenly with respect to the admissible labels.

A weighted voting procedure may be an alternative strategy to mitigate the
problem, but it requires a criterion for setting the weights. In this sense, intro-
ducing a meta-learner which manipulates soft predictions of each classifier (i.e. a
prediction with a confidence measure for each class value) rather than hard predic-
tions (where a class value is returned) may be a solution. For TRFs, this can be
done by considering the extension of TDT models based on the Dempster-Shafer
Theory (DS) [13], which provides an explicit representation of ignorance anduncer-
tainty (differently from the original version proposed in [6]). In machine learning,
resorting to the DS operators is a well-known solution [14]. Most of the existing
ensemble combination methods resort to a solution based on decision templates,
which are obtained by organizing, for each classifier against each class, a mean vec-
tor (called reference vector). When these methods are employed, predictions are
typically made by computing the similarity value between a decision profile of an
unknown instance with the decision templates. Other approaches that does not
require the computation of these matrices have been proposed [14]. However, all
the methods consider a propositional representation. Additionally, none of them
has been employed for predicting assertions on ontological knowledge bases.

The main contribution of the paper concerns the definition of a framework
for the induction of Evidential Terminological Random Forests for ontological
knowledge bases. This is an ensemble learning approach that employs Evidential
TDTs (ETDTs) [13] and does not require the computation of decision templates,
similarly to [14]. After the induction of the forest, a new individual is classified
by combining, by means of the Dempster’s rule [15], the available evidence on
the membership coming from each tree.
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The remainder of the paper is organized as follows: the next section recalls the
basics of the Dempster-Shafer Theory; Sect. 3 presents the novel framework for
evidential terminological random forests, while in Sect. 4, a preliminary empirical
evaluation is described. Sect. 5 draws conclusions and illustrate perspectives for
further developments.

2 Basics on the Dempster-Shafer Theory

The Dempster-Shafer Theory (DS) is basically an extension of the Bayesian
subjective probability. In the DS, the frame of discernment is a set of exhaustive
and mutually exclusive hypotheses Ω = {ω1,ω2, · · · ,ωn} about a domain. For
instance, the frame of discernment for a classification problem could be the set
of all admissible class values. Moving from this set, it is possible to define a Basic
Belief Assignment (BBA) as follows:

Definition 1 (Basic Belief Assignment). Given a frame of discernment Ω =
{ω1,ω2, . . . ,ωn}. A Basic Belief Assignment (BBA) is a function that defines a
mapping m : 2Ω → [0, 1] such that:

∑

A∈2Ω

m(A) = 1 (1)

Given a piece of evidence, the value of a BBA m for a set A expresses a measure
of belief exactly committed to A. This means that the value m(A) does imply
no further claims about any of its subsets. This means that when A = Ω, a case
of total ignorance occurs. Each element A ∈ 2Ω for which m(A) > 0 is said to
be a focal element for m. The function m can be used to define other functions,
such as the belief and the plausibility function.

Definition 2 (Belief Function and Plausibility Function). For a set A ⊆
Ω, the belief in A, denoted Bel(A), represents a measure of the total belief com-
mitted to A given the available evidence.

∀A,B ∈ 2Ω Bel(A) =
∑

B⊆A

m(B) (2)

The plausibility of A, denoted Pl(A), represents the amount of belief that could
be placed in A, if further information became available.

∀A,B ∈ 2Ω Pl(A) =
∑

B∩A %=∅

m(B) (3)

It can be proved that, knowing just one among m, Bel and Pl allows to derive
all the other functions [16].

In the DS, various measures for quantifying the amount of uncertainty have
been proposed, e.g. the non-specificity measure [17]. The latter can be regarded
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as a measure for representing the imprecision of a BBA function. This measure
can be computed by the following equation:

Ns =
∑

A∈2Ω

m(A) log(|A|) (4)

It is easy to note that the non-specificity value is higher when the focal elements
are larger subsets of Ω, for the elements of which no further claims can be made.

One of the most important aspects related to the DS is the availability of
various operators for pooling evidence from different sources of information.
One of them, called Dempster’s rule, aggregates independent evidences defined
within the same frame of discernment. Let m1 and m2 be two BBAs. The new
BBA obtained by combining m1 and m2 using the rule of combination, m12, can
be expressed by the orthogonal sum of m1 and m2. Generally, the normalized
version of the rule is used:

∀A,B,C ⊆ Ω m12(A) = m1 ⊕ m2 =
1

1 − c

∑

B∩C=A

m1(B)m2(C) (5)

where the conflict c can be computed as: c =
∑

B∩C=∅ m1(B)m2(C)
In the DS, the independence of the available evidences is typically a strong

constraint that can be relaxed by using further combinations rules, e.g. the
Dubois-Prade’s rule [18].

m12(A) =
∑

B∪C=A

m1(B)m2(C) (6)

Differently from the Dempster’s rule, the latter considers the union between two
sets of hypothesis rather than their intersection. As a result, the conflict between
sources of information does not exists.

3 Evidence-Based Ensemble Learning for Description
Logic

The TDT (and RF) learning approach is now recalled before introducing the
method for the induction of an evidence-based versions of these classification
models.

3.1 Class-Imbalance and Terminological Random Forests

In machine learning, the class-imbalance problem concerns the skewness of train-
ing data distribution. Considering a multilabel setting, where the number of
class label is greater than 3, the problem usually occurs when the number of
training instances belonging to the a particular class (the majority class) over-
whelms the number of those belonging to the other classes (which represent the
majority class). In order to tackle the problem, most common strategies based
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on sampling strategy have been proposed [19]. One of the simplest method is
an under-sampling strategy that randomly discards instances belonging to the
majority class in order to re-balance the dataset. However, this method causes a
loss of information due to the possible discarding of useful examples required for
inducing a quite predictive model. A Terminological Random Forest (TRF) is
an ensemble model trained through a procedure that combines a random under-
sampling strategy with the ensemble learning induction [5]. The main purpose
for the induction of these models is to mitigate the loss of information mentioned
above in the context of SW knowledge bases. A TRF is basically made up of
a certain number of Terminological Decision Trees (TDTs) [6], where each of
them is built by considering a (quasi-)balanced dataset. The ensemble model
assigns the final class for a new individual by appealing to a majority vote pro-
cedure. Therefore each TDT returns an hard prediction: this means that each
tree contributes equally to the decision concerning the class label, regardless its
confidence about predictions. In order to consider also this kind of information
and tackling sundry problems as the uncertainty about the class assignment (i.e.
when the confidence about either a class or another one is approximately equals)
and the disagreement between classifiers that may lead to misclassifications [5],
we need to resort to other models for the ensemble approach, such as Evidential
Terminological Decision Trees [13].

3.2 Evidential Terminological Decision Trees

In [13], it has been shown how the class-membership prediction task can be tack-
led by inducing Evidential Terminological Decision Trees (ETDTs), an extension
of the TDTs [6] based on evidential reasoning. ETDTs are defined in a similar
way of TDTs. However, unlike TDTs, each node contains a couple 〈D,m〉, where
D is a DL concept description and m is BBA concerning the membership w.r.t.
D, rather than the sole concept description. Practically, to learn an ETDTmodel,
a set of concept descriptions is generated from the current node by resorting to
the refinement operator, denoted by ρ. For each concept, a BBA is also com-
puted by considering the positive, negative and uncertain instances w.r.t. the
generated concept. Then the best description (and the corresponding BBA) is
selected, i.e. the one having the smallest non-specificity measure value w.r.t. the
previous level. In other words, this means that the description is the one having
the most definite membership.

Figure 1 reports a simple example of ETDT used for predicting whether a car
is to be sent back to the factory (SendBack) or can be repaired. We can observe
that the root concept ∃hasPart.* is progressively specialized. Additionally, the
concepts installed into the intermediate nodes are characterized by a decreasingly
non specificity measure value.

3.3 Evidential Terminological Random Forests

An Evidential Terminological Random Forest (ETRF) is an ensemble of ETDTs.
We will focus on the procedures for producing an ETRF and for predicting
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∃hasPart."
m= (∅: 0, {+1}:0.30,{-1}:0.36,

{-1,+1}: 0.34)

∃hasPart.Worn
m=(∅: 0.00, {+1}:0.50,{-1}:0.36,

{-1,+1}: 0.14)

∃hasPart.(Worn $ ¬Replaceable)
m=(∅: 0.00, {+1}:0.50,{-1}:0.36,

{-1,+1}:0.00)

SendBack
m= (∅: 0.00, {+1}:1.00,{-1}:0.00,

{-1,+1}:0.00)

¬SendBack
m=(∅: 0.00, {+1}:0.00,{-1}:1.00,

{-1,+1}:0.00)

¬SendBack
m=(∅: 0.00, {+1}:0.00,{-1}:0.13,

{-1,+1}:0.87)

¬SendBack
m=(∅: 0.0, {+1}:0.00,{-1}:0.00,

{-1,+1}: 1.0)

Fig. 1. A simple example of ETDT: each nodes contains a DL concept description and
a BBA obtained by counting the instances that reach the node during the training
phase

class-membership of input individuals exploiting an ETRF. Moving from the
formulation of the concept learning problem proposed in [5], we will use the
label set L = {−1,+1} as frame of discernement of the problem. The labels
in L are usually used to denote, respectively, the cases of positive and nega-
tive membership w.r.t. a target concept C. However, in order to represent the
uncertain-membership related to the Open World Assumption, we will employ
the label set L′ = 2L \ {∅} and the singletons {+1} and {−1} to denote the pos-
itive and negative membership w.r.t. C while the case of uncertain-membership
will be labeled by L = {−1,+1}.

Growing ETRFs. Algorithm1 describes the procedure for producing an ETRF.
In order to do this, the target concept C, a training set Tr ⊆ Ind(A) and the
desired number of trees n are required. Tr may contain not only positive and neg-
ative examples but also instances with uncertain membership w.r.t. C. According
to a bagging approach, the training individuals are sampled with replacement in
order to obtain n subsets Di ⊆ Tr, with i = 1, . . . , n. In order to obtain Dis, it is
possible to apply various sampling strategies although, in this work, we followed
the approach proposed in [5]. Firstly, the initial data distribution is considered
by adopting a stratified sampling w.r.t. the class-membership values in order to
represent instances of the minority class. In the second phase, undersampling can
be performed on the training set in order to obtain (quasi-)balanced Di sets (i.e.
with a class imbalance that will not affect much the training process). This means
that if the majority class is the negative one, the exceeding part of the counterex-
amples is randomly discarded. In the dual case, positive instances are removed.
In addition, the sampling procedure removes also all the uncertain instances. In
Algorithm1, the procedure that returns the sets Di implementing this strategy
is BalancedBootstrapSample. For each Di, an ETDT T is built by means of
a recursive strategy, as described in [13] which is implemented by the procedure
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Algorithm 1. The routines for inducing an ETRF
1 const: θ: threshold
2 function InduceETRF(Tr : training set;C : concept;n ∈ N): TRF
3 begin

4 P̂ r ← estimatePriors(Tr, C): {C prior membership probabability estimates}
5 F ← ∅
6 for i ← 1 to n
7 Di ← BalancedBootstrapSample(Tr)
8 let Di = 〈Ps,Ns,Us〉
9 Ti ← induceETDTree(Di, C, P̂ r);

10 F ← F ∪ {Ti}
11 return F
12 end
13

14 function InduceETDTree(〈Ps,Ns, Us〉: training set; C:concept; m: BBA, P̂ r: priors)
15 begin
16

17 T ← new ETDT
18 if |Ps| = 0 and |Ns| = 0 then
19 begin
20 if Pr(+1) ≥ Pr(−1) then {pre−defined constants wrt the whole training set}
21 T.root ← 〈C,m〉
22 else
23 T.root ← 〈¬C,m〉
24 return T
25 end
26 if (m({−1} . 0) and (m({+1}) > θ) then
27 begin
28 T.root ← 〈C,m〉
29 return T
30 end
31 if (m({+1} . 0) and (m({−1}) > θ) then
32 begin
33 Troot ← 〈¬C,m〉
34 return T
35 end
36 RS ← RandomSelection(ρ(D)) {random selection of specializations}
37 S ← ∅
38 for E ∈ RS {assignBBA for each candidate}
39 m′ ← computeBBA(E, 〈Ps,Ns, Us〉)
40 S ← S ∪ {〈E,m′〉}
41

42 〈E∗,m∗〉 ← selectBestCandidate(S)

43 〈〈Pl,Nl,Ul〉, 〈Pr,Nr,Ur〉〉 ← split(E∗, 〈Ps,Ns,Us〉)
44 T.root ← 〈E∗,m∗〉
45 T.left ← induceETDT(〈Pl,Nl,Ul〉, E∗, P̂ r)

46 T.right ← induceETDT(〈Pr,Nr,Ur〉, E∗, P̂ r)
47 return T
48 end

induceETDT). It distinguishes various cases. The first one uses prior probability
(estimate) to cope with the lack of examples (|Ps| = 0 and |Ns| = 0). The second
one sets the class label for a leaf node if it is sufficiently pure, i.e. no positive (resp.
negative) example is found while most examples are negative (resp. positive). This
purity condition is evaluated by considering the BBA m given as input for the
algorithm (m({−1} , 0 and m({+1}) > θ, m({+1} , 0 and m({−1}) > θ). The
values of a BBA function for the membership values are obtained by computing
the number of positive, negative and uncertain-membership instances w.r.t. the
current concept. Finally, the third (recursive) case concerns the availability of both
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Algorithm 2. Class-membership prediction
1 function classifyByTRF(a : individual;F : TRF;C : target concept) : L
2 begin
3 M [] ← new array
4 for each T ∈ F
5 M [T ] ← classify(a, T )
6

7 m ←
⊕

m∈M m {pooling according to a combination rule}
8

9 for each l ∈ 2L {class assignement}
10 Compute Bel(l) from m
11

12 if (|Bel({−1}) − Bel({+1})| > ε ) then

13 return argmaxl∈L′\{−1,+1} Bel(l)

14 else
15 return L
16 end
17

18 function classify(a, T ): m̄
19 begin
20 L ← findLeaves(a, T ) {list of BBA}
21 m̄ ←

⊕
m∈L m

22 return m̄
23 end

negative and positive examples. In this case, the current concept descriptionD has
to be specialized by means of an operator exploring the search space of downward
refinements of D. Following the approach described in [5,8], the refinement step
produces a set of candidate specializations ρ(D) and a subset of them, namelyRS,
is then randomly selected (via function RandomSelection) by setting its car-
dinality according to the value returned by a function f applied to the cardinality
of the set of specializations returned by the refinement operator (e.g.

√
|ρ(D)|).

A BBA m′ is then built for each candidate E ∈ RS. Again, the function can be
obtained by counting the number of positive, negative and uncertain-membership
instances). Then the best pair 〈E∗,m∗〉 ∈ S according to the non-specificity mea-
sure employed in [13] is determined by the selectBestCandidate procedure
and finally installed in the current node. Specifically, the procedure tries to find the
pair 〈E∗,m∗〉 having the smallest non-specificity measure value. After the assess-
ment of the best pair E∗, the individuals are partitioned by the procedure split
for the left or right branch according to the result of the instance-check w.r.t. E∗,
maintaining the same group (Pl/r,Nl/r, or Ul/r). Note that a training example a is
replicated in both children in case both K -|= E∗(a) and K -|= ¬E∗(a). The divide-
and-conquer strategy is applied recursively until the instances routed to a node
satisfy one of the stopping conditions discussed above.

Prediction. After an ETRF is produced, predictions can be made relying on
the resulting classification model. The related procedure sketched in Algorithm2
works as follows. Given the individual to be classified, for each tree Ti of the for-
est, the procedure classify returns a BBA assigned to the leaves reached from
the root in a path down the tree. Specifically, the algorithm traverses recursively
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the ETDT by performing an instance check w.r.t. the concept contained in each
node that is reached: let a ∈ Ind(A) and D the concept installed in the current
node, if K |= D(a) (resp. K |= ¬D(a)) the left (resp. right) branch is followed. If
neither K -|= D(a) nor K -|= ¬D(a) is verified, both branches are followed. After
the exploration of a single ETDT, the list L may contain several BBAs. In this
case, BBAs are pooled according to a combination rule as the Dubois-Prade’s
one [13]. The function classify returns the combined BBA according to this
rule (denoted by the symbol

⊕
). After polling all trees, a set of BBAs deriv-

ing from the previous phase are exploited to decide the class label to the test
individual a. Function classifyByTRF takes an individual a and a forest F .
Then, the algorithm iterates on the forest trees collecting the BBAs via func-
tion classify. Then, the BBAs are pooled according to a further combination
rule, which can be different from the one employed during the exploration of
a single ETDT. Additionally, this combination rule should be also an associa-
tive operator [15]. In this way, the result should not be affected by the pooling
order of the BBAs. In our experiments we combined these BBAs via Dempster’s
rules (denoted by the symbol

⊕
in the function classifyByTRF). By using

this rule, the disagreement between classifiers, which corresponds to the conflict
exploited as normalization factor, is explicitly considered by the meta-learner.
The final decision is then made according to the belief function value computed
from the pooled BBAs m. In this case, we aim to select the l ∈ 2L which maxi-
mizes the value of the function. However, in order to cope with the monotonicity
of belief function which can lead easily to return an unknown-membership as a
final prediction, the meta-learner must compare the value for the positive and
negative class label and it assign the unknown membership if their values are
approximately equal. This is made by comparing the difference between belief
function values w.r.t. a threshold ε.

4 Preliminary Experiments

The experimental evaluation aims at evaluating the effectiveness of the classifi-
cation based on the ETRF models1 and the improvement in terms of prediction
w.r.t. TRFs. We provide the details of the experimental setup and present and
discuss the outcomes.

4.1 Setup

Various Web ontologies have been considered in the experiments (see Table 1).
They are available on TONES repository2. For each ontology of TONES, 15 query
concepts have been randomly generated by combining (using the conjunction and
disjunction operators or universal and existential restriction) 2 through 8 (prim-
itive or defined) concepts of the ontology.
1 The source code will be available at: https://github.com/Giuseppe-Rizzo/SWML
Algorithms.

2 http://www.inf.unibz.it/tones/index.php.

https://github.com/Giuseppe-Rizzo/SWMLAlgorithms
https://github.com/Giuseppe-Rizzo/SWMLAlgorithms
http://www.inf.unibz.it/tones/index.php
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Table 1. Ontologies employed in the experiments

Ontology DL Lang. #Concepts #Roles #Individuals

BCO ALCHOF(D) 196 22 112

BioPax ALCIF(D) 74 70 323

NTN SHIF(D) 47 27 676

HD ALCIF(D) 1498 10 639

As in previous works [5,13], because of the limited population of the consid-
ered ontologies, all the individuals occurring in each ontology were employed as
(training or test) examples.

A 10-fold cross validation design of the experiments was adopted so that
the final results are averaged for each of the considered indices (see below). We
compared our extensions with other tree-based classifiers: TDTs [6], TRFs [5]
and ETDTs [13].

In order to learn each ETDTs by considering a balanced set of examples,
a stratified sampling was required (see Sect. 3). Three stratified sampling rates
related to the Dis were set in our experiments, namely 50%, 70% and 80%.

Finally, forests with an increasing number of trees were induced, namely:
10, 20 and 30. For each tree in a forest, the number of randomly selected can-
didates was determined as the square root of candidate refinements:

√
| ρ(·) |.

We employed these settings for training both ETRFs and TRFs. As in previous
works [5,6,13], to compare the predictions made using RFs against the ground
truth assessed by a reasoner, the following indices were computed:

– match rate (M%), i.e. test individuals for which the inductive model and a
reasoner agree on the membership (both {+1}, {−1}, or {−1,+1});

– commission rate (C%) i.e. test cases where the determined memberships are
opposite (i.e. {+1} vs. {−1} or viceversa);

– omission rate (O%), i.e. test cases for which the inductive method cannot
determine a definite membership while the reasoner can ({−1,+1} vs. {+1}
or {−1});

– induction rate (I%). i.e. test cases where the inductive method can predict
a definite membership while the reasoner cannot assess it ({+1} or {−1} vs.
{−1,+1}).

4.2 Results

As regards the distribution of the instances w.r.t. the target concepts, we observed
that negative instances outnumber the positive ones in BCO and Human Dis-
ease (HD). In the case of BCO this occurred for all concepts but one with a ratio
between positive and negative instances of 1 : 20. In the case of HD this kind of
imbalance occurred for all the queries. Moreover, in the case of HD the number of
instances with an uncertain-membership is very large (about 90%). On the other
hand, in the case of NTN, we noted the predominance of positive instances: for
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Table 2. Results of experiments with TDTs and ETDTs models

Table 3. Comparison between TRFs and ETRF with sampling rate of 50%

most concepts the ratio between positive and negative instances was 12 : 1 and a lot
of uncertain-membership instances were found (again, over 90%). Aweaker imbal-
ance could be noted with BioPax. For most query concepts the ratio between
positive and negative instances was 1 : 5. In addition, for most query concepts,
uncertain-membership instances lacked. This kind of instances were available only
for 2 queries. The class distribution was balanced for three concepts only.

Tables 2, 3, 4 and 5 report the results of this empirical evaluation. On the
other hand, Table 6 shows the differences between indexes for TRFs and ETRFs.
In general, we can observe how ensemble methods perform better or, in the
worst cases, have the same performance of a single classifiers approach for most
ontologies. For example, when we compare ETRFs w.r.t. ETDTs, a significant
improvement was obtained for Biopax (the match rate was around 96% for
ETRFs and 87% for ETDTs). For BCO, there was a more limited improvement:
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Table 4. Comparison between TRFs and ETRF with sampling rate of 70%

Table 5. Comparison between TRFs and ETRF with sampling rate of 80%

it was only around 1.31% and it was likely due to the number of examples
available in BCO. In this case, when ETRFs model were induced, there was
a larger overlap between the ETDTs in the forests and the sole ETDT model
employed in the single-classifier approach, i.e. the models were very similar to
each other.

As regards the comparison between ETRFs and TRFs model, an improve-
ment of match rate and a subsequent decrease of induction rate was observed for
Bco. This improvement was around 6% for match rate while it was of 3% for the
induction rate when a sampling rate of 50% was employed. The improvement of
match rate was larger when the sampling rate of 70% and 80% were employed.
In this case, the addition of further instances lead to that the improvement
of the predictiveness of the ETRFs. The ensemble of models proposed in this
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Table 6. Differences between the results for TRFs and ETRFs model. The symbol •
is used to denote that a positive or negative difference that is in favor of ETRFs, while
the symbol ◦ is used to denote a positive or negative difference that is in favor of TRFs

paper showed a more conservative behavior w.r.t. the original version. It can be
noted that the increase of match rate was mainly due to uncertain-membership
instances that were not classified as induction cases, as a result of the values of
belief functions employed for making decisions. Another cause is related to the
lack of omission cases. In this case, the procedure for forcing the answer leads
to decide in favor of the correct class-membership value. Besides the value of
commission rate did not change in a significant way. The proposed extension is
also more stable in terms of standard deviation: for ETRFs, this value is lower
than the one obtained for TRFs.

With BioPax, we observed again the increase of the match and a significant
decrease of commission rate. Also the induction rate was larger with ETRFs than
withTRFs, likely due to the procedure for forcing the answer.As regards the exper-
iments onHD andNTN ontology, we can observe, differently from the original ver-
sion of TRFs, how the induction rate was very high when ETRFs were employed.
For the latter case, this result was mainly due to the original data distribution
that showed an overwhelming of uncertain instances. As previously mentioned,
they approximately represented about 50% of the total number of instances in the
ABox of HD and about 90% for NTN. TRFs showed a conservative behavior by
returning an unknown membership (due to uncertain results of the intermediate
tests during the exploration of trees [5]) which tends to preserve the matches with
the gold-standardmembership also in case of uncertainmembership. This explains
the high match rate observed in the experiments. After the induction of ETRFs,
the models showed a braver behavior also due to the forcing procedure. As a result,
it tends to more easily assign a positive or negative membership to a test instance
leading to the increase of the induction rate, with a value of about 89%while omis-
sion casesmissed. Induction cases represent new non-derivable knowledge that can
be potentially useful for ontology completion, their larger number suggest that the
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result may be also due to the existing noise (also due to the employment of the
entire ABox as dataset). This basically means that most induced assertions may
be not definitely related to learned concepts, but they cannot considered as real
errors like commission rate.

Similarly to our previous experiments proposed in [5], we observed also how
the generated concept descriptions that were installed as node for each ETDT
do not improve the quality of the splittings, similarly to the case of TDTs where
the training was lead by the information gain criterion. This occurred for all
the datasets that were considered here. In both cases, most instances were sent
along a branch, while a small number of them were sent along the other one.
This means that small disjuncts problem is a common problem both TRFs and
ETRFs and neither the information gain nor the non-specificity measure can be
considered as suitable measures for selecting the best concept description that is
used to split instances during the training phase. A further remark concerns the
predictiveness of the proposed method w.r.t. both the sampling methods and
the number of trees in a forest. Also for ETRFs, the performance did not change
significantly when a larger number of trees was set or when the algorithm resort
to a larger stratified sampling rate. While in the former case the results are likely
due to a weak diversification between ETDTs, in the latter case, the result was
likely due to the availability of examples whose employment did not change the
quality of splittings generated during the growth process. For ETRFs, similarly
to TRF models, the refinement operator is still a bottleneck for learning phase:
execution times spanned from few minutes to almost 10 h as the experiments
proposed in [5]. However, when an intermediate test with an uncertain result
was encountered, the exploration of alternative paths affected the efficiency of
the proposed method.

5 Conclusion and Extensions

We have proposed an algorithm for inducing Evidential Terminological Random
Forests, an extension ofTerminological RandomForests devised to tackle the class-
imbalance problem for learning predictive classification models for SW knowledge
bases. As the original version, the algorithm combines a sampling approach with
ensemble learning techniques. The resulting models combine predictions that are
represented as basic belief functions rather than votes by exploiting combination
rules in the context of the Dempster-Shafer Theory for making the final decision.
In addition, a preliminary empirical evaluation with publicly available ontologies
has been performed.The experiments have shownhow the new classificationmodel
seems to be more predictive than the previous ones and it tends to assign a definite
membership. Besides, the predictiveness of the model can be sufficiently tolerant
to variation of the number of trees and the sampling rate. The standard deviation
is also lower than the original TRFs. In the future, we plan to extend the method
along various directions. One regards the choice of the refinement operator that
may be applied in order to generate more discriminative intermediate tests. This
plays a crucial role for the quality of the classifiers involved in the ensemble model



432 G. Rizzo et al.

in order to obtain quite predictive weak learners from both expressive and shal-
low ontologies extracted from the Linked Data cloud [20]. In order to cope with
the latter case, the method could be parallelized in order to employ it as a non-
standard tool to reason over such datasets. Further ensemble techniques and novel
rules for combining the answers of the weak learners could be employed. For exam-
ple, weak learners can be induced from subsets of training instances generated by
means of a procedure based on cross-validation rather than sampling with replace-
ment. Finally, further investigationsmay concern the application of strategies aim-
ing to optimize the ensemble, that is an important characteristic of such learning
methods [12,21].
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