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Abstract. The aim of this paper is to start the study of images of graded

polynomials on full matrix algebras. We work with the matrix algebra Mn(K)
over a field K endowed with its canonical Zn-grading (Vasilovsky’s grading).

We explicitly determine the possibilities for the linear span of the image of a

multilinear graded polynomial over the field Q of rational numbers and state an
analogue of the L’vov-Kaplansky conjecture about images of multilinear graded

polynomials on n× n matrices, where n is a prime number. We confirm such

conjecture for polynomials of degree 2 over Mn(K) when K is a quadratically
closed field of characteristic zero or greater than n and for polynomials of

arbitrary degree over matrices of order 2. We also determine all the possible

images of semi-homogeneous graded polynomials evaluated on M2(K).
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1. Introduction

Let K be a field and K〈X〉 be the free associative algebra freely generated
by the set X = {x1, x2, . . . , } over K, i.e., K〈X〉 is the algebra of noncommutative
polynomials in the variables of X and with coefficients from K. If A is a K-algebra,
a polynomial f = f(x1, . . . , xm) defines a map (also denoted by f):

f : Am −→ A
(a1, . . . , am) 7−→ f(a1, . . . , am)

The image of such map is called the image of the polynomial f on A.
Recently, images of polynomials have been studied by several authors, mostly

motivated by the famous open problem known as L’vov-Kaplansky Conjecture. Such
problem asks whether the image of a multilinear polynomial on the matrix algebra
Mn(K) is a vector subspace of Mn(K). In this case, it must be one of the following
subspaces: the full matrix algebra Mn(K), the set of traceless matrices sln(K), the
set of scalar matrices that we identify with the ground field K, or the set {0}.

A solution to the L’vov-Kaplansky Conjecture is known only for some values of
m or n. For instance, the case m = 2 is a consequence of a well-known result of
Shoda [22] and Albert and Muckenhoupt [1] which states that any trace zero matrix
is given by a commutator. Some partial results for m = 3 were obtained in [6]. For
n = 2 a solution was given in [10] for K a quadratically closed field and in [18] for
K = R. The case n = 3 has a partial solution too and we address the reader to the
paper [11].
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It is easy to achieve that the analogue of the L’vov-Kaplansky Conjecture fails
to be true if A is not simple or A is not finite dimensional. For, if A is the infinite
dimensional Grassmann algebra generated by {e1, e2, . . . }, the elements e1e2 and
e3e4 lie in the image of the commutator f(x1, x2) = [x1, x2] := x1x2 − x2x1, but
their sum does not. Furthermore, in [21] the authors provide an example of a non-
simple finite dimensional algebra whose images on a certain class of polynomials
are not subspaces.

Some generalizations of the L’vov-Kaplansky Conjecture have been studied con-
sidering algebras other than Mn(K). The possible images of a multilinear polyno-
mial are known for the algebra of upper triangular matrices UTn(K) and for its
subalgebra of strictly upper triangular matrices [9, 17, 8] and also for the algebra
of quaternions [19] and for some classes of simple Jordan algebras [20].

The theory of polynomial identities in algebras (PI-theory) and the study of
images of polynomials on algebras have a strong connection. Polynomials whose
image is {0} are the so called polynomial identities of A and those whose image is
K, are the so called central polynomials of A. Also, the solution of the case n = 2
of the L’vov-Kaplansky Conjecture relies on the fact that the ideal of polynomial
identities of Mn(K) is a prime ideal in K〈X〉.

An important tool in the study of polynomial identities are G-graded identities
on G-graded algebras, where G is a group. In the celebrated work of Kemer [14],
a crucial role was played by the Z2-graded identities in the solution of the Specht
Problem. After the publication of Kemer’s theory, a large number of papers on
graded identities and graded central polynomials have been published, specially
after the seminal papers [5] and [23].

In the light of the above facts, we consider a natural step to study images of
graded polynomials on algebras.

Up to our knowledge, there is only one paper published toward images of graded
polynomials on full matrix algebras: the one written by Kulyamin (see [16]). In
that paper the author considers the algebra A = Mn(K[G]), where K[G] is a finite
group algebra of an abelian group G over K endowed with the natural G-grading
on A is induced by the grading on K[G]. The author proves that a homogeneous
subset S ⊆ A is the image of a graded polynomial with zero constant term if and
only if 0 ∈ S and S is invariant under conjugation by degree zero elements of A. It
is worth mentioning that during the preparation of this paper, the authors became
aware of the preprint [7] where the authors consider images of graded polynomials
on upper triangular matrices.

In this paper, we study images of graded polynomials on A = Mn(K) endowed
with the canonical Zn-grading A = ⊕g∈Zn

Ag. This case is completely different
from Kulyamin’s, since here the algebra A is simple, while Mn(K[G]) is not simple,
once K[G] is not. We believe our results can be generalized for more general types
of gradings on Mn(K).

The paper is organized as follows: first we present the basic definitions and
results to study the problem. Later, we prove that the linear span of a multilinear
graded polynomial on a Q-algebra A is one of the following: Ag, for some g ∈ Zn,
Q (viewed as the set of scalar matrices), (sln)0, the set of trace zero diagonal
matrices, or {0}. In light of this result we state a conjecture regarding the image of
a multilinear graded polynomial on Mn(K) and we prove this conjecture for n = 2
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in the case K is a quadratically closed field. The paper ends with a description of
images of semi-homogeneous graded polynomials on M2(K).

2. Preliminaries

In this paper, all fields we refer to are assumed to be of characteristic zero and
all algebras we consider are associative and unitary. If n is a positive integer and
1 ≤ i, j ≤ n, we denote by Ei,j the matrix units, i.e., Ei,j is the matrix whose entry
(i, j) is 1 and all other entries are 0. If k, l are not in the interval [1, . . . , n], Ek,l is
defined by considering the representative of k and l modulo n in [1, . . . , n].

Let G be any group and let K be a field. When we consider an arbitrary group,
we will use the multiplicative notation and we will denote the group unit by 1.
When considering an abelian group, we will use the additive notation and denote
its unit by 0.

If A is a K-algebra, we say A is a G-graded algebra if there are subspaces Ag,
for each g ∈ G, such that

A =
⊕
g∈G

Ag and for each g, h ∈ G, AgAh ⊆ Agh.

If 0 6= a ∈ Ag, we say a is homogeneous of G-degree g and we write deg(a) = g. We
shall denote by h(A) the set of homogeneous elements of the graded algebra A.

Example 1. (1) Any algebra may be endowed with a trivial G-grading, where
G is any group, if we set A1 = A and for each g 6= 1 Ag = 0.

(2) If A = K[G] is the group algebra generated by G over the field K, A is
naturally G-graded if we set Ag = K · g for each g ∈ G.

(3) If A = Mn(K) and G is a group, let g = {g1, . . . , gn} be an n-tuple of
elements of G, then A is G-graded if we set Ag to be the subspace generated

by matrices Eij such that g−1i gj = g. This grading is called the elementary
grading determined by g.

(4) If in the above example we set G = Zn, and we choose the n-tuple g to be
(0, 1, . . . , n− 1), we will refer to this grading as the Vasilovsky grading of
A. One can observe that the component A0 is the set of diagonal matrices.
We recall that such grading was introduced by Di Vincenzo in [5] for 2 ×
2 matrices, and its graded polynomial identities were described in [5] for
n = 2 and in the general case in [23] (characteristic zero) and [2] (positive
characteristic). Moreover, the graded central polynomials in this case were
described in [4].

In order to work in the setting of graded algebras, we need to introduce the
graded analogue of polynomials, the so called graded polynomials.

Let {Xg | g ∈ G} be a family of disjoint countable sets. Set X =
⋃
g∈GXg and

denote by K〈X|G〉 the free associative algebra freely generated by the set X over
K. To define a grading on K〈X|G〉 we first put deg(x) = g, if x ∈ Xg and we
extend this map to monomials by setting

deg(xi1xi2 · · ·xik) = deg(xi1) · deg(xi2) · · · deg(xik).

We will say xi1 · · ·xik has G-homogeneous degree g (or G-degree g, or homo-
geneous degree g). For every g ∈ G we denote by K〈X|G〉g the subspace of
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K〈X|G〉 spanned by all monomials having homogeneous G-degree g. Notice that
K〈X|G〉gK〈X|G〉h ⊆ K〈X|G〉gh for all g, h ∈ G. Thus

K〈X|G〉 =
⊕
g∈G

K〈X|G〉g

is a G-graded algebra. We refer to the elements of K〈X|G〉 as G-graded poly-
nomials or just graded polynomials. An ideal I of K〈X|G〉 is said to be a TG-
ideal if it is invariant under all K-endomorphisms ϕ : K〈X|G〉 → K〈X|G〉 such
that ϕ (K〈X|G〉g) ⊆ K〈X|G〉g for all g ∈ G. If A is a G-graded algebra, a G-
graded polynomial f(x1, . . . , xm) is said to be a graded polynomial identity of A
if f(a1, a2, . . . , am) = 0 for all a1, a2, . . . , am ∈ h(A) such that ak ∈ Adeg(xk),
k = 1, . . . ,m. If A satisfies a non-trivial graded polynomial identity, A is said to
be a G-graded PI-algebra. We denote by TG(A) the ideal of all graded polynomial
identities of A. It is a TG-ideal of K〈X|G〉.

Let A be a G-graded algebra. If f(x1, . . . , xm) ∈ K〈X|G〉, let gi = deg(xi) ∈ G.
Then f defines a map (also denoted by f):

f : Ag1 × · · · ×Agm −→ A
(a1, . . . , am) 7−→ f(a1, . . . , am)

Definition 1. The image of such map is called the image of the graded polynomial
f on the graded algebra A.

Below, we can find some examples.

Example 2. (1) If A is a G-graded algebra, and f(x1, . . . , xm) ∈ K〈X|G〉 is
a graded polynomial, then Im(f) = {0} if and only if f(x1, . . . , xm) is a
graded polynomial identity of A.

(2) If A = Mn(K) with the Vasilovsky grading, then the image of the polynomial
f(x1, . . . , xn) =

∑
σ∈Sn

xσ(1) · · ·xσ(n) is K (the set of scalar matrices) if

deg(x1) = · · · = deg(xn) = 1 (see [4, Proposition 1]).
(3) If A = UTn(K) is the set of n × n upper triangular matrices, endowed

with the Vasilovsky (induced) grading, then the image of f(x1, . . . , xn) =
x1 · · ·xn−1, with deg(x1) = · · · deg(xn−1) = 1, is the 1-dimensional sub-
space of A spanned by E1n.

We say a G-graded polynomial p ∈ K〈X|G〉 is multilinear of degree n if it is
multilinear as a polynomial, that is, if it can be written as∑

σ∈Sn

ασxσ(1) · · ·xσ(n),

for some ασ ∈ K.
We also say a G-graded polynomial p(x1, . . . , xm) is multihomogeneous of degree

(n1, . . . , nm) if the variable xi appears exactly mi times in any of its monomials.
We call the reader’s attention to the fact that there are two different gradings

been considered in K〈X|G〉. A G-grading, as defined above and the usual Z-
multigrading. In particular, a multilinear graded polynomial is a polynomial in
K〈x1, . . . , xm|G〉 which is multihomogeneous of degree (1, . . . , 1).

3. The linear span of the image of a homogeneous graded polynomial

In this section we study the linear span of the image of a Zn-homogeneous graded
polynomial on Mn(K) endowed with the canonical Zn-grading.
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The next is a straightforward adaptation of [10, Lemma 5].

Lemma 1. Let f(x1, . . . , xm) be a Zn-graded polynomial of homogeneous degree
g 6= 0. Assume that a1, . . . , am are matrix units in Mn(K). Then f(a1, . . . , am) is
a scalar multiple of Ei,j, for some i 6= j such that deg(Ei,j) = g.

Since G is abelian, conjugation by a homogeneous element does not change the
degree of a homogeneous element. We have the following result.

Lemma 2. Let f(x1, . . . , xm) be a graded polynomial of homogeneous Zn-degree
g. Then Im(f) is a subset of Mn(K) which is invariant under conjugation by
homogeneous matrices. In particular, it is invariant under conjugation by N =∑n
i=1Ei,i+1 and D =

∑n
i=1 diEi,i, for any d1, . . . dn ∈ K \ {0}.

Lemma 3. Let f(x1, . . . , xm) be a graded polynomial of homogeneous Zn-degree
g 6= 0. If f is not a graded polynomial identity of A = Mn(K), then the linear span
of Im(f) equals the homogeneous component Ag.

Proof. By Lemma 1, there exists an evaluation of f equal to c ·Ei,j , for some i 6= j,
c 6= 0, with deg(Ei,j) = g. Hence Ei,j ∈ Im(f). By Lemma 2, Im(f) is invariant
under conjugation by N . Then N−1Ei,jN = Ei+1,j+1 ∈ Im(f). By applying the
same argument n times, we obtain Ei+k,j+k ∈ Im(f), for any k and the proof is
complete. �

The following is a consequence of Lemma 2.

Lemma 4. Let Let A = Mn(K) be endowed with the canonical Zn-grading and let
M =

∑n
i=1 γiEi,i+g ∈ Ag, where g is invertible in Zn.

(1) If γi 6= 0 for every i ∈ {1, . . . , n}, then there exists D ∈ A0 such that all
entries of DMD−1 but one are equal to 1.

(2) If γi = 0, for some i ∈ {1, . . . , n}, there exists D ∈ A0 such that all entries
of DMD−1 are 1 or 0.

Proof. Since g has a multiplicative inverse in Zn, we have

{kg | k ∈ {1, . . . , n}} = Zn,

then, if M ∈ Ag, we may write M =
∑n
k=1 γkEkg,(k+1)g and if D ∈ A0, we may

write D =
∑n
k=1 dkEkg,kg. Direct computations show that if D is invertible,

DMD−1 =

n∑
k=1

dk
dk+1

γkEkg,(k+1)g

Now one can directly verify that if all γk are nonzero, the system of equations

dk
dk+1

γk = 1, for k ∈ {1, . . . , n− 1}

has a solution by defining d1 = 1, and dk =
∏k−1
i=1 γi, for k ∈ {2, . . . , n− 1}.

In a similar way, one can find a solution to the system of equations

dk
dk+1

γk = 1, for k ∈ {1, . . . , n− 1}, with γk 6= 0.

�
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The next two results show an analogue of a well known theorem of Shoda, Albert
and Muckenhoupt (see [22, 1]) in the graded case, i.e., it describes the image of a
(graded) commutator polynomial.

Lemma 5. Let C =
∑n
i=1 ciEi,i+g ∈ Ag, for some g 6= 0 in Zn. Then there exists

B ∈ Ag and D ∈ A0 such that C = [B,D].

Proof. Let C =
∑n
i=1 ciEi,i+g ∈ Ag and consider D = diag(d1, . . . , dn), where

d1, . . . , dn are pairwise distinct elements in K. Write B =
∑n
i=1 biEi,i+g; direct

computations show

[B,D] =

n∑
i=1

bi(di+g − di)Ei,i+g.

By defining bi = (di+g − di)
−1ci for each i, we obtain C = [B,D] and we are

done. �

We now turn our attention to polynomials of homogeneous degree zero.

Proposition 6. Let D ∈ A0 such that tr(D) = 0. If g is invertible in Zn, then
there exist B ∈ Ag, C ∈ A−g such that D = [B,C].

Proof. WriteD = diag(d1, . . . , dn), B =
∑n
i=1 biEi,i+g ∈ Ag and C =

∑n
i=1Ei+g,i ∈

A−g. Then

[B,C] =

n∑
i=1

(bi − bi−g)Eii.

The lemma will be proved once we show the system of equations

bi − bi−g = di, i = 1, . . . , n

in the variables b1, . . . , bn has a solution.
To do that, notice that since g is invertible in Zn, we have

{1− kg | k ∈ {0, . . . , n− 1}} = Zn.
Given b1 ∈ K, by defining

b1−g = b1 − d1
b1−2g = b1−g − d1−g = b1 − d1 − d1−g

...

b1−(n−1)g = b1−(n−2)g − d1−(n−2)g = b1 − (d1 + · · ·+ d1−(n−2)g)

we obtain a solution to the above system and we are done. �

Remark 7. In the previous result, the condition that g has a multiplicative inverse
in Zn cannot be removed. For instance, let n = 4 and g = 2 ∈ Zn. Simple
computations show that the image of the graded polynomial [x1, x2] = x1x2 − x2x1,
where deg(x1) = deg(x2) = 2 lies in the set {D = diag(d1, d2,−d1,−d2) | d1, d2 ∈
F}, which does not contain all traceless diagonal matrices.

Proposition 8. Let us denote by K the field Q of rational numbers. Let n be a
prime number and let f be a multilinear Zn-graded polynomial of degree 0. Then the
linear span, L, of Im(f) on A = Mn(K) (endowed with the Vasilovsky Zn-grading)
is one of the following:

{0}, K, (sln(K))0, A0
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Proof. If f is not an identity and the image of f contains only scalar matrices, then
of course L = K.

Assume now that f is not an identity nor a central polynomial of Mn(K).
Since f is not an identity nor a central polynomial, there exists an evaluation of

f which is a nonscalar matrix.
Let us first assume there is an element D =

∑n
i=1 αiEi,i in the image, satis-

fying
∑
αi 6= 0. Write D0 = D,D1 = N−1DN, · · · , Dn−1 = N−(n−1)DNn−1.

Once we show that D0, . . . , Dn−1 are linearly independent, they generate an n-
dimensional subspace in L. Since L is a vector subspace of the n-dimensional
space A0, we will conclude that L = A0. The elements D0, . . . , Dn−1 can be
considered as n-tuples of elements of K. if D = D0 = (α1, . . . , αn), then D1 =
(αn, α1, . . . , αn−1), . . . , Dn−1 = (α2, . . . , αn, α1). These are linearly independent
over K, if and only if the determinant of the matrix below is nonzero.

C =


α1 α2 · · · αn−1 αn
αn α1 · · · αn−2 αn−1
...

...
. . .

...
...

α3 α4 · · · α1 α2

α2 α3 · · · αn α1

 .

Matrices of the above type are called circulant matrices. It is well known that C
is nonsingular if and only if the polynomial P (x) = α1 +α2x+ · · ·+αnx

n−1 ∈ K[x]
is coprime to the polynomial xn − 1 (see for instance Corollary 10 of [15]). Since

α1 + · · ·+αn 6= 0, x = 1 is not a root of P (x). Since n is prime, x
n−1
x−1 is irreducible

over K, and this implies C is nonsingular and the linear span of Im(f) is A0.
Finally, we need to prove that if Im(f) contains only trace zero matrices, then

Im(f) is (sln)0. We argue as above. The only difference is that we need to prove
that the elements D0, . . . , Dn−1 generate an n−1-dimensional subspace of A0. This
is equivalent to show that the rank of C is n− 1, but it is well known that the rank
of the circulant matrix C above is n− d, where d is the greatest common factor of
P (X) and xn − 1 (again we address the reader to the paper [15]). Now we have

α1 + · · · + αn = 0, x = 1 is a root of P (X), then because xn−1
x−1 is irreducible over

Q, we obtain d = 1 and the rank of C is n− 1. As a consequence, the linear span
of Im(f) is (sln)0. �

Remark 9. The above proof holds only for K = Q. It would be interesting to prove
it for an arbitrary field K.

The analogue of the L’vov-Kaplansky conjecture in the graded case (for matrices
of prime order) can now be stated as

Conjecture 1. Let K be a field and n be a prime number. If f ∈ K〈X|Zn〉 is a
multilinear Zn-graded polynomial then Im(p) is one of the following

(1) {0}, if f is a graded polynomial identity.
(2) K (viewed as the set of scalar matrices) if f is a graded central polynomial

of Mn(K) which is not an identity.
(3) The set (sln(K))0 of trace zero diagonal matrices, if g = 0 and f lies in

the graded T-Lie-ideal generated by [x1, x2], where deg(x1) + deg(x2) = 0.
(4) The whole component g, if none of the above cases holds.
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4. The image of multilinear polynomials of degree 2 on matrix
algebras

We are going to deal with multilinear polynomials of degree 2 over quadratically
closed fields of sufficiently large characteristic.

Lemma 10. Let n be an odd prime number and K be a quadratically closed field
of characteristic zero or greater than n. Let p(x1, x2) = x1x2 − αx2x1 ∈ K〈x1, x2〉
be a graded polynomial with deg(x1) = g ∈ Zn and deg(x2) = h ∈ Znand α be an
n-th root of 1. If p is not a graded polynomial identity for Mn(K), then the image
of p on Mn(K) is Ag+h.

Proof. If g = h = 0, then modulo the graded identities of Mn(K), p(x1, x2) =
(1 − α)x1x2. Then p is a graded identity if α = 1 and the image of p is A0

otherwise. Hence, we may assume g or h is nonzero. Let us assume without loss of
generality h 6= 0. Write B =

∑n
i=1 biEi,i+g and C =

∑n
i=1 ciEi,i+h. Then

p(B,C) = BC − αCB =

n∑
i=1

(bici+g − αcibi+h)Ei,i+g+h.

Let M =
∑n
i=1 γiEi,i+g+h ∈ Ag+h. We will show that there exist B and C as above

such that p(B,C) = M .
Observe that the the above claim is equivalent to find a solution to the system

of equations

bici+g − αcibi+h = γi, i ∈ {1, . . . , n}.(1)

First we observe that if g = 0, the above system of equation become

ci(bi − αbi+h) = γi, i ∈ {1, . . . , n}.(2)

then a solution to the above system of equations can be found in a similar way to
the proof of Lemma 5.

So we may assume from now on that g and h are different from zero in Zn.
Observe that if all γi are zero, B = C = 0, provide a solution to the above system.
Also, if we admit only one entry to be nonzero, a solution to the above equation
may be found. Indeed, by Lemma 2, we may assume such nonzero entry is γ0. In
this case, b0 = 1, bi = 0, for i > 1, cg = γ0 and ci = 0, for i 6= g provide a solution
to the system of equations (2). So, from now on we may assume at least two of the
γi in M are nonzero.

Since n is prime, and h 6= 0, we have in Zn, {1, . . . , n} = {0, h, . . . , (n − 1)h}.
Hence the above system of equations can be written as

bkhckh+g − αckhb(k+1)h = γkh, k ∈ {0, . . . , n− 1}.

If we assume ci 6= 0 for all i, we have

b(k+1)h =
bkhckh+g − γkh

αckh
, k ≥ 0.

An easy computation shows that for every k ≥ 1, we have
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(3) bkh =

b0

k−1∏
i=0

cg+ih −
k−1∑
r=0

αrγrh

r−1∏
i=0

cih

k−1∏
i=r+1

cg+ih

αk
k−1∏
i=0

cih

The above expressions will provide a solution to the system of equations (2), but
we need to take into account that condition b0 = bnh holds.

Substituting k by n in Equation (3), since nh = 0 mod n and αn = 1, we obtain

b0 =

b0

n−1∏
i=0

cg+ih −
n−1∑
r=0

αrγrh

r−1∏
i=0

cih

n−1∏
i=r+1

cg+ih

αn
n−1∏
i=0

cih

;

since

n−1∏
i=0

cg+ih =

n−1∏
i=0

cih, we get:

n−1∑
r=0

αrγrh

r−1∏
i=0

cih

n−1∏
i=r+1

cg+ih = 0.(4)

Now, showing the existence of a solution b1, . . . , bn is equivalent to show that
there exist c1, . . . , cn ∈ K \ {0}, such that Equation (4) holds.

Let g = th, with t ∈ {1, . . . , n − 1} (recall that n > 2). By letting ci = 1, for
i 6= th, (t+ 1)h, Equation (4) becomes(

t−1∑
r=0

αrγrh

)
+ αtγtcth +

(
n−1∑
r=t+1

αrγrh

)
cthc(t+1)h = 0

Now notice that if we set c(t+1)h = cth = x, the above become(
t−1∑
r=0

αrγrh

)
+ αtγtx+

(
n−1∑
r=t+1

αrγrh

)
x2 = 0(5)

and it is enough to show it has a nonzero solution.
Recall that the image of a polynomial is invariant under conjugation by ho-

mogeneous invertible matrices (Lemma 2). Hence, we may assume γt 6= 0, since
conjugating by some power of the matrix N =

∑n
i=1Ei,i+1, one of the nonzero

entries of M lies in line th (recall that the case where all γi are zero has already
been considered).

Also, by Lemma 4 we may assume γrh ∈ {0, 1} if r 6= t. As a consequence,
since we are considering the case in which at least two entries of M are nonzero,
we obtain that at least two of the coefficients of equation (5) are nonzero. Indeed,
if α = 1, the coefficients are a sum of less than n times the unity 1, and if α is
a primitive n-th root of 1, its minimal polynomial over the prime subfield of K is
1 + x+ · · ·+ xn−1. This proves Equation (5) has a nonzero solution.

�
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We are now in position to give a complete description of images of multilinear
Zn-graded polynomials of degree 2 on the matrix algebra Mn(K), provided n is a
prime number and K is a quadratically closed field of characteristic greater than
n.

Theorem 11. Let p(x1, x2) be a multilinear Zn-graded polynomial and n be an odd
prime number. Then the image of p evaluated on the Zn-graded algebra A = Mn(K)
is one of the following:

{0}, (sln)0, or Ag, for some g ∈ G

Proof. Assuming p is nonzero, we may write p(x1, x2) = x1x2 − αx2x1, for some
α ∈ K. Let deg(x1) = g and deg(x2) = h. If g = h = 0 then modulo the graded
identities of Mn(K), we have x1x2 = x2x1. Hence the image of p on Mn(K) equals
the image of the polynomial (1 − α)x1x2. Of course, such image is {0} if α = 1,
and is A0 if α 6= 1. Hence we may assume that g or h is not equal to 0. Without
loss of generality, we may assume h 6= 0.

The case α = 0 is trivial: the image is Ag+h, so we consider α 6= 0. Now we have
two more cases to consider, namely α is an n-th root of 1 or not.

If α is a root of 1, Lemma 10 settles the case.
So it remains to consider the case α is not a root of 1.
If M =

∑n
i=1 γiEi,i+g+h ∈ Ag+h, we need to find B ∈ Ag and C ∈ Ah such that

p(B,C) = M .
For, let us write B =

∑n
i=1 biEi,i+g and C =

∑n
i=1Ei,i+h. Direct computations

show that

p(B,C) =

n∑
i=1

(bi − αbi+h)Ei,i+g+h.

In order to obtain B and C satisfying p(B,C) = E, we need to find b1, . . . , bn ∈ K
such that

(6) bi − αbi+h = γi, i ∈ {1, . . . , n}

Since h is nonzero, it is invertible in Zn, because n is prime. As a consequence,

{1, . . . , n} = {0, h, . . . , (n− 1)h}.

and

{b1, . . . , bn} = {b0, bh, . . . , b(n−1)h}.
Now the system of equations (6) can be written as

(7) bkh − αb(k+1)h = γkh, k ∈ {0, . . . , n− 1}

and a solution is given by

b1 =
γ0 + αγh + · · ·+ αn−1γ(n−1)h

1− αn

bkh =
b0 − (γ0 + αγh + · · ·+ αk−1γ(k−1)h)

αk
, k ∈ {1, . . . , n− 1}

Observe that since α is not a root of 1, 1 − αn 6= 0 and the above expressions
are well defined. �



IMAGES OF GRADED POLYNOMIALS ON MATRIX ALGEBRAS 11

Remark 12. Although the above theorem was stated only for odd prime numbers,
there is an analogue of it for n = 2. It will be stated in the next section. The only
difference is that we may have a central polynomial in this case, i.e., the image
of p can also be K. For instance, the polynomial p(x1, x2) = x1x2 + x2x1, with
deg(x1) = deg(x2) = 1 is a nontrivial graded central polynomial of M2(K).

5. The image of multilinear graded polynomials on 2× 2 matrix
algebras

In this section we compute explicitly the image of any multilinear graded poly-
nomial evaluated on 2× 2 matrix algebras endowed with the Vasilovsky’s grading.

Definition 2. Let A be a G-graded algebra. We say A is a G-graded domain if
ab = 0 implies a = 0 or b = 0 for a, b ∈ h(A). Moreover, we say A is a G-graded
division algebra if any homogeneous element is invertible in A.

Let A = Mn(K) be Zn-graded with the Vasilovsky grading. We consider

Y = {y(r)ij |i, j ∈ {1, . . . , n}, r ∈ N}
and for every r ∈ N, let us consider the generic n × n matrices with entries from
the algebra of the commutative polynomials K[Y ]:

ξrg =
∑
j−i=g

y
(r)
ij Ei,j .

We shall denote by GenZn(A) the algebra generated by the ξrg ’s and call it Zn-
graded generic matrix algebra associated to the Vasilovsky Zn-grading of Mn(K).
The algebra GenZn(A) is called the graded generic algebra of A. It is well known

GenZn(A) ∼=
K〈X|G〉

(K〈X|G〉 ∩ TG(Mn(K))
.

The following is well-known

Proposition 13. The algebra GenZn(A) defined above is a graded domain.

Lemma 14. Let f(x1, . . . , xm) be a Zn-graded homogeneous polynomial of degree
g 6= 0. If f is not a graded polynomial identity for Mn(K), with the Vasilivsky
grading, then there exists a non-singular matrix in the image of f .

Proof. Assume that for any admissible evaluation we have a singular matrix. This
implies that f(x1, . . . , xm)n is a graded identity. As a consequence, the image of f
via the canonical homomorphism onto the algebra of generic matrices is a nilpotent
element. Since the algebra of Zn-graded generic matrices (with the Vasilovsky’s
grading) is a graded domain due to Proposition 13, we obtain that f is a graded
identity. That is a contradiction. �

We now recall Lemma 1.34 of [12], which will help us in proving the main result
of this section.

Lemma 15. Let Vi (for 1 ≤ i ≤ m) and V be linear spaces over an arbitrary field

K. Let f :
m∏
i=1

Vi → V be a multilinear map. Assume there exist two points in

Im(f) which are not proportional. Then Im(f) contains a 2-dimensional plane. In
particular, if V is 2-dimensional, then Im(f) = V .
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We are now in position to prove the main result of this section.

Theorem 16. Let f be a multilinear graded polynomial. Then the image of f on
M2(K) is one of the following:

{0}, K, (sl2)0, A0, A1.

Proof. Let us assume f is not a graded identity. If f has homogeneous degree
g 6= 0, Lemmas 1 and 2 guarantee that E1,2 ∈ Im(f). By Lemma 14, there
exists a nonsingular matrix B in Im(f). The matrices B and E12 are clearly not
proportional, then Lemma 15 implies Im(f) = A1.

Assume now f has homogeneous degree 0. If all evaluations of f are scalar ma-
trices, we obtain Im(f) is K, the set of scalar matrices (since it is one-dimensional).
If all evaluations of f have trace zero, then Im(f) is (sl2)0 because it is one dimen-
sional.

Finally, if Im(f) contains a nonzero nonscalar element B = aE11 + bE22 with
nonzero trace, then conjugation by N = E12 + E21 yields bE11 + aE22, which still
lies in Im(f) by Lemma 2 and since B is not scalar and has nonzero trace, B and
N−1BN are linearly independent. Again, Lemma 15 completes the proof in this
case and we are done. �

6. The image of semi-homogeneous graded polynomials on 2× 2 matrix
algebras

In this last question we address a similar question as above for semi-homogeneous
polynomials. From now on any field is considered to be quadratically closed.

We start the section with some concepts and results that will be used in the
proof of the main result. We introduce now the so called G-graded prime algebras.
On this purpose, we address the reader to the paper [3] by Balaba.

We recall that an ideal of a graded algebra A is a graded ideal if it is generated by
homogeneous elements. A graded ideal P of A is said G-graded prime or G-prime
if it is prime as a graded ideal. Moreover, an element of A is said regular if it is
not a zero divisor.

Definition 3. A G-graded ideal P of a G-graded algebra A is called strongly graded
prime or G-strongly prime if whenever aAb ⊆ P, where a, b ∈ h(A), either a ∈ P
or b ∈ P . Moreover, a graded algebra A is called graded prime if (0) is a strongly
graded prime ideal of A.

For example, every prime algebra A graded by a group G is G-prime. For suppose
conversely that there exists a, b ∈ h(A) which are not 0 and such that aAb = 0,
then A is not prime.

Definition 4. A G-prime algebra A is called PI G-prime if it satisfies an ordinary
polynomial identity.

Recall that by [3, Proposition 1], the localization AS of A over S, where S is
a set of homogeneous regular elements of the center Z(A) of A is a PI G-graded
algebra of central quotients of A. An algebra Q(A) ⊇ R is called the left (right)
graded algebra of quotients of A if:

(1) each homogeneous regular element from A is invertible in Q(A);
(2) each homogeneous element x ∈ Q(A) has the form a−1b (ba−1), where

a, b ∈ h(A) and a is regular.
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We have the following results (see [3]). We recall if A is G-graded, then we
denote by Zgr(A) its graded center, i.e., the largest G-graded subalgebra of Z(A).

Theorem 17 ([3] Proposition 1). Let A be a PI G-prime algebra, Z(A) the center
of A and S the set of homogeneous regular elements of Z(A). Then:

(1) S = h(Z(A));
(2) the algebra of quotients AS is a PI G-prime algebra;
(3) Zgr(AS) = Zgr(A)S .

Theorem 18 ([3] Theorem 5). Let A be a PI G-prime algebra and Ac the algebra
of central quotients of A. Then:

(1) Ac is finite dimensional graded-simple over its graded center Z and Z is
the graded field of quotients of Zgr(A);

(2) Ac is the graded algebra of quotients of A;
(3) A and Ac satisfy the same identities.

It is easy to see that a G-graded domain is a G-prime algebra, then by Theorems
17 and 18 we have any PI graded domain can be embedded in a graded prime
algebra of central quotients.

It is not difficult to see that GenZn(A) is a PI Zn-prime algebra, then it admits
a Zn-graded algebra of central quotients Q(A).

We have the following.

Proposition 19. Let A = Mn(K) be endowed with the Zn-grading of Vasilovsky,
then Q(A) is a Zn-graded division algebra.

Proof. Notice that a homogeneous element in Q(A) has the form
∑
g−1
i gj=g

p
(r)
ij Eij ,

where pij is a non-zero polynomial in K[Y ], then it is regular, so it invertible in
Q(A). �

The next will be used later on. See the book [13] for more details.

Definition 5. We shall call expediting G-graded algebra, the algebra generated by
the graded generic algebras and the traces of their elements of degree 1.

At light of Proposition 19 we have the next result.

Proposition 20. The expediting graded algebra endowed with the Zn-grading of
Vasilovsky is a Zn-graded domain which can be embedded in the Zn-graded division
algebra of central quotients of the graded algebra of generic matrices.

Proof. By the graded analogue of Theorem J of [13] we have the trace functions of
even elements of the graded generic matrix algebra A can be written as the ratio
of two polynomials taking values on the graded center of Q(A). Hence any trace of
even elements belongs to Q(A) and we are done. �

We shall recall some basic topological results that will be useful further in the
text. A topological space will be denoted by a pair (X, τX), where X is the un-
derlying space and τX is a topology on X, i.e., the set of its open sets. Of course,
any closed set of a given topology is the complementary set of an open set and
viceversa.

We consider a finite dimensional vector space V over a field K. Indeed, V ∼= Kn

as a vector space, where n equals the dimension of V over K. Consider now the
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algebra of commutative polynomials in n variables K[Xn] := K[x1, . . . , xn] and
choose a set S ⊆ K[Xn]. We define

V (S) := {a = (a1, . . . , an) ∈ Kn|f(a1, . . . , an) = 0 for every f ∈ S}.

The set of all V (S), S ⊆ K[Xn] is the set of closed sets of a topology on V called
Zariski’s topology. Recall any finite set of V is a closed set in the Zariski’s topology
of V . Furthermore, the finite sets are the sole closed sets if V ∼= K.

Given two topological spaces (X, τX), (Y, τY ) and a function f : X → Y , f is
said to be continuous if f−1(U) ∈ τX for every U ∈ τY whereas f is said to be open
if f(W ) ∈ τY for every W ∈ τX . Furthermore, in a topological space (X, τX) a set
S is said dense if S = X, where S denotes the closure of S, i.e., the least closed set
containing S. Notice that any open set in the Zariski’s topology is dense as well
as any set containing a dense set in any topological space. We also have the next
result.

Lemma 21. Let (X, τX), (Y, τY ) be topological spaces and f : X → Y a continuous
and open function. Then for every dense set S of (Y, τY ) we have f−1(S) is dense
in (X, τX).

Now we come back to images of graded polynomials. Let us set N the set of non-
nilpotent matrices of size two and let A ∈ N . Then at least one of the eigenvalues of
A λ1, λ2 is non-zero. Hence we are allowed to consider the ratio of the eigenvalues
of A that is 0 if one between λ1 and λ2 is 0 whereas it is well defined as λ1/λ2 (up
to taking reciprocals). We say

two non-nilpotent matrices have different ratios of their eigenvalues

if their ratios of eigenvalues are not equal nor reciprocal.

Then we define a map

Π : N → K

such that

Π(A) =

{
0 if 0 is an eigenvalue of A
λ1/λ2 + λ2/λ1 otherwise.

Notice that if 0 is not an eigenvalue of A, then

(8) λ1/λ2 + λ2/λ1 = −2 + tr(A)2/det(A).

We recall that a polynomial f = f(x1, . . . , xn), is said to be semi-homogeneous
with nonzero weighted degree d if, letting di be the usual degree of xi in f , there
exist weights w1, w2, . . . , wn such that in each summand of f we have w1d1 +
w2d2 + · · ·+ wndn = d.

Theorem 22. Let f be a semi-homogeneous Z2-graded polynomial evaluated on the
algebra M2(K) of 2 × 2 matrices over a quadratically closed field. them Im(f) is
one of the following:

{0}, K, sl2(K)0, M2(K)0, M2(K)1, D0, D1,

where Di is a dense set in the Zariski’s topology defined on M2(K)i.

Proof. Let f = f(x1, . . . , xm) be a semi-homogeneous polynomial of degree 0 and
assume there are homogeneous matrices a1, . . . , am, b1, . . . , bm so that f(a1, . . . , am)
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and f(b1, . . . , bm) have different ratios of eigenvalues. We consider the family M =
{p(t)|t ∈ K}, where

p(t) := f(ta1 + (1− t)b1, . . . , tam + (1− t)bm)

and we remark p is a polynomial function such that M ⊆ Im(f). Let us denote
by h the function Π ◦ p : K → K. If we endow K and M2(K)0 with their Zariski’s
topology, then Π and p turn out to be continuous and open. Hence h is continuous
and open as well. We will study the rational function h′ := tr2(p)/det(p) − 2 :
K → K which can be written as A(t)/B(t), where A(t) and B(t) are polynomial
functions of degree less than or equal to 2 deg(f) and cannot be written as ratio
of polynomials of smaller degrees. Now we are going to study h(K). Of course,
0 ∈ h(K) if either p(t) is the zero matrix or has exactly one non-zero diagonal entry.
Then we may assume h(K) takes only non-zero values. In this case, we observe
the functions h and h′ are the same because of Equation (8). Recall A and B are
written in lowest terms, then c ∈ K belongs to h(K) iff there exists t ∈ K such
that A− cB = 0. Of course, only a finite number of elements of K does not belong
to h(K). This means h(K) is open and then dense in the Zariski’s topology of
K even if we assume h takes the 0 value too. Because Π is open and continuous,
then Π−1(h(K)) is dense in M2(K)0 by Lemma 21. Hence, M is dense because
M ⊆ Π−1(h(K)). Finally, because M ⊆ Im(f), we get Im(f) is dense in M2(K)0.

Let us consider f of fixed ratio r. Suppose further f is not an identity and r 6= ±1.
Then the eigenvalues λ1, λ2 of a certain matrix f(a1, . . . , am) are linear functions of
tr(f(a1, . . . , am)) so they belong to the algebra of generic matrices with traces that
is a graded domain. Notice now f − λ1I and f − λ2I are non-zero homogeneous
elements of degree 0 and their product is 0 because of Cayley-Hamilton’s Theorem
that is an absurd. This forces r being 1 or −1.

Suppose r = 1, then f is a central polynomial and Im(f) = K. Assume r = −1,
then Im(f) turns out to be sl2(K)0.

We study now the case f = f(x1, . . . , xm) being a semi-homogeneous polynomial
of degree 1. Remark in this case the only possible ratios are 0 and −1. Assume
there are homogeneous matrices having different ratios of eigenvalues. We have the
following cases:

(1)

(
0 r
s 0

)
,

(
0 a
0 0

)
belong to Im(f), where r, s, a 6= 0;

(2)

(
0 r
s 0

)
,

(
0 0
b 0

)
belong to Im(f), where r, s, b 6= 0.

The cases (1) and (2) are analogous. Hence we carry on only with case (1), where
Im(f) = M2(K)1.

Assume now f of fixed ratio r = −1. Then the matrices

(
0 r
s 0

)
, where r, s 6=

0, belong to Im(f). Let S = {xy} ⊂ K[x, y]. Here Im(f) = V (S)c∪
{(

0 0
0 0

)}
.

Now observe V (S)c being the complementary set of a closed set is open, then it is
dense in the Zariski’s topology of M2(K)1. Because Im(f) contains a dense set, it
is dense as well.

�
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