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ABSTRACT  
Urban vertical features are crucial for understanding urban morphology. 
However, long-term information on three-dimensional buildings, which 
are important fundamental data for studying on the historical 
urbanization processes, remains scarce in China. In this study, we 
proposed a Random Forest model to generate an annual 1-km 
resolution building volume dataset covering mainland China from 2001 
to 2019, by integrating the nighttime light data, population 
demographics, electricity consumption records, carbon dioxide 
emissions data, and various optical and statistical datasets. This new 
building volume data are highly consistent with that derived from 
Baidu Maps on 1-km scale, with Pearson’s correlation coefficient (R) of 
0.847, root mean square error (RMSE) of 9.17 × 105 m3/km2 and mean 
absolute error (MAE) of 5.86 × 105 m3/km2. Notably, cross-validation 
indicate that the blooming problem was greatly improved when 
compared with previous model-based building three-dimensional data. 
The proposed method holds significant advantages, benefiting form 
low-cost implementation based on free open-source data and providing 
extendable algorithm to estimate the 3D shape of cities in the future. 
The time-series historical building volume data offer comprehensive 
insights into the historical development of urban structures, and 
provide valuable fundmental data for future urban planning, urban 
climate models and land use projections.
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1. Introduction

Urbanization has undergone a rapid ascent over the past century, with more than 50% of the 
world’s population now residing in urban areas (He et al. 2023a). The 2018 Revision of World 
Urbanization Prospects suggest this upward trend will persist (Daes 2019), with an estimated 
increase to 68% by 2050 (United Nations 2017). Thus, the structure of cities (i.e. urban form) 
has been greatly changed, with rapid expansion in their horizontal boundary (urban area, Li 
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et al. 2020b) and increases in vertical boundary (building height, He et al. 2023b). These changes in 
urban three dimensional (3D) features may have significant impacts on socio-economic conditions, 
residents’ living standards and public health, and energy consumption (Perini and Magliocco 2014; 
Borck 2016; Li and Zhou 2017); and may also triggered a cascade of adverse ecological effects (Alah
madi, Atkinson, and Martin 2013; Perini and Magliocco 2014). Therefore, it is important to track 
the long-term historical changes in global urban’s 3D features.

Over the past decades, the horizontal urban boundaries has been well detected by determining 
the extent of impervious surface using multiple state-of-art satellite remote sensing technologies 
(Zhao et al. 2015; Leyk et al. 2019a; Heris et al. 2020; Gong et al. 2020) and statistical datasets 
(Frantz et al. 2021), based on machine learning methodologies (He et al. 2023b). However, com
phrehensively assessing or quantifying the urban form and morphology changes requires the assess
ment of vertical (3D) features within urban built-up areas (Gong et al. 2011; Li and Zhou 2017). The 
vertical features significantly influence urban environments such as solar radiation, wind pathways, 
pollution dispersion, and the urban heat island (UHI) effects (Clinton and Gong 2013; Rodríguez, 
Dupont-Courtade, and Oueslati 2016; Wang et al. 2018). Ignoring the urban height estimation, it’s 
difficult to reflect the actual building density, land use intensity of urban areas and the heterogeneity 
of urban internal structure (Li et al. 2020a). Therefore, novel approaches are needed that surpass the 
detection of urban cover and can furnish consistent information regarding 3D traits that predict 
characteristics of urban areas at large scale.

Currently, extensive efforts have been dedicated to explore the 3D urban features at local and 
regional scales (Li et al. 2020c), using airborne light detection and ranging (LIDAR) (Yu et al. 
2010; Bonczak and Kontokosta 2019) and other high-resolution optical remote sensing images 
(Thiele et al. 2007; Hao, Zhang, and Cao 2016). Given the outstanding capability of capturing 
3D spatial information by LIDAR, some studies have directly employed it to model building height 
and morphology at both local and regional scales (Thiele et al. 2007; Yu et al. 2010; Hao, Zhang, and 
Cao 2016). However, obtaining such data is typically expensive and difficult, especially for large- 
scale and continuous estimation over large areas.

With the publication of open, free and globally available data, such as the Sentinel-1 Synthetic 
Aperture Radar (SAR) data and the Advanced Land Observing Satellite (ALOS) global digital sur
face model (DSM), increasing studies used a series of multivariate data to map large-scale vertical 
features based on machine learning methods (Li et al. 2020a; Frantz et al. 2021). Li et al. (2020a) 
applied a Random Forest (RF) models using Landsat, Moderate-resolution Imaging Spectroradi
ometer (MODIS), Sentinel-1, and other data collected from various sources to fill a gap in conti
nental-scale and global-scale 3D building structures with a resolution of 1 km for 2015. Huang 
et al. (2022) devised a direct method using the Advanced Land Observing Satellite (ALOS) 
World 3D-30 m (AW3D30) Digital Surface Model (DSM) to estimate building height in China 
for 2010. Wu et al. (2023) generated the first Chinese building height map at 10-m resolution 
(CNBH-10 m) by integrating multiple-source data (radar, optical, and night light images) through 
a RF model for 2020. Despite these advancements, radar data sources such as Sentinel-1, commonly 
used for such analyses, mainly focus on specific time points after 2014, lacking the comprehensive 
long-term information that is crucial for understanding the continuous urban development pro
cess. Recently, He et al. (2023b) enriched time-series information on urban vertical features with 
a global 3D expansion dataset (1990–2010). They generated a building height dataset using the 
ALOS AW3D30 data version 2, global DSM data at 30-m resolution in 2010. Subsequently, annual 
global construction land data (1990–2010) were derived based on various sources, forming an orig
inal time-series 3D expansion dataset from 1990 to 2010. However, the dataset’s endpoint is 2010 
due to the limited availability of ALOS AW3D30 data.

Beyond these raster datasets, many technology companies’ map products, such as Google Earth 
3D, Baidu Map, and OpenStreetMap, generate rich building vector datasets worldwide with high 
spatial resolution (Daniel et al. 2019). However, obtaining the time-series data for national or global 
investigations is typically challenging and costly (He et al. 2023b), as the services they provide are 
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commercial and not entirely open (Yu and Gong 2012). Additionally, in certain cities, many impor
tant buildings are incomplete or inaccurate on the maps (Haklay and Weber 2008). What is more 
important, these datasets provide only limited temporal coverage and lack of the time-series data, 
particularly the historical data (He et al. 2023b). In summary, the majority of existing 3D city data
sets either have restricted coverage or are not freely available. Thus, it is neccessary to develop a 
time-seiries urban 3D feature dataset with complete coverage for all the cities.

To fill the gap of lacking of time-series historical 3D urban feature data, we aim to develop a 
long-term (from 2001 to 2009) building volume (including both horizontal and vertical building 
features) datasets covering all the cities in mainland China (excluding Hong Kong, Macao, and Tai
wan) based on free open-source data at low cost quickly and automatically. The RF model has been 
demonstrated great potential in generating a spatial and temporal continuous gridded building 
volume dataset (Tramontana et al. 2015; Zhang et al. 2023). Thus, by combining the building 
volume data of 75 cities from Baidu Map in 2019 with 17 environmental covariates data from var
ious sources spanning the year 2001 and 2019, we employed RF machine-learning model to derive a 
national map of building volume at a 1-km resolution covering the period from 2001 to 2019 in 
mainland China. The reference building volume data obtained from Baidu Map were spanned var
ious city sizes (i.e. Small-sized, Medium-sized city, Large-sized city, Mega city and Super city), 
ensuring a diverse representation.

2. Data and methods

The workflow for estimating building volume in mainland China employing the RF model is illus
trated in Figure 1. In the first, we collected the vector building data of 75 cities in 2019 from Baidu 
Map for training model and other 17 environmental covariates data from 2001 to 2019 for esti
mation of building volume. These environmental covariates data included economic-social, land 
cover-related and topography variables are sourced from satellite-based observations and statistical 
data (Table 1). All these data underwent preprocessing via the Google Earth Engine (GEE) platform 
and ArcGIS 10.8 (Figure 2), including unified resampling into 1 km-resolution annual data. Then, 
we created a spatially predictive RF model of building volume using the Baidu Map’s data as depen
dent variable and environmental covariates in corresponding year as independent variables. Based 
on this RF model, we generated an annual average building volume dataset covering mainland 
China from 2001 to 2019. The third stage involved evaluating the accuracy of our estimated 
time-series data. Finally, we conducted a comprehensive analysis of the spatial and temporal 
characteristics derived from the estimated building volume dataset in mainland China.

2.1. Study area

Situated in eastern Asia along the western Pacific coast, China stands as the world’s largest devel
oping nation, hosting a significant population that accounts for about 20% of the global populace 
(Cao et al. 2023; Guo et al. 2023). Following the inception of free-market policies in 1978, China 
swiftly underwent urbanization (Yang et al. 2019; Cai, Liu, and Cao 2020), with approximately 
two-thirds of its population now residing in cities (China Statistics Press 2021). Notably, urban 
development in China exhibits considerable imbalances, which can be divided into five distinct 
sizes based on population size: Small-sized, Medium-sized, Large-sized, Mega, and Super cities 
(Song, Wang, and Qi 2015; Shi et al. 2021). In this work, the analysis focuses on cities in Mainland 
China, excluding Hong Kong, Macao, and Taiwan due to unavailability of statistical data.

2.2. Data collection and processing

This study used 3D vector bulidng data from Baidu Map and other 17 environmental covariates 
data from multiple sources to create the national 1-km resolution 3D urban expansion dataset 
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from 2001 to 2019. The detailed description of all data is shown in Table 1. Before building model, 
all these data were resampled to 1-km annual resolution as shown in Figure 2.

2.2.1. Building volume data used for train model
We downloaded the building data of 75 cities for the year in 2019 from Baidu Maps (http://map. 
baidu.com), one of the most widely used digital map platforms in China that offer satellite imagery, 
street maps, a route planner, and so on (Xue and Li 2020). In this study, the selected 75 cities include 
2 Medium-sized cities, 24 Large-sized cities, 37 Mega cities, and 12 Super cities (Classification cri
teria from The State Council of the People’s Republic of China 2014) (Figure 3(a)). The raw build
ing data with vector format contain the information relating to the footprint and number of floors. 
We assumed a 3-m floor height to calculate the height of each building (Leichtle et al. 2019). Vector 
building data were converted into raster data with a 10-m spatial resolutions and calculated in a 1- 

Figure 1. Methodological flowchart of building volume estimation from 2001 to 2019.
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Table 1. Datasets used in this work.

Data Type Period
Spatial 

resolution Source Abbreviation

Reference building volume 
data

vector 2019 Vector http://www.map.baidu.com /

Nighttime light data raster 2000–2020 1 km https://doi.org/10.3974/ 
geodb.2022.06.01.V1

EANTLI

Carbon dioxide emission 
data

raster 2000–2021 1 km http://db.cger.nies.go.jp/ 
dataset/ODIAC/

ODIAC

Electricity consumption data raster 1992–2019 1 km https://doi.org/10.6084/m9. 
figshare.19517272.v1

EC

Artificial impervious area 
data

raster 1990–2019 30 m https://doi.org/10.5281/ 
zenodo.4417810

AIA

Population data raster 2000–2022 1 km https://landscan.ornl.gov Pop
Gross Domestic Product per 

capita data
table 2001–2022 Provincial National Bureau of Statistics 

of China
GDP

Population growth rate data table 2001–2022 Provincial National Bureau of Statistics 
of China

PGR

Normalized Difference Built- 
up Index

raster 1984–2023 30 m Landsat5; Landsat7; 
Landsat8

NDBI

Modified Normalized 
Difference Water Index

raster 1984–2023 30 m Landsat5; Landsat7; 
Landsat8

MNDWI

Normalized Difference 
Vegetation Index

raster 1998-2019 1 km https://www.resdc.cn/data. 
aspx?DATAID = 257

NDVI

Albedo raster 2000–2022 500 m https://doi.org/10.5067/ 
MODIS/MCD43A3.061

Albedo

LST Day raster 2000–2022 1 km https://doi.org/10.5067/ 
MODIS/MOD11A2.006

LSTD

LST Night raster 2000–2022 1 km https://doi.org/10.5067/ 
MODIS/MOD11A2.006

LSTN

Digital Elevation Model raster 2000 90 m http://www.earthenv.org/ 
DEM.html

DEM

Slope raster 2000 90 m obtain based on DEM data Slope
Latitude raster / 1 km / Lat
Longitude raster / 1 km / Lon
Global Urban Boundary data vector 1990, 1995, 2000, 2005, 

2010, 2015, 2018
/ http://data.ess.tsinghua.edu. 

cn
GUB

Figure 2. The flowchart of input dataset processing.
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km grid cell based on the method provided by Frantz et al. (2021) (Equation 1). Finally, 80,615 1-km 
grid cell samples were used for building model. The result showed that almost 80% of city had 
building volume more than 4394.4 × 105 m3 and almost 70% of the building volume in each 1- 
km grid cell for these 75 cities were large than 1 × 105 m3/km2 (Figure 3(b)). To assess the reliability 
of reference samples, we used thirty buildings in Guangzhou to access the accuracy base on visual 

Figure 3. Building volume data in 2019 from Baidu Map for model development. (a) Geographical distribution of the seclected 75 
cities. Background colors indicating different city sizes based on population criteria (Small-sized city: population < 500,000; Med
ium-sized city: 500,000 ≤ population < 1,000,000; Large-sized city: 1,000,000 ≤ population < 5,000,000; Mega city: 5,000,000 ≤  
population < 10,000,000; Super city: population ≥ 10,000,000). Red points denote the locations of the seclected 75 cities. (b) Ker
nel density plot of building volume in each 1-km grid cell for the seclected 75 cities. The x-axis scaled logarithmically. (c) 
Reliability analysis of building height by visual interpretation compared to reference data obtained from Baidu Maps.
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interpretation approach, and these buildings has not changed since 2019. In Figure 3(c), the com
parison shows very high reliability.

BV1 km =
􏽘n

f
Hf Af (1) 

where, BV1 km represents the total building volume of all buildings in a 1-km pixel; Hf and Af 
denote the height and area of each reference building, respectively.

2.2.2. Socio-economic data
Close to 70% of global energy consumption is related to cities, and more than one-third of energy 
consumption stems from residential and commercial buildings (Gurney et al. 2009; Seto et al. 2014; 
Zhong et al. 2021). In this work, carbon dioxide (CO2) emissions were taken from The Open-Data 
Inventory for Anthropogenic Carbon dioxide (ODIAC) (Oda, Maksyutov, and Andres 2018), 
which is a global monthly fossil fuel CO2 emissions dataset with a 1-km horizontal resolution, 
from 2000 to 2021. It was generated through global power plant emissions estimates and satel
lite-observed nighttime light data (Oda, Maksyutov, and Andres 2018). We calculated yearly 
CO2 emissions data based on each monthly data.

Electricity consumption is an indispensable commodity in the daily life of modern residents and 
provides useful information for understanding their economic status and quality of life (Shi et al. 
2020; Cui et al. 2021). We used global yearly 1 km × 1 km gridded electricity consumption from 
1992 to 2019, which was generated based on calibrated nighttime light data (Chen et al. 2022).

Population is an essential indicator for social and economic development and influences built-up 
planning and development (Fang et al. 2014; Calka, Nowak Da Costa, and Bielecka 2017; Leyk et al. 
2019b). In this study, population size data were derived from the Oak Ridge National Laboratory 
(ORNL) (https://landscan.ornl.gov). The Landscan population dataset, first developed in 1998 
and then annually from 2000 to 2019, consists of global gridded data with 1-km spatial resolution 
(ORNL 2019). It is based on statistical data from the Geographic Studies Branch, US Bureau of Cen
sus and geospatial input data, which contains land cover, roads, slope, urban areas, village locations, 
and high-resolution satellite imagery analysis (ORNL 2019).

Per capita gross domestic product (GDP) and population growth rate were obtained from pro
vincial-level statistical data released by the National Bureau of Statistics of China. The processing of 
statistical data includes two steps. The initial data are in table format; thus, we first combined the 
information in the table with the provincial-level vector data in China. Secondly, the vector data 
were converted into raster data with a 1-km spatial resolution.

2.2.3. Nighttime light data
Nighttime light data reflects the brightness of the surface night light and represents the urbanization 
process and intensity of human activities (Levin et al. 2020; Sutton et al. 2001; Chen et al. 2023). 
Herein, we utilized nighttime light data corrected based on enhanced vegetation index (EANTLI), 
which provide yearly nighttime lighting information at a 1-km resolution in China from 2000 to 
2020 (Zhong et al. 2022). This dataset was derived from a combination of data sources, including 
the Operational Linescan System (DMSP/OLS) from the Meteorological Satellite Program and Vis
ible Infrared Imaging Radiometer (NPP/VIIRS) from the National Polar-orbiting Partnership.

2.2.4. Artificial impervious area
Built-up density is one of the most relevant measures in urban research (e.g. Taubenböck et al. 
2016). In this work, built-up density denotes the share of a 1-km pixel that is occupied by artificial 
impervious surface that was extracted from the annual China land cover dataset (CLCD) (Yang and 
Huang 2021). The CLCD is multi-temporal, with 30-m resolution spanning from 1990 to 2019, and 
contains dynamic land cover change information. The calculated built-up density is expressed in 
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the following Equation 2:

BD1 km =

􏽐n
i 30 m × 30 m

1000m × 1000m
(2) 

where 
􏽐n

i
30 m × 30 m denotes the total areas of artificial impervious surface in a 1-km pixel.

2.2.5. Optical data
Remotely sensed data consist of land surface temperature (LST), albedo, and relevant indices 
derived from Landsat. LST directly reflects surface features and thermal conditions (Du et al. 
2016; Zhang, Murray, and Turner Ii 2017; Gao et al. 2019). LST in urban built-up areas is affected 
by many factors, which include not only meteorological conditions and location but also land cover 
and urban form (Du et al. 2016; Zhang, Murray, and Turner Ii 2017; Gao et al. 2019). LST data were 
obtained from the MOD11A2 Version 6 product, which provides an average 8-day period with a 1- 
km spatial resolution, where daytime and nighttime data are independently stored. The raw LST 
data extracted from a 1-year period were calculated as the yearly average LST data using the 
GEE platform.

The albedo with a range from 0 to 1 is the ratio of the reflected to the incident solar radiation 
over a horizontal plane, and represents the reflecting power of a surface (Rutherford et al. 2017). 
At the urban scale, albedo represents the ability of the urban surface features to reflect radiation 
back to the sky (Qin 2015; Salvati et al. 2022). Urban form and material reflectance are considered 
as influencing factors for albedo (Salvati et al. 2022). We used black sky albedo to denote real 
albedo, which is available for an 8-day period with a 500-m spatial resolution from MOD43A3 pro
ducts. The raw (1-year) albedo data was computed as the yearly average albedo data. Subsequently, 
the albedo data were spatially aggregated to 1-km resolution using a mean function in the GEE 
platform.

The Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water 
Index (MNDWI) and Normalized Difference Built-up Index (NDBI) were also considered as inde
pendent variables in our study. NDVI could provide additional features to effectively avoid over
estimation of built-up areas in urban cores (Zheng et al. 2023). Annual NDVI data were 
obtained using a 1-km spatial resolution from the Resource and Environment Science and Data 
Center of the Chinese Academy of Sciences (Xu 2018). MNDWI and NDBI were derived from 
Landsat images, which provide a 16-day period with a 30-m spatial resolution (Mushore et al. 
2017). Firstly, we calculated the median of the raw Landsat data within one year, then aggregated 
the data into 990-m data using an average function and resampled to a 1-km resolution. Later, we 
computed MNDWI and NDBI based on Equations 3 and 4. All of the above processing was per
formed using the GEE platform.

MNDWI =
GREEN − SWIR1
GREEN + SWIR1

(3) 

NDBI =
SWIR1 − NIR
SWIR1 + NIR

(4) 

where GREEN, SWIR1, and NIR represent green, blue, near infrared, and shortwave infrared.

2.2.6. Geospatial data
Considering the complexity of the Chinese terrain, geospatial data are used as key variables for the 
estimation of building volume (Huang et al. 2022). The geospatial data include location information 
(longitude and latitude) and topographic information, Digital Elevation Model (DEM and slope). 
The DEM data were obtained from EarthEnv-DEM90 data, which is a global and free access pro
duct with 90-m spatial resolution (Robinson, Regetz, and Guralnick 2014). The slope data were 
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computed based on the DEM data. The data were aggregated into 990-m data using an average 
function and resampled to 1-km resolution. All of the processing is based on ArcGIS 10.8.

2.2.7. Urban boundary data
Similar to Zhou et al. (2022), global urban boundaries (GUB) in 2018 were used to mask the final 
map of building volume (Li et al. 2020b). The GUB dataset is the boundary of urban areas with vec
tor format in 1990, 1995, 2000, 2005, 2010, 2015, and 2018. It is generated based on the global artifi
cial impervious area (GAIA) data (Gong et al. 2020). Herein, the vector data were converted into 
raster data with 1-km spatial resolution.

2.2.8. Datasets for potential uncertainy analysis
To assess potential uncertainties of independent variables, we substituted four alternative datasets 
for carbon dioxide emissions, nighttime light data, impervious area, and population, which are cru
cial factors in our model for estimating building volume. The carbon dioxide emissions data was 
replaced with Particulate Matter 10 µm (PM10) data, a daily (1-km resolution) high-quality 
PM10 dataset in China spanning from 2015 to 2019 (Wei et al. 2021). Nighttime light data was 
replaced with a dataset obtained from Li et al. (2020d), offering a global datatset with integrated 
and consistent time-series (1992–2018) (Zhao et al. 2022). Impervious area was substituted with 
terrestrial Human Footprint data, reflecting the annual dynamics of the global human footprint 
from 2000 to 2018 (Mu et al. 2022). Population data was replaced with data obtained from World
pop, an open dataset for spatial demography (Tatem 2017).

2.3. Random forest algrithms for developing the machine learning model

The RF regression model is a combined algorithm and generally demonstrates high accuracy (Brei
man. 2001; Tramontana et al. 2015; Zhang et al. 2023). Currently, the RF regression model has 
received more attention for estimating vertical attributes (Li et al. 2020a; Potapov et al. 2021). 
We first split the total number of 1-km grid cells into a training set and a test set using an 70/30 
random split, stratified by cities sizes. We used the training set to determine the best machine-learn
ing algorithm and set of hyperparameters, and to train the final model. We used the test set to assess 
out-of-sample error. In our study, the ‘randomForest’ package in R language environment was used 
to set up the RF regression model and compute the relative importance of each independent vari
able (Breiman et al. 2018). To improve model accuracy, it was necessary to determine optimal 
values for two essential parameters: ntree and mtry (Ma et al. 2023). The values of ntree and 
mtry represent the number of decision trees and the number of variables included in each decision 
tree, respectively. Increasing the value of ntree can obtain better results, but the errors of the results 
stabilize when above a certain value (Guan et al. 2013). We found that the model error tended to be 
stable when the value of ntree was greater than 300. Subsequently, we attempted to apply each of the 
values of mtry from 2 to 17 to the model until we found the optimal value. Meanwhile, we also con
ducted a cross-validation to find the best combination of parameters. Therefore, after initial tuning 
experiments, we set the values of ntree, mtry, minimum node size, maximum depth and sample 
fraction to 300, 2, 5, 30 and 1, respectively (Figure 4).

2.4. Metrics for accuracy assessment

The performance of the building volume model was assessed based on three indicators – Pearson’s 
correlation coefficient (R), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). To 
test the stability of the model, the bootstrap sampling method was applied for cross-validation. The 
reference samples were randomly divided into two subsets based on the bootstrap sampling 
method. Seventy percent of the reference samples were used to train the building volume model. 
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Subsequently, we computed the R, RMSE and MAE using the remaining samples (30%) (Eq. 5, Eq. 6
and Eq. 7). The process was repeated randomly 200 times.

In addition, both two one-year 3D building data provided by Wu et al. (2023) and Li et al. 
(2020a), respectively, and one time-series data produced by He et al. (2023b) were used to further 
assess model performance. For comparison with a referenced dataset at the same spatial resolution, 
we calculated the total building volume of annual reference data in each 1-km pixel based on Arc
GIS 10.8. The GUB data from 2018 were used to mask the reference building volume maps. The 
final reference data were compared with our results from 2001 to 2010, which comprise of the 
two datasets from the overlaid period. In the Equations, n denotes the number of validation 
samples, BVest ,i and BVref,i represent the estimated building volume and reference building volume, 
respectively.

R =

����������������������������������������

1 −
(n − 1)

􏽐n
i=1 (BVest ,i − BVref, i)2

(n − 2)
􏽐n

i=1 (BVest ,i − BVref, i)2

􏽳

(5) 

RMSE =

���������������������������
􏽐n

i=1 (BVest ,i − BVref, i)2

n

􏽳

(6) 

MAE =
􏽐n

i=1 |BVest ,i − BVref, i|

n
(7) 

3. Results and discussion

3.1. Model development, validations and uncertainty assesments

3.1.1. Relative importance of independent variables
The relative importance of each independent variable is shown in Figure 5(a). The independent 
variables with the most significant importance (top five) are ODIAC (13.1%), EANTLI (13.0%), 
impervious area (11.3%), population (10.9%), and electricity consumption (9.2%). The relative 

Figure 4. Precision of different parameters configurations during the modeling process. Red and blue lines represent the Pear
son’s correlation coefficient (R, red line) and the root mean square error (RMSE, blue line), respectively. The parameters include 
the number of decision trees (a), the number of variables included in each decision tree (b), minimum node size (c), maximum 
depth of decision trees (d), and sample fraction (e).
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importance of the remaining independent variables was less than 9%. In summary, socio-economic 
variables exhibited the highest importance for estimating building volume.

The regressions between the top five variables with high relative importance and reference build
ing volume are shown in Figure 5(b-f). Based on the results of the regression, these variables 
expressed a highly positive correlation with reference building volume according to the coefficient 
of determination (R2) values. The relationship between impervious area, electricity consumption 
and reference building volume conformed to a power function, and the remaining independent 
variables all presented a positive linear correlation with reference building volume (Figure 5(b-f)).

3.1.2. Cross-validation of model and model adjustment
The random cross-validation results of building volume are shown in Figure 6. We found that the 
estimated building volume showed a strong statistical correlation with the building volume from 
Baidu Map. The mean values of R, RMSE, and MAE were 0.847, 9.17 × 105 m3/km2, and 5.86 ×  
105 m3/km2, respectively (Figure 6(a–c)). However, the result also showed that the model per
formed a bit underestimate and different between four-scale cities. The mean R values in the Med
ium-sized city was 0.80, while that for Large-sized city, Mega city and Super city ranged from 0.844– 
0.852. In addition, the mean values of RMSE and MAE were higher in the larger scale city than in 
the smaller scale city. The lowest mean values of RMSE and MAE were 5.06 × 105 m3/km2 and 
3.83 × 105 m3/km2, respectively, in the Medium-sized city, whereas the highest mean values of 
RMSE and MAE were 9.62 × 105 m3/km2 and 6.35 × 105 m3/km2, respectively, in the Super city 
(Figure 6(d–g)).

In order to further improve accuracy, we adjusted the building volume for four levels of cities 
separately according to the relationship of the scatter plot beween model-based building volume 
and baidu-map-based building volume for four-scales cities. The initial estimated building volumes 
were compared with the adjusted building volumes, demonstrating that the regression line of 
adjusted building volumes was closer to the 1:1 line than the regression line of the initial estimated 

Figure 5. The relationship between independent and dependent variables in this RF model. (a) Average relative importance of 
each independent variable in influencing the building volume data. The variables used to estimate building volume are classified 
into optical data (yellow), statistical data (purple) and other data (green). (b–f) Scatter diagrams between building volume per 
square kilometer and CO2 emissions data (ODLAC, b), nighttime light data (EANTLI, c), impervious area (AIA, d), population count 
(Pop, e), and electricity consumption (EC, f).
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building volumes (Figure 7(a and b)). After adjusted, the mean values of RMSE and MAE for 75 
cities declined from 8.65 × 105 m3/km2 to 8.55 × 105 m3/km2, 5.82 × 105 m3/km2 to 5.57 × 105 m3/ 
km2, respectively. Specially, Xi ‘an (1.1 × 105 m3/km2) and Lanzhou (2.2 × 105 m3/km2) exhibit con
siderable of difference values between initial RMSE and adjusted RMSE. However, building volume 
was still evidently underestimated in Lanzhou (mean difference = −3.32) and overestimated in Gui
lin (mean difference = 2.56) (Figure 7(c) and Figure 8).

Figure 6. Random cross-validations of the estimated building volume using the Random Forest machine learning model. (a–c) 
The distribution of cross-validation results for building volume per square kilometer. Violin plots depict three performance 
metrics: Pearson’s correlation coefficient (R) (a, blue), Root mean square error (RMSE) (b, green), and Mean absolute error 
(MAE) (c, orange) during cross-validations utilizing the bootstrap sampling method. Boxplots within each violin show the median, 
quartiles, and range of estimation accuracy, with black dots indicating outliers. (d–g) Relationship between building volume 
obtained from Baidu Map and estimated building volume in Medium-sized city (d), Large-sized city (e), Mega city (f), and 
Super city (g).

12 W. YAN ET AL.



3.1.3. Potential uncertainty analysis
We estimated the building volume data using other machine learning algorithms such as multiple 
linear regression (MLR), support vector machines (SVM), artificial neural networks (ANN), 
decision trees (DT) models, and convolutional neural networks (CNNs) (Figure 9(a–e)). The results 
showed a strong linear correlation between the building volume data from Baidu Map and esti
mated building volume data from MLR (R2 =  0.55), SVM (R2 =  0.67), ANN (R2 =  0.62), DT models 
(R2 =  0.61), CNNs (R2 =  0.46) and indicating the robustness of our model. RF might lead to overfi
tting due to the spatial autocorrelation problems (Ploton et al. 2020). In addition, we explored the 
inter-annual changes of built-up areas in China based on proportion of impervious areas within 
1 km grid for 2018 and 2019, to examine the impacts of inner-annual dynamics on the estimation 
accuracy. The results showed that only 13.1% 1-km grid cells appeared sightly building volume 
change (difference of proportion between 2018 and 2019 > 0.5%), with average magnitude less 
than 0.0047 km2/km2 (Figure 9(f and g)). This indicated that the inter-annual variation of the 
built-up area is not obvious in most of pixels, suggesting a less significant impact from inner-annual 
changes of urban built-up areas.

Figure 7. Validation of building volume per square kilometer on a left-out 30% sample of the training dataset. (a-b) Validation of 
the initial building volume (a) and the adjusted building volume (b) with the building volume obtained from Baidu Map. Solid 
and dotted lines represent the regressed line and the 1:1 line, respectively. (c) Inter-city comparison of mean difference between 
adjusted building volume and building volume obtained from Baidu Map across 75 cities.
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Meanwhile, we used four other datasets on carbon dioxide emissions, nighttime light data, 
impervious area and population, which are four most important factors in our model to estimate 
building volume (Figure 5(a)), to test potential uncertainties from independent variables in our 
model (Figure 9(h–k)). The result based on these four new datasets showed marginally small differ
ences compared with those derived from original data, confirming the robustness of the model for 
extimating building volume.

Meyer et al. (2018) have revealed that it is an effective way to use a non-random validation 
method to check the potential overfitting problem that might existed in the RF estimations. 
Following Meyer’s method, we selected the data of 30, 35, 40, 45, 50, 55 and 60 cities to 
train the models. Then, we used the data from remaining cities for cross-validation (Figure 
10(a–g)). This non-random validation could avoid the spatial autocorrelation problem. Results 
showed that the accuracy increases with the numbers of cities that used for training the 
models, the process was repeated randomly 10 times (Figure 10(h)). Thus, the estimation 
models, using 70% cities for projection, showed a high estimation accuracy (mean R = 0.80; 
mean RMSE = 11.03 × 105 m3/km2).

3.2. Comparison with existing 3D building products

To further assess the accuracy of estimated building volume in this study, a comparison was made 
with the 1-km building volume data of Li et al. (2020a), a study that simulated 3D building structure 
using RF models across China in 2015 (Figure 11(a and b)). The models they utilized contains both 
a combined and separate models. Our results reveal a strong linear relationship with those obtained 
from the combined (R2 =  0.58) and separate (R2 =  0.68) models. In comparison with the Baidu’s 
building volume, the mean R2 value (0.72) of our model aligned closely with both the combined 
(R2 = 0.72) and separate (R2 = 0.73) models from Li et al. (2020a). What’s more, our model 

Figure 8. Accurate assessment of initial and adjusted building volume for 75 cities based on root mean square error (RMSE).
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showcased lower mean RMSE and MAE values (RMSE = 9.17 × 105 m3/km2; MAE = 5.86 × 105 m3/ 
km2) in contrast to the combined (RMSE = 11.07 × 105 m3/km2; MAE = 8.17 × 105 m3/km2) and 
separate (RMSE = 10.74 × 105 m3/km2; MAE = 8.09 × 105 m3/km2) models (Li et al. 2020a). Specifi
cally, the separate model tended to exhibit a more pronounced overestimation compared to the 
combined model. Notably, this overestimation was more evident in building volume with high 
values than that with low values (Figure 11(a)). Similarly, Huang et al. (2022) noted the separate 
model’s overestimation in city centers when comparing with reference building height data. 
Specially, Figure 11(c) illustrates the spatial distribution across Beijing, Shanghai, and Guangzhou, 
comparing our building volume maps in 2015 with those derived by Li et al. (2020a) using both the 
combined and separate models. The spatial patterns in both sets of maps consistently revealed a 
decline in building volume from the urban center towards the suburbs. However, both the com
bined and separate models exhibited an overestimation trend in the suburbs (Figure 11(c)). Our 
model notably demonstrated more accurate estimations of suburb building volume than the 
model by Li et al. (2020a). This advantage might be attributed to our reference samples encompass
ing diverse city categories, including Medium-sized, Large-sized, Mega and Super cities, in contrast 

Figure 9. Uncertainty analysis of the estimated building volume data derived from random forest machine learning model. (a-e) 
Regression analysis between building volume obtained from Baidu Map and building volume predicted based on multiple linear 
regression model (MLR) (a), support vector machines model (SVM) (b), artificial neural networks model (ANN) (c), decision trees 
model (DT) (d) and convolutional neural networks (CNNs) (e). (f) Regression analysis between proportion of impervious area 
within 1-km pixel in 2018 and 2019. (f) Kernel density plot of difference between proportion between impervious areas pro
portion within 1-km pixel in 2019 and 2018. (h–k) Validation analysis between building volume obtained from Baidu Map 
and estimated building volume derived from our model trained by four replaced factors, i.e. the carbon dioxide emissions 
was replaced with PM10 data obtained from Wei et al. (2021) (h), nighttime light data was replaced with dataset obtained 
from Li et al. (2020d) (i), impervious area was replaced with terrestrial Human Footprint data obtained from Mu et al. (2022) 
(j), and population data was replaced with data obtained from Worldpop (k). Solid and dotted lines represent the regressed 
line and the 1:1 line, respectively.
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Figure 10. Assessments of the building volume estimations using non-random cross-validations. Data of the randomly selected 
30 (a), 35 (b), 40 (c), 45 (d), 50 (e), 55 (f), and 60 (g) cites were used to train the RF model and the data of remaining 45 (a), 40 (b), 
35 (c), 30 (d), 25 (e), 20 (f), and 15 (g) cities were used for cross-validations. (h) The relationship between the number of input city 
for training and the Pearson’s correlation coefficient (R, blue line) and Root mean square error (RMSE, red line) of the estimation 
models.

Figure 11. Cross-validations of estimated results from our model and other existing models. (a–b) Regression analysis of esti
mated building volume obtained from our random forest (RF) model with that from combined model (a) and separate model 
(b) of Li et al. (2020a). (c) Spatial diagram of estimated building volume in 2015 based on our model and the models of Li’s 
study (2020a) in Beijing, Shanghai, and Guangzhou.
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to the research by Li et al. (2020a), which considered only large cities, leading to overestimation of 
building volume. Moreover, our maps exhibited minimal pixels with building volumes exceeding 
60 × 105 m3/km2, hinting at a saturation issue observed in a few prior studies (Cao and Huang 
2021; Frantz et al. 2021; Ma et al. 2023). In addition, various studies aiming to map building height 
at a larger scale have conducted regional analyses of total building volume at city level, which serve 
as a validation of our results. For instance, Cai et al. (2023) calculated the total building volume of 
Beijing (6.29 × 109m3) and Shanghai (7.1 × 109m3). Interestingly, their findings exhibited consider
able consistency with our results (Beijing: 8.01 × 109m3; Shanghai: 7.05 × 109m3). This coherence 
reinforces the reliability of our estimations.

Meanwhile, we further compared our results with two other existing building heights at high 
spatial resolutions, which were converted into building volume data at 1-km resolution. One is a 
30-meters spatiotemporal 3D urban expansion dataset from 1990 to 2010 provied by He 
et al.(2023b), which is generated using World Settlement Footprint 2015 data, GAIA data, and 
ALOS AW3D30 data. Another is building height estimate at 10-m resolution (CNBH-10 m) in 
2020 using multi-source earth observations and machine learning (Wu et al. 2023). The maps 
from He et al. (2023b) at 30-m spatial resolution and Wu et al. (2023) at 10-m spatial resolution 
presented stronger blooming problem in comparison with Google Earth images (Figure 12(c–e)), 
resulting in considerable biases in the building volume estimation. By comparison, we found 
that the estimated building volume data of our study were lower than that from Wu et al. (2023) 

Figure 12. Comparison between estimated building volume obtained from our model and other existing products. (a–b) 
Regression analysis of estimated building volume obtained from our random forest model with that from Wu et al. (2023) in 
2019 (a) and He et al. (2023b) in 2010 (b). (c–d) Spatial patterns of several building features in Beijing. The grid cells with orange 
color, green color, and gray color represent the spatial patterns of building based on Wu et al.’s product (10-m resolution), He 
et al.’s product (30-m resolution), and Baidu Map (10-m resolution), respectively. (e) Building patterns in Google Earth images. 
These buildings have remained consistent since 2010.
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and He et al. (2023b) (Figure 12(a and b)), indicating that the blooming problem existed in both Wu 
and He’s datasets were greatly improved in our data.

3.3. Spatial pattern of building volume of mainland China in 2019

The 1-km resolution building volume map covering China in 2019 is illustrated in Figure 13(a). The 
building volumes of each 1-km pixel of the map ranged from 0.09 to 118.15 × 105 m3/km2, with a 
total building volumes of 1991497.2 × 105 m3 and building area of 2.68 × 105 km2. Figure 13(b and 
c) showcases the mean building volumes density and total building volumes covering mainland 
China at the provincial level. For the distribution of mean building volume, the provinces with 
the highest values are Chongqing (15.18 × 105 m3/km2), Sichuan province (13.13 × 105 m3/km2) 
and Shanghai (12.66 × 105 m3/km2). Contrarily, the provinces with the lowest mean building 
volume are Hebei (3.84 × 105 m3/km2), Shandong (4.42 × 105 m3/km2) and Henan province 
(5.54 × 105 m3/km2). The distribution of total building volume is obviously different from that of 
the mean building volume. Based on Figure 13(c), the provinces with the greater total building 
volume are primarily concentrated in the southeast coastal regions and Guangdong province. 
Specifically, the top five provinces with the highest total building volume are Guangdong 
(194074.13 × 105 m3), Jiangsu (169112.41 × 105 m3), Shandong (134570.87 × 105 m3), Zhejiang 
(118498.67 × 105 m3), and Liaoning province (108163.45 × 105 m3).

We further analyzed the average and associated coefficients of variation (CV) of the estimated 
building volume for the five city categories, as shown in Figure 13(e and d). The CV value is the 
standard deviation divided by the mean and represents the degree of dispersion of the data near 
the mean value (Cottis 2021). The building volume in larger cities tended to exhibit higher CV 
and average values. It is evident that these cities often showcase greater building volumes charac
terized by high capacity and complex structural forms.

3.4. Dynamic characterization of building volume density from 2001 to 2019

The dynamics and trends in estimated building volume from 2001 to 2019 are displayed in Figure 
14. The temporal changes of mean building volume density and across the five city categories in 
China from 1985 to 2019 are depicted in Figure 14(a and b), respectively. According to Figure 
14(a), the mean building volume presents a clear upward trend from 2001 to 2019. In terms of 

Figure 13. Spatial pattern of building volume of mainland China in 2019. (a) The 1-km resolution building volume map of main
land China. The different background gray categories represent different provinces in China. (b) Mean building volume density of 
provincial level in 2019. (c) Total building volume of provincial level in 2019. (d–e) Average building volume density (d) and 
Coefficients of variation (CV) of building volume density (e) for five city categories in 2019.
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change in magnitude, the mean building volume first rapidly increased from 2001 to 2012, then the 
upward trend slightly fluctuated from 2013 to 2019. The temporal changes of building volume for 
the five city categories were similar to those in whole mainland China. The difference in time-series 
building volume for the five city categories was not evident, and the annual mean building volume 
in the super cities was higher than for the other cities (Figure 14(b)). Figure 14(c) showed that the 
provinces with the highest growth rate of mean building volume are mostly located in southern 
China. Specifically, the top three provinces with the highest growth rate of mean building volume 
are Chongqing (395.30%), Sichuan (296.26%) and Guangxi province (240.86%). In contrast, the 
provinces with the lowest growth rate of mean building volume are Shanxi (30.81%), Hebei 
(33.10%) and Beijing (42.70%) at the provincial level.

We further compared the dynamic characterization of building volume density from 2001 to 
2019 between our study and He et al. (2023b). Figure 14(d) illustrates that although the building 
volume density estimated by He et al. (2023b) is much larger than that from our study, a consistent 
and clear upward trend from 2001 to 2010 in both our study and those of He et al. (2023b).

4. Advantages and limitations

Although previous studies have made significant contributions to research on urban height and 
three-dimensional structure estimation, there are still issues with either insufficient space coverage 
or insufficient time coverage (He et al. 2023b). In this study, we employed the Random Forest model 
to estimate China’s annual building volume from 2001 to 2019 at a 1-km resolution, incorporating 
spatially and temporally continuous independent variables. Our estimations demonstrate reliability 
when compared to reference data from Baidu Maps and other existing products.

Figure 14. Dynamics of the estimated building volume density from 2001 to 2019. (a-b) Time-series building volume density 
from 2001 to 2019 for the whole mainland China (a) and five city categories (b). (c) Growth rate of building volume density 
from 2001 to 2019 at the provincial level. (d) Time-series building volume derived from our study and He et al.’s study 
(2023b) from 2001 to 2019.
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In general, our study not only extends the spatiotemporal perspective in building volume in 
China but also enhances estimation accuracy. From the temporal perspective, we first generated 
the 1-km resolution time-series change data of urban 3D expansion from 2001 to 2019, covering 
the whole mainland China. Our estimated historical building volume offers comprehensive insights 
into the dynamic development of urban structures, proving invaluable for future urban planning, 
construction endeavors, and policy-making. Meanwhile, the results of this study can be utilized for 
further analysis of urban climate mechanisms, urban climate models, and land use projections. 
From the accuracy perspective, our method demonstrated higher consistency in the estimation 
of building volumes at a 1-km resolution when compared with previous urban building data, par
ticularly aligning closely with the 3D building data provided by Baidu Maps. Notably, given that 
most of these high-precision 3D urban datasets, such as Baidu Maps, are not freely available due 
to their commercial properties, our method holds significant advantages, benefiting form low- 
cost implementation based on free open-source data and providing extendable algorithm to esti
mate the 3D shape of cities in the future.

However, there are a few limitations in the estimation of building volume and these need to be 
addressed in future studies. Although the applied RF model can well mitigate overfitting issues 
compared to other models, it can still occur and exhibit some noise. Future efforts to improve 
the accuracy and precision of estimation can be pursued through advanced methods. In addition, 
RF models are based on decision trees which are influenced by the input data. Biases from input 
data may have an impact on the results. Although we try to limit these biases by using multiple 
sets of alternative data (Figure 9(h–k)), it should be noted that the uncertainties are still possible. 
Important factors like land use policies, historical urbanization patterns, or socio-economic dispar
ities at a more localized level might also have an effect on the three-dimensional expansion of indi
vidual city, but have not involved in our study. To fill this gap, in future studies, we will use local 
conditions to improve the accuracy of building structure estimation in different urban settings, and 
we are also committed to experimenting with a broader array of advanced techniques to enhance 
the precision and applicability of our study results.
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