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Abstract. Some nonlinear evolutive equations of Mathematical Physics

present infinitely many solutions described in many paper by different methods.

For example Körteweg De Vries equation and Kadomtsev - Petviashvili equa-
tion are completely integrable despite the presence of quasilinear terms. In the

present paper we perturb these kind of equations by positive nonlinear terms

having polynomial growth. Assuming that the quasilinear term in the original
equation has divergence form, we may apply test function method and estab-

lish a range of exponents for the perturbation so that a non-existence result of
global weak solutions holds. Concerning initial data condition, an important

difference with other equations studied by similar methods (wave, Tricomi and

so on) appears. Indeed, we present a class of quasilinear equations for which
the sign assumption on the initial data can be omitted and non-existence re-

sults still hold. Our basic examples are the perturbation of Boiti Leon Manna

Pempinelli equation and Yu Toda Sasa Fukuyama equation. Finally we suggest
open problems for other equations and other kind of perturbations.

1. Introduction. In 1986 Boiti, Leon, Manna, Pempinelli in [1] proposed the fol-
lowing 2D-variant of Korteweg De Vries equation:

∂y(∂t + ∂3x)u+ 3∂xu∂y∂xu+ 3∂2xu∂yu = 0 . (1)

It describes the interaction of two different waves along the two axes and it appears
in fluido dynamics and plasma physics. Let us observe that the linear part of the
equation is a derivation of Airy operator ∂t + ∂3x, moreover all the terms of (1) do
not depend on the function u, but only on its derivatives. In the last decade, the 3D
and 4D versions of this equation were given respectively in [6] and in [10] starting
a new area of interest. In [8] we considered the N-dimensional version of BLMP
equation and we add perturbations which depends on u. More precisely, let N ≥ 2,
for (t, x) ∈ R× R and ξ ∈ RN−1, setting u = u(t, x, ξ) : R× RN → R, we put

S(∇ξ)u = ∂ξ1u+ · · ·+ ∂ξN−1
u ,

and call N-dimensional version of (1) the following:

(∂t + ∂3x)S(∇ξ)u(t, x, ξ) + 3(∂xuS(∇ξ)∂xu+ ∂2xuS(∇ξ)u) = 0 .
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In [8] we studied non-existence of weak solutions of this equation perturbed by
positive extra sources which growth polynomially in u and its derivatives.

Let N ≥ 2, α, γ ≥ 0 and p, q > 1, then we considered{
(∂t + ∂3x)S(∇ξ)u+ 3(∂xuS(∇ξ)∂xu+ ∂2xuS(∇ξ)u) = α|u|p + γ|Dx,ξu|q ,
u(0, x, ξ) = u0(x, ξ) .

(2)

We observe that

(∂xuS(∇ξ)∂xu+ ∂2xuS(∇ξ)u) = ∂x(∂xuS(∇ξ)u)

In [8] we established that for non-zero u0 ∈ L1, if 2 < q = 2p < 2N+3
N+2 and

α = γ = 1 then (2) has no global weak solution for any u0 6= 0. In the present
paper we continue this analysis looking to the case q 6= 2p. This result will be a
corollary of a non-existence result for weak solutions of a class of equations having
the form

∂tP1(x, ξ, ∂x, Dξ)u+ P2(x, ξ, ∂x, Dξ)u+∇x,ξ · (G(u, ∂xu,Dξu)) =

= α|u|p + α1|∂xu|p1 + α2|Dξu|p2 ,

where α, α1, α2 > 0, while P1, P2 are linear operators and Gu = (G1, . . . , GN ) is a
vector valued function possibly nonlinear. In the present paper, Theorem 2.4, we
give an upper bound of p, p1, p2 so that a blow up occurs. For simplicity in Theorem
2.4 we treat only the case G dependent on the derivatives of u; instead in Theorem
4.3 we will deal with G dependent also on u.

A first application of these theorems is BLMP equation, indeed

G1 = G1(∂xu,Dξu) = 3∂xuS(∇ξ)u, Gi = 0 i = 2, . . . N .

This structure stands up also for 3D Yu Toda Sasa Fukuyama equation, introduced
in [11] and well studied in many paper to describe shallow water in reacting mix-
tures:

−4∂t∂xu+ ∂z∂
3
xu+ 3∂2yu+ 4∂xu∂z∂xu+ 2∂2xu∂zu = 0 .

Here

P1 = −4∂x , P2 = ∂z∂
3
x + 3∂2y ,

G = G(∂xu,Dy,zu) = (2∂xu∂zu, 0, (∂xu)2) ,

indeed ∇ ·G = ∂x(2∂xu∂zu) + ∂z(∂xu)2 = 2∂2xu∂zu+ 4∂xu∂x∂zu. In this paper we
consider its perturbed version:

− 4∂t∂xu+ ∂z∂
3
xu+ 3∂2yu+ 4∂xu∂z∂xu+ 2∂2xu∂zu =

= α|u|p + α1|∂xu|p1 + α2|∇y,zu|p2 ,
with α, α1, α2 > 0.

The 2D version of this equation can be deduced from the 3D case:

−4∂t∂xu− ∂4xu+ 3∂2yu− 6(∂xu)2 − 6u∂2xu = α|u|p + α1|∂xu|p1 + α2|∇y,zu|p2 ,
see [3] for α = α1 = α2 = 0. In this case

P1 = −4∂x , P2 = −∂4x + 3∂2y ,

G = G(u, ∂xu,Dy,zu) = (−6u∂xu, 0) .

Here the quasilinear term depends also on u.
Our approach works for many other equations of Mathematical Physics, among

these we will see Kadomtsev Petviashvili equation, Calogero Bogayavlenskii Schiff
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equation, Jimbo Miwa equation. For perturbed Airy and Korteweg-de-Vries see
[8]. Our approach works for other equations in KdV and KP hierarchy, but the
chosen examples show some important differences in applying test function method
to peculiar cases.

In Section 2 we will state the general result with G independent of u, proved
in Section 3. In Section 4 we generalize to G depending on u and we describe in
details the two chosen examples. The last two sections are devoted to other physical
examples, conclusions and open problems.

Notations.

• ∇ · F is the divergence of a vector valued function F = (F1, . . . , FK) in RK .
The operator S(∇) acts on real valued functions f : RK → R as S(∇)f = ∇·F
with F = (f, . . . , f).

• Let A ⊂ Rn. With C∞c (A,R+) we denote the space of smooth positive func-
tions with compact support in the domain A. We can identify these functions
with their trivial C∞ extension in Ā.

• Let L be a linear differential operator on Rnwith domain D(L) which structure
depends on the regularity of the coefficients of L. We say that g ∈ D(L∗) if
there exists a unique Ξ ∈ L1

loc such that
∫
Lfgdx =

∫
fΞdx for any f ∈ D(L).

Hence we define Ξ = L∗g and it holds∫
Rn

(Lf)g dx =

∫
Rn
fL∗g dx .

• For q > 1 we denote by q′ = q
q−1 the conjugate exponent. In particular for

a, b > 0, we will use the Young inequality:

ab ≤ εaq + Cεb
q′ ,

being ε > 0 chosen in the proof and Cε > 0 accordingly determined.
• We write f ≤ Cg with a constant C > 0 that may changes in a chain of

inequalities.

2. Definitions and main result. Let us consider the equation

∂tP1(x, ξ, ∂x, Dξ)u+ P2(x, ξ, ∂x, Dξ)u+N(∂xu,Dξu) (3)

= α|u|p + α1|∂xu|p1 + α2|Dξu|p2 ,
where Pi is a linear differential operator of order ki ≥ 1:

Pi(x, ξ, ∂x, Dξ) =
∑

1≤|(β,γ)|≤ki

p
(i)
β,γ(x, ξ)∂βxD

γ
ξ , (4)

with multi-index (β, γ) ∈ N × NN−1. On the contrary, N(∂xu,Dξu) is a nonlinear
term. The variables (t, x, ξ) ∈ RN+1 = R × R × RN−1 have dual variables, in the
sense of Fourier transform, denoted by (τ, x̃, η) ∈ R× R× RN−1.

We suppose that

(H1) α > 0, α1 > 0 and α2 > 0 .
(H2) ∂tP1(x, ξ, ∂x, Dξ)u+ P2(x, ξ, ∂x, Dξ) is m-th order quasi-homogeneous opera-

tor with quasi-homogeneous dimension Q for scaling powers (δ, δ1, δ2). This
means that there exist δ > 0 and δ1, δ2 > 0 such that

P1(λ−δ1x, λ−δ2ξ, λδ1 x̃, λδ2η) = λm−δP1(x, ξ, x̃, η) ,

P2(λ−δ1x, λ−δ2ξ, λδ1 x̃, λδ2η) = λmP2(x, ξ, x̃, η) ,
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for any λ > 0, x, x̃ ∈ R and ξ, η ∈ RN−1. Hence we put

Q = δ + δ1 + δ2(N − 1).

we can also say that P1(x, ξ, ∂x, Dξ) has quasi-homeogeneous dimension Q1 =
δ1 + δ2(N − 1) with quasi-homogeneous order m− δ and P2(x, ξ, ∂x, Dξ) has
quasi-homeogeneous dimension Q1 with order m.

(H3) For i = 1, 2, it holds

∂βxD
γ
ξ p

(i)
β,γ(x, ξ) = 0 , (5)

for any (β, γ) ∈ N× NN−1 such that 1 ≤ |β|+ |γ| ≤ ki.
(H4) There exists a vector valued function

G(∂xu,Dξu) = (G1(∂xu,Dξu), . . . , GN (∂xu,Dξu)) ,

such that

N(∂xu,Dξu) = ∇x,ξ · (G(∂xu,Dξu)) .

(H5) We assume that there exist β1, β2 ∈ R, and 1 ≤ q1 ≤ p1, 1 ≤ q2 ≤ p2 such
that

|G(∂xu,Dξu)| ≤ β2
1 |∂xu|q1 + β2

2 |Dξu|q2 , β2
1 , β

2
2 > 0 .

The assumption (H1) will lead to non-existence results even if we start from a
quasilinear equation having infinite solution as in KdV hierarchy.

The assumption (H2) will be here important to develop the test function method,
according to [5] from which we inherit the notations. In particular, let L = ∂tP1+P2

or L = ∂tP1, then

L∗SIλδS
II
λδ1S

III
λδ2 g = λmSIλδS

II
λδ1S

III
λδ2L

∗g for g ∈ D(L∗).

where SIλg(t, x, ξ) := g(λt, x, ξ), SIIλ g(t, x, ξ) := g(t, λx, ξ) and SIIIλ g(t, x, ξ) :=
g(t, x, λξ). For L and g independent of t the same relation holds, simply neglecting
the first scaling operator. In particular

P ∗1 S
II
λδ1S

III
λδ2 g = λm−δSIIλδ1S

III
λδ2P

∗
1 g for g ∈ D(P ∗1 ),

P ∗2 S
II
λδ1S

III
λδ2 g = λmSIIλδ1S

III
λδ2P

∗
1 g for g ∈ D(P ∗1 ).

The assumptions (H3) implies a reduction of the supports after application of P ∗1
and P ∗2 . Similarly the assumption (H4) leads to a holed support after integration by
parts. Assumption (H3) deals with linear operators and it has been mentioned in
[5] and developed in [4]. The assumptions (H4) (H5) give one of the novelty of this
paper, since they concern the quasilinear part of the equation. The test function
method has been applied for elliptic quasilinear equations in [9], here we exploit the
effect of a perturbation of a divergence form quasilinear term.

Finally, we will see that for some not-Kovalevskian operators a standard positiv-
ity condition on initial data could be omitted while proving a nonexistence result.

Under the same assumptions on variables and operators, we associate to (3) the
initial value problem:{

(∂tP1 + P2)u(t, x, ξ) +N(∂xu,Dξu) = α2|u|p + α2
1|∂xu|p1 + α2

2|Dξu|p2 ,
u(0, x, ξ) = u0(x, ξ) ,

(6)

where u0 : RN → R.
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Definition 2.1. Let p = (p, p1, p2). Fix T > 0. We set

Xp,G(T ) =

 u ∈ Lploc([0, T ]× RN ) s.t.

∂xu ∈ Lp1loc([0, T ]× RN )
Dξu ∈ Lp2loc([0, T ]× RN )
G(∂xu,Dξu) is well defined

in distribution sense

 .

For Xp,G(+∞) we mean the same set with functions defined in [0,+∞)× RN .
We mention that, due to assumption (H5), if u ∈ Xp,G(T ) then

G(∂xu,Dξu) ∈ L1
loc([0, T ]× RN ) .

Definition 2.2. Let be T > 0. Let u0 ∈ L1
loc(RN ). We say that u : R+ ×RN → R

is a local weak solution of (6) if u ∈ Xp,G(T ) and for any η ∈ C∞c ([0, T ),R+), for
any Φ ∈ C∞c (RN ,R+) one has∫ T

0

∫
RN

(α|u|p + α1|∂xu|p1 + α2|Dξu|p2) η(t)Φ(x, ξ) dx dt dξ

+

∫
RN

u0(x, ξ)η(0)P ∗1 Φ(x, ξ) dx dξ =∫ T

0

∫
RN

u(−η′(t)P ∗1 Φ(x, ξ) + η(t)P ∗2 Φ(x, ξ)) dx dt dξ

−
∫ T

0

∫
RN

η(t)G(∂xu,Dξu) · ∇x,ξΦ(x, ξ) dx dt dξ .

Definition 2.3. We denote by T
MAX
∈ [0,+∞] the lifespan of the solution of (6):

T
MAX

:= sup{T > 0 such that u ∈ Xp,G(T ) is a local weak solution of (6) } .
For T

MAX
= +∞ we have a global weak solution.

Theorem 2.4. Assume (H1)-...-(H5) and

p(Q−m) ≤ Q , (7)

p1(Q−min {δ1, δ2}) ≤ Qq1 , (8)

p2(Q−min {δ1, δ2}) ≤ Qq2 . (9)

Then (6) does not admit global weak solutions provided

m ≥ δ and 0 6= u0 ∈ L1(RN ) .

The same result holds, if

P1u0 ∈ L1(RN ) with

∫
RN

P1u0(x, ξ) dx dξ > 0 . (10)

Remark 2.5. We observe that the condition on p and the ones on p1, p2 are un-
coupled.

Remark 2.6. We shall see in the proof that if in (H4) we have G = (G1, 0, . . . , 0),
then δ2 in (8) and (9) can be neglected. Similarly if G = (0, G2, . . . , GN ), then δ1
can be erased in (8) and (9).

Remark 2.7. We shall see that for m > δ the assumption (H3) with i = 1 will
not be used in the estimate of the initial data. In the other cases it is necessary to
assume (10). Assumption (10) have a particular relevance for m < δ. Moreover for
m = δ it can be used when (H3) with i = 1 is not satisfied. Since for BLMP and
YTSF equations (H3) holds, and m > δ, here we do not discuss the converse case



6 SANDRA LUCENTE

whose proof can be obtained by a slightly modification of the proof of Theorem 2.4.
For example in [8] we considered Airy operator ∂t + ∂3x for which P1 = 1.

Remark 2.8. In Theorem 2.4 for p1 = q1 and p2 = q2 andQ > m, the non-existence
conditions reduces to p(Q−m) < Q, that is a Fujita type exponent

p < 1 +m/(Q−m) .

3. Proof of Theorem 2.4. Let us consider φ ∈ C∞c (R,R+) such that φ(R) ⊂ [0, 1],
φ = 1 in [−1/2, 1/2] and suppφ ⊂ [−1, 1]. Similarly we take ψ ∈ C∞c (RN−1,R+)
such that ψ = 1 for |ξ| ∈ [−1/2, 1/2] with 0 ≤ ψ(ξ) ≤ 1 for any ξ ∈ RN−1 and
suppψ ⊂ {|ξ| ≤ 1}. Finally η ∈ C∞c ([0,∞),R+) is a decreasing function such that

η(t) =

 1 t ≤ 1/2
η(t) 1/2 ≤ t ≤ 1
0 t ≥ 1

,

Let B,R > 1. Taking (δ, δ1, δ2) given by (H1), we put

ηB(t) = η
(
B−δt

)
, φR(x) = φ

(
R−δ1x

)
, ψR(ξ) = ψ

(
R−δ2ξ

)
.

We also use the following notation:

CR
.
=
{

(x, ξ) ∈ RN : |x| ≤ Rδ1 , |ξ| ≤ Rδ2
}
.

HCR
.
=
{

(x, ξ) ∈ CR : Rδ1/2 ≤ |x| andx Rδ2/2 ≤ |ξ|
}
.

Assume by contradiction that (6) admits global weak solution, by using these test
functions in Definition 2.2 we get the relation

IB,R +DR = LB,R −NB,R , (11)

with LB,R = L1
B,R + L2

B,R and NB,R = N1
B,R +N2

B,R given by

IB,R =

∫ Bδ

0

∫
RN

(α|u|p + α1|∂xu|p1 + α2|Dξu|p2) ηB(t)φR(x)ψR(ξ) dx dt dξ ,

DR =

∫
RN

u0(x, ξ)P ∗1 (φR(x)ψR(ξ)) dx dξ ,

L1
B,R = −B−δ

∫ Bδ

Bδ/2

(η′)B(t)

∫
RN

uP ∗1 (φR(x)ψR(ξ)) dx dt dξ ,

L2
B,R =

∫ Bδ

0

∫
RN

uη(t)P ∗2 (φR(x)ψR(ξ)) dx dt dξ ,

N1
B,R = R−δ1

∫ Bδ

0

ηB(t)

∫
RN

ψR(ξ)G1(∂xu,Dξu)(∂xφ)R(x) dx dt dξ ,

N2
B,R = R−δ2

∫ Bδ

0

ηB(t)

∫
RN

φR(x)G̃(∂xu,Dξu) · (∇ξψ)R(ξ) dx dt dξ ,

where G̃ = (G2, . . . GN ). Since u ∈ Xp,G(+∞), these terms are well-defined.
Due to assumptions (H3) and (H4) we can restrict the RN integrals for DR, L

i
B,R,

N i
B,R over HCR. We also put

I]B,R =

∫ Bδ

0

∫
HCR

(α|u|p + α1|∂xu|p1 + α2|Dξu|p2) ηB(t)φR(x)ψR(ξ) dx dt dξ .
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3.1. Estimate for DR. Since P1 is quasi-homogeneous of dimension δ1+δ2(N−1)
and quasi-homogeneous order m− δ, we have

DR = R−m+δ

∫
HCR

u0(x, ξ)SIIR−δ2S
III
R−δ3P

∗
1 (φ(x)ψ(ξ)) dx dξ .

For m > δ one has

|DR| ≤ R−m+δ‖P ∗1 (φψ)‖∞‖u0‖1 → 0 for R→ +∞ .

In the case m = δ, we use assumption (H3):

|DR| ≤ ‖P ∗1 (φψ)‖∞‖u0‖L1(HCR) → 0 for R→ +∞
by Lebesque convergence theorem.

Finally, in the general case, we can only say that

DR =

∫
CR

P1(u0(x))φR(x)ψR(ξ) dx dξ .

Let D :=
∫
RN P1(u0(x)) dx dξ > 0, by using Lebesgue convergence theorem, this

time we see that there exists R̄ > 0 such that DR ≥ D/2 > 0 for any R ≥ R̄.

3.2. Estimate for LB,R. By using Hölder inequality, due to (H3) assumption, we
have

|L1
B,R| ≤CB−δ

(∫ Bδ

Bδ/2

∫
HCR

|u|pηB(t)φR(x)ψR(ξ) dx dξ dt

)1/p

×

×

(∫ Bδ

Bδ/2

∫
HCR

|η′B(t)P ∗1 (φR(x)ψR(ξ))|p′

|ηB(t)φR(x)ψR(ξ)|p′−1
dx dξ dt

)1/p′

,

and

|L2
B,R| ≤C

(∫ Bδ

0

∫
HCR

|u|pηB(t)φR(x)ψR(ξ) dx dξ dt

)1/p

×

×

(∫ Bδ

0

∫
HCR

|ηB(t)P ∗2 (φRψR)|p′

|ηB(t)φR(x)ψR(ξ)|p′−1
dx dξ dt

)1/p′

.

We can substitute ηφψ with (ηφψ)σ with large σ > mp′ so that the functions in
LiB,R, with i = 1, 2 are finite, see Lemma 2.1 in [4]. Due to α > 0 and (H2) we get

|L1
B,R|

≤ CB−δ(I]B,R)
1/p×

×

(
R(−m+δ)p′

∫ Bδ

Bδ/2

|η′B(t)|p
′

|ηB(t)|p′−1

∫
HCR

SIIR−δ1S
III
R−δ2

|P ∗1 (φ(x)ψ(ξ))|p
′

|φ(x)ψ(ξ)|p′−1
dx dξ dt

)1/p′

≤ C(I]B,R)
1/pB−δR(−m+δ)Bδ/p

′
R(δ1+(N−1)δ2)/p

′
×

×

(∫ 1

1/2

∫
HC1

|η′(t)P ∗1 (φ(x)ψ(ξ))|p
′

|η(t)φ(x)ψ(ξ)|p′−1
dx dξ dt

)1/p′

.

Since the last integral is finite we can conclude

|L1
B,R| ≤ CB−δ/pR−m+Q/p′+δ/p(I]B,R)1/p . (12)
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Similarly

|L2
B,R| ≤ CBδ/p

′
R−m+Q/p′−δ/p′(I]B,R)1/p . (13)

Let R = B. After Young inequality, we may conclude that for any ε > 0, there
exists Cε > 0 such that

|LR| ≤ εI]R,R + CεR
−mp′+Q .

This means

|LR| ≤ εI]R,R + CεR
−m p

p−1+Q . (14)

3.3. Estimate for NB,R. Due to assumption (H5), we get

|N1
B,R| ≤ R−δ1

∫ Bδ

0

∫
HCR

(
β2
1 |∂xu|q1 + β2

2 |Dξu|q2
)
ηB(t)|(∂xφ)R(x)|ψR(ξ)dxdξdt ,

|N2
B,R| ≤ R−δ2

∫ Bδ

0

∫
HCR

(
β2
1 |∂xu|q1 + β2

2 |Dξu|q2
)
ηB(t)φR(x)|(∇ξψ)R(ξ)|dxdξdt .

For G̃ = 0 the term N2
B,R disappears; similarly for G1 = 0 we do not have N2

B,R.

For this reason, in such cases, the assumptions (9), respectively (8) can be neglected
as explained in Remark 2.6.

Let f, g ≥ 0 and qi < pi for i = 1, 2; we can apply Hölder inequality in the form∫
fqg ≤

(∫
fpg

)q/p(∫
g

)1−q/p

if q ≤ p .

After changing φ with φ2 and ψ with ψ2, we obtain

|N1
B,R| ≤ C R−δ1(I]B,R)q1/p1

(∫ Bδ

0

∫
HCR

ηB(t)|(∂xφ)R|ψR(ξ) dx dξ dt

)1− q1p1

+ C R−δ1(I]B,R)q2/p2

(∫ Bδ

0

∫
HCR

ηB(t)|(∂xφ)R|ψR(ξ) dx dξ dt

)1− q2p2

≤ C(I]B,R)q1/p1B
δ
(
1− q1p1

)
R
−δ1+(Q−δ)

(
1− q1p1

)

+ C (I]B,R)q2/p2B
δ
(
1− q2p2

)
R
−δ1+(Q−δ)

(
1− q2p2

)
.

Similarly

|N2
B,R| ≤ C(I]B,R)q1/p1B

δ
(
1− q1p1

)
R
−δ2+(Q−δ)

(
1− q1p1

)

+ C (I]B,R)q2/p2B
δ
(
1− q2p2

)
R
−δ2+(Q−δ)

(
1− q2p2

)
.

We can conclude that

|N1
B,R| ≤ ε1,1I

]
B,R + Cε1,1B

δR−δ1
p1

p1−q1
+(Q−δ) (15)

+ ε1,2cB,R + Cε1,2B
δR−δ1

p2
p2−q2

+(Q−δ) ,

|N2
B,R| ≤ ε2,1I

]
B,R + Cε2,1B

δR−δ2
p1

p1−q1
+(Q−δ) (16)

+ ε2,2I
]
B,R + Cε2,2B

δR−δ2
p2

p2−q2
+(Q−δ) .

Taking B = R and ε+ ε1,1 + ε1,2 + ε2,1 + ε2,2 < 1 in (14), (15), (16), we arrive at

IR,R ≤ −DR + C R−m
p
p−1+Q+ (17)
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+ C Rδ+(Q−δ)
(
R−δ1

p1
p1−q1 +R−δ2

p1
p1−q1

)
+ (18)

+ C Rδ+(Q−δ)
(
R−δ1

p2
p2−q2 +R−δ2

p2
p2−q2

)
. (19)

The case p1 = q1 or p2 = q2 is simpler, indeed NR,R ≤ C I]R,R(R−δ1 + R−δ2) so
that for large R > 1 we can still absorb NR,R in the left side, this means that the
previous inequality still holds.

3.4. Non-existence, subcritical case. Let us recall that if u0 ∈ L1(RN ) and
m ≥ δ the term |DR| → 0 for R→∞. When m < δ and

∫
P1(u0)dxdξ > 0 we may

simply neglect DR > 0 for large R. Hence taking R → +∞ in (17), (18), (19), we
find u ≡ 0 provided

p(Q−m) < Q ,

Q− p1
p1 − q1

min {δ1, δ2} < 0 ,

Q− p2
p2 − q2

min {δ1, δ2} < 0 .

Taking u0 6= 0 we get an absurd, hence the non-existence of global weak solutions
for (6).

3.5. Non-existence, critical case. Let us assume that at least one of the condi-
tions (7), (8), (9) is satisfied with equality. From (17), (18), (19), we can only de-
duce that IR,R is bounded with respect to R. Indeed also −DR is bounded provided
m ≥ δ or (10). In turn this implies u ∈ Lp([0,+∞)×RN ), ∂xu ∈ Lp1([0,+∞)×RN )
and Dξu ∈ Lp2([0,+∞)×RN ). By Lebesgue convergence theorem, we deduce that

I]R,R → 0. Coming back to (12) and (13), by Lebesgue convergence theorem, we

deduce that LR,R → 0. Here the assumption (H3) is again crucial. Similarly
NR,R → 0. In turn (11) gives IR,R → 0, hence u ≡ 0 and this is absurd for not
vanishing initial data.

4. Examples.

4.1. BLMP. First of all we come back to the nonlinear perturbation of BLMP
equation: 

(∂t + ∂3x)S(∇ξ)u+ 3(∂xuS(∇ξ)∂xu+ ∂2xuS(∇ξ)u) =

= α|u|p + α1|∂xu|p1 + α2|Dξu|p2 ,
u(0, x, ξ) = u0(x, ξ) .

(20)

We assume α, α1, α2 > 0 such that (H1) is satisfied. The operator (∂t + ∂3x)S(∇ξ)
is quasi-homogeneous of order m = 4 with δ = 3, δ1 = δ2 = 1 hence Q = 3 +N and
(H3) is satisfied. We soonly observe thatm > δ. As seen in Section 1, the quasilinear
part satisfies (H4) with G1(∂x, Dξ) = 3∂xuS(∇ξ)u and Gi = 0 for i = 2, . . . , N .
The term N2

R,R can be neglected and non-existence conditions are given by

(N − 1)p ≤ N + 3 , (21)

(N + 2)p1 ≤ (N + 3)q1 , q1 ≤ p1 , (22)

(N + 2)p2 ≤ (N + 3)q2 , q2 ≤ p2 , (23)

choosing q1, q2 > 1 such that (H5) is satisfied, that is

|∂xuS(∇ξ)u| ≤ |∂xu|q1 + |Dξu|q2 .
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By Young inequality, we fix q2 = q′1 hence we need 1 ≤ q1 ≤ p1 and 1 ≤ q2 = q′1 ≤ p2
that imply

1 ≤ p′2 ≤ p1 ,
and

N + 2

N + 3
≤ 1

p1
+

1

p2
.

Conversely if this last inequality holds, we can take r ∈
[
N+2
N+3 −

1
p2
, 1
p1

]
and for

q1 = N+2
N+3

1
r and q2 = q′1 we get (22) and (23). This shows an interaction between p1

and p2 for a quasilinear term independent of u; we can conclude that the quasilinear
term strongly influences the non-existence critical exponents.

In [8] we have only considered the case p1 = p2 = 2p and use q1 = q2 = 2 finding
the same result: condition (21) and the stronger one

(N + 2)2p ≤ 2(N + 3) ,

that is p ≤ N+3
N+2 . In this paper we have a more general choice of p, that leads

to the Fujita type exponent according to Remark 2.8. Since 1 ≤ p′2 ≤ p1 means
1
p1

+ 1
p2
≤ 1 we can summarize as it follows.

Corollary 4.1. Let

(N − 1)p ≤ N + 3 ,

N + 2

N + 3
≤ 1

p1
+

1

p2
≤ 1 .

For any non-zero u0 ∈ L1(RN ), the Cauchy Problem (20) has no global weak solu-
tions.

4.2. 3D-YTSF. Let us consider the Cauchy problem
−4∂t∂xu+ ∂z∂

3
xu+ 3∂2yu+ 4∂xu∂z∂xu+ 2∂2xu∂zu =

= α|u|p + α1|∂xu|p1 + α2|∇y,zu|p2 ,
u(0, x, y, z) = u0(x, y, z).

(24)

We assume α, α1, α2 > 0 such that (H1) is satisfied.
The structure of the linear part ∂tP1 + P2 is satisfied with P1 = −4∂x and

P2 = ∂z∂
3
x + 3∂2y so that m = 4, δ = 10/3, δ1 = 2/3 and δ2 = 2 gives (H2) with

quasi-homogeneous dimension Q = 8. According to condition (7) and Remark 2.8,
the first critical range is 1 ≤ p ≤ 2. Since only non-zero order term are included in
P1 and P2, the assumption (H3) is satisfied. For (H4) we see that

4∂xu∂z∂xu+ 2∂2xu∂zu = ∂x(2∂xu∂z)u+ ∂z(∂xu)2 .

Hence

G = G(∂xu,Dy,zu) = (2∂xu∂zu, 0, (∂xu)2)

satisfies (H4). Moreover, it holds

|G(∂xu,Dy,zu)| ≤ C (|∂xu|2 + |Dy,zu|2) ,

that is we can take q1 = q2 = 2 and gain (H5). Conditions (8) and (9) and the
requirement qi ≤ pi for i = 1, 2 correspond to 2 ≤ p1 ≤ 24/11, 2 ≤ p2 ≤ 24/11. In
this range of p, p1, p2 Theorem 2.4 assures a non-existence result of weak solution
to (24) for any initial data non-zero u0 ∈ L1(R3). Summarizing, we have
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Corollary 4.2. Let

1 < p ≤ 2 ,

2 ≤ p1 ≤ 24/11,

2 ≤ p2 ≤ 24/11 .

Given non-zero u0 ∈ L1(R2) the Cauchy Problem (24) has no global weak solutions.

Due to the presence in the quasilinear term G of the strong perturbation (∂xu)2,
in this case there is no interaction between p1 and p2.

4.3. 2D-YTSF. In order to apply our result to 2D-YTSF equations, we need to
generalize Theorem 2.4 for nonlinear term N depending also on u. Consider{

(∂tP1 + P2)u(t, x, ξ) +N(u,Dx,ξu) = α|u|p + α1|∂xu|p1 + α2|Dξu|p2 ,
u(0, x, ξ) = u0(x, ξ).

(25)

with x ∈ R, ξ ∈ RN−1 and P1(x, ξ, ∂x, Dξ), P2(x, ξ, ∂x, Dξ) as in Section 2. The
definition of weak solution and the space Xp,G(T ) requires just the small change in
G variables, hence we do not rewrite it.

Theorem 4.3. Suppose that

(A1) α > 0, α1 > 0 and α2 > 0 .
(A2) The operator ∂tP1(x, ξ, ∂x, Dξ)u + P2(x, ξ, ∂x, Dξ) is m-th order quasi-

homogeneous with quasi-homogeneous dimension Q = Q = δ+ δ1 + δ2(N − 1)
for scaling powers (δ, δ1, δ2). Assume in addiction m ≥ δ or (10).

(A3) Suppose P1, P2 in the form (4) and ∂βxD
γ
ξ p

(i)
β,γ(x, ξ) = 0 , for i = 1, 2 and for

any (β, γ) ∈ N× NN−1 such that 1 ≤ |β|+ |γ| ≤ ki.
(A4) There exists a vector valued function

G(u, ∂xu,Dξu) = (G1(u, ∂xu,Dξu), . . . , GN (u, ∂xu,Dξu))

such that

N(u,Dx,ξu) = ∇x,ξ · (G(u, ∂xu,Dξu)) .

(A5) There exist β, β1, β2 ≥ 0, and q, q1.q2 > 1 such that 1 ≤ q ≤ p, 1 ≤ q1 ≤ p1,
1 ≤ q2 ≤ p2 and

|G(u, ∂xu,Dξu)| ≤ β|u|q + β1|∂xu|q1 + β2|Dξu|q2 .

If

p(Q−m) ≤ Q (26)

p(Q−min{δ1, δ2}) ≤ Qq , (27)

p1(Q−min{δ1, δ2}) ≤ Qq1 , (28)

p2(Q−min{δ1, δ2}) ≤ Qq2 . (29)

Then for any non-zero u0 ∈ L1(RN ) the Cauchy Problem (25) does not admit global
weak solution.

In the proof of this theorem we can argue as in the proof of Theorem 2.4, the only
difference is the presence in N i

B,R of a term dependent of |u|q. Assuming q ≤ p,
one can stil combine Hölder and Young inequality reaching a vanishing term for
B = R→∞ provided (27).
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We are now ready to prove a non-existence result for nonlinear perturbation of
2D-YTSF Cauchy problem:{

∂t(−4∂xu) + 3∂2yu+ ∂4xu− 6∂x(u∂xu) = α|u|p + α1|∂xu|p1 + α2|∂yu|p2
u(0, x, y) = u0(x, y).

(30)

Here P1 = −4∂x while P2 = 3∂yy + ∂4x and G1 = −6u∂xu. Let us verify the first
set of assumptions:

(A1) α, α1, α2 > 0 .
(A2) ∂tP1 +P2 is quasi-homogeneous of order m = 4 with δ = 3, δ1 = 1 and δ2 = 2.

Hence we put Q = 6 and observe that m > δ.
(A3) Being P1 and P2 with constant coefficients and no zero order term, this as-

sumption is trivially satisfied.
(A4) Since N = −6∂x(u∂xu) = ∇x,ξ · (−6u∂xu, 0) the quasilinear term is in diver-

gence form.
(A5) We can estimate

|G1(u, ∂xu)| ≤ β|u|q + β1|∂xu|q1 ≤ β|u|q + β1|∂xu|q1 + β2|∂yu|q2

with q ≤ p and 1 < q1 = q′ ≤ p1 and for any q2 ≤ p2.

Taking β2 = α2 and q2 = p2 in (A5) and the condition (29) is trivially satisfied.
Hence we need

2p ≤ 6⇒ p ≤ 3 ,

5p ≤ 6q ≤ 6p ,

5p1 ≤ 6q1 ≤ 6p1 ,

1

q
+

1

q1
= 1 .

Summarizing, we have

Corollary 4.4. If

1 < p ≤ 3,

5

6
≤ 1

p
+

1

p1
≤ 1

then the Cauchy Problem (30) has no global weak solutions for any p2 > 1 and
u0 ∈ L1(R2).

Here the interaction term u∂xu in the nonlinear part gives an interaction between
p and p1.

5. Other equations having same structure. There are many other equations
having the structure considered in Section 2 and Section 4.3 with particular rele-
vance in Mathematical Physics.

Following the naming of the equation given in [3], we consider the perturbation
of Kadomtsev - Petviashvili equation

∂t(∂xu) + 3∂2yu+ ∂x(u∂xu) = α|u|p + α1|∂xu|p1 + α2|∂yu|p2 , (31)

with α, α1, α2 > 0
We are dealing with dimensionN = 2 and it can be rewritten as ∂tP1+P2+∇·G =

F where

P1 = ∂x ,
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P2 = ∂2y ,

G = (u∂xu, 0) .

Concerning the exponent for the quasi-homogeneous relation in (H2) we have

m = 2, δ = δ2 = δ1 = 1, Q = 3 .

Choosing q1 = q′, Theorem 4.3 gives a non-existence result for global weak solutions
to (31) for non-zero initial data u0 ∈ L1(RN ) provided

1 < p ≤ 3

2

3
≤ 1

p
+

1

p1
≤ 1

The interaction between u and ∂xu in G becomes an interaction between p and p1.
Since G is independent on ∂yu the conditions on p2 are satisfied for a suitable choice
of q2 ∈

[
2
3p2, p2

]
. The range [2/3, 1] is larger than [5/6, 1] given in Corollary 4.4,

this shows the role of the term ∂4x in the blow up dinamyc of 2D-YTSF equation,
indeed such term is absent in KP equation.

Our next result concern the 3D Jimbo Miwa equation, introduced in the seminal
paper [7]:

∂t(−2∂x2
u)− 3∂x1

∂x3
u+ 3∂3x1

∂x2
u+ ∂x1

(3∂x2
u∂x1

u) = F (u,∇u) .

In order to use Theorem 2.4, we rename this variables as x3 = x, x2 = y and x1 = z,
obtaining

∂t(−2∂yu)− 3∂z∂xu+ 3∂3z∂yu+ ∂z(3∂yu∂zu) (32)

= F (u, ∂xu, ∂yu, ∂zu) .

It can be rewritten as ∂tP1 + P2 +∇ ·G = F where

P1 = −2∂y

P2 = −3∂x∂z + 3∂3z∂y

G = (3∂yu∂zu, 0, 0) .

We put ξ = (y, z) and

F (u, ∂xu, ∂yu, ∂zu) = α|u|p + α1|∂xu|p1 + α2(|∂yu|p2 + |∂zu|p2) .

So that

m = 4, δ2 = 1, δ1 = δ = 3, Q = 3 + 3 + 1 · (3− 1) = 8 ,

The estimate for G is trivial: |G| ≤ C|Dξu|2 hence q2 = 2 while q1 is arbitrarily
chosen, so we take q1 = p1 and the condition for p1 is trivially fulfilled. As a
conclusion Theorem 2.4 gives a non-existence result for non-global weak solutions
to (32) for non-zero initial data u0 ∈ L1(RN ) provided

1 ≤ p ≤ 2 ,

2 ≤ p2 ≤ 16/7 .

The next application of our result is to Calogero Bogoyavlenskii Schiff equation.
Following [2], this equation is written in 2D variables in the form

∂t(∂xu) + ∂3x∂yu− 4∂xu∂
2
xyu− 2∂2xu∂yu = 0 .
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We write in divergence form the quasilinear terms and add the nonlinear perturba-
tion obtaining

∂t(∂xu) + ∂3x∂yu− ∂x(2∂xu∂yu)− ∂y((∂xu)2) = α|u|p + α1|∂xu|p1 + α2|∂yu|p2 .

Hence we have

P1 = ∂x ,

P2 = ∂3x∂y ,

G(u) = (−2∂xu∂yu,−(∂xu)2) .

We see that

m = 4 , δ1 = δ2 = 1 , δ = 3 < m , Q = 5

and

|G(u)| ≤ |∂xu|2 + |∂yu|2 ,
indeed the term (∂xu)2 is dominant. A direct application of Theorem 2.4 gives
non-existence result for

1 < p ≤ 5 , 2 ≤ p1 ≤ 5/2 , 2 ≤ p2 ≤ 5/2 .

6. Conclusion and open problems.

Remark 6.1. One can observe that all the considered equations belongs to KdV or
KP hierarchy. Since we use test function method, we cannot treat all the equations
in the class together, indeed in such a case pseudo-differential operators would come
into play and support information would be not preserved.

Now we list some other directions of this research. Anyway, in order to complete
this analysis it is necessary to understand a local existence theory for (6) at least
when P1, P2, N give the known equations of Mathematical Physics like the examples
in Section 4 and Section 5.

• A larger discussion on the initial data conditions can be done assuming for
example that (H3) does not hold for i = 1 but u0 is in a weighted space which
weight depend on P1 coefficients.

• One can perturb quasi homogeneous operators by means of low order terms.
The possibility to weaken the (H2) assumption can be studied starting from
Theorem 4.2 of [5] or modified test function method introduced in [4]. Here
we avoid such generalizations since we have in mind certain equations relevant
in Mathematical Physics.

• One can split in a different way the variables and treat a more general nonlin-
ear term sum of αj |∂ξju|qj . For example in 3D-YTSF equation one can avoid

to put ξ = (y, z) ∈ R2 and rebuild an analogous theorem for ∂t(P1) +P2 +P3

where P2 = 3∂2y and P3 = ∂z∂
3
x. In this work we do not treat such generaliza-

tion since the case of ξ ∈ RN−1 includes any idea. Similarly for Jimbo Miwa
equation.

• Concerning assumption (H1) it is possible to take α = 0 and control LB,R by
means of Sobolev embedding, this will change the critical exponents. Some
interplay between p, p1, p2 can appear in non-existence conditions. The case
α1 = 0 is admissible if β1 = 0 in the assumption (H5). Indeed the perturbation
|∂xu|p1 interacts with the quasilinear dependence of G with respect to ∂xu.
Similarly the case α2 = 0 is admissible if β2 = 0.
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• One can consider the most general case in which a source term α2
3|ut|p3 ap-

pears.
• One can treat second order in time Cauchy Problems as for Boussinesq equa-

tions. In such case other conditions on initial data will appear.
• We believe it is possible to extend this method when N = N(x, ξ, ∂xu,Dξu),

that is N has variable coefficients. In this case the growth order of N with
respect to x, ξ may change the non-existence exponents. We neglect this
extension since we started from some Mathematical Physics equations which
quasilinear terms do not involve variable coefficients.
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