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2 Circular RNAs (circRNAs) are generated from 'back-splicing' events. Their circular structure 
3 
4 makes them stable in cells and body fluids. These entities are involved in several human diseases 
5 
6 

including cancer, as they affect the expression of genes promoting proliferation, invasion, 
8 
9 apoptosis, and angiogenesis. Moreover, they are secreted in extracellular vesicles, such as 
10 
11 exosomes, having a potential role as messengers in cell-to-cell communications. CircRNAs are 
13 
14 also  generated  by  the  back-splicing  of  linear  fusion  transcripts  derived  from  genomic 
15 
16 rearrangements, giving rise to fusion circRNAs (f-circRNAs). 
18 
19 
20 Here we discuss the most relevant results achieved by studying the role of circRNAs in cancer 
21 
22 onset and progression, particularly focusing on f-circRNAs in hematological and solid tumors. 
23 
24 

Moreover, we report recent advances in the application of circRNAs as novel “liquid biopsy” 
26 
27 biomarkers for early and non-invasive diagnosis of tumors, and as therapeutic targets in human 
28 
29 cancer. Their use as engineered molecules sponging oncogenic miRNAs or stably expressing 
31 
32 proteins/drugs is also discussed. All these achievements suggest the crucial importance of 
33 
34 circRNAs and f-circRNAs in the future setup of personalized therapies in molecular medicine. 
36 
37 
38 
39 
40 
41 Keywords: 
42 
43 
44 CircRNA; fusion-circRNA; cancer; chimera; biomarker 
45 



1. Introduction 
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2 Circular RNAs (circRNAs) are a class of endogenous RNAs (Z. Li et al., 2015; Lei et al., 2019) 
3 
4 first identified in viroids (Sanger et al., 1976). They result from an alternative splicing process, 
5 
6 
7 called “back-splicing” (Jeck et al., 2013) followed by covalent circularization in closed-loop 
8 
9 structures (Jiang et al., 2019). Thanks to the development of Next Generation Sequencing (NGS) 
10 
11 

technologies, many circRNAs have been detected in humans and other species (Jeck et al., 2013; 
13 
14 Jiang et al., 2019). In recent years, circRNAs have attracted increasing attention by researchers 
15 
16 due to their implication in diverse human diseases, including cancer (Verduci et al., 2019), 
18 
19 suggesting their possible use as biomarkers and therapeutic targets (Yong Zhang et al., 2019). 
20 
21 Despite the progress made on circRNA identification and characterization, poor information about 
22 
23 
24 their biogenesis and function is presently available. In this review, we discuss the most recent 
25 
26 discoveries concerning these circular entities, providing a compendium of their role in cancer 
27 
28 
29 pathogenesis. In particular, we will focus on a newly discovered class of circRNAs, i.e. fusion- 
30 
31 circRNAs (f-circRNAs), originated by the back-splicing of fusion transcripts (Guarnerio et al., 
32 
33 2016). Finally, we highlight the potential application of circRNAs as biomarkers and therapeutic 
35 
36 targets/tools in human tumors. 
37 
38 
39 2. Circular RNAs 
41 
42 2.1 CircRNA biogenesis 
43 
44 
45 CircRNAs are produced by juxtaposing a downstream 5' splice site (donor) to an upstream 3′ 
46 
47 
48 splice site (acceptor), in a back-splicing process generating circular molecules with covalently 
49 
50 linked ends (Fig. 1) (Yang Zhang et al., 2016; Starke et al., 2015; Liang & Wilusz, 2014). 
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27 Fig.1: Biogenesis of circular RNAs. The pre-mRNA of a single gene can produce different 
28 
29 mature transcripts, based on the type of splicing event it undergoes. Canonical splicing generates 
31 
32 linear transcripts, while circRNAs arise from back-splicing events. EX: exon. 
33 
34 
35 This process may occur both co- and post-transcriptionally (Yang Zhang et al., 2016). To date, 
36 
37 
38 several mechanisms have been described as prompting back-splicing events. As an example, 
39 
40 long introns flanked by highly similar sequence elements, repeated in opposite orientation (e.g. 
41 
42 

Alu repeats), can facilitate the post-transcriptional circularization of exons (X. O. Zhang et al., 
44 
45 2014; Kramer et al., 2015). These intronic repeats must be base-paired to allow the splice sites to 
46 
47 be close to each other and promote back-splicing and circularization (Kramer et al., 2015; Liang 
49 
50 & Wilusz, 2014). It is also known that RNA binding proteins (RBPs), such as Muscleblind 
51 
52 (MBL/MBNL1) and Quaking (QKI), play an essential role in regulating alternative splicing 
54 
55 (Ashwal-Fluss et al., 2014; Conn et al., 2015). Indeed, RBPs can form bridging splice sites that 
56 
57 facilitate back-splicing (Newman et al., 2016; Xiang Li et al., 2017). 
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Moreover, Barrett et al. (2015) showed that skipped exons derived from alternative splicing 
1 
2 
3 

could generate lariat precursors, promoting back-splicing events (Barrett et al., 2015). 
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4 
5 There is evidence that some introns are not spliced when mutations of the 3’ polyadenylation 
6 
7 signal occur (Liang & Wilusz, 2014). This impaired process, causing the accumulation of 
8 
9 
10 transcripts in the chromatin fraction, may also promote their back-splicing after a lag period 
11 
12 (Kramer et al., 2015; Liang & Wilusz, 2014; Vargas et al., 2011; Yang Zhang et al., 2016). 
13 
14 
15 
16 
17 
18 
19 2.2 Molecular features of circRNAs 
20 
21 
22 CircRNAs may originate from any transcribed region (protein-coding genes, introns, intergenic 
23 
24 regions, untranslated regions), being so classified into three categories: i) exon circRNAs 
26 
27 (ecircRNAs); ii) intron circRNAs (ciRNAs); iii) exon and intron circRNAs (EIciRNAs) (Panda 
28 
29 et al., 2017; Z. Li et al., 2015; Yang Zhang et al., 2013). 
31 
32 The covalently closed structure, lacking 5’ CAPs and 3’ polyadenylated tails, confers RNase R 
33 
34 and exonucleases resistance (Yang Zhang et al., 2016; Suzuki & Tsukahara, 2014; Jeck & 
35 
36 
37 Sharpless, 2015; Memczak et al., 2013). This increased stability slows down circRNA turnover 
38 
39 (Tan, Gou, et al., 2018; Yang Zhang et al., 2016; Jeck et al., 2013; Memczak et al., 2013), 
40 
41 

leading to the accumulation and easy detection of such transcripts in body fluids like blood, 
43 
44 plasma, saliva, and urine (Jeck et al., 2013; Memczak et al., 2013). 
45 
46 CircRNAs are highly conserved among species: they were firstly identified in viruses (Sanger et 
48 
49 al., 1976) and later, thanks to NGS and specifically-designed bioinformatics tools, in a wide 
50 
51 spectrum of organisms, from fungi to mammals (Jeck & Sharpless, 2015; Memczak et al., 2013; 
52 
53 
54 Salzman et al., 2012; Guo et al., 2014); this allowed to investigate circRNA biogenesis and 
55 
56 function in animal models (P. L. Wang et al., 2014). 



CircRNAs exhibit a tissue-specific and developmental stage-dependent expression patterns. For 
1 
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3 

instance, some circRNAs are upregulated in fetal development, particularly during neuronal 
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4 
differentiation and synapse formation (Rybak-Wolf et al., 2014; You et al., 2015; Szabo et al., 

6 
7 2015). This finding suggested that they may have a regulatory role in gene expression (Z. Li et 
8 
9 al., 2015). Moreover, an altered circRNA expression was also reported in pathological 
11 
12 conditions. This is the case of hsa_circ_0004018, transcribed from the tumor suppressor SET 
13 
14 and MYND Domain Containing 4 gene (SMYD4) (Hu et al., 2009). This circRNA was found to 
15 
16 
17 be downregulated in Hepatocellular carcinoma (HCC), and showed a stage-related expression 
18 
19 pattern, suggesting it may be a promising biomarker for HCC diagnosis (Fu et al., 2017). 
20 
21 
22 CircRNAs are enriched in the cytoplasmic fraction (Salzman et al., 2012; Jeck et al., 2013), but 
23 
24 can be found also in the nucleus, as well as in extracellular vesicles such as exosomes (exo- 
25 
26 circRNAs) (Jost et al., 2018). Recent studies revealed that exo-circRNAs tend to be enriched in 
28 
29 exosomes, where they are even more abundant than their linear counterparts (Yan Li et al., 
30 
31 2015), compared to secreting cells. Some authors speculated that cells may accumulate 
33 
34 circRNAs in exosomes to eliminate them, or to communicate with other cells (Lasda & Parker, 
35 
36 2016). 
37 
38 
39 Finally, as circRNAs are involved in tumorigenesis (M. Zhang et al., 2018), they represent 
40 
41 promising biomarkers for the early diagnosis of tumors, due to their detection in body fluids (Z. 
42 
43 

Zhang et al., 2018; Yan Li et al., 2015; Lasda & Parker, 2016). 
45 
46 
47 
48 2.3 CircRNA biological functions 
50 
51 
52 CircRNAs can play important biological functions: 
53 
54 
55 2.3.1 CircRNAs can act as miRNA and RBP sponges 
56 



It is known that circRNAs can act as miRNA or RBP sponges, modulating their concentration, 
1 
2 
3 

localization, and binding sites access of target molecules (Jeck & Sharpless, 2015). As an 
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4 
example, circRNA CDR1as (also known as CiRS-7), interacts with AGO2 (Argonaute-2), a 

6 
7 protein involved in the RNA-induced silencing complex (RISC), and also binds miR-7 in brain 
8 
9 tissues, a miRNA playing a crucial role in the functioning of human and mouse neurons 
11 
12 (Memczak et al., 2013; Hansen et al., 2011). Moreover, a strong interaction between MBNL1 
13 
14 and circMbl has been reported: this circRNA could sponge out the excess of MBNL1 by binding 
15 
16 
17 to it, regulating protein levels (Ashwal-Fluss et al., 2014). 
18 
19 
20 2.3.2 CircRNAs can regulate gene expression 
21 
22 
23 
24 CircRNAs may also act as regulators of gene transcription and expression by binding mRNAs or 
25 
26 miRNAs (Z. Li et al., 2015; Y. Wang et al., 2018; Rybak-Wolf et al., 2014). For example, the 
27 
28 
29 murine Fmn circRNA acts as a trap for its cognate linear mRNA, by stacking at the translation 
30 
31 start site, and hampering protein translation. Consequently, due to a feedback-regulation process, 
32 
33 the linear mRNA expression is reduced, impairing the Fmn function (Chao et al., 1998). 
35 
36 Furthermore, circRNAs biogenesis, engaging the splicing machinery, can compete with the 
37 
38 linear pre-mRNA maturation process (Salzman et al., 2012), decreasing its production, and thus 
40 
41 contributing to alter gene expression. Moreover, several circRNAs localized in the nucleus can 
42 
43 modulate the linear product of their parental gene, by regulating the RNA Polymerase II (Pol II) 
44 
45 
46 activity (Z. Li et al., 2015; Yang Zhang et al., 2013). As an example, circPABPN1 modulates the 
47 
48 translation  of  its  linear  mRNA  (PABPN1)  by  preventing  HuR  binding  to  PABPN1 
49 
50 

(Abdelmohsen et al., 2017). Another example regards circHomer1_a, which competes with 
52 
53 Homer1b/c biogenesis during synaptogenesis. This mechanism is essential to regulate the 
54 
55 synaptic function in the mouse brain (You et al., 2015). 



CircRNAs can indirectly regulate gene expression by sponging miRNAs. The latter play a 
1 
2 
3 

crucial role in post-transcriptional gene expression regulation, mainly by targeting specific 
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4 
mRNAs for translation repression. Hence, by trapping miRNAs and preventing them from 

6 
7 binding to mRNA targets, circRNAs indirectly affect gene expression. Several deregulated 
8 
9 circRNAs carry out their oncogenic effects through this mechanism (examples will be discussed 
11 
12 in paragraph 2.4). 
13 
14 Finally, circRNAs can also act on the overall cell translational activity, controlling the ribosomal 
15 
16 
17 RNA maturation by binding proteins with a crucial role in this process. For instance, circANRIL 
18 
19 binds the Pescadillo Ribosomal Biogenesis Factor 1 (PES1) protein, an essential 60S- 
20 
21 
22 preribosomal  assembly  factor,  preventing  rRNA  maturation.  This  affects  the  ribosome 
23 
24 biogenesis and activates TP53, inducing apoptosis and inhibiting proliferation in atherosclerosis. 
25 
26 As a consequence, circANRIL confers atheroprotection (Holdt et al., 2016). 
28 
29 
30 2.3.3 CircRNAs have the ability to encode proteins 
31 
32 
33 As most circRNAs derive from exons, they can have an open reading frame (ORF) and may 
35 
36 encode proteins. Legnini et al. (2017) identified circZNF609, originated from the second exon of 
37 
38 the ZNF609 gene, encoding the Zinc Finger Protein 609 (151 kDa). They demonstrated that 
40 
41 circZNF609 is expressed in myoblasts and may control their proliferation. Since it contains an 
42 
43 ORF and is associated with High Molecular Weight polysomes, the authors hypothesized that 
44 
45 
46 this circRNA could have a coding potential. Indeed, they showed that it is translated into a 
47 
48 protein in a splicing-dependent/cap-independent manner, driven by an Internal Ribosome Entry 
49 
50 

Site (IRES). The protein encoded by circZNF609 lacks the zinc-finger domain, suggesting that it 
52 
53 could interfere or modulate the activity of the wild-type isoform (Legnini et al., 2017). Another 
54 
55 cap-independent translation mechanism concerns circRNAs containing N6-methyladenosine 



(m6A) in their 5′ UTR; this modification can directly bind eukaryotic initiation factor 3 (eIF3), 
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23 

36 
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2 recruiting the 43S preinitiation complex and initiating translation (Meyer et al., 2015). 
3 
4 

CircRNA translational activity has been reported in a variety of organisms. Pamudurti et al. 
6 
7 (2017) showed that a subset of circRNAs was associated with ribosomes in Drosophila, 
8 
9 suggesting a translational activity. The UTRs of these circRNAs allow cap-independent 
11 
12 translation, encoding proteins with specific domains. In particular, the authors identified 
13 
14 circMbl, generated from the Muscleblind locus. CircMbl and the circMbl1-encoded peptide are 
15 
16 
17 present in synaptosome fractions, thus suggesting that they may be crucial for the brain 
18 
19 (Pamudurti et al., 2017). 
20 
21 
22 2.3.4 CircRNAs play a role in the innate immunity 
24 
25 
26 Recent findings revealed a correlation between circRNAs and innate immunity, involving both 
27 
28 exogenous and endogenous circular entities. Chen et al. (2019) showed that cells can recognize 
29 
30 
31 exogenous circRNAs since they lack m6A RNA modification, triggering the immune response 
32 
33 (Chen et al., 2017; Chen et al., 2019). In particular, exogenous circRNAs stimulate regulators 
34 
35 

involved in the innate immunity, such as retinoic acid-inducible gene I (RIG-I), melanoma 
37 
38 differentiation-associated protein 5 (MDA5), 2'-5'-oligoadenylate synthetase 1 (OAS1), OAS- 
39 
40 like protein (OASL), and protein kinase R (PKR), protecting against viral infections (Chen et al., 
42 
43 2017). 
44 
45 Moreover, Liu et al. (2019) showed that endogenous circRNAs are natural inhibitors of PKR. 
46 
47 
48 PKR activation, indeed, requires long dsRNAs (>33 bp), while circRNAs tend to form short 
49 
50 dsRNAs (16–26 bp), thus competing for PKR binding and affecting its activation. Upon viral 
51 
52 
53 infection, RNase L degrades circRNAs, allowing the PKR activation within the framework of 
54 
55 innate immunity. Particularly, the authors analyzed eight patients with Systemic lupus 
56 
57 erythematosus (SLE) autoimmune disease, observing a reduced expression of circCAMSAP1, 
59 
60 circPOLR2A, circPVT1, circTBCD, and circUIMC1, compared with normal samples, suggesting 



an increased PKR activation. This promising result suggests a connection between circRNAs 
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10 

25 

2 and autoimmune diseases, but it needs to be confirmed in a larger patient cohort (Liu et al., 
3 
4 

2019). 
6 
7 Finally, endogenous circRNAs can compete with viral mRNAs for binding to NF90/NF110 
8 
9 immune factors. Li et al., (2017) showed that, when a viral infection occurs, the NF90/NF110 
11 
12 nuclear export promotes circRNAs downregulation. The authors speculated that circRNAs, 
13 
14 binding NF90/NF110, may protect from non-specific immune responses (Li et al., 2017). 
15 
16 
17 
18 
19 
20 
21 2.4 CircRNA role in cancer 
22 
23 
24 CircRNAs can modulate gene expression in cancer by sponging miRNAs or RBPs with 
26 
27 oncogenic or tumor suppressor roles (Fig. 2). 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 Fig. 2: Role of circRNAs in cancer. CircRNAs can act as miRNA/RBP sponges, regulate gene 
54 
55 expression  or  encode proteins,  promote  cell  proliferation,  inhibit  apoptosis,  promote 
56 
57 
58 angiogenesis and other events that lead to cancer initiation and progression. EMT: epithelial- 
59 
60 mesenchymal transition; TME: tumor microenvironment. 



2.4.1 Hematological malignancies 
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3 CircRNAs are involved in tumorigenesis, progression, and drug resistance of hematological 
4 
5 
6 malignancies: 
7 
8 
9 i) Acute myeloid leukemia (AML) 
10 
11 
12 Circ-ANAPC7 (hsa_circ_0005785) could function as an oncogene in AML, where it is 
13 
14 
15 overexpressed, sponging miR-181 family miRNAs and promoting tumorigenesis (H. Chen et al., 
16 
17 2018). 
18 
19 
20 Similarly, the upregulation of circ_0009910 in AML may sponge miR-20a-5p, affecting its 
22 
23 function  as  cell  proliferation  inhibitor  and  apoptosis  enhancer,  thus  promoting  cancer 
24 
25 progression (Ping et al., 2019). circRNA-DLEU2 (hsa_circ_0000488) is also upregulated in 
27 
28 AML; it stimulates AML cell proliferation by suppressing miR-496 and, consequently, 
29 
30 stimulating the Protein Kinase CAMP-Activated Catalytic Subunit Beta (PRKACB) transcription 
31 
32 
33 (D.M. Wu et al., 2018). Furthermore, circPAN3 may sponge miR-153-5p and miR-183-5p, 
34 
35 inhibitors of the X-linked inhibitor of apoptosis protein (XIAP), an anti-apoptotic protein 
36 
37 

resulting in its enhanced expression. Through this mechanism, circPAN3 mediates drug 
39 
40 resistance in AML (Shang et al., 2019) 
41 
42 
43 ii) Acute lymphoblastic leukemia (ALL) 
44 
45 
46 

CircPVT1 (hsa_circ_0001821) is upregulated in ALL, where it sponges miR-let-7 and miR-125, 
48 
49 having MYC and BCL2 as targets, respectively. By inhibiting these miRNAs, circPVT1 enhances 
50 
51 both MYC transcription factor and BCL2 anti-apoptotic protein expression levels in leukemic 
53 
54 cells, thus promoting cell proliferation and apoptosis inhibition (Hu et al., 2018). 



iii) Chronic myeloid leukemia (CML) 
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47 

3 To the best of our knowledge, two circRNAs have been described as involved in CML 
4 
5 pathogenesis: hsa_circ_0080145 and circ_100053. The former acts as a sponge for the miRNA 
7 
8 miR-29b, which plays a tumor suppressor role by targeting ABL1 and BCR/ABL1 in Philadelphia 
9 

10 chromosome-positive CML (Liu et al., 2018). The latter is significantly upregulated in CML 
12 
13 peripheral blood mononuclear cells and serum samples compared with healthy controls. Its 
14 
15 overexpression is correlated with a shorter overall survival of patients, suggesting a potential 
16 
17 
18 role as CML biomarker. Moreover, an association between circ_100053 upregulation and 
19 
20 Imatinib resistance has been recently speculated (Ping et al., 2019). 
21 
22 
23 iv) Multiple Myeloma (MM) 
25 
26 
27 Zhou et al. (2020) showed that 122 and 260 circRNAs are upregulated and downregulated in 
28 
29 MM, respectively, enabling MM differential diagnosis. Among them, the up-regulated circPTK2 
31 
32 and the downregulated circAFF2 are the best characterized circRNA entities. circPTK2 
33 
34 enhances the expression of the Protein Tyrosine Kinase 2 (PTK2) oncogene, its parental gene, 
35 
36 
37 increasing MM risk. Moreover, it sponges miR-1298-5p, with tumor suppressor activity, 
38 
39 promoting tumor progression. circAFF2 sponges miR-638, inhibiting its oncogenic function. 
40 
41 Both circPTK2 and circAFF2 showed an impact on patient clinical parameters: the former was 
43 
44 correlated with poor treatment response and survival, the latter with better prognosis. Therefore, 
45 
46 both constitute potential prognostic biomarkers for MM. However, further studies are needed to 
48 
49 clarify the molecular mechanisms involving circRNAs in MM (Zhou et al., 2020). 
50 
51 
52 
53 
54 



2.4.2 Solid tumors 
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48 

3 i) Non-small cell lung cancer (NSCLC) 
4 
5 
6 
7 Among solid tumors, circRNAs have mainly been studied in lung cancer, one of the most 
8 
9 devastating forms of tumor in terms of morbidity, mortality, and drug resistance. In detail, in 
10 
11 

NSCLC, circFOXM1, sponging the miR-1304-5p tumor suppressor, a regulator of the Pancreatic 
13 
14 Progenitor Cell Differentiation And Proliferation Factor (PPDPF) and the Metastasis-Associated 
15 
16 In Colon Cancer (MACC1), was found overexpressed. Consequently, it increases proliferation 
18 
19 and invasion of NSCLC cells (Y. Wang et al., 2018; G. Liu et al., 2019). circFOXM1/miR-1304- 
20 
21 5p/PPDPF/MACC1 signaling was found to be crucial also in papillary thyroid cancer, by 
22 
23 
24 promoting cell proliferation, migration and invasion (Yanhui Pan et al., 2019). 
25 
26 
27 Apart from circFOXM1, one of the most relevant upregulated circRNA in NSCLC is 
28 
29 circ_0016760 (S. Zhang et al., 2018), which acts as an oncogene by regulating the miR- 
31 
32 1287/GAGE1 axis. By sponging miR-1287, it leads to the upregulation of the G Antigen 1 
33 
34 (GAGE1), with an unknown function, but expressed only in tumor tissues. Through this 
36 
37 pathway, circ_0016760 could promote NSCLC cells growth and invasiveness (Yongsheng Li et 
38 
39 al., 2018). 
40 
41 
42 

A further example regards circPVT1, overexpressed not only in NSCLC but also in other cancer 
44 
45 types. In NSCLC, circPVT1 is abundant in the cytoplasm where, by sponging miR-125b, it can 
46 
47 regulate E2F2 expression, which controls cell cycle and the epithelial-mesenchymal transition 
49 
50 (EMT). Thus, circPVT1 overexpression increases E2F2 signaling, promoting tumorigenesis 
51 
52 (Xiuyuan Li et al., 2018). Moreover, this circular RNA acts as a sponge also for miR-497, 
53 
54 
55 increasing BCL2 anti-apoptotic activity (Qin et al., 2019). 



ii) Colorectal cancer (CRC) 
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3 Recent studies revealed that some circRNAs could act as tumor suppressors affecting cell 
4 
5 
6 growth and invasion in CRC cells. This is the case of circCDYL and circMTO1. 
7 
8 
9 Cui et al. (2019) found circCDYL downregulation and miR-150-5p upregulation in colon cancer, 
10 
11 when compared with para-carcinoma tissues. Induced circCDYL expression inhibited cell 
13 
14 viability  and  stimulated  apoptosis  by  decreasing  MYC  and  CCND1  expression,  while 
15 
16 upregulating TP53. miR-150-5p could be repressed by circCDYL, decreasing cell growth and 
17 
18 
19 migration (Cui et al., 2019). 
20 
21 
22 circMTO1 was also described as downregulated in CRC tissues and cell lines. Its inhibition 
23 
24 activates the Wnt/β-catenin signaling, MYC and CCND1, promoting cell migration and 
26 
27 invasion. Additionally, circMTO1 downregulation is correlated with advanced tumor, node, 
28 
29 metastasis (TNM) stages, lymph node metastasis, and poor overall survival (Tang et al., 2017; 
31 
32 Ge et al., 2018). 
33 
34 
35 Interestingly, a recent study identified the involvement of the previously described circPTK2 
36 
37 

(see paragraph 2.4.1, sub-section iv) also in CRC, where it interacts with vimentin. CircPTK2 
39 
40 can bind vimentin Ser38, Ser55 and Ser82 phosphorylation sites, promoting EMT. As a 
41 
42 consequence, circPTK2 may promote tumor growth and metastasis, and correlate with poor 
44 
45 prognosis in CRC patients (Yang et al., 2020). 
46 
47 
48 Coding circRNAs can be also deregulated in several cancers and play an important role in their 
49 
50 

development/progression. For instance, circPPP1R12A-73aa encodes a small protein that 
52 
53 promotes CRC cell growth in vitro and in vivo, acting on the Hippo-YAP signaling pathway 
54 
55 (Zheng et al., 2019). 



iii) Glioblastoma (GBM) 
1 
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3 Several coding circRNAs with a tumor-suppressor role have been reported so far in GBM. In 
4 
5 detail, Zhang et al. (2018) proved that the circSHPRH, deriving from the SNF2 histone linker 
7 
8 PHD RING helicase (SHPRH) gene, encodes the SHPRH-146aa protein in the human brain. 
9 

10 Their data show that SHPRH-146aa protects its related full-length SHPRH from degradation. 
12 
13 The authors found that both circSHPRH and SHPRH-146aa are downregulated in GBM, 
14 
15 promoting its progression (Zhang, Huang, et al., 2018). 
16 
17 
18 cPINTexon2 is also downregulated in GBM: it is derived from the exon 2 of the long intergenic 
20 
21 non-protein-coding RNA p53-induced transcript (LINC-PINT), acting as a cell proliferation 
22 
23 suppressor in this cancer. cPINTexon2 encodes an 87-amino-acid peptide that interacts with the 
25 
26 polymerase associated factor complex (PAF1c), thus inhibiting the transcriptional elongation of 
27 
28 multiple oncogenes. The downregulation of cPINTexon2 and its peptide has a potential role in 
29 
30 
31 GBM tumorigenesis (Zhang, Zhao, et al., 2018). 
32 
33 
34 CircFBXW7 originates from exons 3 and 4 of the F-box and WD repeat domain containing 7 
35 
36 (FBXW7)  gene.  Its encoded protein,  FBXW7-185aa, by binding competitively the de- 
38 
39 ubiquitinating enzyme Ubiquitin Specific Peptidase 28 (USP28), inhibits the expression of MYC, 
40 
41 thus acting as a cell proliferation suppressor. Both circ-FBXW7 and FBXW7-185aa are 
43 
44 downregulated not only in GBM, but also in triple-negative breast cancer clinical samples 
45 
46 (TNBC) (Yang et al., 2018; Ye et al., 2019). 
47 
48 
49 
50 iv) Other solid tumors 
51 
52 
53 A coding circRNA with an oncogenic role was reported in liver cancer, where Liang et al. 
54 
55 
56 (2019) revealed the overexpression of circβ-catenin, deriving from the CTNNB1 (Catenin Beta 
57 
58 1) oncogene. circβ-catenin encodes the β-catenin-370aa protein that interacts with the glycogen 



synthase kinase 3β, preventing the degradation of the full-length protein. This mechanism 
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18 

23 

28 

36 

41 

54 

2 activates the Wnt/β-catenin pathway, promoting tumor growth in liver cancer (Liang et al., 
3 
4 

2019). 
6 
7 
8 In addition, circFOXK2 is reported as a novel circular RNA with an oncogenic potential. Wong 
9 
10 et al. (2020) revealed its upregulation in pancreatic ductal adenocarcinoma (PDAC) cells, where 
11 
12 
13 it acts as a sponge for miR-942, enhancing the expression of the Ankyrin 1 (ANK1), Glial Cell 
14 
15 Derived Neurotrophic Factor (GDNF), and Paired Box 6 (PAX6) genes, and promoting cell 
16 
17 

growth, invasion and metastasis. Notably, circFOXK2 interacts with proteins involved in cell 
19 
20 adhesion, mRNA splicing, and structural molecule activity, such as Y-Box Binding Protein 1 
21 
22 (YBX1) and Heterogeneous Nuclear Ribonucleoprotein K (hnRNPK), enhancing the expression 
24 
25 of the NUF2 Component of NDC80 Kinetochore Complex (NUF2) and Pyridoxal Kinase 
26 
27 (PDXK)  oncogenes.  These  findings  demonstrate  that  circFOXK2  contributes  to  PDAC 
29 
30 progression (Wong et al., 2020). 
31 
32 
33 circFGD4 and circ_0000190 are two further examples of circRNAs with a role as tumor- 
34 
35 

suppressors, both down-regulated in gastric cancer (GC). Dai et al. (2020) showed that a low 
37 
38 expression level of circFGD4 correlates with poor tumor differentiation, lymphatic metastasis, 
39 
40 and poor prognosis in GC patients. The authors showed that circFGD4 plays an anti-cancer 
42 
43 effect as it acts as a sponge of miR-532-3p. This interaction results in the increase of the APC 
44 
45 Regulator of WNT Signaling Pathway (APC) expression and, hence, leads to the inactivation of 
46 
47 
48 the β-catenin signaling. Such data suggest that circFGD4 may be used as a prognostic biomarker 
49 
50 and a therapeutic tool for GC (Dai et al., 2020). 
51 
52 
53 Similarly, a study by Wang et al. (2020) showed the tumor-suppressor role of circ_0000190 in 
55 
56 GC. This circRNA acts as a sponge of miR-1252, which targets P21 (RAC1) Activated Kinase 3 
57 
58 (PAK3), inhibiting cell viability, proliferation and migration, and inducing apoptosis and cell 



cycle arrest. As a consequence of its downregulation, miR-1252 level increases, while that of 
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36 

2 PAK3 decreases. Hence, targeting the circ_0000190/miR-1252/PAK3 axis may be a promising 
3 
4 

therapeutic strategy for the treatment of GC (Wang et al.; 2020). 
6 
7 
8 Furthermore, circRNAs are involved in the modification of the tumor microenvironment, as they 
9 
10 interact with immune cells, cancer-associated endothelial cells, cancer-associated fibroblasts, 
12 
13 cancer stem cells, growth factors, cytokines, and the extracellular matrix (ECM) (Ma et al., 
14 
15 2020). For instance, circRNA-MYLK sponges miR-29a in bladder cancer (BC), inhibiting the 
16 
17 
18 suppression of the vascular endothelial growth factor A (VEGFA), which induces angiogenesis 
19 
20 by activating the VEGFA/VEGFR2 and Ras/ERK signaling pathways. The upregulation of this 
21 
22 circRNA in BC promotes proliferation, EMT, angiogenesis, and metastasis (Zhong et al., 2017). 
24 
25 Moreover, CDR1as was also found as involved in the alteration of the tumor microenvironment, 
26 
27 being associated with angiogenesis, ECM organization, integrin binding, collagen-binding, and 
29 
30 TGF-β signaling. Additionally, it sponges multiple miRNAs and is overexpressed in several 
31 
32 cancer types (Zou et al., 2019). 
33 
34 
35 

The data regarding the role in cancer of the described circRNAs are summarized in Table 1. 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

 
CircRNA Cancer 

type 

 
Role in cancer 

 
Reference (DOI) 

circ-ANAPC7 
(hsa_circ_0005785) 

 
AML 

Oncogene: promotion of 
tumorigenesis 

Chen et al. 2018 
(10.1159/000491468) 

 
circ_0009910 

 
AML Oncogene: promotion of cancer 

progression 
Ping et al., 2019 

(10.1016/j.bcmd.2018.12.006) 

circRNA-DLEU2 
(hsa_circ_0000488) 

 
AML Oncogene: promotion of cell 

proliferation 
Wu et al., 2018 

(10.1128/mcb.00259-18) 

 
circPAN3 

 
AML Oncogene: mediation of drug 

resistance 
Shang et al., 2019 

(10.1016/j.exphem.2018.10.011) 
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46 
 

48 
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54 
55 

11 

18 

22 

25 

31 

36 

38 

41 

45 

47 

53 

circPVT1 
(hsa_circ_0001821) 

 
ALL 

Oncogene: promotion of cell 
proliferation and inhibition of 

apoptosis 

Hu et al., 2018 
(10.2217/epi-2017-0142) 

hsa_circ_0080145 CML Oncogene: promotion of oncogenesis Liu et al., 2018 
(10.1016/j.bbrc.2018.08.154) 

 
circ_100053 

 
CML 

 
Oncogene: promotion of oncogenesis 

Ping et al., 2019 
(10.3727/096504018x154127014 

83326) 

circPTK2 MM Oncogene: promotion of tumor 
progression 

Zhou et al., 2020 
(10.1186/s12885-020-6515-2) 

circAFF2 MM Tumor-suppressor: inhibition of miR- 
638 oncogenic function 

Zhou et al., 2020 
(10.1186/s12885-020-6515-2) 

 
 
 

circFOXM1 

 
NSCLC 

and 
PTC 

 

 
Oncogene: increase of proliferation 

and invasion 

Wang et al., 2018; 
(10.3892/or.2018.6733 

Liu et al., 2019 
(10.1016/j.bbrc.2019.03.213) 

Pan et al., 2019 
(10.1016/j.bbrc.2019.01.108) 

 
circ_0016760 

 
NSCLC 

 
Oncogene: promotion of cell growth 

and invasiveness 

Zhang et al., 2018 
(10.1038/s41598-018-21300-5) 

Li et al., 2018 
(10.1016/j.bbrc.2018.07.164) 

 
circPVT1 

 
NSCLC 

Oncogene: promotion of 
tumorigenesis and BCL2 anti- 

apoptotic activity 

Li et al., 2018 
(10.1159/000495876) 

Qin et al., 2019 
(10.1016/j.biopha.2018.12.007) 

 
circCDYL 

 
CRC 

Tumor suppressor: stimulation of 
apoptosis and inhibition of cell growth 

and migration 

Cui et al., 2019 
(10.1186/s12943-020-01180-y) 

 
circMTO1 

 
CRC Tumor-suppressor: inhibition of cell 

migration and invasion 

Ge et al., 2018 
(10.26355/eurrev_201812_16513 

) 

circPTK2 CRC Oncogene: promotion of EMT, tumor 
growth and metastasis 

Yang et al., 2020 
(10.1186/s12943-020-1139-3) 

circPPP1R12A- 
73aa 

CRC Oncogene: promotion of cell growth Zheng et al., 2019 
(10.1186/s12943-019-1010-6) 

 
circSHPRH 

 
GBM Tumor-suppressor: its downregulation 

promotes tumor progression 
Zhang, et al., 2018 

(10.1038/s41388-017-0019-9) 
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11 
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18 
19 
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22 
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41 
42 
43 
44 Table 1. List of f-circRNAs described in the literature and reviewed in this work. 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

 
cPINTexon2 

 
GBM Tumor-suppressor: its downregulation 

promotes tumorigenesis 
Zhang, et al., 2018 

(10.1038/s41467-018-06862-2) 

 
circFBXW7 

GBM 
and 

TNBC 

 
Tumor-suppressor: suppression of cell 

proliferation 

Yang et al., 2018; 
(10.1093/jnci/djx166) 

Ye et al., 2019 
(10.1016/j.omtn.2019.07.023) 

 
circβ-catenin Liver 

cancer 
Oncogene: promotion of tumor 

growth 
Liang et al., 2019 

(10.1186/s13059-019-1685-4) 

 
circFOXK2 

 
PDAC Oncogene: promotion of cell growth, 

invasion and metastasis. 

Wong et al., 2020 
(10.1158/0008-5472.CAN-19- 

3268) 

 
circFGD4 

 
GC 

Tumor-suppressor: its downregulation 
promotes poor tumor differentiation 

and lymphatic metastasis 

Dai et al., 2020 
(10.1042/CS20191043) 

 
circ_0000190 

 
GC 

Tumor-suppressor: inhibition of cell 
viability, proliferation and migration, 
and induction of apoptosis and cell 

cycle arrest. 

 
Wang et al.; 2020 

(10.1186/s12935-020-01422-5) 

 
circRNA-MYLK 

 
BC Oncogene: promotion of proliferation, 

EMT, angiogenesis, and metastasis. 
Zhong et al., 2017 

(10.1016/j.canlet.2017.06.027) 

 

 
CDR1as 

 
Several 
cancer 
types 

Oncogene: affection of tumor 
microenvironment being associated 

with angiogenesis, ECM organization, 
integrin binding, collagen-binding, 

and TGF-β signaling. 

 
Zou et al., 2019 

(10.3390/biom9090429) 
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1. F-circRNAs derive from linear fusion transcripts 
1 
2 
3 3.1 Linear fusion transcripts 
4 
5 
6 
7 Gene fusions are common driver mutational events in cancer. To date, over 30,000 gene fusions 
8 
9 and over 11,000 fusion transcripts associated with cancer have been reported in the Mitelman 
10 
11 

Database of Chromosome Aberrations and Gene Fusions in Cancer (Mitelman et al., 2020) and 
13 
14 in the ChiTaRS database, respectively (Gorohovski et al., 2017). Fusion transcripts are mainly 
15 
16 produced by fusion genes arising from structural chromosomal rearrangements, also including 
18 
19 genomic amplification (Mertens et al., 2015, Iwakawa et al., 2013; Rudin et al., 2013; L’Abbate 
20 
21 et  al.,  2014;  Simon  et  al.,  1997).  Additional  genomic  imbalances,  such  as  dicentric 
22 
23 
24 chromosomes, can also result in gene fusions (An et al., 2008; Cazzaniga et al., 2001; Strehl et 
25 
26 al., 2003). Intriguingly, extremely complex rearrangements may lead the fusion of three partner 
27 
28 
29 genes (Macchia et al., 2018). 
30 
31 
32 Genomic rearrangements play significant roles in cancer development because they can also lead 
33 
34 to the juxtaposition of a constitutively active promoter to a downstream proto-oncogene 
36 
37 (promoter-swapping). Due to this mechanism, for instance, the CTNNB1/Pleomorphic adenoma 
38 
39 gene 1 (PLAG1) fusion in pleomorphic adenomas results in an aberrant activation of PLAG1, 
40 
41 
42 promoting tumorigenesis (Kas et al., 1997). Another consequence of genomic fusions is the 
43 
44 truncation of a gene, resulting in the loss of function of the coded protein (Dai et al., 2018). As 
45 
46 

an example, the Runt-Related Transcription Factor 1 (RUNX1) is mostly truncated in cancer, 
48 
49 causing haploinsufficiency. RUNX1 truncated proteins are able to dominantly repress the wild 
50 
51 type function, causing hematopoietic defects and propensity to leukemogenesis (Sood et al., 
53 
54 2017; L’Abbate et al., 2015). 
55 
56 Intriguingly, some genes involved in fusions are named ‘promiscuous genes’, since they have 
57 
58 
59 many fusion partners (Collins e al., 2002). The Lysine (K)-Specific Methyltransferase 2A 



(KMT2A, also known as MLL) gene, for example, shows more than 80 fusion partners reported 
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10 

27 

32 

44 

2 in leukemias (Takahashi et al., 2020). ALK and ETS Variant Transcription Factor 6 (ETV6) are 
3 
4 

additional promiscuous genes, involved both in hematological malignancies and solid tumors 
6 
7 (Dickson et al., 2018; Strehl et al., 2008). 
8 
9 Moreover, fusions joining the coding sequences of two genes can generate abnormal fusion 
11 
12 proteins with aberrant functionality, mainly kinases or transcriptional factors promoting 
13 
14 tumorigenesis (e.g. BCR/ABL1) (Lugo et al., 1989). 
15 
16 
17 Several fusion products (both transcripts and proteins) were found in the absence of 
18 
19 rearrangements at DNA level, as they may derive from unconventional splicing events, like 
20 
21 
22 trans-splicing or long distance cis-splicing of adjacent genes (cis-SAGe) (Jividen & Li, 2014). 
23 
24 Trans-splicing, discovered first in trypanosomes (Sutton & Boothroyd, 1986), fuses together 
25 
26 exons derived from two separate transcripts, whereas cis-splicing joins exons from adjacent 
28 
29 genes, transcribed as a single chimeric pre-mRNA (Jividen & Li, 2014). The literature 
30 
31 documented multiple examples of such post-transcriptional mechanisms for the genesis of fusion 
33 
34 transcripts: the JAZF Zinc Finger 1 (JAZF1)/Polycomb Protein SUZ12 (SUZ12) fusion 
35 
36 transcript, found both in normal and tumor endometrial stromal cells, is the result of trans- 
37 
38 
39 splicing (H. Li et al., 2008); the Carrier Family 45 Member 3 (SLC45A3)/ETS Transcription 
40 
41 Factor ELK4 (ELK4) chimeric RNA, detected in prostate cancer, is an example of cis-SAGe 
42 
43 

product (Y. Zhang et al., 2012). Additional examples have been documented in tumors carrying 
45 
46 genomic amplifications (L’Abbate et al., 2018; Macchia et al., 2018). 
47 
48 
49 As many fusion genes/transcripts are pathognomonic, they can be valid biomarkers for cancer 
50 
51 
52 diagnosis, as well as valuable targets for therapies. The best-known example is BCR/ABL1 in 
53 
54 hematological malignancies, allowing diagnosis and treatment with Tyrosine Kinase Inhibitors 
55 
56 
57 (TKIs), such as Imatinib, one of the first TKIs approved by the Food and Drug Administration 
58 
59 and successfully used to treat BCR/ABL1 positive CML cases (Druker et al., 2001). 



Another example is EML4/ALK in NSCLC (Soda et al., 2007), targeted by Crizotinib (Shaw et 
1 

60 
61 
62 
63 
64 
65 

22 
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11 

28 

33 

2 al., 2011) that has been demonstrated to be effective also in patients with ROS Proto-Oncogene 
3 
4 

1, Receptor Tyrosine Kinase (ROS1) fusions (Zhu et al., 2019). 
6 
7 
8 All these evidences underline the crucial role of fusion transcripts with clinical implications for 
9 
10 both diagnostic and therapeutic purposes. 
12 
13 
14 
15 
16 
17 3.2 Fusion-circRNAs: a novel class of circRNAs 
18 
19 
20 F-circRNAs are aberrant circRNAs generated after back-splicing of chimeric mRNA transcripts, 
21 
22 
23 derived from chromosomal rearrangements (Fig. 3). This event could be triggered by repetitive 
24 
25 intronic sequences flanking the breakpoint region in the pre-mRNA transcript (Guarnerio et al., 
26 
27 

2016). To date, these molecules have been identified both in hematological and solid tumors 
29 
30 (Guarnerio et al., 2016). To the best of our knowledge, f-circRNAs arising from trans-splicing or 
31 
32 cis-SAGe have never been reported, despite it cannot be excluded due to the limited number of 
34 
35 studies performed so far. 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
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Fig. 3: Biogenesis of f-circRNAs. F-circRNAs are generated after back-splicing of a linear 
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2 chimeric mRNA, derived from cancer-associated chromosomal rearrangements. EX: exon. 
3 
4 
5 

3.2.1 Hematological malignancies 
7 
8 
9 i) AML 
10 
11 
12 The Promyelocytic Leukemia (PML)/Retinoic Acid Receptor Alpha (RARA) fusion gene, 
13 
14 
15 originated from a t(15;17)(q24;q21) translocation, is the most recurrent chimera in acute 
16 
17 promyelocytic leukemia (APL) (Guarnerio et al., 2016). The transcribed chimera encodes for a 
18 
19 

fusion protein that blocks the myeloid cell differentiation at promyelocytic stage, leading to an 
21 
22 accumulation of neoplastic promyelocytes (Dekking et al., 2012). Guarnerio et al. (2016) 
23 
24 investigated whether the PML/RARA fusion transcript could generate f-circRNAs, called f- 
26 
27 circPR, both in APL patients and in the NB4 APL-derived leukemic cell line. They found the 
28 
29 expression of one or two f-circPR isoforms in all patients harboring the PML/RARA 
31 
32 translocation and in the NB4 cell line. Particularly, one f-circPR isoform showed a back-splicing 
33 
34 junction joining the PML exon 5 and the RARA exon 6 (Fig. 4A), in all analyzed patients and in 
35 
36 
37 the NB4 cell line. The alternative isoform, harboring the back-splice junction between PML 
38 
39 exon 4 and RARA exon 4 (Fig. 4A), was found in three out of four APL patients. The authors 
40 
41 demonstrated that cells expressing f-circPR acquire the ability to increase their proliferation rate 
43 
44 and form foci in vitro (Guarnerio et al., 2016). 
45 
46 
47 Furthermore, in AML, the t(9;11)(p21;q23) translocation generates different isoforms of the 
48 
49 
50 recurrent KMT2A/MLLT3 fusion transcript (Alonso et al., 2008). To investigate the existence of 
51 
52 f-circRNAs derived from this chimera, Guarnerio et al. (2016) tested the THP-1 acute monocytic 
53 
54 

leukemia cell line, harboring the t(9;11)(p21;q23) translocation. They found two f-circRNAs, 
56 
57 called f-circM9s (f-circM9_1 and f-circM9_2): the former showed its back-splice junction 
58 



between KMT2A exon 7 and MLLT3 exon 6, while the latter fuses KMT2A exon 5 to MLLT3 
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2 exon 6 (Fig. 4 
3 
4 
5 A). The authors focused their attention on f-circM9_1 and showed that its expression promotes 
7 
8 cell proliferation, reduces apoptosis and protects cancer cells from therapy treatment, thus 
9 
10 favoring leukemia progression both in vitro and in vivo (Guarnerio et al., 2016). 
12 
13 
14 ii) CML 
15 
16 
17 In CML, a recent study identified a novel f-circRNA, named circBA9.3, juxtaposing ABL1 exon 
18 
19 3 to BCR exon 9 (Fig. 4A). This f-circRNA was detected in cells harboring the t(9;22)(q34;q11) 
21 
22 translocation, resulting in the BCR/ABL1 fusion gene (Pan et al., 2018). Its overexpression in 
23 
24 leukemic cells promotes proliferation and apoptosis downregulation, by improving BCR/ABL1 
25 
26 
27 translation or preventing its degradation, and gives TKIs resistance (Pan et al., 2018). 
28 
29 
30 3.2.2 Solid tumors 
31 
32 
33 

i) Ewing Sarcoma (ES) 
35 
36 
37 In ES, Guarnerio et al. (2016) identified f-circEF1, generated from the EWS RNA Binding 
38 
39 Protein 1 (EWSR1)/Friend Leukemia Virus Integration 1 (FLI1) fusion gene derived from a 
40 
41 
42 t(11;22)(q24;q12)  translocation.  The  EWSR1/FLI1  fusion  protein  acts  as  an  aberrant 
43 
44 transcriptional factor and plays a role in RNA splicing (Anderson et al., 2012). F-circEF1 back- 
45 
46 

splicing junction joined the EWSR1 exon 7 to the FLI1 exon 10 (Fig. 4B); its potential role has 
48 
49 not been investigated yet (Guarnerio et al., 2016). 
50 
51 
52 ii) NSCLC 
54 
55 
56 Three f-circRNAs derived from the EML4/ALK fusion, having a crucial role in NSCLC 
57 
58 progression, are reported to date: f-circEA1 (Guarnerio et al., 2016), f-circEA-4a (Tan, Gou, et 



al., 2018), and f-circEA-2a (Tan, Sun, et al., 2018). The f-circEA1 back-splicing junction 
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10 

27 

40 

45 

2 occurred between EML4 exon 12 and ALK exon 26 (Guarnerio et al., 2016) (Fig. 4B). The 
3 
4 

potential role of this circRNA in oncogenesis has not been clarified yet. F-circEA-4a harbors the 
6 
7 "AAAA" motif at the back-splicing junction, occurring between EML4 exon 4 and ALK exon 22 
8 
9 (Fig. 4B). It was found mainly in the cytoplasm of the H2228 NSCLC cell line, harboring the 
11 
12 EML4/ALK fusion gene. Notably, f-circEA-4a was also detected in the plasma of NSCLC 
13 
14 patients with the EML4/ALK translocation. This f-circRNA could be used as a biomarker to 
15 
16 
17 detect the presence of the translocation and guide the EML4/ALK-targeted therapy. F-circEA-2a, 
18 
19 harboring the "AA" motif at the fusion junction, is also localized in the cytoplasm of the H2228 
20 
21 
22 cell line, but at a lower level, and was not found in the plasma of the NSCLC patients (Fig. 4B). 
23 
24 Both f-circEA-4a and f-circEA-2a do not affect cell proliferation but promote cell migration and 
25 
26 invasion in NSCLC cell lines (Tan, Sun, et al., 2018). 
28 
29 
30 Additionally, two novel f-circRNAs have been reported in 2019; they originated from the 
31 
32 SLC34A2/ROS1 fusion transcript in NSCLC. SLC34A2/ROS1 plays an essential role in NSCLC 
33 
34 
35 progression, because it encodes an oncogenic fusion protein that activates ROS1 signaling, 
36 
37 promoting cell proliferation (K. Wu et al., 2019). F-circSR1 and f-circSR2 were generated from 
38 
39 

a back-splicing junction joining SLC34A2 exon 2 to ROS1 exon 37 or 42, respectively (Fig. 4B). 
41 
42 They were identified in the HCC78 NSCLC cell line, where f-circSR1 expression level was 
43 
44 higher than that of f-circSR2. Both these f-circRNAs showed a negligible effect on cell 
46 
47 proliferation but promoted cell migration in NSCLC. Indeed, the authors demonstrated that f- 
48 
49 circSRs could increase cell migration sponging miR-150-5p, miR-194-3p, and miR-515-5p, all 
50 
51 
52 regulating cell migration. Since circRNAs are stable in body fluids, f-circSRs could be potential 
53 
54 diagnostic and therapeutic biomarkers for NSCLC diagnosis and treatment (K. Wu et al., 2019). 
55 
56 
57 
58 
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26 Fig. 4: F-circRNA detected in human cancer. Schematic representation of the genomic 
27 
28 
29 fusions and the derived f-circRNAs isolated in A) hematological malignancies and B) solid 
30 
31 tumors. EX: exon. 
32 
33 
34 The role in cancer of the f-circRNAs here reviewed is summarized in Table 2. 
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Guarnerio et al., 
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16.03.020) 

 
f-circPR_2 

 
PML/RARA 

 
t(15;17)(q24;q21) 

 
APL 

Oncogene: 
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proliferation 

and foci formation 

Guarnerio et al., 
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(10.1016/j.cell.20 
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AML 

Oncogene: 
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Guarnerio et al., 
2016 

(10.1016/j.cell.20 
16.03.020) 
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47 Table 2. List of f-circRNAs described in the literature and reviewed in this work. 
48 
49 
50 
51 
52 
53 4. CircRNAs: new biomarkers for cancer diagnosis and therapy 
54 
55 
56 

CircRNAs have peculiar features with respect to their linear counterparts, such as relative 
58 
59 abundance, high stability, conservation, specificity (tissue-specific and developmental stage- 
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AML 

 
unknown 

Guarnerio et al., 
2016 

(10.1016/j.cell.20 
16.03.020) 
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t(9;22)(q34;q11) 
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Oncogene: 
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Pan et al., 2018 
(10.1016/j.bcmd.2 

018.09.002) 
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Tan, et al., 2018 
(10.1038/s41422- 

018-0033-7) 
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inv(2)(p21;p23) 

 
NSCLC 

Oncogene: 
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Tan, et al., 2018 
(10.1186/s12943- 

018-0887-9) 
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Wu et al., 2019 
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specific expression) (Tan, Gou, et al., 2018; Guo et al., 2014; Rybak-Wolf et al., 2014). They 
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2 make circRNAs suitable as diagnostic and prognostic biomarkers (Z. Zhang et al., 2018), since 
3 
4 

they are abundant in body fluids (blood, saliva, urine, cerebrospinal fluid) and can be used for 
6 
7 liquid biopsies (Jeck et al., 2013; Memczak et al., 2013). 
8 
9 Several circRNAs have been reported as upregulated in lung cancers and showing a significant 
11 
12 correlation with clinical parameters. For example, in NSCLC, circPVT1 upregulation (see 
13 
14 Paragraph 2.4.2, sub-section i) is associated with tumor size, TNM stage, poor prognosis and 
15 
16 
17 short overall survival of patients. Thus, it may be a biomarker for the early diagnosis of NSCLC 
18 
19 (Qin et al., 2019). Moreover, hsa_circ_0013958 acts as a sponge of miR-134 in lung 
20 
21 
22 adenocarcinoma, promoting CCND1 oncogenic activity, and increasing proliferation, invasion 
23 
24 and apoptosis inhibition. It was found upregulated in NSCLC cell lines and patients (both in 
25 
26 tissues and plasma), and associated with TNM stage, patient pathogenesis and metastasis. 
28 
29 hsa_circ_0013958 expression level is upregulated in the I/II tumor stage of patients if compared 
30 
31 to controls. Its specificity suggests a role as a biomarker for the early detection of lung 
33 
34 adenocarcinoma (Zhu et al., 2017). 
35 
36 Luo et al. showed hsa_circ_0000064 upregulation in lung cancer cell lines and patients and a 
37 
38 
39 correlation with lymphatic metastasis, TNM stage, and poor prognosis. This may be explained 
40 
41 by the fact that hsa_circ_0000064 increases BCL2 expression and, at the same time, inhibits the 
42 
43 

expression of pro-apoptotic proteins such as caspase-3, caspase-9, and BAX. Thus, this circRNA 
45 
46 promotes cell cycle, proliferation, metastasis, and apoptosis inhibition. These data indicated 
47 
48 hsa_circ_0000064 as a potential biomarker for early diagnosis and prognosis of lung cancer 
50 
51 (Luo et al., 2017). 
52 
53 In CRC, hsa_circRNA_103809 and hsa_circRNA_104700 showed decreased expression levels 
54 
55 
56 compared with normal tissues. hsa_circRNA_103809 is correlated with lymph node metastasis 
57 
58 and TNM stage, and hsa_circRNA_104700 with distal metastasis. Since their low expression 



levels are associated with poor prognosis, these circRNAs may be used as diagnostic markers in 
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2 this cancer type (P. Zhang et al., 2017). Conversely, circPTK2 was found upregulated in CRC 
3 
4 

tissues, and associated with tumor growth, metastasis and poor overall survival, indicating that it 
6 
7 could be a promising biomarker for CRC early diagnosis and targeted therapy (Yang et al., 
8 
9 2020). 
11 
12 Furthermore, circ-ANAPC7 was revealed as a promising biomarker in AML, as it was found to 
13 
14 be upregulated in patients (see Paragraph 2.4.1, sub-section i). Moreover, due to the pathogenic 
15 
16 
17 role of the circ-ANAPC7–miR-181 axis, this circRNA may be also a potential target for a novel 
18 
19 AML therapeutic approach (H. Chen et al., 2018). 
20 
21 
22 Interestingly, in AML samples, hsa_circ_0004277 showed a dynamic expression according to 
23 
24 the progression of the disease. Significantly, patients treated by chemotherapy showed restored 
25 
26 levels of hsa_circ_0004277, indicating that increasing level of this circRNA was associated with 
28 
29 successful treatment. Moreover, the circRNA-miRNA-mRNA interaction network analysis 
30 
31 showed that hsa_circ_0004277 interacts with five miRNA targets (hsa-miR-138-5p, hsa-miR- 
33 
34 30c-1-3p,  hsa-miR-892b,  hsa-miR-571  and  hsa-miR-328-3p)  and  offered  several  gene- 
35 
36 candidates, among which the cancer-related genes SH3GL2, PPARGC1A, and SH2B3. Thus, 
37 
38 
39 hsa_circ_0004277 may be a prognostic and predictive biomarker or therapeutic target in AML 
40 
41 (W. Li et al., 2017). 
42 
43 

Many circRNAs are reported to be enriched in exosomes (Y. Li et al., 2015). Exosome 
45 
46 circNRIP1 is upregulated and correlated with tumor size and lymphatic invasion in gastric 
47 
48 cancer (GC) patients. It acts as a sponge of miR-149-5p, affecting the expression level of AKT1. 
50 
51 Consequently, circNRIP1 promotes proliferation and migration in GC (X. Zhang et al., 2019). 
52 
53 Moreover, Li et al. compared the exo-circRNAs expression profile of CRC patient serum to that 
54 
55 
56 of healthy subjects: they found that exo-circRNAs in CRC samples were more abundant than the 
57 
58 



control samples. Hence, exo-circRNAs may be novel powerful tools for early non-invasive 
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2 diagnosis of cancer (Y. Li et al., 2015). 
3 
4 

Besides their potential as diagnostic biomarkers, circRNAs could also be exploited as effective 
6 
7 therapeutic tools. For example, Han et al. (2020) showed that circITCH, with tumor suppressor 
8 
9 activity in a variety of tumors, including bladder cancer, breast cancer, and osteosarcoma, 
11 
12 represents a potential therapeutic agent for doxorubicin-induced cardiotoxicity (DOXIC). 
13 
14 Indeed, the induced overexpression of this circRNA in human-induced pluripotent stem cell- 
15 
16 
17 derived cardiomyocytes strongly protects them against DOXIC. Such protective effect could be 
18 
19 explained by its action as a sponge for miR-330-5p, upregulating SIRT6, Survivin, and 
20 
21 
22 SERCA2a, and resulting in a decrease of cardiotoxicity and an increase of cardiomyocyte 
23 
24 survival and function. This result suggests circITCH as a potential tool for the prevention and 
25 
26 treatment of DOXIC in cancer patients (Han et al., 2020). 
28 
29 Interestingly, engineered circRNAs could be used as molecular medicine tools for personalized 
30 
31 therapy (Table 3). For example, Wesselhoeft et al. (2018) generated long engineered circRNAs 
33 
34 with translational potential in vitro, by means of a ribozymatic method based on permuted 
35 
36 intron-exon splicing and addition of homology arms. Their data showed that circRNAs would 
37 
38 
39 guarantee the stable production of large amounts of five different proteins, including Gaussia 
40 
41 luciferase, Firefly luciferase, eGFP, human erythropoietin, and Cas9 endonuclease, providing an 
42 
43 

alternative protein source to linear mRNA (Wesselhoeft et al., 2018). Meganck et al. (2018) 
45 
46 described the use of recombinant adeno-associated virus (AAV) to deliver an engineered 
47 
48 circRNA in multiple cell and tissue types in vivo. Two different intron pairs were used to drive 
50 
51 the circularization of the sequence containing an IRES and an ORF encoding the GFP transgene. 
52 
53 Their results showed the efficient expression and translation of the artificial circRNA in mice 
54 
55 
56 cardiac tissue, liver, and astrocytes. This method shows the potential use of engineered 
57 
58 circRNAs not only to study their function in animal models, but also to enable their expression 



in vivo (Meganck et al., 2018). Hence it could be hypothesized to exploit this strategy to 
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44 

2 vehiculate therapeutic proteins in vivo. 
3 
4 

Artificial circRNAs may be developed to sponge miRNAs, inhibiting their oncogenic properties. 
6 
7 For example, Liu et al. synthesized a circRNA that can sponge miR-21, upregulating the Death 
8 
9 Domain Associated Protein (DAXX) tumor suppressor target gene. By inhibiting miR-22 
11 
12 function, the authors observed the suppression of cell proliferation in GC (Liu et al., 2018). 
13 
14 Another example of this application of artificial circRNAs is provided by a study by Jost et al 
15 
16 
17 (2018) in infectious diseases. The authors designed a synthetic circRNA containing binding sites 
18 
19 for the endogenous miR-122, which exerts a protective effect on the Hepatitis C Virus (HCV) 
20 
21 
22 genome during liver cell infection. Using the artificial circRNA to sequester miR-122, the 
23 
24 inhibition of the HCV life cycle was observed in vitro (Jost et al., 2018). 
25 
26 Furthermore, a recent study described the synthesis of circmiR, by flanking the sequence with 
28 
29 long inverted complementary introns, thus promoting circularization. circmiR acts as a sponge 
30 
31 of miR-132 and miR-212, known to be cardiac pro-hypertrophic miRNAs, inhibiting their 
33 
34 activity. The authors used AAVs to deliver circmiR to murine cardiomyocytes in vivo, observing 
35 
36 the attenuation of the hypertrophic disease characteristics and the protection of the cardiac 
37 
38 
39 function, demonstrating the potential of circmiRs as novel therapeutic tools (Lavenniah et al., 
40 
41 2020). 
42 
43 

All these findings highlight the wide range of applications of circRNAs in the setting up of novel 
45 
46 diagnostic strategies and molecular therapies in cancer and other human diseases. 
47 
48 
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Table 3. List of exogenous circRNAs described in the literature, including genetic engineering 
41 
42 methods for circularization and function. 
43 
44 
45 
46 
47 
48 
49 5. Concluding remarks and future perspectives 
50 
51 
52 In the latest years, circRNAs have attracted increasing attention from researchers due to their 
53 
54 

biological features, functions, and potential application to the clinical management of patients. In 
56 
57 this review, we discussed the most recent discoveries on circRNAs functions in cancer, 
58 
59 particularly focusing on a novel class of circRNAs, f-circRNAs, and their role in tumorigenesis 

 cells)  translation  

 
GFP coding 

circRNA 

 
Multiple cell and 

tissue types 

Cloning into 
recombinant adeno- 

associated viral 
vectors 

Encoding GFP 
protein by IRES- 

mediated 
translation 

Meganck et al., 
2018 

(10.1016/j.omtn.20 
18.08.008) 

 
Circular miR- 

21 sponge 

 
 

Gastric Cancer 

Transcription of a linear 
RNA with multiple 
miR-21 binding sites, 
followed by T4 RNA 

ligase 1 ligation 

 
Sponging miR-21 to 

inhibit GC cell 
proliferation 

Liu et al., 
2018 

(10.1016/j.omtn.20 
18.09.010) 

 
Circular miR- 

122 sponge 

 
 

Hepatitis C 

Transcription of a linear 
RNA with multiple 
miR-22 binding sites, 
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ligase 1 ligation 

 
Sponging miR-122 

to inhibit HCV 
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Jost et al., 
2018 

(10.1080/1547628 
6.2018.1435248) 
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Cardiovascular 

disease 
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recombinant adeno- 

associated viral 
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Sponging miR-132 
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Lavenniah et al., 
2020 

(10.1016/j.ymthe.2 
020.04.006) 

 



and tumor progression. Indeed, circRNAs and f-circRNAs have a crucial role in cancer, 
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Agerstam, H., Lilljebjo, H., Lassen, C., Swedin, A., Richter, J., Vandenberghe, P., Johansson, B., & 

33 

 

 

5 

11 

16 

34 

2 considering their functions as affecting gene expression and other features of cancer cells, such 
3 
4 

as proliferation, apoptosis, invasion and metastasis, angiogenesis and microenvironment 
6 
7 regulation. 
8 
9 
10 CircRNAs display increased stability in both cells and body fluids, and tumoral specificity that 
12 
13 make them perfect candidates as cancer biomarkers. Moreover, due to their pivotal role in 
14 
15 several cellular pathways, circRNAs can represent possible targets of novel therapeutic 
17 
18 strategies (Yong Zhang et al., 2019). Further, circRNAs are more stable and enriched within 
19 
20 exosomes of peripheral blood than their linear counterparts, facilitating their early detection in 
21 
22 
23 liquid biopsies. This feature is crucial for the potential use of circRNAs as biomarkers in plasma, 
24 
25 serum, and urine for a non-invasive diagnosis of cancer. 
26 
27 
28 
29 Moreover, recent studies described novel approaches for the creation of artificial exogenous 
30 
31 circRNAs to be used as new miRNA/RBP sponges or to stably encode therapeutic proteins, 
32 
33 representing novel potential tools in molecular medicine for personalized therapies. 
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