
Counterfactual Reasoning for Decision Model Fairness
Assessment

Giandomenico Cornacchia, Vito Walter Anelli,
Fedelucio Narducci, Eugenio Di Sciascio

firstname.lastname@poliba.it
Polytechnic University of Bari

Bari, Italy

Azzurra Ragone
azzurra.ragone@uniba.it

University of Bari
Bari, Italy

ABSTRACT
The increasing application of Artificial Intelligence and Machine
Learning models poses potential risks of unfair behaviour and, in
the light of recent regulations, has attracted the attention of the
research community. Several researchers focused on seeking new
fairness definitions or developing approaches to identify biased
predictions. These approaches focus solely on a discrete and lim-
ited space; only a few analyze the minimum variations required
in the user characteristics to ensure a positive outcome for the
individuals (counterfactuals). In that direction, the methodology
proposed in this paper aims to unveil unfair model behaviors using
counterfactual reasoning in the case of fairness under unaware-
ness. The method also proposes two new metrics that analyse the
(estimated) sensitive information of counterfactual samples with
the help of an external oracle. Experimental results on three data
sets show the effectiveness of our approach for disclosing unfair be-
haviour of state-of-the-art Machine Learning and debiasing models.
Source code is available at https://github.com/giandos200/WWW-
23-Counterfactual-Fair-Opportunity-Poster-.
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1 INTRODUCTION
Artificial Intelligence (AI) systems are increasingly pervasive in our
society and often exploited for taking life-changing decisions, like
loans, job offers, and health care access. One of the inherent risks
linked to those tasks is the discrimination of groups or individuals.

In the fintech industry, online instant lending platforms use ma-
chine learning tools to analyze available consumer credit data to
make faster credit decisions. Nevertheless, in the financial sector,
the choice to grant or deny a credit has been regulated by rigorous
and thorough regulatory compliance criteria referring primarily to
human-decision (e.g., Equal Credit Opportunity Act and Consumer
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Credit Directive for EU Community). However, when AI replaces
human decisions, like in the case of instant lending, there is a risk of
revealing a loophole in existing liability identification laws. Several
national and international organizations have released guidelines,
norms, and principles to prevent the irresponsible usage of AI, e.g.,
the EU Commission with “The Proposal for Harmonized Rule on
AI” and the expert group on “AI in Society” of the Organisation for
Economic Co-operation and Development (OECD).

Although scientists train their models without explicit discrimi-
nating intent, deploying AI systems without taking ethical concerns
into account may lead to discrimination [2]. Even more problematic
is figuring out which type of discrimination is being implemented.
In the last years, a wide range of definitions has been proposed for
fairness [11]. The scientific community has drawn up a wide range
of fairness definitions that are derived from specific legal, philosoph-
ical, or mathematical applications. Unfortunately, since the most
often used criteria for fairness frequently conflict with one another,
if we make an algorithm fair on one measure, it could become un-
fair on another [6, 9]. Generally, fairness definitions refer to people
separable into privileged and unprivileged group, characterized by
sensitive information (e.g. gender, age, race) within which metrics
of disparity in outcome are measured, i.e., group-fairness. Dwork
et al. [5] introduced the concept of individual-fairness according to
which similar individuals should be treated similarly. Between the
two definitions and particularly in the latter lies the basis for the
Counterfactual Fairness [7]: ‘a predictor can be considered counter-
factually fair if its result does not change between individual with the
same characteristics but different sensitive information’. This defini-
tion requires the use of sensitive features that in particular domains
(e.g. finance, health care) is usually forbidden. Moreover, removing
sensitive information does not ensure the predictor fair behavior [3],
and it prevents an ex-post auditing of the model fairness.

Our work overcomes this limitation being able to detect bias
in the case of fairness under unawareness [1] through the use of
counterfactual reasoning [10], exploiting two novel fairness met-
rics. The proposed metrics, i.e., Counterfactual Flips (CFlips) and
normilized Discounted Cumulative Counterfactual Fairness (nDCCF)
identify the discriminatory behavior of the Decision Maker us-
ing a Countrerfactual Generator and an oracle (i.e., Sensitive-
Feature Classifier). The metrics explore a new fairness criteria:
Counterfactual Fair Opportunity. Our auditing methodology aims
to be an effective tool for quantifying the discriminatory behavior
of any ML model.

2 PRELIMINARIES
This section introduces the notation adopted hereinafter.
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(a) male on Classic ML model (b) female on Classic ML model (c) male on Debiasing model (d) female on Debiasing model

Figure 1: Adult t-SNE visualizations of a randommale (a-c) and female (b-d) samplewith a negative outcome and their CF samples
with a positive outcome, respectively, for a Classic ML model (i.e. XGB) and a Debiasing model (i.e. Adversarial Debiasing).

Data points: We assume the dataset D is an𝑚-dimensional space
containing𝑛 non-sensitive features, 𝑙 sensitive features, and a target
attribute. In other words, we have D ⊆ R𝑚 , with𝑚 = 𝑛 + 𝑙 + 11.
A data point 𝑑 ∈ D is then represented as 𝑑 = ⟨x, s, 𝑦⟩, with
x = ⟨𝑥1, 𝑥2, ..., 𝑥𝑛⟩ representing the sub-vector of non-sensitive fea-
tures, s = ⟨𝑠1, 𝑠2, ..., 𝑠𝑙 ⟩ the sub-vector of sensitive features and 𝑦
being a binary target feature. Given a vector of sensitive festures,
∀𝑠𝑖 ∈ s, 𝑠𝑖 = 0 refers to the unprivileged group and 𝑠𝑖 = 1 to the
privileged group of the 𝑖-th sensitive feature.
Target Labels: Given a target feature 𝑦 ∈ {0, 1}, 𝑦 = 1 is the posi-
tive outcome and 𝑦 = 0 is the negative one.
Outcome Prediction: 𝑦 ∈ {0, 1} represents the prediction for
x ⊂ 𝑑 estimated by 𝑓 (·), a function such that 𝑓 (x) = 𝑦.
Sensitive Feature Prediction: 𝑠𝑖 ∈ {0, 1} represents the predic-
tion of the 𝑖-th sensitive feature for a given data point estimated by
𝑓𝑠𝑖 (·), a function s.t. 𝑓𝑠𝑖 (x) = 𝑠𝑖 .
Counterfactual samples: Given a vector x and a perturbation
𝜖 = ⟨𝜖1, 𝜖2, ..., 𝜖𝑛⟩, we say that a vector cx = ⟨𝑐𝑥1 , 𝑐𝑥2 , ..., 𝑐𝑥𝑛 ⟩ = x+𝜖
is a counterfactual (CF) of x if 𝑓 (cx) = 1− 𝑓 (x) = 1−𝑦. We use the
set Cx, with |Cx | = 𝑘 , to denote the set of possible counterfactual
samples for x. A function 𝑔(x) compute 𝑘 counterfactuals for x.
For simplicity, we denote 𝑓 (·), 𝑓𝑠𝑖 (·), and 𝑔(·) as the Decision
Maker, the Sensitive-Feature Classifier, and the Counterfac-
tual Generator respectively.

3 METHODOLOGY
Our study proposes two novel metrics for detecting bias in a sce-
nario where sensitive features are omitted (i.e., fairness under un-
awareness) in the training process. Excluding sensitive features
makes verifying that all users are treated equally incredibly chal-
lenging. In the instant lending case, imagine that a customer applies
for a loan, and his/her request is rejected. Understanding if the
customer has been discriminated is hard to verify when sensitive
information is not used. Our process pipeline is as follows: theDeci-
sion Maker makes decisions without exploiting sensitive features,
then if the outcome is negative (e.g. loan rejected), the Counter-
factual Generator is exploited to propose modifications to user
characteristics and request for reaching a positive outcome (e.g.
loan approved). For each data point 𝑑 with a negative prediction
𝑓 (x) = 0, we generate a set of counterfactual samples Cx that reach
a positive outcome (i.e., ∀cx ∈ Cx s.t. 𝑓 (cx) = 1). Afterward, each
1Without loss of generality, we assume that categorical features can always be trans-
formed into features in R via one-hot-encoding.

counterfactual (CF) sample is evaluated by the Sensitive-Feature
Classifier that predicts the value of the (omitted) sensitive fea-
ture for the given CF sample. If the CF sample is classified as e.g.
male (privileged group), while the original sample was e.g. female
(unprivileged group), the decision model could be biased and its
unfairness can be quantified (Eq. 3 and 4).

Indeed, each CF sample derives from the original sample x plus
a perturbation 𝜖 , where 𝜖 is the distance from the original sample
for getting a positive outcome, and it should be independent from
the user-sensitive characteristics. Figure 1 depicts a scenario in
which male (blu color) is the privileged category, and female (red
color) is the unprivileged one. For each subfigure, a sample with
an unfavorable decision and its corresponding CFs are depicted.
A classic ML model (i.e., XGB) is compared with a debiasing ML
model (i.e., AdvDeb). We can observe that for the male sample
and classic ML model (Figure 1(a)), the CF samples belong to the
same sensitive category (i.e., male). For the female sample (Figure 1
(b)), this is not true, revealing a bias of the model. Conversely, the
debiasing model (Figure 1 (c) and (d)) shows no predominance in
the generated counterfactuals of one value of the sensitive class.
However, a change of the outcome, e.g. from negative to positive,
should not be determined by a flip of the value(s) of the sensitive
feature(s). Now, we introduce our fairness criteria and metrics.

Definition 3.1 (Counterfactual Fair Opportunity). A decisionmodel
is fair if the counterfactual samples of individuals with unfavorable
decisions maintain the same sensitive value to reach a positive out-
come. This behavior must be guaranteed both for the privileged and
the unprivileged group.

P(𝑓𝑠 (CX|−
𝑠=0

) ≠ 𝑠 | 𝑓 (CX|−
𝑠=0

) = 1, X|−𝑠=0 ) = P(𝑓𝑠 (CX|−
𝑠=1

) ≠ 𝑠 | 𝑓 (CX|−
𝑠=1

) = 1, X|−𝑠=1 )
(1)

To define a sort of discrimination score of a given decision model,
we propose a metric that we call Counterfactual Flips. The metric
quantifies the discriminatory behavior the model might put in place.

Definition 3.2 (Counterfactual Flips). Given a sample x belonging
to a demographic group 𝑠 whose model output is denoted as 𝑓 (x), a
generated set Cx of 𝑘 counterfactuals with desired 𝑦∗ outcome. ∀c𝑖x ∈
Cx s.t. 𝑓 (c𝑖x) = 𝑦∗, the Counterfactual Flips indicate the percentage
of counterfactual samples belonging to another demographic group
(i.e., 𝑓𝑠 (c𝑖x) ≠ 𝑓𝑠 (x), with 𝑓𝑠 (x) = 𝑠).

CFlips(x, Cx, 𝑓𝑠 ( ·) ) ≜
∑𝑘
𝑖=1 (1(c

𝑖
x ) )

𝑘
where 1(c𝑖x ) =

{
1 if 𝑓𝑠 (c𝑖x ) ≠ 𝑓𝑠 (x) ≠ 𝑠

0 if 𝑓𝑠 (c𝑖x ) = 𝑓𝑠 (x) = 𝑠
(2)
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The bigger the CFlips value is, the stronger the bias the model
suffers from. In our work, we only take into account samples neg-
atively predicted by the decision maker (i.e., 𝑓 (x) = 0) as we are
interested in quantifying the discrimination in achieving a positive
counterfactual result (i.e., 𝑓 (cx) = 1 ∧ 𝑓𝑠 (cx) ≠ 𝑠). Given a set
of samples X− ⊆ D predicted by the decision maker as negative
(unfavorable decision), the metric in Eq. 2 can be generalized to the
unprivileged and privileged group (in Eq. 3 𝑠 = 0 for the unprivileged
samples negatively predicted, and 𝑠 = 1 for the privileged samples
negatively predicted).

CFlips𝑠 ≜
∑𝑛
𝑖=1 CFlips(x𝑖 , Cx𝑖 , 𝑓𝑠 (·))

|X|−𝑠 |
with x𝑖 ∈ X|−𝑠 (3)

A limitation of the CFlips metric is that it does not measure the
distance of each CF sample from the original data point. However,
from an individual-fairness wise, a debated issue is the definition of
a metric that considers that distance [5]. Accordingly, we propose a
new metric that considers CFs ranked based on the Mean Absolute
Deviation from the original sample and other criteria [8]. The in-
sight behind this metric is that the more the CF is ranked high (in
the top positions of the ranking), the more its impact on the metric
value. Thus, the metric penalizes CFs ranked in the top positions for
which the value of the sensitive feature is flipped. More formally:

Definition 3.3 (Discounted Cumulative Counterfactual Fairness).
Given a set of Counterfactuals Cx for a sample x𝑖 , the Discounted
Cumulative Counterfactual Fairness DCCFx𝑖 measures the cumula-
tive gain of the ranking of counterfactuals w.r.t. the sensitive group
of the original sample:

DCCFx𝑖 ≜
∑︁

𝑝 𝑗 ,c
𝑗
x𝑖 ∈Cx𝑖

2(1−1(𝑐
𝑗
x𝑖 ) ) − 1

log2 (𝑝 𝑗 + 1) (4)

where 𝑝 𝑗 is the rank of c𝑗x𝑖 in Cx𝑖 and 1(𝑐
𝑗
x𝑖 ) from Eq. 2.

If more CF samples belonging to the same sensitive group as the
original data point are in a higher ranking position, the result will
be a higher DCCF. Thereby, we can formulate the Ideal Discounted
Cumulative Counterfactual Fairness (IDCCF) as an ideal ranking in
which each CF sample cx belongs to the same sensitive group as the
original sample x (Eq. 5), and the normalized DCCF (nDCCF) (Eq. 6).

IDCCFx𝑖 ≜
∑︁

𝑝𝑗 ,c
𝑗
x𝑖 ∈Cx𝑖

2(1) − 1
log2 (𝑝 𝑗 + 1) (5) nDCCFx𝑖 ≜

DCGx𝑖
IDCGx𝑖

(6)

In the same way as CFlips, given a set of samples X− ⊆ D
predicted by the decision model as negative, the metric in Eq. 6 can
be generalized to the unprivileged and privileged group (Eq. 7).

nDCCF𝑠 ≜
1

|X|−𝑠 |
∑︁
x𝑖

nDCGx𝑖 with x𝑖 ∈ X|−𝑠 (7)

For both CFlips and nDCCF, we are interested in the difference
(i.e., Δ), between privileged and unprivileged, being close to zero.

4 EXPERIMENTAL EVALUATION
Dataset. The experimental evaluation has been carried out on three
state-of-the-art benchmark datasets (i.e., Adult2, Crime2, and Ger-
man2 ). We decided to create two different settings from the Adult
2ADULT: https://archive.ics.uci.edu/ml/datasets/adult; CRIME: https://archive.ics.uci.
edu/ml/datasets/US+Census+Data+(1990); GERMAN:https://archive.ics.uci.edu/ml/
datasets/statlog+(german+credit+data). German results are reported in the repository.

Table 1: Overview of relevant dataset information, including
sensitive feature distribution, target distribution, name of
privileged group, and ex-ante Statistical Parity.

Dataset |D | |𝑛 | 𝑌 𝑌 = 1 𝑠 𝑠 = 1 Φ(𝑠 )† Φ(𝑌 )†† ex-ante SP∗

Adult 45222 13 income ≥ $50𝑘 gender male 0,675/0,325 0,248/0,752 0.199
Adult-deb. 45222 6 income ≥ $50𝑘 gender male 0,675/0,325 0,248/0,752 0.199
Crime 1994 98 Violent State <median race white 0,58/0,42 0,5/0,5 0.554
German 1000 17 credit score Good gender male 0,690/0,310 0,7/0,3 0.075

† Probability distribution of the privileged and unprivileged group:P(𝑆 = 1)/P(𝑆 = 0)
†† Probability distribution of the target variable:P(𝑌 = 1)/P(𝑌 = 0)
∗ A priori Statistical Parity probability:P(𝑌 = 1 | 𝑆 = 1) − P(𝑌 = 1 | 𝑆 = 0)

Table 2: XGB (i.e., 𝑓𝑠 (·)) results on the sensitive information.

Dataset 𝑠 AUC ACC Recall Precision F1
Adult gender 0.9411 0.8457 0.9634 0.8018 0.8752

Adult-deb gender 0.7803 0.7404 0.8113 0.8022 0.8067
Crime race 0.9896 0.9450 0.9411 0.9655 0.9532
German gender 0.7139 0.6900 0.7159 0.9130 0.8025

dataset. The first (Adult) consists of the dataset itself, removing
only the sensitive feature we take into account in the analysis (i.e.,
gender). In the second (Adult-debiased), we removed all the sen-
sitive features (i.e., gender, age, marital status, and race), and all
the non-sensitive features highly correlated with at least one sensi-
tive feature (i.e., Pearson’s correlation coefficient greater than 0.35).
We do not include any sensitive features for training the model,
guaranteeing the fairness under unawareness setting. Additional
information is in Table 1.
Decision Maker. To keep the approach as general as possible,
we opted for Logistic Regression3 (LR), Support-Vector Machines3
(SVM), XGBOOST3 (XGB) , and LightGBM3 (LGBM).
Debiased Decision Maker. To investigate the quality and the
reliability of our metrics we used also two debiased classifiers,
Adversarial Debiasing3 (AdvDeb) proposed by Zhang et al. [12]
and Linear Fair Empirical Risk Minimization3 (lferm) proposed by
Donini et al. [4] as in-processing algorithms.
Counterfactual Generator. For the sake of reproducibility and
reliability, the counterfactuals are generated with an external coun-
terfactual framework, DiCE [8], with |Cx | equal to 1004.
Sensitive-Feature Classifier.We used XGB for implementing this
component due to its capability to learn non-linear dependencies.
Results split for dataset/sensitive feature are available in Table 2.
Metrics.We evaluate the models performance with the Area Un-
der the Receiver Operative Curve (AUC), Accuracy (ACC), Recall,
Precision, F1 score, and fairness by measuring Statistical Parity5
(DSP), Equal Opportunity6 (DEO), and Average Odds7 (DAO).
Split and Hyperparameter Tuning. The datasets have been split
with the hold-out method 90/10 train-test set, with stratified sam-
pling w.r.t. the target and sensitive labels, to respect the original

3LR, SVM: https://scikit-learn.org/; XGB: https://github.com/dmlc/xgboost; LGBM:
https://github.com/microsoft/LightGBM; AdvDeb: https://github.com/Trusted-AI/
AIF360; lferm: https://github.com/jmikko/fair_ERM;
4DiCE offers several strategies for generating candidate counterfactual samples, but
we choose to only exploit the Genetic one.
5𝐷𝑆𝑃 =

���P(𝑌 = 1 | 𝑆 = 1) − P(𝑌 = 1 | 𝑆 = 0)
���

6𝐷𝐸𝑂 =

���P(𝑌 = 1 | 𝑆 = 1, 𝑌 = 1) − P(𝑌 = 1 | 𝑆 = 0, 𝑌 = 1)
���

7𝐷𝐴𝑂 = 1
2

���∑𝑌 ∈{0,1} (P(𝑌 = 1 | 𝑆 = 1, 𝑌 ) − P(𝑌 = 1 | 𝑆 = 0, 𝑌 ) )
���

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data).
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data).
https://scikit-learn.org/
https://github.com/dmlc/xgboost
https://github.com/microsoft/LightGBM
https://github.com/Trusted-AI/AIF360
https://github.com/Trusted-AI/AIF360
https://github.com/jmikko/fair_ERM
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Table 3: AUC, ACC, DSP, DEO, and DAO results on Test set; CFlip and nDCG results at different |𝑘 | number of Counterfactuals
for each negatively predicted Test set sample. Due to space constraints, German is remanded to the repository .

CFlips@ |𝑘 | (%) nDCCF@ |𝑘 |
Privileged Unprivileged ΔCFlips ↓ Privileged Unprivileged ΔnDCCF ↓

Dataset 𝑓 ( ·) AUC↑ ACC↑ DSP↓ DEO↓ DAO↓ @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100 @10 @50 @100

LR 0.9078 0.8099 0.2947 0.0546 0.1241 12.332 10.886 10.212 66.353 72.932 77.165 54.021 62.046 66.953 0.8678 0.8849 0.886 0.3522 0.2913 0.2497 0.5156 0.5936 0.6363
SVM 0.9073 0.8541 0.1769 0.0644 0.0692 6.752 7.533 7.742 77.095 80.973 81.372 70.343 73.44 73.63 0.9306 0.9258 0.9171 0.2474 0.2042 0.1948 0.6832 0.7216 0.7223
LGB 0.9304 0.8658 0.1850 0.0379 0.0569 9.195 8.541 8.781 65.918 76.605 79.697 56.723 68.064 70.916 0.9049 0.9124 0.9049 0.3611 0.2633 0.2272 0.5438 0.6491 0.6777
XGB 0.9314 0.8698 0.1884 0.0635 0.0680 10.011 8.788 9.07 64.796 76.243 79.512 54.785 67.455 70.442 0.8968 0.9088 0.9014 0.3708 0.2677 0.2298 0.526 0.6411 0.6716
AdvDeb 0.9123 0.8512 0.1151 0.1399 0.0879 30.046 34.488 34.968 36.11 38.694 43.041 6.064 4.206 8.073 0.7016 0.6668 0.6537 0.6427 0.6199 0.5812 0.0589 0.0469 0.0725

Adult

lferm 0.9031 0.8428 0.1448 0.0194 0.0386 31.459 28.632 24.965 31.764 47.464 57.47 0.305 18.832 32.505 0.6857 0.7062 0.7314 0.6864 0.5632 0.4701 0.0007 0.143 0.2613

LR 0.8233 0.7367 0.1567 0.0695 0.0693 8.438 10.838 13.192 54.816 57.521 57.047 46.378 46.683 43.855 0.9239 0.9012 0.8736 0.464 0.4332 0.4303 0.4599 0.468 0.4433
SVM 0.8189 0.7395 0.1062 0.0140 0.0152 11.937 16.377 17.379 31.305 33.869 35.385 19.368 17.492 18.006 0.8871 0.8468 0.8295 0.6661 0.6616 0.6449 0.221 0.1852 0.1846
LGB 0.8596 0.8371 0.1093 0.0470 0.0356 4.624 9.419 12.848 66.966 74.223 73.445 62.342 64.804 60.597 0.9578 0.9182 0.8815 0.3720 0.2863 0.2794 0.5858 0.6319 0.6021
XGB 0.8578 0.8375 0.1056 0.0400 0.0304 1.803 3.152 6.523 81.289 88.9 84.48 79.486 85.748 77.957 0.9804 0.9711 0.9386 0.2183 0.1378 0.1599 0.7621 0.8333 0.7787
AdvDeb 0.8309 0.8195 0.0957 0.0326 0.0282 17.041 20.686 23.588 44.315 52.371 56.786 27.274 31.685 33.198 0.8425 0.8055 0.7735 0.5852 0.5031 0.4566 0.2573 0.3024 0.3169

AdultDeb

lferm 0.8017 0.7953 0.0639 0.0179 0.0186 8.943 13.316 16.561 47.036 54.87 55.83 38.093 41.554 39.269 0.9248 0.8809 0.8452 0.5618 0.4791 0.4584 0.363 0.4018 0.3868

LR 0.9248 0.8700 0.6535 0.3294 0.3438 2.857 3.429 3.714 75.286 81.914 85.043 72.429 78.485 81.329 0.9688 0.9656 0.9564 0.2659 0.2015 0.1688 0.7029 0.7641 0.7876
SVM 0.9288 0.8700 0.6395 0.3843 0.3390 6.667 5.917 5.671 73.38 80.676 84.437 66.713 74.759 78.766 0.9334 0.939 0.9349 0.2858 0.2157 0.1781 0.6476 0.7233 0.7568
LGB 0.9168 0.8400 0.6363 0.2824 0.3525 5.455 5.818 5.636 74.571 80.229 83.693 69.116 74.411 78.057 0.9432 0.9417 0.9364 0.2875 0.2207 0.1842 0.6557 0.721 0.7522
XGB 0.9099 0.8500 0.6568 0.2941 0.3656 4.762 5.429 5 73.38 80.113 83.712 68.618 74.684 78.712 0.9505 0.9469 0.943 0.2938 0.2216 0.1844 0.6567 0.7253 0.7586
AdvDeb 0.9008 0.8100 0.5501 0.1882 0.2732 7.5 6.875 6.969 69 77.743 80.857 61.5 70.868 73.888 0.9302 0.931 0.9237 0.3396 0.2506 0.2146 0.5906 0.6804 0.7091

Crime

lferm 0.9100 0.8400 0.6125 0.2941 0.3278 3.182 6 6.636 64.412 71.647 75.147 61.23 65.647 68.511 0.9679 0.9439 0.9306 0.3695 0.3045 0.2681 0.5984 0.6394 0.6625

distribution in each split. The Decision Maker, the Debiased models,
and the Sensitive-Feature Classifier have been tuned on the training
set with a Grid Search k-fold (k=5) cross-validation methodology,
the first two optimizing AUC metric, and the latter F1 score to
prevent unbalanced predictions on the sensitive feature.

5 RESULTS AND CONCLUSION
Table 3 summarizes the performance for each dataset and model.
In most cases, debiased models (i.e., AdvDeb and lferm) have better
performance in terms of fairness than other ML models. In all cases,
Accuracy is sacrificed for fairness. Looking at our proposed fairness
metrics which are measured for different 𝑘 values (generated CF
samples), we can see that unprivileged groups generally have more
CFlips than privileged ones. This means that to achieve a favorable
outcome, counterfactuals of unprivileged groups need to take on
characteristics of the privileged samples. Similarly, nDCCF values
for the unprivileged group has lower values than the privileged
one. This means that counterfactuals of the unprivileged group
in the highest positions of the ranking (i.e., most similar to the
original sample) are classified by the Sensitive-Feature Classifier as
privileged (opposite to the original class).

For the Adult dataset and the two debiased models (i.e., AdvDeb
and lferm) the Δ is close to zero for both our metrics, meaning
that there is not a great difference in the CFlips for both groups
(privileged and unprivileged one). The debiased models perform
the same both with standard fairness metrics and our metrics (i.e.,
CFlips, nDCCF). The same is not true for the debiased version of
Adult dataset (i.e., AdultDeb) where debiased models turn out to
perform better with the standard fairness metrics (i.e., DSP, DEO,
DAO) than the new ones (i.e., CFlips, nDCCF). Indeed, SVM have
the best ΔCFlips and ΔnDCCF performance but the worst accuracy.
This is due to the difficulty of SVM to capture correlations between
sensitive and non-sensitive features, and thus it learns a model that
is fairer than others. In the case of CRIME, each model proves to be
extremely biased with respect to the privileged class, with slightly
better performance for the debiased models. Our metrics turn out
to be consistent w.r.t. DSP, DEO, and DAO.

In conclusion, we present a novel methodology for detecting
biases in decision-making models that do not use sensitive features
and work in a context of fairness under unawareness. A new fair-
ness concept (i.e., Counterfactual Fair Opportunity) and two related
fairness metrics (i.e., CFlips and nDCCF) are proposed. Understand-
ing how an algorithm can behave with new samples and how the
traits of favored groups can influence a favorable result is crucial.
In the case of sensitive feature blindness, counterfactual reasoning,
and, more specifically, the methodology proposed in this paper can
be an effective tool for confirming and assessing the discriminatory
behavior of ML models.
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