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The 2,6-xylyl moiety is an attractive scaffold extensively used in the field of medicinal 

chemistry. The local anesthetic (LA) Lidocaine (or lignocaine, Xylocaine®, Tab. 1) was discovered 

in 1943, and originally labelled as LL30. Thanks to the presence of the 2,6-xylyl moiety, unlike its 

congeners, it overcame the systemic toxicity of Tetracaine and Cocaine and had a longer duration of 

action than Procaine. “Xylocaine® has, for more than three decades, stood the test as a reliable and 

highly efficient local anesthetic” [1]. Some constrained analogues, bearing a pipecolylxylidide 

moiety, were then studied: Mepivacaine was introduced in the 1950s, followed by Bupivacaine, in 

1965, that gained popularity because of its long duration of action. The closely related compound 

Ropivacaine was evaluated in clinical trials starting in 1990 and introduced in clinics in 1996. It 

was less neurotoxic and cardiotoxic than Bupivacaine [2,3]. Pyrrocaine is a LA drug bearing a 

pyrrolidine moiety used as the hydrochloride salt [4]. Etidocaine is a long-lasting LA used in 

gynecology and obstetrics, which alleged toxicity has restricted its clinical use. Recently, ionic 

gradient liposomes have been proposed to increase the upload and prolong the drug release, from 

liposomes [5]. Interestingly, the use of LAs during clinical cancer surgeries has suggested their 

potential role in cancer [6], to be used not as stand-alone anticancer drugs but preferably as 

chemotherapy synergists [7]. Specifically, Lidocaine showed antiproliferative effects in vitro on 

different types of cancer cells (breast, colon, tongue or melanoma) [8]: it selectively inhibits colon 

cancer cells proliferation without affecting tumor microenvironment (cancer-associated fibroblasts) 

[9,10]. Thus, its repositioning to anticancer has been proposed [11]. Recent studies on LAs 

metabolism and toxicity have been reported, also focusing on interaction with other drugs and food 

[12-19]. Mexiletine and tocainide (Fig. 2) are 2,6-xylyl-substituted derivatives belonging to IB class 

antiarrhythmic drugs. Their antiarrhythmic activity is due to the block of human cardiac voltage gated 



sodium channels, namely hNav1.5 [20,21]. Moreover, as blockers of voltage-gated Na+ channels, 

they have been extensively studied for their antimyotonic activity [22,23], acting on human skeletal 

muscle voltage gated sodium channels (hNav1.4), and for the activity in neuropathic pain, exerted by 

blocking hNav1.7 and hNav1.8 channels, which are sodium channel subtypes predominantly 

expressed in peripheral nociceptive neurons [24]. Several analogues of these compounds, even more 

active than the parent compound, were described in the literature, both in their racemic and/or 

optically active forms [25-28]. The deuterated phenyl analogue of mexiletine, bearing the 2,6-xylyl 

portion, has been recently reported: it shows superior cardiovascular, metabolic  and  pharmacokinetic  

properties,  and  improved  safety profiles [29]. Moreover, several metabolites of mexiletine have 

been studied for their antiarrhythmic and/or antimyotonic properties [30,31]. Interestingly, the 

metabolite m-hydroxymexiletine (MHM) was 2-fold more potent than the parent compound on the 

cardiac sodium channels showing more favorable toxicological properties than mexiletine since it did 

not impair motor coordination in contrast to mexiletine and showed no cytotoxicity on human 

hepatocellular liver carcinoma (HepG2) cells [32,33]. Lidoflazine is an old atypical calcium channel 

modulator as it is defined a non-dihydropyridine; it has been recently reconsidered [34,35]. 

Ranolazine (Ranexa™) is a drug approved by Food and Drug Administration (FDA) in 2006 for the 

treatment of chronic stable angina pectoris and as an antiarrhythmic [36]. This property is exerted by 

blocking late sodium currents over peak fast sodium currents. Ranolazine has also demonstrated 

hypoglycemic properties in pre-clinical and clinical studies, through the inhibition of glucagon 

secretion from pancreatic islets, as it blocks sodium channels (Nav1.3 isoform) in α-cells. It has been 

recently demonstrated also to be effective against cognitive impairment and depressive-like behavior 

[37]. Lidamidine is a derivative of guanylurea, which is a drug used to treat diarrhea, by affecting 

peripheral alpha-2 adrenoceptors [38]; it can also show anticoagulant and analgesic effects [39]. 

Lopinavir (ABT-678) is an extremely potent inhibitor of HIV-1 protease (Ki = 1.3 pM) that was 

licensed in combination with ritonavir (as KaletraTM, Abbott Laboratories) for anti-retroviral therapy 

in 2000 [40]. Its metabolism and doses are currently under study for the emerging Coronavirus 



Disease 2019 (COVID-19), in association with the antiviral ritonavir [41,42]. Xylazine is a novel 

adulterant with fentanyl in fatal drug intoxications, which has public health, safety, and criminal 

investigative implications. It is a non-narcotic sedative used for analgesia and muscle relaxation 

uniquely in veterinary medicine [43].  

The 2,6-xylyl moiety also characterize new synthetic compounds studied in the literature for 

antimicrobial activities. A 2,6-xylyl derivative was used to determine the X-ray crystal structure of 

bacterial Enterococcus faecalis thymidylate synthase (EfTS) [44,45].  Recently, antimicrobial activity 

was found for several analogues of triclocarban, a chlorinated highly effective and broad-spectrum 

antimicrobial and antiseptic agent that is often found in personal care products, despite its toxicity 

[46]. The new compounds belong to the class of diarylureas [47], known anticancer agents recently 

proposed for repositioning to antimicrobial agents [48]. Among the studied compounds, the most 

interesting were those bearing the 2,6-xylyl moiety: they were more active than triclocarban and, 

unlike triclocarban, they were not cytotoxic against the human mammary epithelial and embryonic 

kidney epithelial cells [49,50]. 

Finally, the 2,6-xylyl moiety is worthy of note in materials chemistry. Poly(2,6-dimethyl-1,4-

phenylene)oxide (PPO) is a widespread high-performance commercially available polymer, being 

generally amorphous and exhibiting a high glass-transition temperature (Tg ≈ 220 °C), which has 

been identified as a valid membrane material, used since ancient times [51]. Quaternized PPO 

copolymers have been recently described as anion exchange membranes for alkaline fuel cell 

application [52]. 

In conclusion, the 2,6-xylyl moiety may be considered an interesting and important scaffold 

in medicinal and materials chemistry. In the presence of this moiety, various pharmacological 

activities have been found, obtaining compounds that are also generally devoid of cytotoxicity. 

 



Table 1. Structures and activities of compounds bearing the 2,6-xylyl moiety described in the text 

Structure Name Activity [Ref] Toxicity [Ref] 
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Lidocaine LA [1,12] [8,11,53-55] 

 

Mepivacaine LA [2,12] [2] 

 

Ropivacaine LA [3,12] [8,55] 

 

Bupivacaine LA [3] [8,55] 

 

Pyrrocaine LA [4,12] [58] 

 

Etidocaine LA [5] [5] 

 

 

Tocainide 

Antiarrhythmic [21] 
Antimyotonic [23,26] 
Action in neuropathic pain [21] 
 

[59] 

 

Mexiletine 

Antiarrhythmic [28,32] 
Antimyotonic [56] 
Action in neuropathic pain [57] 
 

[28,32] 

 

MHM 
Antiarrhythmic [32] 
Antimyotonic [56] 
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Lidoflazine Antiarrhythmic [35] [60] 
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Ranolazine 
Treatment of chronic  
stable angina pectoris [36,37] 
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Lidamidine Antidiarrheal [38] [62] 
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Lopinavir HIV-1 protease inhibitor [42] [42] 
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N

S
 

 
Xylazine 

 
Veterinary non-narcotic 
 sedative [43] 

[63] 

 

PPO Materials Chemistry [51,52]  
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