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Abstract
Artificial neural networks (ANNs) are versatile tools capable of learning without prior knowledge. This study aims to 
evaluate whether ANN can calculate minute volume during spontaneous breathing after being trained using data from 
an animal model of metabolic acidosis. Data was collected from ten anesthetized, spontaneously breathing pigs divided 
randomly into two groups, one without dead space and the other with dead space at the beginning of the experiment. Each 
group underwent two equal sequences of pH lowering with pre-defined targets by continuous infusion of lactic acid. The 
inputs to ANNs were pH, ΔPaCO2 (variation of the arterial partial pressure of CO2), PaO2, and blood temperature which 
were sampled from the animal model. The output was the delta minute volume (ΔVM), (the change of minute volume as 
compared to the minute volume the animal had at the beginning of the experiment). The ANN performance was analyzed 
using mean squared error (MSE), linear regression, and the Bland-Altman (B-A) method. The animal experiment provided 
the necessary data to train the ANN. The best architecture of ANN had 17 intermediate neurons; the best performance of 
the finally trained ANN had a linear regression with R2 of 0.99, an MSE of 0.001 [L/min], a B-A analysis with bias ± 
standard deviation of 0.006 ± 0.039 [L/min]. ANNs can accurately estimate ΔVM using the same information that arrives 
at the respiratory centers. This performance makes them a promising component for the future development of closed-
loop artificial ventilators.
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1  Introduction

The main function of the respiratory system is to secure gas 
exchange between the tissues of the body and the external 
environment, by this way contributing to acid-base homeo-
stasis by regulating CO2 elimination [1]. The respiratory 
system comprises several functional components corre-
sponding to distinct anatomical structures: a central neural 
control, a sensory input system, and an effector apparatus. 
The central neural control (mainly composed of centers 
located in the pons and the medulla) integrates information 
arriving from the cortex and a series of receptors (periph-
eral and central chemoreceptors, mechanoreceptors, and 
metaboreceptors) and conveys signals to respiratory mus-
cles (diaphragm and accessory muscles of respiration and 
upper airway muscles) and upper airway (for the reflexes of 
airway protection and patency) [2].

The respiratory centers adjust not only the amount of 
ventilation (i.e., minute volume) but also, by integrating 
information from the peripheral mechanoreceptors, decide 
the best pattern of ventilation in terms of frequency and tidal 
volume (VT) [3] that should also correspond to a minimum 
possible work of breathing [4]. From this simple descrip-
tion is clear that the system is based on different informative 
flows that have been the object of many studies [5] and dif-
ferent deterministic models of its function have been devel-
oped [6].

A relevant field of study in critical care medicine is 
mechanical ventilation which aims to support a failing 
respiratory function, trying to mimic the respiratory system. 
For the above-mentioned difficulties in continuously quan-
tifying the components of the respiratory system, a standard 
method to implement mechanical ventilation is based on 
taking intermittently blood samples from a peripheral artery, 
measuring the blood gases, and manually adjusting the ven-
tilator. The quest for creating tools able to support patient 
ventilation in closed-loop has brought to systems that com-
bine in different ways information derived from the expired 
CO2 or the respiratory activity of the patient [7].

None of them is currently able to use simultaneous infor-
mation coming from the real control points of the respira-
tory function, i.e., the partial pressure of the respiratory 
gases and the pH inside the arterial system.

Artificial neural networks (ANNs) are universal function 
approximators [8] and can reproduce the function of differ-
ent systems, provided they are fed with the input and the 
output to and from these systems. One of the major prob-
lems in training an ANN (and in general all the data-driven 
models) when they have to imitate biological behaviors is 
the pooling of a sufficient amount of data able to cover all the 
possible spectrum of responses of the biological reality. On 
the other side, the use of non-biological models to generate 

tracings to be forwarded to an ANN, although useful, has as 
a major limitation that a perfectly trained ANN will learn 
the implemented model and may not map the complex inter-
relationships typical of a biological structure [9].

The main strategy to which this exploratory study 
belongs, is to propose a method to create a map of the physi-
ological interaction between ventilation and arterial blood 
gases to be used for training ANNs capable to control an 
artificial ventilator.

This specific experiment aims to determine whether 
a neural network, trained on data deriving from signals 
afferent to the respiratory centers, can replicate the same 
response as these centers.

Specifically, we aimed to train an ANN using the partial 
pressures of respiratory gases and blood pH, observed dur-
ing spontaneous ventilation in various conditions, such as 
the induction of metabolic acidosis and the application of a 
respiratory dead space. Successively we estimated the per-
formance of the trained ANN in mimicking the biological 
respiratory response.

The aim of this contribution is to establish a proof of con-
cept for training Artificial Neural Networks to imitate the 
behavior of physiological mechanisms when data collec-
tion is limited due to the infrequency of the condition to be 
reproduced. To address this issue, potential solutions may 
be offered by utilizing translational models.

2  Materials and methods

2.1  Anesthesia and preparation

This study was approved by the Local Animal Ethics Com-
mittee of Uppsala University.

Data were collected from ten healthy pigs (Yorkshire, 
Hampshire and Swedish breeds) with weight of 29.1 ± 2.9 
Kg (mean ± standard deviation). The animals were anesthe-
tized with medetomidine 5  mg/Kg (Dormitor Vet., Orion 
Pharma, Sollentuna Sweden), tiletamine zolazepam 5 mg/
Kg (Zoletil, Boehringer Ingelheim, Copenhagen, Denmark) 
and fentanyl 5  µg/Kg/h (Pharmalink, Spanga, Sweden). 
Anesthesia was maintained by a continuous infusion of ket-
amine (Ketaminol, Vetpharma AB, Zurich, Switzerland), 
diluted in Rehydrex with glucose (Fresenius Kabi Uppsala, 
Sweden).

During instrumentation, succinylcholine (Celo-
curinklorid, NM Pharma, Stockholm, Sweden) was 
administered for myorisolution, first in bolus and then by 
continuous infusion of 1 mg/ml in glucose 5%.

The animals were intubated (tube n.7, Hi-Contour, 
Mallinckrodt Medical, Athlone; Ireland). Two 20-gauge 
catheters were inserted into both femoral arteries: one for 
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arterial pressure monitoring and the other to insert the blood 
gas analysis sensor (see details below).

A Swan-Ganz catheter was placed in the internal jugular 
vein, surgically isolated, to administer drugs in the central 
vein and to monitor on a screen (CS/3 TM, Datex Ohmeda, 
Helsinki, Finland) the arterial and capillary pulmonary pres-
sure. The cardiac output was estimated by the thermodilu-
tion method, by injecting cold boluses of a glucose solution 
in triplicate (10 ml, at 3–5 °C), randomly during the respira-
tory cycle.

During the surgical procedures, the pigs were ventilated 
in volume controlled constant flow mode (VC-CFMV), 
starting with a tidal volume of 8 ml/Kg and progressively 
titrated to obtain normocapnia. The inspiration/expiration 
ratio was 1:2 (s), the fraction of inspired oxygen (FIO2 ) was 
0.5, and the positive end-expiratory pressure (PEEP) was 5 
cmH2O.

Airway pressure and flow were recorded by a D-Lite 
connector (Datex Ohmeda, Helsinki, Finland), mounted 
on the endotracheal tube. Esophageal and gastric pressures 
were measured by dedicated esophageal balloon catheters 
(Erich Jaeger GmbH, Höchberg, Germany). The D-Lite 
connector ports and the balloon catheters were connected to 
differential pressure transducers (Sensym, Sensor Technics, 
Pucheim, Germany) which were calibrated using a water 
column before each experimental session. Data were col-
lected by using purposely written scripts for the Labview 
data acquisition system (LabView, National Instruments, 
Austin, TX, USA).

Blood gas parameters were continuously measured using 
miniaturized hybrid probes that employed optode technol-
ogy for pH and the partial pressure of carbon dioxide in arte-
rial blood (PaCO2), a miniaturized Clark electrode for the 
partial pressure of oxygen in the arterial blood (PaO2), and 
a thermocouple for measuring temperature [10]. These sen-
sors were assembled in a probe with a diameter of 0.5 mm, 
which could be easily inserted into a 20 G arterial cannula. 
The probes were then connected to the Paratrend blood gas 
monitoring system.(Diametrics Medical, High Wycombe, 
England) which also yielded the calculated concentration 
of HCO3

−, Base Excess (BE) and arterial oxygen satura-
tion (SaO2). Data from the Paratrend monitor were continu-
ously sampled at 0.5 Hz and recorded on a connected laptop 
through a serial port.

Urinary output was estimated by a catheter, positioned 
in a laparotomic way. During the entire experiment, the 
animals were covered by a servo-controlled thermic blan-
ket to ensure normothermia. The surgical wounds deriving 
from preparation were infiltrated with xylocaine to limit the 
potential pain, which could, in turn, raise the animal’s respi-
ratory frequency.

After the preparation (anesthesia, intubation, surgery 
and insertion of catheters), the animals were weaned 
from mechanical ventilation by reducing ketamine (from 
21.7 mg/kg/h to 11.8 mg/kg/h) and ceasing the infusion of 
succinylcholine: by this way the pigs regained spontaneous 
breathing while simultaneously maintained sedation and 
analgesia. Once reached this point, after thirty minutes of 
stabilization, the animals could be disconnected from the 
ventilator and the experimental protocol started.

2.2  Experimental protocol

The time course of each experiment was divided into two 
equal sequences of pH lowering, differing in the timing of 
application of an additional external dead space, consisting 
of a connected rebreathing bag (henceforth abbreviated as 
dead space, see Figs. 1 and 2).

In both phases, the blood pH was steered by continu-
ously administering an infusion of lactic acid 0,9 M (Rie-
del-De Haen, RdH Laborchemikalien GmbH & Co, Seelze, 
Germany.

by a pump-syringe in the central vein, according to 
Shirer’s protocol [11] and starting with an infusion dose of 
0.08 ml/kg/min.

The objective was to reduce the blood pH in a controlled 
fashion, reaching the pre-defined targets of pH 7.40, 7.35, 
7.30, and 7.25 while measuring the above-mentioned respi-
ratory and arterial blood gas parameters. To achieve these 
goals and have the actual pH on the screen, the infusion 
speed could be slowly adjusted to reach these targeted 
steady-state pHs. A continuous supply of Oxygen of 5 L/
min was provided at the tip of the endotracheal tube.

The pigs were divided randomly into two groups, which 
differed in the timing of the application of the mentioned 
additional dead space. This last consisted of a modified 
reservoir Tedlar bag of 200 L (Hans Rudolph, Wyandotte, 
Kansas City, USA) connected to the endotracheal tube and 
open on the distal side to the atmosphere. through which the 
animal had to breathe.

We hypothesized that when the blood pH changes and 
dead space is introduced, animals would naturally adjust 
their breathing pattern to establish respiratory compensa-
tion, aiming to restore the pH to normal physiological levels.

The two groups were labeled in relation to the applica-
tion of dead space at the beginning of the experiment, thus 
obtaining the NDS group (= No Dead Space, characterized 
by the absence of dead space at the beginning of the experi-
ment) and the DS group (having dead space at the beginning 
of the experiment).

After the series of measurements was completed at 
pH 7.25, lactic acid infusion was interrupted and pH was 
progressively normalized using 1000  ml of normal saline 
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step. In summary, considering 10 pigs, 4 pH levels, 2 dead 
space statuses (on and off), and 5 samples per condition, we 
planned to pool 400 patterns to be forwarded to the ANNs.

At the end of the experiments, the pigs were euthanized 
during general anesthesia with a high dose of potassium 
chloride given intravenously.

2.3  Artificial neural networks

The ANNs were implemented via software on a computer 
(MatLab ver 2021b, MathWorks, Natick, MA). In the ANNs 

and the buffer Tribonat (Pharmacia AB, Stockholm, Swe-
den), following the changes of pH on the screen. After the 
pH returned to 7.40 and a further twenty minutes of sta-
bilization, the following step was a respiratory dead space 
modification.

Administering lactic acid again via an infusion pump, 
the pH was changed to 7.35, 7.30, and 7.25, and, at each 
of these pH values, the same hemodynamic, blood gas, and 
respiratory variables were measured (see Fig. 2).

During each pH step, we recorded the mentioned respi-
ratory parameters for 10 s, corresponding to 5 samples per 

Fig. 2  Outline of the physiologi-
cal experiment
 

Fig. 1  Experimental setup (cre-
ated with BioRender.com)
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The final training phase was started once the best ANN 
architecture was identified. The entire pool of available data 
was divided randomly into three groups: the training, the 
validation, and the test sets (respectively 70%, 15%, and 
15% of the entire pool).

During this phase, 20 different ANNs, all sharing the same 
architecture (chosen during the previous phase) but differ-
ing in the initial random assignment of node weights, were 
trained. The training process stopped based on three criteria: 
(a) if the lowest MSE, as determined by the best ANN archi-
tecture identified in the preceding phase, was achieved; (b) 
If the number of iterations (indicating how many cycles the 
training data goes through) exceeded 1000; (c) if the MSE 
started to increase, indicating the need for early stopping of 
the training. The ANN model with the lowest MSE on the 
final test pool was selected as the eligible model for the fol-
lowing step, consisting of a “prospective” evaluation of the 
ANN: it consisted in assessing the performance of the ANN 
on new data, which were not seen before during the training.

2.4  Statistical analysis

For the numerosity and the characteristics of the sample, no 
inference could be made about the normality of their distri-
bution. For this reason, all the hemodynamic and respiratory 
samples were analyzed using the Wilcoxon two-sided signed 
rank test with a level  α= 0.05 and applying the Bonferroni 
correction for multiple comparisons. For each variable, we 
compared whether there was any statistically significant dif-
ference at the different pH levels and with and without the 
application of external dead space.

The performance of the ANN was measured in terms of 
MSE, linear regression (between the ΔVM yielded by the 
ANN and the ΔVM effectively measured during the experi-
ment). The measurement error was studied according to the 
method of Bland and Altman [12]. Moreover, linear regres-
sion was also used to analyze whether the error by the ANN 
was related to the absolute level of ΔVM.

3  Results

All the animals survived the experimental protocol.
The total number of collected patterns was 380 out of 

400, with 20 not collected due to technical reasons.

3.1  Physiological variables

The protocol of controlled reduction of pH (Fig. 3), with and 
without the application of dead space and rebreathing bag, 
induced different changes in the measured physiological 
variables as a consequence of compensatory mechanisms. 

utilized in this study, every neuron in the previous layer is 
connected to each neuron in the subsequent layer. These 
connections between neurons are assigned specific weights, 
and adjusting their values enables the network to associate 
input patterns with the correct output. Each neuron sums all 
the inputs arriving on itself from the preceding layers, and 
if the weighted sum of the afferent stimuli reaches a thresh-
old (like biological neurons), it discharges downwards. So, 
once the training process is concluded, and a pattern is fed 
into the ANN, its neurons interact in a feed-forward manner, 
eventually producing the desired output.

The training function updating the ANN weights was a 
Bayesian regularization backpropagation. The input layer of 
the network was defined by the number of arterial blood gas 
(ABG) analysis parameters that were given simultaneously; 
they were four: pH, ΔPaCO2, PaO2, and temperature in the 
blood (T). ΔPaCO2 corresponds to the variation of the partial 
pressure of CO2 compared to the CO2 that the animal shows 
at the beginning of the experiment before the change of pH. 
The output layer was composed of one neuron, yielding the 
ΔVM, namely the change of minute volume as compared to 
the VM the animal had at the beginning of the experiment. 
The ANN structure was a classical function approximator (a 
multilayer perceptron with a single hidden layer) character-
ized by a sigmoid transfer function in the hidden layer and a 
linear transfer function in the output layer.

The training was based on giving at the same time the 
pattern of blood gas analysis (pH, ΔPaCO2, PaO2, T) and 
simultaneously the value of ΔVM that the animal presents. 
The learning function updates the weights of the neurons in 
order to make the ANN infer the relation between input and 
output. During the testing phase of the ANN only the ABG 
parameters are given, and the ANN yields its estimation of 
ΔVM. Comparing the calculation of ΔVM by the ANN and 
the real ΔVM (measured during the experiment in the ani-
mal) was possible to compute the error in ANN estimation.

A series of preliminary tests were executed to determine 
the best ANN architecture, i.e., the number of intermediate 
neurons that provided the best performance for the required 
task. They consisted of training, validating, and testing 
ANN architectures differing in the number of intermediate 
neurons, ranging from 4 to 20. The patterns of input and 
output data were given in random order and did not follow 
the time sequence of their recording during the experiment.

Each architecture’s training was repeated five times, 
each starting with a random assignation of weights, and the 
network’s performance as mean squared error (MSE) was 
annotated.

In the end, it was possible to obtain the average MSE over 
the five tests of each architecture and realize which number 
of intermediate neurons provided the best performance.
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a statistically significant difference in PaCO2 at all pH levels 
below 7.40 when comparing measurements performed with 
and without applied dead space.

On the other side the HCO3
− was subjected to statistically 

significant changes both during the imposed step reduction 
of pH and also when comparing its values with and without 
the application of dead space, being the only exception at 
pH 7.40. The excess of bases followed the same pattern.

The PaO2 was stable and did not change significantly in 
the tested conditions. The temperature of the animal was 
reported to be statistically different in the first steps of pH 
change without dead space.

A thorough description of their values is reported in Table 1 
as well as in online resource: supplementary Tables from 
1 A to 1D for their statistical analysis; Fig.  4 depicts the 
main physiological variables using time-synchronized 
coordinates.

It is worth noting that the measured pH was statistically 
different in the various steps of the experiment and did not 
differ when applying the external dead space.

The levels of PaCO2 were stable in the absence of applied 
dead space but tended to rise during the application of 
dead space, passing from 49.1 ± 7.8 [mmHg] at pH 7.40 to 
55,2 ± 10,6 [mmHg] at pH 7.25. More specifically there was 

Table 1  Summary of physiological parameters measured during the experiment. Data are reported as mean ± standard deviation. Abbreviations: 
PaCO2: partial pressure of carbon dioxide in arterial blood; PaO2: partial pressure of oxygen in arterial blood; temp: temperature; HCO− 3 : 
bicarbonate ion; BE: base excess; SaO2 : oxygen saturation in arterial blood; VM: minute volume; VT : tidal volume; RR: respiratory rate; S-SBP: 
systemic systolic blood pressure; S-DBP: systemic diastolic blood pressure; CO: Cardiac output; PCWP: pulmonary capillary wedge pressure; 
ETCO2 : end-tidal carbon dioxide; HR: heart rate. Letters J, K, L, and M correspond to imposed pH of 7.40, 7.35, 7.30, and 7.25, respectively

DEAD SPACE OFF DEAD SPACE ON
variable units J K L M J K L M
pH 7.40 ± 0.011 7.35 ± 0.006 7.30 ± 0.003 7.25 ± 0.003 7.40 ± 0.006 7.35 ± 0.003 7.30 ± 0.005 7.25 ± 0.006
PaCO2 [mmHg] 46.4 ± 4.9 47.0 ± 5.3 46.4 ± 6.5 45.0 ± 7.6 49.1 ± 7.8 51.6 ± 8.6 53.3 ± 10.0 55.2 ± 10.6
PaO2 [mmHg] 313.3 ± 46.0 320.1 ± 69.3 308.7 ± 78.9 306.3 ± 81.5 337.4 ± 33.9 303.7 ± 55.6 316.1 ± 56.8 311.2 ± 48.7
Temp [°C] 38.4 ± 0.9 38.3 ± 0.9 38.3 ± 0.8 38.3 ± 0.8 38.3 ± 0.8 38.3 ± 0.8 38.2 ± 0.7 38.1 ± 0.7
HCO− 3 [mEq/L] 27.7 ± 3.1 25.0 ± 2.9 22.0 ± 3.2 18.9 ± 3.3 29.3 ± 4.7 27.3 ± 4.3 25.2 ± 4.7 23.1 ± 4.3
BE [mEq/L] 3.4 ± 2.4 0.0 ± 2.2 -3.6 ± 2.4 -7.5 ± 2.6 4.6 ± 3.8 1.7 ± 3.4 -1.2 ± 3.7 -4.3 ± 3.3
SaO2 [%] 99.7 ± 0.1 99.6 ± 0.4 99.4 ± 0.9 99.3 ± 1.2 99.7 ± 0.1 99.6 ± 0.1 99.6 ± 0.1 99.6 ± 0.2
VM [L/min] 7.5 ± 1.4 8.3 ± 1.4 8.3 ± 1.8 9.2 ± 1.4 9.3 ± 1.3 9.7 ± 1.6 9.9 ± 1.7 9.9 ± 1.5
VT [ml] 205.3 ± 20.1 215.8 ± 27.4 228.5 ± 32.2 247.3 ± 21.7 260.5 ± 35.8 296.4 ± 34.7 314.8 ± 34.4 335.8 ± 21.9
RR [bpm] 36.7 ± 6.8 39.6 ± 9.9 36.7 ± 7.7 37.5 ± 7.5 36.4 ± 7.8 32.6 ± 4.3 31.4 ± 3.5 29.5 ± 3.6
S-SBP [mmHg] 115.8 ± 8.2 117.5 ± 12.7 122.4 ± 14.2 119.3 ± 12.4 114.9 ± 9.2 113.4 ± 8.9 116.7 ± 13.5 116.6 ± 15.5
S-DBP [mmHg] 71.0 ± 9.9 72.6 ± 12.5 75.3 ± 14.5 62.9 ± 25.3 63.5 ± 13.4 63.6 ± 9.3 73.0 ± 21.3 70.9 ± 21.4
CO [L/min] 4.7 ± 0.7 4.8 ± 0.9 5.2 ± 1.1 5.3 ± 0.9 5.6 ± 1.2 5.0 ± 1.0 5.3 ± 0.9 5.6 ± 0.9
PCWP [mmHg] 4.3 ± 2.8 3.9 ± 2.0 3.7 ± 1.8 2.9 ± 0.9 3.4 ± 2.5 3.2 ± 2.7 2.4 ± 2.6 3.0 ± 2.4
ETCO2 [mmHg] 37.9 ± 4.5 36.7 ± 7.7 38.9 ± 9.5 35.5 ± 8.9 43.9 ± 7.4 47.2 ± 9.0 48.2 ± 11.1 45.0 ± 9.7
HR [bpm] 111.3 ± 14.9 109.0 ± 11.4 106.0 ± 11.2 113.5 ± 12.1 116.9 ± 14.5 116.0 ± 14.9 116.6 ± 18.3 116.7 ± 21.0

Fig. 3  Individual effective pH 
values measured in the four 
experimental phases J, K, L, and 
M corresponding to imposed pH 
of 7.40, 7.35, 7.30, and 7.25, 
respectively
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statistically significant in different steps of this rise (see 
online resource: supplementary Table 2).

The application of dead space brought a consistent 
increase in VT when compared with measurements per-
formed without it.

Respiratory rate did not change significantly when no 
dead space was applied. However, with the application of 
dead space, RR reduced in a statistically significant fashion 
when applying the dead space (with exception when pass-
ing between 7.30 and 7.25). Moreover comparing the RR, 
at the same pH level and differing for the application of the 
dead space, these last showed statistically significant lower 
values with the exception at pH 7.40.

For the other hemodynamic parameters, substantial sta-
bility was observed (see Table 1) and when a statistically 
significant difference was found (Table 1), its change had 
limited magnitude.

3.2  Artificial neural network

The ANN architecture showing the best performance on 
the assigned task during the first phase of the study was the 
one with 17 intermediate neurons (Fig. 5) which showed an 
MSE of 0.004 and an R2 of 0.998.

The best ANN was identified among the 20 trained with 
17 intermediate neurons; it had an MSE of 0.001 and an R2 
of 0.999 and it was picked for the prospective test.

After testing it with the set of data that had not been seen 
before (15% of the entire pool), the ANN’s ability to assess 
ΔVM was expressed by the linear regression y = 1.006x – 
0.0162 and R2 = 0.999 (where x represents measured physi-
ological data and y is the output of the ANN). See Fig. 6.

Analysis of the estimation error (between the ANN and 
measured physiological data of ΔVM) according to Bland 
and Altman displayed a bias ± SD of 0.006 ± 0.039 [L/
min]. (See Fig. 7). The regression line of the estimation error 
vs. the average of the two measurements was expressed by 
y = 0.0067x + 0.016 with R = 0.047.

4  Discussion

This study is composed of two parts. One physiological 
experiment provided a map of the correspondence between 
metabolic acidosis and respiratory output, including the per-
turbation caused by a dead space. The second part of the 
study used the data of the physiological model to train an 
artificial neural network to replicate the output from the 
respiratory centers.

The pattern of ventilation (see online resource: supple-
mentary Table 2) was characterized by statistically signifi-
cant different values of VM between pH 7.40 vs. 7.25 and 
between pH 7.35 vs. 7.25 (both without dead space). No 
statistically detectable change was found during the applica-
tion of dead space. Noteworthy, comparing VM during ven-
tilation with and without dead space, at pH 7.40, 7.35, 7.30, 
a statistically significant difference was found.

The VT was characterized by a significant increase of 
its values when decreasing pH in the two different phases 
of the experiment (see Fig. 4) and this difference became 

Fig. 4  Representation of the main respiratory variables measured dur-
ing the experiment. Data are reported as mean ± standard deviation. 
Abbreviations: PaCO2: partial pressure of carbon dioxide in arterial 
blood; HCO − 3 : bicarbonate ion; PaO2: partial pressure of oxygen 
in arterial blood; VM: minute volume; RR: respiratory rate; VT: tidal 
volume; letters J, K, L, and M correspond to imposed pH of 7.40, 7.35, 
7.30, and 7.25, respectively
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PaCO2 and the pattern of breathing [13]. The infusion of 
lactic acid induced a metabolic acidosis and consequently, 
the body’s homeostatic mechanisms attempted to establish 
a respiratory compensation by increasing the VM. As also 
expected, the application of dead space shifts the PaCO2 to 

4.1  Physiological experiment

Recording the physiological changes during the administra-
tion of lactic acid and the application of dead space con-
firms the findings of classical physiology regarding the 

Fig. 7  Bland-Altman analysis. 
The estimation error of ΔVM (dif-
ference between the computation 
by the ANN and the effectively 
measured value) is plotted versus 
the average of the two estima-
tions. The three dotted lines 
represent the mean and two 
standard deviations of the estima-
tion error. The dash-dot line is 
the regression line between the 
estimation error and the average 
of the two estimations; its cor-
responding regression equation is 
reported above the graph. Details 
in the text

 

Fig. 6  Regression between esti-
mation of ΔVM by the artificial 
neural network (ANN) and the 
effectively measured value. The 
graph reports also the regression 
equation and the relative R2

 

Fig. 5  The implemented Artificial 
Neural Network
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administration of lactic acid and to reset the acid-base status 
of the animal.

As reported in the result section, it is worth noting that 
not all the step change variations of the collected physio-
logical variables reached the level of statistically significant 
difference: this was an effect of the complexity of the model, 
the small sample size, and the small step changes between 
the imposed pHs.

However, the description of physiological alterations 
during acidosis was not the main goal of the experiment, 
having these mechanisms already been previously eluci-
dated [24]. The main aim of the first part of the experiment 
was to produce the pool of examples on which the training 
of the ANN could be performed. Acknowledging the deter-
minant role of pH, ΔPaCO2, PaO2, and T, these were used as 
input for the implemented ANN.

4.2  ANN experiment

The executed physiological experiment provided the num-
ber of examples necessary to train an artificial neural net-
work. Using this data set, it was possible to identify the best 
architecture for the desired task and train it.

The final ANN was trained successfully with a good cor-
relation (R2 = 0.999) and a low bias of 0.006 ± 0.039 [L/
min].

This study has been planned to constitute a proof of con-
cept that is possible to reproduce the response of the control 
of respiration by using artificial neural networks in one of 
their most simple configurations, the so-called multilayer 
perceptron. This kind of architecture has been defined as 
a universal function approximator [8]. They differ from 
the so-called architectures for deep learning mainly by the 
number of intermediate layers and are, for this reason, com-
monly labeled as shallow neural networks.

Ideally, to create proper examples for the training, one 
should design a physiology experiment to present all possi-
ble combinations of respiratory parameters. Instead of pas-
sively assembling data patterns deriving from observation 
of physiological conditions, a possible way to proceed is to 
execute biological experiments where the system is pertur-
bated to elicit behaviors difficult to find in normal practice. 
In the case of the present study, the change of pH in a con-
trolled way allowed us to record the relationship between 
the respiratory centers and metabolic acidosis.

A common question regarding using artificial neural net-
works to replicate respiratory centers’ activity is why use 
them when there are already analytical models of their func-
tioning [25]. Although analytical models are important tools 
for understanding respiratory function, using these models 
in a clinical setting can be challenging. This is due to the 
need to assign values to multiple parameters and, more 

higher levels, due to the rebreathing of CO2 inside the respi-
ratory circuit. The physiological effects of the application of 
an external dead space are well-known [14] and constitute 
a reliable method to explore the compensatory mechanisms 
by the respiratory centers, even in clinical studies [15] .

It is interesting to observe in Fig. 4 that the main mech-
anism for VM increase during dead space application is 
based on the increase in VT, while the respiratory frequency 
remains stable or even decreases. Also, this result does not 
come unexpectedly, being confirmed by classical experi-
mental observations [16].

In general, the simplest relation between PaCO2 and VM 
is expressed by an inverse proportionality, graphically rep-
resented by the so-called “metabolic hyperbole” [17] and 
known for many years [18]. However, these observations 
were performed in steady-state conditions and disregarded 
many factors that can modulate this response, as more recent 
studies on the neural control of breathing have demonstrated 
[2]. In fact, not only the PaO2 plays an already demonstrated 
role [19] but also the body temperature can modify the rela-
tionship between respiratory output and blood gases.

This argument implies that the complexity of respiratory 
control is high, as ascertained in the physiological literature 
[20].

We have used the change in arterial partial pressure of 
CO2 from its initial value at the beginning of the experiment 
(ΔPaCO2) and not its absolute value because, in physiologi-
cal conditions, this value can be slightly different in relation 
to the interplay between CO2 production due to metabolism 
[21], CO2 body stores [22], and the efficiency of its removal. 
On this last point, respiratory fatigue also plays a role.

The relation between energy expenditure and respiratory 
frequency is composed of a resistive and elastic component 
and has altogether a “U-shape” [4]. The respiratory mus-
cles, during the attempt to establish a higher minute volume 
by increasing the VT and/or the RR, may develop muscle 
fatigue [22], also because the energy expenditure per breath 
becomes higher than in steady-state conditions. More-
over, in our experiment, not only the respiratory pattern 
could become more challenging for the animals (because 
of metabolic acidosis), but also the addition of dead space, 
increasing the resistive component of the work of breathing, 
heightened the energy expenditure and, consequently, the 
potential for fatigue.

For these reasons, we chose a cross-over design: the ani-
mals were randomized for receiving the application of dead 
space during the first or the second half of the experiment 
(see Fig. 2). In this way, we could avoid adding a resistive 
load only to the second phase of the experiment.

The first and the second parts of the experiment were 
separated by the administration of Tribonat, which helped 
to neutralize the excess acid equivalents [23] due to the 
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trained ANN on other pathophysiological conditions not pre-
sented to it during the training. The experiment reported in this 
contribution is proof of concept of a possible way to proceed 
with gathering data on specific pathophysiological conditions.

These experiments tested the ANN technology on a limited 
number of conditions, including external dead space and pH 
changes induced by lactate infusion: future studies are required 
to determine its performance in various other settings, such as 
assisted ventilation or different pathological conditions.

It is worth mentioning that ketamine has a lower impact 
on respiratory drive when compared to other general anes-
thetics for continuous infusion. This does not exclude that a 
continuous infusion of ketamine modifies the output from the 
respiratory drive. In other words, the trained ANN has learned 
the functioning of the brainstem during a specific pharmaco-
logic stimulus. This warrants further studies for training ANN 
to reproduce the function of the brainstem in the absence of 
sedation.

In this context, it would be remarkable to assess whether 
neural networks’ performance remains unchanged even 
with more extreme alterations in respiratory physiology.

Despite this, due to its remarkable performance and unique 
characteristics, ANN technology would be an essential tool in 
developing a system that interfaces information from sensors 
to ventilators in a closed-loop fashion in the ICU.
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importantly, to determine how to translate physiological 
information into a ventilatory strategy that effectively sup-
ports a failing respiratory function.

The answer to the question lies in the purpose of the 
study or, using other words, which is the property of the 
measures we aim to reach. When the idea is to explore the 
possibility of controlling a device by the output of a signal 
analysis tool, the inherent robustness and noise immunity of 
an ANN [26] is particularly useful.

The idea that the future of mechanical ventilation 
goes through methods of closed-loop assistance has been 
expressed many years ago [27] and revised quite recently 
[28]. Our group has previously investigated the possible 
estimation of respiratory parameters from ventilatory trac-
ings by using ANN [29–31] and approached the evaluation 
of their robustness [32]. In 2004, Chatburn [33] and Per-
chiazzi [34] mentioned the use of artificial neural networks 
as a future tool to control respiratory support. However, 
their effective implementation in this usage is still pending, 
although closed-loop mechanical ventilation has moved 
different steps forward [7], mainly relying upon white-box 
approaches [35]. It is important to underline that the main 
aim of this contribution was not to model the many inter-
actions between the respiratory centers, which per se is a 
quite complex task [20]. Our goal is only to reproduce their 
behavior when they are exposed to a certain pattern of arte-
rial blood gas that can be found during clinical practice in 
the intensive care unit.

4.3  Limitations and perspectives

We have tested one type of ANN, falling in the broad family 
of multilayer perceptrons. We have not tested ANN character-
ized by multiple intermediate layers. So, we cannot exclude 
that the results of the estimation of the output of the respira-
tory system could have been even better using this other ANN 
structure. The same can be said about the learning algorithm 
and its parameters.

The studied ANN associates the ΔVM with the ABG pat-
tern and does not base its answer on the combination of RR 
and VT. Since these two variables are relevant for imple-
menting computer-aided tools for mechanical ventilation, 
future studies should address the possibility that ANNs also 
yield this partition.

A similar discussion should be done about the characteris-
tics of the sample used for the training and the testing. As with 
all data-driven technologies, the dependency of proper learn-
ing on the representativity of the sample is well known. On 
the other hand, the present experiment has been designed for 
creating the data base of examples for feeding the ANN and 
overcoming the limitations of a passive collection of tracings. 
This means that it is not possible to infer the performance of the 
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