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ABSTRACT. The aim of this paper is to start the study of images of graded
polynomials on full matrix algebras. We work with the matrix algebra M, (K)
over a field K endowed with its canonical Zy,-grading (Vasilovsky’s grading).
We explicitly determine the possibilities for the linear span of the image of a
multilinear graded polynomial over the field Q of rational numbers and state an
analogue of the L’vov-Kaplansky conjecture about images of multilinear graded
polynomials on n X n matrices, where n is a prime number. We confirm such
conjecture for polynomials of degree 2 over M, (K) when K is a quadratically
closed field of characteristic zero or greater than n and for polynomials of
arbitrary degree over matrices of order 2. We also determine all the possible
images of semi-homogeneous graded polynomials evaluated on Mz (K).
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1. INTRODUCTION

Let K be a field and K(X) be the free associative algebra freely generated
by the set X = {x1,22,...,} over K, i.e., K(X) is the algebra of noncommutative
polynomials in the variables of X and with coefficients from K. If A is a K-algebra,
a polynomial f = f(z1,..., %) defines a map (also denoted by f):

f: A — A
(a1y...,am) +— fla1,...,am)
The image of such map is called the image of the polynomial f on A.

Recently, images of polynomials have been studied by several authors, mostly
motivated by the famous open problem known as L vov-Kaplansky Conjecture. Such
problem asks whether the image of a multilinear polynomial on the matrix algebra
M, (K) is a vector subspace of M, (K). In this case, it must be one of the following
subspaces: the full matrix algebra M, (K), the set of traceless matrices si, (K), the
set of scalar matrices that we identify with the ground field K, or the set {0}.

A solution to the L’vov-Kaplansky Conjecture is known only for some values of
m or n. For instance, the case m = 2 is a consequence of a well-known result of
Shoda [22] and Albert and Muckenhoupt [1] which states that any trace zero matrix
is given by a commutator. Some partial results for m = 3 were obtained in [6]. For
n = 2 a solution was given in [10] for K a quadratically closed field and in [18] for
K = R. The case n = 3 has a partial solution too and we address the reader to the
paper [11].
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It is easy to achieve that the analogue of the L’vov-Kaplansky Conjecture fails
to be true if A is not simple or A is not finite dimensional. For, if A is the infinite
dimensional Grassmann algebra generated by {ej, ez, ...}, the elements e;e; and
eseq lie in the image of the commutator f(x1,x2) = [z1, 23] := T129 — zaxwq, but
their sum does not. Furthermore, in [21] the authors provide an example of a non-
simple finite dimensional algebra whose images on a certain class of polynomials
are not subspaces.

Some generalizations of the L’vov-Kaplansky Conjecture have been studied con-
sidering algebras other than M, (K). The possible images of a multilinear polyno-
mial are known for the algebra of upper triangular matrices UT, (K) and for its
subalgebra of strictly upper triangular matrices [9, 17, 8] and also for the algebra
of quaternions [19] and for some classes of simple Jordan algebras [20].

The theory of polynomial identities in algebras (PI-theory) and the study of
images of polynomials on algebras have a strong connection. Polynomials whose
image is {0} are the so called polynomial identities of A and those whose image is
K, are the so called central polynomials of A. Also, the solution of the case n = 2
of the L’vov-Kaplansky Conjecture relies on the fact that the ideal of polynomial
identities of M, (K) is a prime ideal in K(X).

An important tool in the study of polynomial identities are G-graded identities
on G-graded algebras, where G is a group. In the celebrated work of Kemer [14],
a crucial role was played by the Zs-graded identities in the solution of the Specht
Problem. After the publication of Kemer’s theory, a large number of papers on
graded identities and graded central polynomials have been published, specially
after the seminal papers [5] and [23].

In the light of the above facts, we consider a natural step to study images of
graded polynomials on algebras.

Up to our knowledge, there is only one paper published toward images of graded
polynomials on full matrix algebras: the one written by Kulyamin (see [16]). In
that paper the author considers the algebra A = M, (K[G]), where K[G] is a finite
group algebra of an abelian group G over K endowed with the natural G-grading
on A is induced by the grading on K[G]. The author proves that a homogeneous
subset S C A is the image of a graded polynomial with zero constant term if and
only if 0 € S and S is invariant under conjugation by degree zero elements of A. It
is worth mentioning that during the preparation of this paper, the authors became
aware of the preprint [7] where the authors consider images of graded polynomials
on upper triangular matrices.

In this paper, we study images of graded polynomials on A = M, (K) endowed
with the canonical Z,-grading A = @gez, Ag. This case is completely different
from Kulyamin’s, since here the algebra A is simple, while M,,(K[G]) is not simple,
once K[G] is not. We believe our results can be generalized for more general types
of gradings on M, (K).

The paper is organized as follows: first we present the basic definitions and
results to study the problem. Later, we prove that the linear span of a multilinear
graded polynomial on a Q-algebra A is one of the following: A, for some g € Z,,
Q (viewed as the set of scalar matrices), (sl,)o, the set of trace zero diagonal
matrices, or {0}. In light of this result we state a conjecture regarding the image of
a multilinear graded polynomial on M,,(K) and we prove this conjecture for n = 2



IMAGES OF GRADED POLYNOMIALS ON MATRIX ALGEBRAS 3

in the case K is a quadratically closed field. The paper ends with a description of
images of semi-homogeneous graded polynomials on My (K).

2. PRELIMINARIES

In this paper, all fields we refer to are assumed to be of characteristic zero and
all algebras we consider are associative and unitary. If n is a positive integer and
1 <14,j < n, we denote by E; ; the matrix units, i.e., F; ; is the matrix whose entry
(4,7) is 1 and all other entries are 0. If k,[ are not in the interval [1,...,n|, Ex; is
defined by considering the representative of k and ! modulo n in [1,...,n].

Let G be any group and let K be a field. When we consider an arbitrary group,
we will use the multiplicative notation and we will denote the group unit by 1.
When considering an abelian group, we will use the additive notation and denote
its unit by 0.

If Ais a K-algebra, we say A is a G-graded algebra if there are subspaces A,
for each g € G, such that

A= @ Agy and for each g,h € G, AjA, C Agp.
geG

If 0 # a € Ay, we say a is homogeneous of G-degree g and we write deg(a) = g. We
shall denote by h(A) the set of homogeneous elements of the graded algebra A.

Example 1. (1) Any algebra may be endowed with a trivial G-grading, where
G is any group, if we set Ay = A and for each g #1 A, = 0.

(2) If A = K|G] is the group algebra generated by G over the field K, A is
naturally G-graded if we set Ay = K - g for each g € G.

3) If A = M,(K) and G is a group, let g = {g1,...,9n} be an n-tuple of
elements of G, then A is G-graded if we set Ay to be the subspace generated
by matrices E;; such that g; ! g; = g. This grading is called the elementary
grading determined by g.

(4) If in the above example we set G = Z,, and we choose the n-tuple G to be
(0,1,...,n— 1), we will refer to this grading as the Vasilovsky grading of
A. One can observe that the component Aq is the set of diagonal matrices.
We recall that such grading was introduced by Di Vincenzo in [5] for 2 X
2 matrices, and its graded polynomial identities were described in [5] for
n =2 and in the general case in [23] (characteristic zero) and [2] (positive
characteristic). Moreover, the graded central polynomials in this case were
described in [4].

In order to work in the setting of graded algebras, we need to introduce the
graded analogue of polynomials, the so called graded polynomials.

Let {X, | g € G} be a family of disjoint countable sets. Set X = J,cq Xy and
denote by K(X|G) the free associative algebra freely generated by the set X over
K. To define a grading on K(X|G) we first put deg(z) = ¢, if 2 € X, and we
extend this map to monomials by setting

deg(xilxlé T mlk) = deg(xil) : deg(mh) e deg(xik)'

We will say z;, ---x;, has G-homogeneous degree g (or G-degree g, or homo-
geneous degree g). For every g € G we denote by K(X|G), the subspace of
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K(X|G) spanned by all monomials having homogeneous G-degree g. Notice that
K(X|G)gK(X|G)n € K(X|G)gn for all g,h € G. Thus

K(X|G) = D K(X|G),

geG
is a G-graded algebra. We refer to the elements of K(X|G) as G-graded poly-
nomials or just graded polynomials. An ideal I of K(X|G) is said to be a Tg-
ideal if it is invariant under all K-endomorphisms ¢ : K(X|G) — K(X|G) such
that ¢ (K(X|G),) € K(X|G)4 for all ¢ € G. If A is a G-graded algebra, a G-
graded polynomial f(z1,...,%,) is said to be a graded polynomial identity of A
if f(ai,az,...,am) = 0 for all ai,as,...,a,, € h(A) such that ar € Ageg(ay)s
k=1,...,m. If A satisfies a non-trivial graded polynomial identity, A is said to
be a G-graded Pl-algebra. We denote by T;(A) the ideal of all graded polynomial

identities of A. It is a Tg-ideal of K(X|G).
Let A be a G-graded algebra. If f(z1,...,z,) € K(X|G), let g; = deg(x;) € G.

Then f defines a map (also denoted by f):

fio Ay x--xA, — A
(a1y.. . am) — fla1,...,am)

Definition 1. The image of such map is called the image of the graded polynomial
f on the graded algebra A.

Below, we can find some examples.

Example 2. (1) If A is a G-graded algebra, and f(x1,...,zm) € K(X|G) is
a graded polynomial, then Im(f) = {0} if and only if f(x1,...,2m) is a
graded polynomial identity of A.

(2) If A= M, (K) with the Vasilovsky grading, then the image of the polynomial
f@1,oo@0) = D cs. To(l) " To(n) 18 K (the set of scalar matrices) if
deg(x1) = -+ - = deg(z,) =1 (see [4, Proposition 1]).

(3) If A = UT,(K) is the set of n X n upper triangular matrices, endowed
with the Vasilovsky (induced) grading, then the image of f(x1,...,z,) =
Ty Tp_1, with deg(zy) = ---deg(z,_1) = 1, is the 1-dimensional sub-
space of A spanned by E1,,.

We say a G-graded polynomial p € K(X|G) is multilinear of degree n if it is
multilinear as a polynomial, that is, if it can be written as

Z ATy (1) """ Lo(n)s

oceSy,
for some a, € K.
We also say a G-graded polynomial p(z1, ..., z,) is multihomogeneous of degree
(n1,...,nn) if the variable x; appears exactly m; times in any of its monomials.

We call the reader’s attention to the fact that there are two different gradings
been considered in K(X|G). A G-grading, as defined above and the usual Z-
multigrading. In particular, a multilinear graded polynomial is a polynomial in
K(z1,...,2,|G) which is multihomogeneous of degree (1,...,1).

3. THE LINEAR SPAN OF THE IMAGE OF A HOMOGENEOUS GRADED POLYNOMIAL

In this section we study the linear span of the image of a Z,-homogeneous graded
polynomial on M, (K) endowed with the canonical Z,-grading.
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The next is a straightforward adaptation of [10, Lemma 5].

Lemma 1. Let f(x1,...,2m) be a Z,-graded polynomial of homogeneous degree
g # 0. Assume that ay,...,an are matriz units in M, (K). Then f(a1,...,am) is
a scalar multiple of E; ;, for some i # j such that deg(E; ;) = g.

Since G is abelian, conjugation by a homogeneous element does not change the
degree of a homogeneous element. We have the following result.

Lemma 2. Let f(x1,...,2m) be a graded polynomial of homogeneous Z,,-degree
g. Then Im(f) is a subset of M, (K) which is invariant under conjugation by
homogeneous matrices. In particular, it is invariant under conjugation by N =
>or i Eiiy1 and D =31 | d;E;;, for any dy,...d, € K \ {0}.

Lemma 3. Let f(x1,...,2m) be a graded polynomial of homogeneous Z,,-degree
g £ 0. If f is not a graded polynomial identity of A = M, (K), then the linear span
of Im(f) equals the homogeneous component Ag.

Proof. By Lemma 1, there exists an evaluation of f equal to c- E; ;, for some ¢ # j,
¢ # 0, with deg(E; ;) = g. Hence E; ; € Im(f). By Lemma 2, Im(f) is invariant
under conjugation by N. Then N7'E; ;N = E; ;141 € Im(f). By applying the
same argument n times, we obtain E; iy j+r € Im(f), for any k and the proof is
complete. [l

The following is a consequence of Lemma 2.
Lemma 4. Let Let A= M, (K) be endowed with the canonical Z,-grading and let
M = Z?:l ViEi i+g € Ag, where g is invertible in Z,,.

(1) If 5 # 0 for every i € {1,...,n}, then there exists D € Ay such that all
entries of DM D™ but one are equal to 1.

(2) Ifv; =0, for somei € {1,...,n}, there exists D € Ay such that all entries
of DMD™! are 1 or 0.

Proof. Since g has a multiplicative inverse in Z,,, we have
{kglke{1,...,n}} =7Z,,
then, if M € Ay, we may write M = Y ;_, Ve Erg,(k+1)g and if D € Ag, we may

write D = ZZ=1 diErg kg Direct computations show that if D is invertible,

n dk
-1
DMD™ =% ===y, (k1)g
k=1 kt1

Now one can directly verify that if all v, are nonzero, the system of equations
dy,
di41

=1 forke{l,...,n—1}

has a solution by defining di = 1, and dy, = Hi.:ll vi, for k€ {2,...,n—1}.
In a similar way, one can find a solution to the system of equations
dy
d41

=1, forke{l,...,n—1}, with y #0.
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The next two results show an analogue of a well known theorem of Shoda, Albert
and Muckenhoupt (see [22, 1]) in the graded case, i.e., it describes the image of a
(graded) commutator polynomial.

Lemma 5. Let C = Z?:l ciliitqg € Ag, for some g # 0 in Z,. Then there exists
B e Ay and D € Ay such that C = [B, D].

Proof. Let C = > | ¢;E;i+q € Ay and consider D = diag(dy,...,d,), where
dy,...,d, are pairwise distinct elements in K. Write B = 2?21 biE; i+g; direct
computations show

[B,D] = bi(disg — di)Eiirg.
i=1

By defining b; = (di+y — di)"'¢; for each i, we obtain C = [B, D] and we are
done. g

We now turn our attention to polynomials of homogeneous degree zero.

Proposition 6. Let D € Ay such that tr(D) = 0. If g is invertible in Z,,, then
there exist B € Ay, C € A_g4 such that D = [B,C].

PTOOf. Write D = diag(dl, ey dn), B = Z?:l biEi,i+g S Ag and C = Z?:l Ei+g,i S
A_g4. Then

[B,Cl = (bi — bi_g)Eii.
i=1
The lemma will be proved once we show the system of equations
bifbi_g:di, iil,...,n

in the variables by, ..., b, has a solution.
To do that, notice that since g is invertible in Z,,, we have

{1-kg|ke{0,...,n—=1}} =Z,.
Given b € K, by defining
bi_g=b1—dy
bi2g=bi_g—di_g=b —di —di4

bi—(n—1)g = bi—(n—2)g — d1—(n—2)g = b1 — (d1 + -+ + d1_(n_2)4)

we obtain a solution to the above system and we are done. O

Remark 7. In the previous result, the condition that g has a multiplicative inverse
in Z, cannot be removed. For instance, let n = 4 and ¢ = 2 € 7Z,. Simple
computations show that the image of the graded polynomial [x1,x9] = T129 — T,
where deg(z1) = deg(x2) = 2 lies in the set {D = diag(dy,dz, —dy,—dz) | dy,ds €
F}, which does not contain all traceless diagonal matrices.

Proposition 8. Let us denote by K the field Q of rational numbers. Let n be a
prime number and let f be a multilinear Z,,-graded polynomial of degree 0. Then the
linear span, L, of Im(f) on A = M, (K) (endowed with the Vasilovsky Zn,-grading)
is one of the following:

{0}7 Ka (Sln(K))Ov AO
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Proof. If f is not an identity and the image of f contains only scalar matrices, then
of course L = K.

Assume now that f is not an identity nor a central polynomial of M, (K).

Since f is not an identity nor a central polynomial, there exists an evaluation of
f which is a nonscalar matrix.

Let us first assume there is an element D = Z?Zl a;F;; in the image, satis-
fying Yoy # 0. Write Dy = D,D; = N"'DN,--- D, ; = N-(»~UpNn-1,
Once we show that Dy,...,D,_1 are linearly independent, they generate an n-
dimensional subspace in L. Since L is a vector subspace of the n-dimensional
space Ag, we will conclude that L = Ag. The elements Dy,...,D,_; can be
considered as n-tuples of elements of K. if D = Dy = (aq,...,q,), then Dy =
(an,01,...,an-1),...,Dp_1 = (ag,...,an,a1). These are linearly independent
over K, if and only if the determinant of the matrix below is nonzero.

ap Q2 0 Qp] Qp

Qp O e Qp—2 Qp_1
C =

Qs (07 a1 9

Q2 a3 - e70) aq

Matrices of the above type are called circulant matrices. It is well known that C'
is nonsingular if and only if the polynomial P(z) = a3 + agz +- -+ apz" ! € K|x]
is coprime to the polynomial ™ — 1 (see for instance Corollary 10 of [15]). Since
a1+ +a, #0, =1 1is not a root of P(x). Since n is prime, “;n:ll is irreducible
over K, and this implies C is nonsingular and the linear span of Im(f) is Ao.

Finally, we need to prove that if Im(f) contains only trace zero matrices, then
Im(f) is (sl,)o. We argue as above. The only difference is that we need to prove
that the elements Dy, ..., D,_; generate an n— 1-dimensional subspace of Ag. This
is equivalent to show that the rank of C'is n — 1, but it is well known that the rank
of the circulant matrix C above is n — d, where d is the greatest common factor of
P(X) and 2™ — 1 (again we address the reader to the paper [15]). Now we have
a1+ -+ a, =0,z =11is aroot of P(X), then because ’”;:11 is irreducible over
Q, we obtain d = 1 and the rank of C'is n — 1. As a consequence, the linear span

of Im(f) is (sly)o- O

Remark 9. The above proof holds only for K = Q. It would be interesting to prove
it for an arbitrary field K.

The analogue of the L’vov-Kaplansky conjecture in the graded case (for matrices
of prime order) can now be stated as

Conjecture 1. Let K be a field and n be a prime number. If f € K(X|Z,) is a
multilinear Z,,-graded polynomial then Im(p) is one of the following

(1) {0}, if f is a graded polynomial identity.

(2) K (viewed as the set of scalar matrices) if f is a graded central polynomial
of M,(K) which is not an identity.

(3) The set (sl (K))o of trace zero diagonal matrices, if g = 0 and f lies in
the graded T-Lie-ideal generated by [x1,xs], where deg(x1) + deg(x2) = 0.

(4) The whole component g, if none of the above cases holds.
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4. THE IMAGE OF MULTILINEAR POLYNOMIALS OF DEGREE 2 ON MATRIX
ALGEBRAS

We are going to deal with multilinear polynomials of degree 2 over quadratically
closed fields of sufficiently large characteristic.

Lemma 10. Let n be an odd prime number and K be a quadratically closed field
of characteristic zero or greater than n. Let p(x1,xe) = x129 — ez € K{x1,22)
be a graded polynomial with deg(z1) = g € Z,, and deg(x2) = h € Zpand a be an
n-th root of 1. If p is not a graded polynomial identity for M, (K), then the image
of p on M,(K) is Agih.

Proof. If ¢ = h = 0, then modulo the graded identities of M, (K), p(x1,z2) =
(1 — a)ryze. Then p is a graded identity if & = 1 and the image of p is Ay
otherwise. Hence, we may assume g or h is nonzero. Let us assume without loss of
generality h # 0. Write B =" | b;E; ;45 and C = >."" | ¢;E; ;45. Then

n

p(B, C) =BC —aCB = Z(bici+g — acibi+h)Ei7i+g+h.

i=1

Let M = Z?:I ViEi ivg+n € Ag+n. We will show that there exist B and C as above
such that p(B,C) = M.

Observe that the the above claim is equivalent to find a solution to the system
of equations

(1) biCiyg — acibipn =i, i €{l,...,n}.
First we observe that if g = 0, the above system of equation become
(2) ci(bi — abipn) =i, i€{l,...,n}

then a solution to the above system of equations can be found in a similar way to
the proof of Lemma 5.

So we may assume from now on that g and h are different from zero in Z,.
Observe that if all v; are zero, B = C' = 0, provide a solution to the above system.
Also, if we admit only one entry to be nonzero, a solution to the above equation
may be found. Indeed, by Lemma 2, we may assume such nonzero entry is vy. In
this case, bg =1, b; =0, for ¢ > 1, ¢4 = 79 and ¢; = 0, for 7 # g provide a solution
to the system of equations (2). So, from now on we may assume at least two of the
~; in M are nonzero.

Since n is prime, and h # 0, we have in Z,, {1,...,n} = {0,h,...,(n — 1)h}.
Hence the above system of equations can be written as

bkhckh+g — ackhb(kﬂ)h =Yh, k€ {0, N 1}.
If we assume ¢; # 0 for all 7, we have

bknCrhtrg — Vkh
QCLh

bk+1)n = k> 0.

An easy computation shows that for every k > 1, we have
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r—1

k1 k1 k=1
T
bo [ cavin =D ven [J ein ] corin
i=0 r=0 i=0

1=r+1
k—1
ot [T e
=0

The above expressions will provide a solution to the system of equations (2), but
we need to take into account that condition by = b, holds.
Substituting k by n in Equation (3), since nh = 0 mod n and a™ = 1, we obtain

(3) bin =

n—1 n—1 r—1 n—1
.
bo [ covin — D @ ven [T ein [ corin
i=0 r=0 i=0

1=r+1
bo = ;

n—1
a” H Cin
=0

n—1 n—1
since H Cgtih = H Cin, We get:
i=0 i=0

n—1 r—1 n—1
(4) Z a" v H Cih H cgtin = 0.
r=0 =0 i=r+1
Now, showing the existence of a solution by, ...,b, is equivalent to show that
there exist ¢y, ..., ¢, € K\ {0}, such that Equation (4) holds.
Let g = th, with ¢ € {1,...,n — 1} (recall that n > 2). By letting ¢; = 1, for
i # th, (t + 1)h, Equation (4) becomes

t—1 n—1
(Z 04T’th> +alyen + ( > OZT’th> CtnC(e41)n =0

r=0 r=t+1
Now notice that if we set c1), = ¢t = 7, the above become

t—1 n—1

(5) (Z 0Mm> + alyr + < > of%h> =0
r=0 r=t+1

and it is enough to show it has a nonzero solution.

Recall that the image of a polynomial is invariant under conjugation by ho-
mogeneous invertible matrices (Lemma 2). Hence, we may assume ; # 0, since
conjugating by some power of the matrix N = > | E; ; 11, one of the nonzero
entries of M lies in line th (recall that the case where all ; are zero has already
been considered).

Also, by Lemma 4 we may assume 7., € {0,1} if » # ¢. As a consequence,
since we are considering the case in which at least two entries of M are nonzero,
we obtain that at least two of the coefficients of equation (5) are nonzero. Indeed,
if @ = 1, the coefficients are a sum of less than n times the unity 1, and if « is
a primitive n-th root of 1, its minimal polynomial over the prime subfield of K is
14z + -+ 2" 1. This proves Equation (5) has a nonzero solution.

O
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We are now in position to give a complete description of images of multilinear
Z,-graded polynomials of degree 2 on the matrix algebra M, (K), provided n is a
prime number and K is a quadratically closed field of characteristic greater than
n.

Theorem 11. Let p(x1,z2) be a multilinear Z,,-graded polynomial and n be an odd
prime number. Then the image of p evaluated on the Z,-graded algebra A = M,,(K)
is one of the following:

{0}, (sln)o, or Ay, for some g€ G

Proof. Assuming p is nonzero, we may write p(z1,23) = x1T2 — axex, for some
a € K. Let deg(xy) = g and deg(x2) = h. If ¢ = h = 0 then modulo the graded
identities of M, (K), we have x1x9 = zox;. Hence the image of p on M, (K) equals
the image of the polynomial (1 — a)zyze. Of course, such image is {0} if o« = 1,
and is Ag if a #% 1. Hence we may assume that g or h is not equal to 0. Without
loss of generality, we may assume h # 0.

The case a = 0 is trivial: the image is A4y, so we consider a # 0. Now we have
two more cases to consider, namely « is an n-th root of 1 or not.

If a is a root of 1, Lemma 10 settles the case.

So it remains to consider the case « is not a root of 1.

IEM =" %Eiitg+n € Agin, we need to find B € Ay and C € A, such that
p(B,C) =M.

For, let us write B =>""" | b;F; ;14 and C = Y | E; ;1},. Direct computations
show that

n

p(B,C) = (b — abisn)Eiiygrn-

i=1
In order to obtain B and C satisfying p(B,C) = E, we need to find by,...,b, € K
such that

(6) b — abirn = Vi, ie{l,...,n}

Since h is nonzero, it is invertible in Z,,, because n is prime. As a consequence,
{1,...,n} ={0,h,...,(n—1)h}.

and

b1, b} = {bo, brs - b1 }-
Now the system of equations (6) can be written as

(7) brh, —Olb(k_H)h = Ykh, ke {O,...,n— 1}
and a solution is given by

n—1

Yot QYht o+ 0T Y (n—1)h

1—am

b1

~bo— (o +aynt -+ o yg)
= =

Observe that since « is not a root of 1, 1 — o™ # 0 and the above expressions
are well defined. O

brn , ke{l,...,n—1}



IMAGES OF GRADED POLYNOMIALS ON MATRIX ALGEBRAS 11

Remark 12. Although the above theorem was stated only for odd prime numbers,
there is an analogue of it for n = 2. It will be stated in the next section. The only
difference is that we may have a central polynomial in this case, i.e., the image
of p can also be K. For instance, the polynomial p(x1,x2) = 2129 + 221, with
deg(x1) = deg(x2) = 1 is a nontrivial graded central polynomial of Ma(K).

5. THE IMAGE OF MULTILINEAR GRADED POLYNOMIALS ON 2 X 2 MATRIX
ALGEBRAS

In this section we compute explicitly the image of any multilinear graded poly-
nomial evaluated on 2 x 2 matrix algebras endowed with the Vasilovsky’s grading.

Definition 2. Let A be a G-graded algebra. We say A is a G-graded domain if
ab =0 implies a =0 or b =0 for a,b € h(A). Moreover, we say A is a G-graded
division algebra if any homogeneous element is invertible in A.

Let A = M, (K) be Z,-graded with the Vasilovsky grading. We consider
Y = {y)i,j e {1,...,n},r e N}

and for every r € N, let us consider the generic n x n matrices with entries from
the algebra of the commutative polynomials K[Y]:

& = > Fu
Jj—i=g
We shall denote by Gen?(A) the algebra generated by the §g's and call it Z,,-
graded generic matriz algebra associated to the Vasilovsky Z,-grading of M, (K).
The algebra Gen?"(A) is called the graded generic algebra of A. It is well known
K{X|G)
(K(X|G) N Te(Mn(K))

I

Gen® (A)

The following is well-known
Proposition 13. The algebra Gen?(A) defined above is a graded domain.

Lemma 14. Let f(x1,...,2m) be a Zy-graded homogeneous polynomial of degree
g # 0. If f is not a graded polynomial identity for M, (K), with the Vasilivsky
grading, then there exists a non-singular matriz in the image of f.

Proof. Assume that for any admissible evaluation we have a singular matrix. This
implies that f(z1,...,2,)" is a graded identity. As a consequence, the image of f
via the canonical homomorphism onto the algebra of generic matrices is a nilpotent
element. Since the algebra of Z,-graded generic matrices (with the Vasilovsky’s
grading) is a graded domain due to Proposition 13, we obtain that f is a graded
identity. That is a contradiction. O

We now recall Lemma 1.34 of [12], which will help us in proving the main result
of this section.

Lemma 15. Let V; (for 1 <i < m) and V be linear spaces over an arbitrary field

K. Let f: [ Vi = V be a multilinear map. Assume there exist two points in
i=1

Im(f) which are not proportional. Then Im(f) contains a 2-dimensional plane. In

particular, if V' is 2-dimensional, then Im(f)=V.
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We are now in position to prove the main result of this section.

Theorem 16. Let f be a multilinear graded polynomial. Then the image of f on
M5 (K) is one of the following:

{0}7 Ka (512)07 AOa A1~

Proof. Let us assume f is not a graded identity. If f has homogeneous degree
g # 0, Lemmas 1 and 2 guarantee that E1 o € Im(f). By Lemma 14, there
exists a nonsingular matrix B in Im(f). The matrices B and Ejs are clearly not
proportional, then Lemma 15 implies Im(f) = A;.

Assume now f has homogeneous degree 0. If all evaluations of f are scalar ma-
trices, we obtain Im(f) is K, the set of scalar matrices (since it is one-dimensional).
If all evaluations of f have trace zero, then I'm(f) is (sl3)o because it is one dimen-
sional.

Finally, if Im(f) contains a nonzero nonscalar element B = aF1; + bF3; with
nonzero trace, then conjugation by N = E15 4+ Fo; yields bFE11 + aFs2, which still
lies in I'm(f) by Lemma 2 and since B is not scalar and has nonzero trace, B and
N~'BN are linearly independent. Again, Lemma 15 completes the proof in this
case and we are done. (]

6. THE IMAGE OF SEMI-HOMOGENEOUS GRADED POLYNOMIALS ON 2 X 2 MATRIX
ALGEBRAS

In this last question we address a similar question as above for semi-homogeneous
polynomials. From now on any field is considered to be quadratically closed.

We start the section with some concepts and results that will be used in the
proof of the main result. We introduce now the so called G-graded prime algebras.
On this purpose, we address the reader to the paper [3] by Balaba.

We recall that an ideal of a graded algebra A is a graded ideal if it is generated by
homogeneous elements. A graded ideal P of A is said G-graded prime or G-prime
if it is prime as a graded ideal. Moreover, an element of A is said regular if it is
not a zero divisor.

Definition 3. A G-graded ideal P of a G-graded algebra A is called strongly graded
prime or G-strongly prime if whenever aAb C P, where a,b € h(A), either a € P
or b € P. Moreover, a graded algebra A is called graded prime if (0) is a strongly
graded prime ideal of A.

For example, every prime algebra A graded by a group G is G-prime. For suppose
conversely that there exists a,b € h(A) which are not 0 and such that aAb = 0,
then A is not prime.

Definition 4. A G-prime algebra A is called PI G-prime if it satisfies an ordinary
polynomial identity.

Recall that by [3, Proposition 1], the localization Ag of A over S, where S is
a set of homogeneous regular elements of the center Z(A) of A is a PI G-graded
algebra of central quotients of A. An algebra Q(A) 2 R is called the left (right)
graded algebra of quotients of A if:
(1) each homogeneous regular element from A is invertible in Q(A);
(2) each homogeneous element z € Q(A) has the form a=1b (ba™'), where
a,b € h(A) and a is regular.
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We have the following results (see [3]). We recall if A is G-graded, then we
denote by Z,,.(A) its graded center, i.e., the largest G-graded subalgebra of Z(A).

Theorem 17 ([3] Proposition 1). Let A be a PI G-prime algebra, Z(A) the center
of A and S the set of homogeneous regular elements of Z(A). Then:

(1) §=n(Z(4));

(2) the algebra of quotients Ag is a PI G-prime algebra;

(3) ZgT(AS) = Zgr(A)s.

Theorem 18 ([3] Theorem 5). Let A be a PI G-prime algebra and A, the algebra
of central quotients of A. Then:

(1) A. is finite dimensional graded-simple over its graded center Z and Z is
the graded field of quotients of Zg.(A);

(2) A, is the graded algebra of quotients of A;

(3) A and A, satisfy the same identities.

It is easy to see that a G-graded domain is a G-prime algebra, then by Theorems
17 and 18 we have any PI graded domain can be embedded in a graded prime
algebra of central quotients.

It is not difficult to see that Gen”(A) is a PI Z,-prime algebra, then it admits
a Zn-graded algebra of central quotients Q(A).

We have the following.

Proposition 19. Let A = M, (K) be endowed with the Z,-grading of Vasilovsky,
then Q(A) is a Z,-graded division algebra.
(r)

Proof. Notice that a homogeneous element in Q(A) has the form > 0 g=g Pij E;j,

where p;; is a non-zero polynomial in K[Y], then it is regular, so it invertible in

Q(A). U
The next will be used later on. See the book [13] for more details.

Definition 5. We shall call expediting G-graded algebra, the algebra generated by
the graded generic algebras and the traces of their elements of degree 1.

At light of Proposition 19 we have the next result.

Proposition 20. The expediting graded algebra endowed with the Z,-grading of
Vasilovsky is a Z,-graded domain which can be embedded in the Z, -graded division
algebra of central quotients of the graded algebra of generic matrices.

Proof. By the graded analogue of Theorem J of [13] we have the trace functions of
even elements of the graded generic matrix algebra A can be written as the ratio
of two polynomials taking values on the graded center of Q(A). Hence any trace of
even elements belongs to Q(A) and we are done. O

We shall recall some basic topological results that will be useful further in the
text. A topological space will be denoted by a pair (X, 7x), where X is the un-
derlying space and 7x is a topology on X, i.e., the set of its open sets. Of course,
any closed set of a given topology is the complementary set of an open set and
viceversa.

We consider a finite dimensional vector space V over a field K. Indeed, V = K"
as a vector space, where n equals the dimension of V' over K. Consider now the
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algebra of commutative polynomials in n variables K[X,] := KJ[z1,...,x,] and
choose a set S C K[X,,]. We define

V(S):={a=(a1,...,an) € K"|f(a1,...,a,) =0 for every f € S}.

The set of all V(5), S C K[X,] is the set of closed sets of a topology on V' called
Zariski’s topology. Recall any finite set of V' is a closed set in the Zariski’s topology
of V. Furthermore, the finite sets are the sole closed sets if V = K.

Given two topological spaces (X,7x), (Y,7y) and a function f : X = Y, f is
said to be continuous if f~1(U) € Tx for every U € Ty whereas f is said to be open
if f(W) € 1y for every W € 7x. Furthermore, in a topological space (X, 7x) a set
S is said dense if S = X, where S denotes the closure of S, i.e., the least closed set
containing S. Notice that any open set in the Zariski’s topology is dense as well
as any set containing a dense set in any topological space. We also have the next
result.

Lemma 21. Let (X, 7x), (Y, 7y) be topological spaces and f : X —'Y a continuous
and open function. Then for every dense set S of (Y, 7y) we have f=1(S) is dense
m (X, TX) .

Now we come back to images of graded polynomials. Let us set IV the set of non-
nilpotent matrices of size two and let A € N. Then at least one of the eigenvalues of
A A1, Ao is non-zero. Hence we are allowed to consider the ratio of the eigenvalues
of A that is 0 if one between A\; and Ay is 0 whereas it is well defined as A1 /A2 (up
to taking reciprocals). We say

two non-nilpotent matrices have different ratios of their eigenvalues

if their ratios of eigenvalues are not equal nor reciprocal.

Then we define a map

Im:N—-K
such that
TI(A) = 0 if 0 is an eigenvalue of A
Tl A/ A2+ A/ otherwise.

Notice that if 0 is not an eigenvalue of A, then
(8) M /Aa+ Ao/ A = =2+ tr(A)?/det(A).

We recall that a polynomial f = f(z1,...,2,), is said to be semi-homogeneous
with nonzero weighted degree d if, letting d; be the usual degree of x; in f, there
exist weights wy, ws, ..., w, such that in each summand of f we have wyd; +

wady + -+ - + wpd, = d.

Theorem 22. Let f be a semi-homogeneous Zs-graded polynomial evaluated on the
algebra My (K) of 2 x 2 matrices over a quadratically closed field. them Im(f) is
one of the following:

{0}, K, sla(K)o, Ma(K)o, Mz(K)1, Do, Di,
where D; is a dense set in the Zariski’s topology defined on Ma(K);.

Proof. Let f = f(x1,...,2,) be a semi-homogeneous polynomial of degree 0 and
assume there are homogeneous matrices ay, . .., am, b1,..., by, so that f(a,...,am)
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and f(by,...,by) have different ratios of eigenvalues. We consider the family M =
{p(t)|t € K}, where

p(t) = f(tay + (1 = )by, ..., tam + (1 — t)by,)

and we remark p is a polynomial function such that M C Im(f). Let us denote
by h the function Top: K — K. If we endow K and My (K)o with their Zariski’s
topology, then II and p turn out to be continuous and open. Hence h is continuous
and open as well. We will study the rational function h’ := tr?(p)/det(p) — 2 :
K — K which can be written as A(t)/B(t), where A(t) and B(t) are polynomial
functions of degree less than or equal to 2deg(f) and cannot be written as ratio
of polynomials of smaller degrees. Now we are going to study h(K). Of course,
0 € h(K) if either p(t) is the zero matrix or has exactly one non-zero diagonal entry.
Then we may assume h(K) takes only non-zero values. In this case, we observe
the functions h and k' are the same because of Equation (8). Recall A and B are
written in lowest terms, then ¢ € K belongs to h(K) iff there exists t € K such
that A —¢B = 0. Of course, only a finite number of elements of K does not belong
to A(K). This means h(K) is open and then dense in the Zariski’s topology of
K even if we assume h takes the 0 value too. Because IT is open and continuous,
then ITI71(h(K)) is dense in My(K)o by Lemma 21. Hence, M is dense because
M C I~ (h(K)). Finally, because M C Im(f), we get Im(f) is dense in Ms(K ).

Let us consider f of fixed ratio r. Suppose further f is not an identity and r» # +1.
Then the eigenvalues A1, A2 of a certain matrix f(aq,...,a,,) are linear functions of
tr(f(a1,...,am)) so they belong to the algebra of generic matrices with traces that
is a graded domain. Notice now f — A\l and f — Aol are non-zero homogeneous
elements of degree 0 and their product is 0 because of Cayley-Hamilton’s Theorem
that is an absurd. This forces r being 1 or —1.

Suppose r = 1, then f is a central polynomial and I'm(f) = K. Assume r = —1,
then I'm(f) turns out to be sla(K)o.

We study now the case f = f(z1,..., 2, ) being a semi-homogeneous polynomial
of degree 1. Remark in this case the only possible ratios are 0 and —1. Assume
there are homogeneous matrices having different ratios of eigenvalues. We have the
following cases:

> belong to Im(f), where r, s, a # 0;
> belong to Im(f), where r,s,b # 0.

The cases (1) and (2) are analogous. Hence we carry on only with case (1), where

Assume now f of fixed ratio r = —1. Then the matrices , where r, s #

r
0
0, belong to Im(f). Let S = {xy} C K[z, y]. Here Im(f) = V(S)°U {( 8 8 >}
Now observe V(S)¢ being the complementary set of a closed set is open, then it is
dense in the Zariski’s topology of Ms(K ). Because Im(f) contains a dense set, it

is dense as well.
O
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