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ABSTRACT
Determining the factors that positively and negatively affect the
resilience of transport networks provides valuable information
that leads to a deeper understanding of the preparedness and
response of networks to external disruptions. Over the past few
decades, several review papers have explored various
interpretations of transport network resilience and its calculation
metrics. Nevertheless, only a limited number of these papers have
paid attention on the utilisation of empirical data in resilience
studies. This paper, through a systematic literature review,
contributes to filling this gap. To this end, from a pool of 127
relevant articles, a subset of 53 articles using real-world data was
selected. The paper analyses and classifies empirical findings in
transport network resilience studies. In particular, it highlights
and thoroughly discusses spatial patterns of resilience and
relevant influencing factors that positively or negatively affect the
resilience attributes of a transport network. Although it is
possible to place the empirical results within the theoretical
framework proposed by the literature, two main issues on target
reference levels arise from the graphical representation of
transport network resilience as suggested by the theory. Based
on these findings, research gaps are identified and future
directions for transport researchers are proposed.
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1. Introduction

Transport networks are the pillars of the economy. A resilient and efficient transport
network, intended as the set of links, nodes and transport services (e.g. toll roads,
public transport services, airline services), enables the movement of goods and people
and promotes trade and cohesion between regions and societies. However, these net-
works, at both the infrastructure and service levels, are susceptible to risks from external
disruptions. Climate change-related phenomena, such as rising temperatures and the
increased frequency and intensity of extreme weather events (de’ Donato & Michelozzi,
2014; Stott, 2016), pose challenges to the resilience of passenger and freight transport
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networks. Additionally, maintenance work (Younes et al., 2019), protests (van Exel & Riet-
veld, 2001; Van Exel & Rietveld, 2009; Adler & van Ommeren, 2016), and other external
disruptions like the COVID-19 pandemic or political unrest can disrupt travel and logistic
activities on transport networks (Bergantino et al., 2021; Chen et al., 2024; Vickerman,
2021; Zhang et al., 2021). Over the past few decades, numerous articles have examined
the resilience of transport networks concerning these events, proposing various metrics
to analyse network performance during disruptions and assess resilience. Concepts
such as robustness, vulnerability, and reliability have been defined to provide additional
tools for understanding and calculating transport networks resilience. Although a signifi-
cant portion of the literature has used real-world data to support its findings, only a few of
the transport resilience reviews we found have discussed its use. Furthermore, little
emphasis has been placed on exploring potential spatial patterns of resilience, defined
as the interaction between spatial dynamics or characteristics (e.g. urban or rural area,
or distance decay functions from a point of interest) and a specific resilience outcome
(i.e. increase or decrease in one or more resilience attributes). Similarly, limited attention
has been given to the identification of influencing factors that may increase or decrease
the resilience of transport networks. To address this gap, this paper aims to review rel-
evant literature on empirical resilience outcomes. In addition, we exploited the analysis
of the transport resilience studies that used real-world data to test the theoretical and
graphical framework which is generally adopted by the literature.

The paper is organised as follows: section 2 provides a brief overview of the con-
cepts of transport network resilience; section 3 describes the selection process and
the collected sample of articles; section 4 analyses spatial patterns and factors influen-
cing resilience, organising and discussing them; section 5 discusses the results and
situates them within the adopted theoretical context; section 6 highlights gaps in
contextualising the empirical results within the theory and proposes future research
directions; finally, section 7 concludes the paper. This contribution delves into the use
of real-world data in resilience assessment and provides an in-depth discussion of
empirical findings on resilience. Specifically, it identifies, classifies, and discusses
empirical factors of resilience and tests the theoretical and graphical framework
over the real-world applications. Inconsistencies between transport networks resili-
ence theory and practice are critically discussed and future strands of research are
proposed.

2. Short overview of the concepts of transport network resilience

Transport network resilience is defined as the ability of a transport network to absorb
shocks, maintain functionality, adapt to and resist the negative effects of disruptive
events, and rapidly recover to a state of equilibrium (Bešinović, 2020; Gonçalves &
Ribeiro, 2020; Gu et al., 2020; Pan et al., 2021; Wan et al., 2018). It has a temporal dimen-
sion, with static resilience referring to the ability to maintain functions immediately after a
shock and withstand the damages and disturbances caused by disruptive events.
Dynamic resilience, on the other hand, refers to the speed at which a network recovers
to a desired state of equilibrium after a perturbation (Mattsson & Jenelius, 2015).
Various related concepts have been categorised and defined to create a resilience theor-
etical framework (Wan et al., 2018) and several metrics have been produced in the
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literature in recent years (see Zhou et al., 2019 for a review). Here is a summary of the main
related concepts:

1. Robustness: The network’s ability to maintain functions during a disruption.
2. Vulnerability: The risk of disruption and loss of functionality, representing a network’s

susceptibility to perturbations and adverse consequences that lead to performance
loss.

3. Redundancy: The ability of a network to offer alternative options or provide additional
capacity to replace capacity loss during a disruption.

4. Resourcefulness: The availability of supplies and resources and the ability to mobilise
them to restore functionality during a perturbation.

5. Rapidity: The speed at which functionality of a transport network is restored.
6. Reliability: The probability that a transport network will function successfully for an

intended period of time under operating conditions.
7. Mitigation strategies: Retrofitting or enhancing transport infrastructure, with a focus

on vulnerable components or nodes of a network, to improve the ability to absorb
the adverse effects of disruption events.

Resilience and related concepts are interrelated and interdependent. As noted in the
4R framework (Bruneau et al., 2003), which is a widely adopted theoretical framework
in resilience studies, robustness and redundancy contribute to static resilience, while
resourcefulness and rapidity contribute to dynamic resilience. Vulnerability, reliability
and mitigation strategies are associated with the risk of disruption and the networks’
ability to maintain functionality under perturbations. Besides mitigation strategies, that
are centered around the infrastructure, all the other concepts are related both to the
service and to the infrastructural resilience. For example, a bridge can be robust to with-
stand earthquakes, and similarly, a transit service can be robust against strikes when guar-
anteed operating hours are put in place. Figure 1 displays the interconnections between
the various concepts.

Regarding the measurement of resilience, it can be based on performance or topolo-
gical metrics (see the reviews of Pan et al., 2021; Reggiani et al., 2015 ; Zhou et al., 2019).
Performance metrics measure the performance of a network over time. Figure 2 shows
the cumulative impact area, which in its initial form was conceptualised as the “resilience
triangle” (Tierney & Bruneau, 2007), defining resilience in different phases: pre-disruption
(t0 to t1), disruption/failure (static resilience) (t1 to t2), and recovery phase (dynamic resi-
lience) (t2 to t3). This form has been later expanded to a wider variety of resilience curve
characteristics and corresponding cumulative areas. For example, one frequently men-
tioned and used cumulative area is the “resilience trapezoid” (Poulin & Kane, 2021). Quan-
titatively, according to Bruneau et al. (2003) framework, transport system resilience can be
measured as:

R =
∫t3

t1

[100− Q(t)]dt, (1)

where R represents the “resilience triangle” from t1 to t3 and Q(t) represent a performance
indicator, that, based on the applications, may be the level of service, the physical resist-
ance of the infrastructure or others.

TRANSPORT REVIEWS 3



3. Methodology of the review and overview of the real-data sample

We conducted a literature search on the Scopus database using the following research
string: “TITLE-ABS-KEY (“transport* resilien*” OR “resilien* of transport*” OR “transport*
network resilien*” OR “resilien* of transport* network”)”. Additional papers were included
based on the references cited in the retrieved papers and searches on authors who fre-
quently focus on these topics. Only papers written in English were considered. From
this process, 127 papers were deemed relevant for interpreting transport network resili-
ence, computing resilience metrics, or both.

Among these papers, we conducted an additional literature search to identify the “real
data subsample”, which includes articles that used real data for their empirical analysis. In
this paper, we focus only on performance metrics since they align better with our research
focus, which is network performance and related indicators (such as flow, capacity, speed,
and delay). For studies related to topological metrics, please refer to Zhou et al. (2019) or
Pan et al. (2021) for a review. To create the subsample, we retained the literature that used
data (flow/speed/…) as performance indicators in the resilience analysis (n = 48) and the
literature using a combination of performance and topological metrics (likewise weighted
network connectivity indexes) (n = 13). Among these, we excluded papers that used simu-
lation data (n = 8) and kept those that used real data (n = 53). Figure 3 summarises the
process.

Figure 1. Transport network resilience and related concepts.
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As shown in Figure 3, 36 of the subsampled papers analyse real disruption events,
while the remaining 17 are used to study simulated disruptions or serve as input or bench-
marks for simulation models. For example, Donovan and Work (2017) utilised real GPS
data from taxi trips in New York City before, during, and after Hurricane Sandy to study
speed deviations in normal and disruptive states. On the other hand, Azolin et al.
(2020) used real origin-destination survey data on walking, cycling, public transportation,
and car trips in two Brazilian regions to study the share of trips that would be resilient to a
hypothetical fuel crisis affecting most of the motorised means of transport. The most used
type of real data is flow data (n = 38), followed by travel time (n = 30), trip spatial coordi-
nates (n = 7), cost of transport (n = 5), and accident data (n = 2). In terms of modes of trans-
port, most studies in the subset are related to the road network (n = 17), followed by
railways (n = 11), metro services (n = 10), bicycles (n = 10), airways (n = 6), bus services
(n = 5), multimodal networks (n = 5), walking (n = 2), and waterways (n = 1). Table 1 cat-
egorises the literature subsample by data type and mode of transport.

Figure 2. Evolution of transport networks’ performance under disruption based on Bruneau et al.
(2003) and Gu et al. (2020).

Figure 3. Selection process of the 53 real data paper subsample.
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4. Transport resilience empirical findings

In the following two sections, we analyse and categorise the spatial patterns and resili-
ence influencing factors found in the subsample.1

4.1. Spatial patterns

The term “spatial patterns” refers to geographical aspects that are often associated with
specific resilience effects. We have identified the following spatial patterns: central/urban
vs peripheral/rural; high vs low accessibility; closest alternative mode distance decay; and
different locations of hazards. Table 2 at the end of this section groups the methodologies
used to study these spatial patterns.

(1) Central/urban vs peripheral/rural: The centrality of urban locations and the concen-
tration of jobs and services are linked to two opposing effects. On one side, central
urban zones are found to be the most vulnerable to disruptive events (Chang &
Nojima, 2001; Ferranti et al., 2016; Hara & Kuwahara, 2015; Jiang et al., 2018; Spyr-
opoulou, 2020; Tsapakis et al., 2012). This vulnerability is due to the high density
of passengers involved, the high concentration of infrastructure that propagates
the incident (Ferranti et al., 2016; Jiang et al., 2018), and the presence of pre-existing
bottlenecks or congestion (Hara & Kuwahara, 2015; Spyropoulou, 2020; Tsapakis
et al., 2012). Systematic congestion is particularly problematic during emergencies
(Hara & Kuwahara, 2015), as pre-existing bottlenecks exacerbate the negative effects
of disaster-induced congestion, further impacting the network’s performance. On
the other hand, central locations are found to be more resilient than outer
regions (Azolin et al., 2020; da Mata Martins et al., 2019; Fernandes et al., 2019;
Lu, 2018; Matisziw et al., 2020; Spyropoulou, 2020; Zhu et al., 2017). These regions
exhibit higher redundancy (Azolin et al., 2020; da Mata Martins et al., 2019;
Fernandes et al., 2019; Lu, 2018; Saberi et al., 2018; Spyropoulou, 2020; Yang
et al., 2022), which increases the availability of alternative modes of transport for dis-
rupted modes’ users. Additionally, the presence of infrastructure, jobs, and services
in central locations makes them priority zones (Zhu et al., 2017) with faster recovery
times compared to outer areas (Lu, 2018; Zhu et al., 2017). This positive pattern is
also observed in multimodal networks, as shown by Safitri and Chikaraishi (2022),
who found that central zones along main transport corridors recovered faster and
experienced lower monetary losses (in terms of travel time) during heavy rain dis-
ruptions in Japan in 2018. Better infrastructure is also associated with improved
emergency response. Matisziw et al. (2020) noted that central areas with better
infrastructure exhibit higher levels of resilience to car crashes, measured as lower
patrol response times, compared to rural areas.

(2) High vs low accessibility: Different locations with varying levels of accessibility experi-
ence different magnitudes of disruption-related effects. In general, areas with limited
accessibility are less vulnerable to disruptions compared to zones characterised by
higher gravity and heavier flows (Chang & Nojima, 2001; Ganin et al., 2017, 2019;
Santos et al., 2021). For example, mountainous areas in Japan during the 1995
Kobe earthquake showed a lesser decrease in commuting levels compared to
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Table 1. List of references by type of real-data use by mode of transport.
Means of transport
analysed

Traffic
Flow

Travel
time

Spatial
coordinates Accidents

Travel
cost3 References

PRIVATE MEANS ON
THE ROAD
NETWORK (CAR,
TAXI)

X Chang & Nojima, 2001; Cox et al.,
2011; Tsapakis et al., 2012; Zhu
et al., 2016; Donovan & Work,
2017; Ganin et al., 2017; Zhu
et al., 2017; Fernandes et al.,
2019; Ganin et al., 2019;
Spyropoulou, 2020; Tang et al.,
2020; Otuoze et al., 2021

X Tsapakis et al., 2012; Zhu et al.,
2016; Donovan & Work, 2017;
Zhu et al., 2017; Spyropoulou,
2020; Wang et al., 2020; Niu et al.,
2022;

X Hara & Kuwahara, 2015; Zhu et al.,
2016; Donovan & Work, 2017;
Zhu et al., 2017; Niu et al., 2022

X Matisziw et al., 2020
X Fernandes et al., 2019

RAILWAYS X Chang & Nojima, 2001; Cox et al.,
2011; Dawson et al., 2016;
Fernandes et al., 2019;
Woodburn, 2019; Fabella &
Szymczak, 2021

X Ferranti et al., 2016; Brazil et al.,
2017; Janić, 2018; Chen & Wang,
2019; Büchel et al., 2020

X Ferranti et al., 2016
X Janić, 2018; Fernandes et al., 2019

METRO X Cox et al., 2011; D’Lima & Medda,
2015; Sun et al., 2016; Zhu et al.,
2016; Loo & Leung, 2017; Zhu
et al., 2017; Jiang et al., 2018; Lu,
2018; Fernandes et al., 2019; Gao
& Wang, 2021

X D’Lima & Medda, 2015; Sun et al.,
2016; Zhu et al., 2016; Zhu et al.,
2017; Jiang et al., 2018; Lu, 2018

X Fernandes et al., 2019
BICYCLE X Cox et al., 2011; Fuller et al., 2012;

Saberi et al., 2018; da Mata
Martins et al., 2019; Fernandes
et al., 2019; Younes et al., 2019;
Azolin et al., 2020; Teixeira &
Lopes, 2020; Cheng et al., 2021;
Yang et al., 2022

X Fuller et al., 2012; Cheng et al.,
2021; Saberi et al., 2018; Younes
et al., 2019; Teixeira & Lopes,
2020; Yang et al., 2022

BUS SERVICES X Cox et al., 2011; Loo & Leung, 2017;
Fernandes et al., 2019;
Mudigonda et al., 2019

X Mudigonda et al., 2019
X Mudigonda et al., 2019

X Fernandes et al., 2019
MULTIMODAL
NETWORKS

X Jin et al., 2014; Azolin et al., 2020;
Sun et al., 2020; Auad et al., 2021;
Safitri & Chikaraishi, 2022

X Jin et al., 2014
X

(Continued )
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central areas, which were the main commuting destinations (Chang & Nojima, 2001).
However, when disruptions are mode-specific, such as bus services (Spyropoulou,
2020) or motorised private means (Azolin et al., 2020; da Mata Martins et al., 2019; Fer-
nandes et al., 2019), regions with limited accessibility through alternative modes of
transport are less redundant and therefore less resilient. The same holds for areas

Table 1. Continued.
Means of transport
analysed

Traffic
Flow

Travel
time

Spatial
coordinates Accidents

Travel
cost3 References

Auad et al., 2021; Safitri &
Chikaraishi, 2022

AIRWAYS X de Jong & Lieshout, 2021; Santos
et al., 2021

X Janić, 2015; Chen & Wang, 2019;
Wang et al., 2019; Zhou & Chen,
2020; de Jong & Lieshout, 2021;

X de Jong & Lieshout, 2021
WALKING X Loo & Leung, 2017; da Mata

Martins et al., 2019
WATERWAYS X Baroud et al., 2014

Table 2. Methodology used for the identification of spatial patterns of resilience.
Methodology Spatial pattern Reference

Areal definition of matrices of expenditure and
transport prices

Central/urban vs
peripheral/rural

Fernandes et al., 2019

Areal OD trip assignment Central/urban vs
peripheral/rural

da Mata Martins et al., 2019; Azolin
et al., 2020;

Different location of the
hazards

Donovan & Work, 2017; Büchel et al.,
2020; Sun et al., 2020

Areal/point accessibility measurement Central/urban vs
peripheral/rural

Chang & Nojima, 2001; Jiang et al.,
2018; Lu, 2018; Safitri & Chikaraishi,
2022

High vs low accessibility Chang & Nojima, 2001
Gravity model and percolation theory High vs low accessibility Ganin et al., 2017, 2019
Optimisation algorithm for best localisation and
response time

Central/urban vs
peripheral/rural

Matisziw et al., 2020

Routes detections and spatial network analysis Central/urban vs
peripheral/rural

Hara & Kuwahara, 2015

Different location of the
hazards

Mudigonda et al., 2019

Spatio-temporal analysis of disruption effect Central/urban vs
peripheral/rural

Tsapakis et al., 2012; Ferranti et al.,
2016

Distance decay (proximity)
to closest alternative
mode

Saberi et al., 2018; Younes et al., 2019;
Teixeira & Lopes, 2020; Yang et al.,
2022

Different location of the
hazard

Büchel et al., 2020

Spatial characteristics as explanatory variables or
conditions (e.g. observation subsets) in
econometric modelling

Central/urban vs
peripheral/rural

Zhu et al., 2016; Zhu et al., 2017;
Spyropoulou, 2020

High vs low accessibility Santos et al., 2021; Safitri & Chikaraishi,
2022

Distance decay (proximity)
to closest alternative
mode

Younes et al., 2019; Teixeira & Lopes,
2020; Cheng et al., 2021

Different location of the
hazards

Janić, 2015; Dawson et al., 2016
(extrapolation); de Jong & Lieshout,
2021
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with scarce accessibility and little infrastructural redundancy when disruptions sever
the main access links (Safitri & Chikaraishi, 2022).

(3) Distance decay (proximity) to closest alternative mode: This spatial pattern is specific
to bike-sharing service studies (Cheng et al., 2021; Saberi et al., 2018; Teixeira &
Lopes, 2020; Yang et al., 2022; Younes et al., 2019). Bike-sharing stations located
within a threshold radius from a public transport stop significantly increase the
redundancy of transport networks when disrupted. The detected thresholds are
1.2 km in Cheng et al. (2021) and 1 km in Saberi et al. (2018). Teixeira and Lopes
(2020) and Younes et al. (2019) found significant changes in bike-sharing ridership
within a catchment area with a radius of 400 meters from metro stations. Yang
et al. (2022) integrated the work of Saberi et al. (2018) and supported the 1 km
threshold but found it to be significant only for weekdays in the city of London,
suggesting bike sharing as an alternative mode of commuting when public trans-
port is disrupted.

(4) Different locations of hazards: Studies on the impacts of Hurricane Sandy (Donovan
& Work, 2017; Janić, 2015; Mudigonda et al., 2019) and Hurricane Irene (Zhu et al.,
2016, 2017) show that the closer a region is to the coast, the greater the impact on
the performance of transport networks. Interestingly, the impact is not necessarily
negative. Donovan and Work (2017) found that despite severe flooding, taxi trips
in lower Manhattan were significantly faster during the first four days after Hurri-
cane Sandy, suggesting that travel time benefited from local changes in demand
and alternative use of infrastructure until it was restored. Proximity to the seashore
is also a negative factor in the context of sea-level rise, as shown by Dawson et al.
(2016). However, the effects of sea-level rise can propagate to inner regions,
causing a cascade effect of congestion and delays (Sun et al., 2020).
The affected regions are not necessarily the ones directly affected by the disrup-
tion. Büchel et al. (2020) found that the 2017 Rastatt disruption in Germany led
to a significant increase in congestion and delays in Schaffhausen, Switzerland,
due to necessary rerouting along a different path. On the other hand, the Basel
area, which lies along the same path that passes through Rastatt, experienced a
significant reduction in congestion and average delays during the disruption
period.

4.2. Resilience influencing factors

We have identified the following main factors that influence the resilience of transport
networks: redundancy, provision of real-time information, institutional plans andmanage-
ment, climate change and intensity of disruptions, strengthening of infrastructure, con-
gestion and socio-economic indicators. Table 3 at the end of this section groups the
methodologies used to identify these resilience influencing factors.

(1) Redundancy: Redundancy is the most frequently detected factor that impacts resili-
ence and is found in 25 papers. This is not surprising, considering that redundancy is
one of the attributes used by Bruneau et al. (2003) and other scholars to define and
build the 4R methodological framework for resilience assessment. Regarding
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between-modes redundancy, bus services have been shown to be a significant
complement to disrupted metro services (Jin et al., 2014; Jiang et al., 2018).
Cycling serves as a complementary mode to both bus and metro services (Azolin
et al., 2020; Cox et al., 2011; Campisi et al., 2020; da Mata Martins et al., 2019).
The road transport complements metro and bus services during disruptions, and
vice versa (Cox et al., 2011; Ganin et al., 2017; Loo & Leung, 2017; Spyropoulou,
2020; Sun et al., 2020; Zhu et al., 2017). High-speed rail in China has been shown
to provide redundancy for air traffic during severe airport delays (Zhou & Chen,
2020). Similarly, walking complements road transport during severe disruptions
(Loo & Leung, 2017). However, it is important to note that between-modes redun-
dancy may also have negative side effects, such as increased congestion on alterna-
tive modes. For example, bike-sharing docks located close to metro stations improve
general resilience to metro disruptions but may suffer increased pressure along
specific routes (Yang et al., 2022). Similarly, car trips increase during public transport
strikes, despite increasing redundancy, leads to congestion and increased travel time
(Spyropoulou, 2020; Tsapakis et al., 2012). Therefore, walking and cycling policies, as
well as car-sharing/pooling, can increase resilience not only in terms of redundancy
but also in terms of robustness by keeping congestion low. However, it is important
to consider the limited range of walking and biking. To model their redundancy
potential, it is recommended to adopt maximum potential distances (Azolin et al.,
2020; da Mata Martins et al., 2019). Regarding within-mode (infrastructural) redun-
dancy2, both ground and underground infrastructural redundancy are significant
positive factors for private and public transport (Chang & Nojima, 2001; Ganin
et al., 2017; Lu, 2018; Mudigonda et al., 2019; Serulle et al., 2011). However, re-
routing potential may be offset by two main factors. First, infrastructure integration
may not always be feasible due to discrepancies, suggesting that standardisation of
infrastructure helps increase resilience (Woodburn, 2019). Second, re-routing should
be supported by real-time information to minimise performance losses (Loo &
Leung, 2017; Spyropoulou, 2020).

(2) Provision of real-time information: As anticipated, literature in the subsample indi-
cates that the provision of real-time data during a disruption increases resilience
(Loo & Leung, 2017). This suggests that quick responses from governments and
transport operators in sharing relevant information can enhance the overall level
of resilience. For example, during the 2014 Hong Kong protests of the “Occupy
Central Movement”, the government, transport operators, and other stakeholders
effectively shared real-time data, enabling citizens to make informed decisions
and reroute to alternative modes with known availability. Similar real-time monitor-
ing technologies have been suggested by Ferranti et al. (2016) for train networks
and by Yang et al. (2022) for bike-sharing networks. Ferranti et al. (2016) proposed
low-cost implementation of real-time monitoring to identify heat-related incidents
in the train network and intervene promptly to mitigate delays. Yang et al. (2022)
recommended dynamic geographical fleet management to redistribute pressure
among a larger number of stations and bicycles during disruptions of alternative
modes.

(3) Institutional plans and management: Institutional actions, both pre-disruption and
post-disruption, are often recommended to significantly contribute to the resilience
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of transport networks. In the case of disasters such as hurricanes or tsunamis,
Donovan and Work (2017), Hara and Kuwahara (2015), and Mudigonda et al. (2019)
suggest that identifying and reinforcing critical nodes and implementing quick
post-emergency responses can contribute to resilience and expedite recovery to
pre-disruption levels. For example, traffic management and evacuation planning
could have led to better results during the 2011 Japan tsunami by redirecting
traffic to more elevated areas (Hara & Kuwahara, 2015). Other types of recommended
government actions are found in the subset. Ferranti et al. (2016) found that heat-
related disruptions are concentrated in the first period of the summer season,
suggesting the implementation of mid-term mitigation actions to prevent similar
events in the following periods. Similarly to Yang et al. (2022) regarding geographical
fleet management, Matisziw et al. (2020) found that the geographical location of
patrols responding to car crashes is a significant positive factor, and that flexible
patrol locations, combined with data-driven accident anticipation, can enhance
road network resilience. In the air sector, de Jong and Lieshout (2021) found that inte-
gration at the European level, specifically in air traffic management or guaranteeing
overflight services, can offset performance degradation caused by air control strikes.
Evidence of additional performance decrease is found in cases where services of
overflight are not guaranteed. As expected, the provision of emergency aids during
disruptions such as the COVID-19 pandemic is expected to increase transport
network resilience and partially mitigate its negative effects (e.g. the number of pas-
sengers for airline operators, as seen in Santos et al., 2021). For multimodal networks,
redesigning and rescaling passenger shuttle services that feed into main train and bus
routes during a pandemic has been shown to better accommodate demand during
disruptions (Auad et al., 2021).

(4) Climate change and intensity of disruptions: As expected, the intensity of disrup-
tions is a significant factor contributing to a decrease in performance. Studies by
Janić (2015), Safitri and Chikaraishi (2022), Zhou and Chen (2020) and Zhu et al.
(2017) demonstrate that the stronger the intensity of the disruption, the greater
the drop in performance. These studies compare intensities by examining
different networks subjected to the same weather event (Janić, 2015; Safitri & Chi-
karaishi, 2022) or by considering different hazards affecting the same networks at
different times (Zhou & Chen, 2020; Zhu et al., 2017). Dawson et al. (2016) used
time-series analysis to find that high-emission scenarios leading to accelerated
climate change are estimated to significantly increase accidents on the southwest
English rail network, which is vulnerable to sea level rise due to its proximity to
the seashore.

(5) Strengthening of the infrastructure: Strengthening the infrastructure is identified
in the subset as a positive factor for building resilience. It not only increases the
physical resistance of the network but also enhances the density of the infrastruc-
ture, providing more accommodating links for users in the event of a disruption
(Lu, 2018; Matisziw et al., 2020; Mudigonda et al., 2019; Serulle et al., 2011; Wood-
burn, 2019). Fabella and Szymczak (2021) highlight that for rail networks strength-
ening of the infrastructure may be sufficient for dealing with small-scale
disruptions such as fallen trees, while larger events require quick and efficient
rerouting plans (e.g. Fikar et al., 2016). Mudigonda et al. (2019) emphasise that
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reinforcement actions should be anticipated through mitigation plans that identify
critical nodes and enhance local resilience. Similarly, Woodburn (2019) suggests
identifying infrastructure discrepancies and upgrading inferior infrastructure for
integrated rerouting.

(6) Congestion: As mentioned earlier, systematic congestion and high user flows have a
negative impact on the resilience of transport networks (Donovan & Work, 2017; Hara
& Kuwahara, 2015; Jiang et al., 2018; Wang et al., 2019). Congestion can also spill over
to alternative modes (Yang et al., 2022; Spyropoulou, 2020). Niu et al. (2022) further
supports the negative impact of pre-existing congestion and, in line with Hara and
Kuwahara (2015), points out that centrality topological features (representing infra-
structure density) are relevant for exacerbating congestion only in the case of unfor-
eseeable events like hurricanes. In other types of foreseeable events, such as the
carnival of Rio de Janeiro, the authors did not find any association between centrality
measures and performance degradation.

(7) Increase in socio-economic indicators: The last factor is related to the long-term
increase in countries’ socio-economic indicators. Tang et al. (2020) and Otuoze
et al. (2021) used historical macro-economic indicators to evaluate and predict
the resilience of transport networks in different cities in China and Nigeria,
respectively. Tang et al. (2020) employed various indicators, such as per capita
area of paved roads, passenger traffic per road and the number of accidents, to
build a layered network model and assess the extent to which these indexes con-
tribute to different aspects of resilience. They found that GDP growth alone is not
sufficient to explain transport resilience improvements, suggesting that economic
growth does not necessarily correspond to an increase in transport infrastructure
and service quality. Economic growth can also bring negative side effects, includ-
ing heavy urbanisation, increased user density and pressure on transport net-
works. Otuoze et al. (2021) noted that historical data on population, population
density, number and estimated length of roads and railways are good predictors
of traffic volume in congested cities like Kano and Lagos in Nigeria. Santos et al.
(2021) supports the idea put forth by Tang et al. (2020) and, by using data on air
passengers during the first wave of the Covid-19 pandemic in Brazil’s federal
states, indicate that historical improvement in social conditions is a significant
factor in explaining the decrease in airline ridership during the disruption. This
evidence, coupled with the increasing substitutability of long-haul trips with
virtual meetings, is a factor that air operators should consider to be prepared
for future risks.

5. Discussion and policy implications

The analysis of the real-data subsample showed the existence of common spatial patterns
that contribute to resilience. Central and urban zones were found to be more vulnerable
to disruptive events due to higher social, economic, and infrastructure density. However,
these areas also exhibited greater resilience by providing better redundancy and being
designated as “priority zones” with faster recovery times compared to outer areas. Simi-
larly, zones with lower accessibility were less vulnerable to disruptive events due to lighter
user flows, but they were also less resilient due to limited between-modes and
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infrastructural redundancy. Integration of bike sharing programmes with public transport
(PT) modes within a certain distance from PT stops was found to significantly enhance
overall resilience. Furthermore, resilience did not always align with the local dimension
of disruption. While proximity to disruption generally leads to a drop in performance,
countertrends such as increased performance due to changes in demand or the propa-
gation of disruptive effects to outer areas were also observed.

Table 3. Methodology used for the identification of resilience influencing factors.
Methodology Influential factor Reference

Areal/point accessibility measurement Redundancy Jiang et al., 2018 (bus to metro), Lu, 2018
(infrastructural redundancy);

Areal OD trip assignment Redundancy da Mata Martins, 2019 (bicycle to bus); Azolin
et al., 2020 (bicycle to bus); Sun et al., 2020
(bus to road network)

Institutional plans and
management

Auad et al., 2021

Areal OD trip assignment and event
detection

Institutional plans and
management

Donovan & Work, 2017

Congestion Donovan & Work, 2017
Bayesian Network Model Increase in socio-

economic indicators
Tang et al., 2020

Diff-in-Diff estimator-based prediction Institutional plans and
management

de Jong & Lieshout, 2021

Friability and vulnerability analysis Redundancy Mudigonda et al., 2019 (infrastructural
redundancy)

Institutional plans and
management

Mudigonda et al., 2019

Fuzzy inference Redundancy Serulle et al., 2011 (infrastructural redundancy)
Gravity model and percolation theory Redundancy Ganin et al., 2017 (metro to car, infrastructural

redundancy)
In-depth interviews and surveys, case
studies systematic analysis

Redundancy Woodburn, 2019 (infrastructural redundancy)
Provision of real time
information

Loo & Leung, 2017

Influential factors as explanatory variables
or conditions (e.g. observation subsets) in
econometric modelling

Redundancy Zhu et al., 2017 (bus to car); Younes et al., 2019
(bicycle to metro); Spyropoulou, 2020 (car to
bus and metro); Teixeira & Lopes, 2020 (bicycle
to metro); Zhou & Chen, 2020 (train to
airlines); Cheng et al., 2021 (bicycle to metro)

Institutional plans and
management

Santos et al., 2021

Climate change and
intensity of
disruption

Janić, 2015; Dawson et al., 2016 (extrapolation);
Zhu et al., 2017; Zhou & Chen, 2020; Safitri &
Chikaraishi, 2022

Congestion Niu et al., 2022
Increase in socio-
economic indicators

Santos et al., 2021

Optimisation algorithm for best localisation
and response time

Institutional plans and
management

Matisziw et al., 2020

Predictions based on machine learning
approaches

Increase in socio-
economic indicators

Otuoze et al., 2021

Routes detections and spatial network
analysis

Institutional plans and
management

Hara & Kuwahara, 2015

Congestion Hara & Kuwahara, 2015
Shortest path optimisation Redundancy Jin et al., 2014 (bus to metro);
Spatio-temporal analysis of disruption
effect

Redundancy Fuller et al., 2012 (bicycle to metro); Saberi et al.,
2018 (bicycle to metro); Teixeira & Lopes, 2020
(bicycle to metro); Yang et al., 2022 (bicycle to
metro); Younes et al., 2019 (bicycle to metro)

Stated preferences analysis Redundancy Campisi et al., 2020 (bicycle to bus)
Time series analysis Redundancy Cox et al., 2011 (bicycle to bus); Loo & Leung,

2017 (bus and walking to car)
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Regarding influential factors, the review identified several key factors correlated
with higher levels of resilience: (i) redundancy, (ii) provision of real-time information,
(iii) institutional plans and management, and (iv) strengthening of infrastructure. On
the other hand, climate change, intensity of disruptions, and systematic congestion
were found to have negative impacts. There was no consensus in the subsampled lit-
erature regarding the effect of economic indicators on resilience. While economic
growth often leads to improved transport infrastructure and services, it can also
bring negative side effects such as increased urbanisation and pressure on transport
networks. Further research is needed to study the specific effects of economic
indicators.

The findings on spatial patterns and influential factors align with the 4R theoretical
framework proposed by Bruneau et al. (2003). Placing the analysis within this framework
is expected, given its widespread use by scholars in the field. Figure 4 categorises the
findings based on the 4R framework, with positive effects represented by a green back-
ground, negative effects by a red background, and “increase in socio-economic indi-
cators” denoted by a yellow background, indicating the lack of a clear trend. This
graphical representation highlights the diverse contributions and impacts of different
spatial patterns and influencing factors on various attributes of resilience. It emphasises
the importance of considering multiple attributes of resilience, as focusing on only one
attribute may lead to incomplete and biased assessments that fail to capture the
offsets or synergies among different attributes. Given the existence of metrics that
focus on single attributes in the literature, this finding underscores the need for scholars
and policymakers to acknowledge the potential weaknesses and limitations of the metrics
used thus far. The findings reported in this review support several policy suggestions.
Firstly, adopting metrics that focus on different attributes of resilience is recommended.
Alternatively, when using a single-attribute approach is necessary, researchers should
provide a clear rationale for their choice or disclose the limitations associated with it. Fur-
thermore, Figure 4 demonstrates that influential factors can act specifically on certain resi-
lience attributes, which may be of interest to policymakers. For example, policymakers
aiming to increase the likelihood of fast recovery for road users in the event of a disrup-
tion may consider addressing systematic congestion and providing real-time information
to users. The importance of the local dimension of resilience should not be overlooked,
suggesting that specific local policies should be preferred over standardised resilience
plans. However, local effects can also impact outer regions, necessitating the integration
of local policies and governance structures to achieve resilience on a larger geographic
scale. Regarding the building of resilience, the review identified specific institutional
actions that can help offset performance drops caused by disruptions. These include
local reinforcement of critical nodes, the development of quick post-emergency traffic
plans, the establishment of geographically flexible fleets and intervention units and the
provision of financial aids.

Additionally, the review highlighted other influential factors that can be leveraged by
local policies to enhance resilience:

. Redundancy, both between modes and within modes, increases resilience.
Redundancy efforts should consider integration among alternatives, potential
negative spillovers such as induced congestion, and distance decays.
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Strengthening the infrastructure contributes to physical redundancy, bridging
infrastructure gaps and enabling different alternatives to integrate and build
more robust networks.

Figure 4. Sub-categorisation of the findings based on the 4R framework.
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. Provision of real-time data has a positive effect on transport network resilience, improv-
ing the speed of recovery and the efficiency of rerouting and user redistribution across
alternative modes.

. Systematic congestion exacerbates the negative effects of unexpected disruptions.
Negative impacts on transport resilience should be included in the planning of policies
aimed at mitigating congestion’s negative externalities.

. Worsening climate change is a significant negative factor for transport resilience.
Defining future risk scenarios, as suggested by Jaroszweski et al. (2014), can help
better understand the current level of transport resilience. The increasing intensity
of disruptions negatively affects resilience, necessitating the development of future
policies that focus not only on mitigation but also on adaptation (Zhang & Witlox,
2019) to build transport resilience.

6. Research gaps and future research strands

Although it was possible to place the empirical results in the context of the 4R framework,
real data only partially supports the “resilience triangle” as shown in Figure 2. Several
papers (Donovan & Work, 2017; Fabella & Szymczak, 2021; Hara & Kuwahara, 2015;
Janić, 2015; Janić, 2018; Loo & Leung, 2017; Mudigonda et al., 2019; Niu et al., 2022;
Zhu et al., 2016) attempted to graphically represent the performance of the network as
a function of time, but at least two main issues need to be highlighted.

The first issue relates to the challenge of finding an objective pre-disruption reference
point (Q(t1) in Figure 2). In empirical time series performance data, it is not trivial to find a
constant previous trend. For scheduled operations like bus, train, and airline services, the
reference point may be objectively set as the scheduled level of activity during the ana-
lysed time period (Janić, 2015; Janić, 2018). However, when analysing road traffic flow
data, speed data (Donovan & Work, 2017; Hara & Kuwahara, 2015; Mudigonda et al.,
2019; Niu et al., 2022; Zhu et al., 2016), or other types of data where there is no scheduled
level, the pre-disruption level is usually set as the last observation before the disruptive
event. Such a level may not necessarily be the 100% reference point as depicted in
Bruneau et al. (2003) representation. Examples such as weekly/monthly seasonality or
peak versus off-peak traffic make it difficult to define common trends. The pre-disruption
levels depend on the circumstances of the transport system at the moment of disruption,
and the calculation of resilience (as in Equation 1) is conditional on them.

The second issue relates to the recovery phase and the definition of “full recovery of
service” (Q(t3) in Figure 2), which seems challenging to determine when analysing empiri-
cal data. Should it be the same as the pre-disruption performance level depicted in Figure
2? Without a pre-set reference level, it may be difficult to determine t3 in Figure 2, i.e. the
time at which the event is totally overcome. The pre-disruption level is conditional on the
state of the transport system at the moment before the shock and on its operational vola-
tility, and not necessarily that state has to be reached again or be considered as the target
point. In a dynamic and ever-changing world, performance metrics aiming to return to
pre-disruption event performance may also seem to rely on an undesirable expectation.

We deem that investigating these methodological issues in future research is of utmost
relevance to support the widespread adoption of the methodological framework and
graphical representation of transport network resilience.

16 A. S. BERGANTINO ET AL.



Additional research directions are proposed to further investigate transport network
resilience and its existing challenges within empirical settings:

1. How can disruptive events be categorised for empirical analysis? There are several
types of disruptions, and every type of disruption has his own impact on transport per-
formance. Table 4 provides evidence of this heterogeneity summarising the disruption
types found in empirical studies. A first effort to categorise typologies has already been
done by van Cranenburgh et al. (2012), where substantial changes impacting mobility
are grouped according to the graduality, or abruptiveness, of the change and their
domain. Most of the paper we analysed belong to the “abrupt” class, except for
climate change (Dawson et al., 2016; Ferranti et al., 2016; Sun et al., 2020) and long-
term growth (Otuoze et al., 2021; Tang et al., 2020) related works. Starting from a
similar framework, it may be useful to further categorise impacts on transport net-
works performance based on specific sub-types of abrupt changes and study how
different shock conditions impact transport systems and their resilience attributes
(e.g. speed of recovery). Previous works (Mattsson & Jenelius, 2015 Dawson &
Marsden, 2019; Pan et al., 2021) have provided indications on different types of disrup-
tions, but no categorisation has been made that may help support disruption-specific
empirical frameworks of assessment.

2. How are different modes impacted by different types of disruptive events? One main
limitation of this study is the lack of isolation of mode-specific and methodology-
specific results. Spatial patterns and influencing factors are found transversally
between different modes and methodologies used, mainly for simplification and
clarity purposes. Only two of the reviews found in the literature (Bešinović, 2020;
Sun & Wandelt, 2021) considered mode-specific resilience attributes, and there is gen-
erally little discussion on mode-specific requirements in methodology and differences
in results. The same holds true for the mode class, and the different effects that disrup-
tions may have on individual or collective modes. Therefore, there is room for future
research to further study this aspect. Delving into the aspect of mode-specific,
mode class-specific differences in the results and methodologies used in empirical

Table 4. List of references by type of disruption.
Class of
disruption

Type of
disruption n References

INTERNAL
SHOCKS

Operational
failure

2 Sun et al., 2016; Lu, 2018

EXTERNAL
SHOCKS

Natural event 18 Chang & Nojima, 2001; Dawson et al., 2016; Hara & Kuwahara, 2015; Janić,
2015; Ferranti et al., 2016; Zhu et al., 2016; Donovan & Work, 2017; Zhu
et al., 2017; Janić, 2018; Mudigonda et al., 2019; Woodburn, 2019; Büchel
et al., 2020; Sun et al., 2020; Wang et al., 2020; Zhou & Chen, 2020; Fabella &
Szymczak, 2021; Niu et al., 2022; Safitri & Chikaraishi, 2022

Strikes 6 Fuller et al., 2012; Tsapakis et al., 2012; Saberi et al., 2018; de Jong & Lieshout,
2021; Spyropoulou, 2020; Yang et al., 2022

Pandemic 4 Campisi et al., 2020; Teixeira & Lopes, 2020; Auad et al., 2021; Santos et al.,
2021

Maintenance
work

2 Younes et al., 2019; Cheng et al., 2021

Incidents 1 Matisziw et al., 2020
Protest 1 Loo & Leung, 2017
Terroristic attack 1 Cox et al., 2011
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analysis would provide additional knowledge to better understand mode-specific,
mode class-specific – in combination with disruption-specific – resilience.

3. Is there a link between long-term increase in general well-being of societies (as
measuredby socio-economic indicators) andgrowth in transport resilience? The empiri-
cal results found in this study are contrasting, and further studies on this topic may help
define a specific trend direction. Within our pool of studies, only few delved into these
interconnections. Compiling a review following such research focus is expected to
provide more insights into the influence that economic growth may have on transport
resilience and vice versa. A similar survey may be relevant also from a return-on-invest-
ment perspective. Spatial disparities occur not only at the level of transport resilience
but also in terms of resilience planning investments. Examining the complex relation-
ships between economic growth, investments in resilience and the actual resilience
levels (as assessed by empirical resilience studies), while considering their spatial vari-
ations, may be of significant interest to transport practitioners.

4. Multimodal networks have received limited investigation with real data and perform-
ance metrics (in our sample, only 5 eligible papers are related to multimodal networks),
with many studies relying on topological metrics methodologies. The main barrier of
multimodal networks’ real data resilience studies is that it requires data integration
from different modes’ networks (e.g. metro and bus ridership data), a barrier that topo-
logical analysis do not encounter due to the static framework of their assessments
(network links and nodes). Smart cards and other types of modes data integration
are becoming more and more common (see, for example, tap data analysis by Auad
et al., 2021), giving researchers a great opportunity to set up multimodal network fra-
meworks of analysis. Given the increasing attention on multimodal networks’ resili-
ence, as already noted by Zhou et al. (2019), we recommend further empirical
investigation to better understand the effects of disruptions and the redundancy
dynamics within networks of networks.

7. Concluding remarks

Over the past few decades, the debate on transport network resilience has been exten-
sive, with many literature review papers shedding light on different interpretations
and metrics developed to describe and assess this concept numerically. However,
there has been relatively less attention given by reviews to the use of real data for resi-
lience assessment and related empirical results. This paper aims to bridge this gap by
providing an overview of the main spatial patterns and influencing factors that have
emerged from the empirical analysis of transport network resilience. By analysing
non-simulated data applications, it was possible to test the transport resilience theor-
etical framework and draw future strands of research based on identified issues and
inconsistencies.

We have identified spatial patterns (central/urban vs peripheral/rural; high vs low
accessibility; distance decay (proximity) to closest alternative mode; different location
of hazards) and influencing factors (redundancy; real-time information provision; insti-
tutional planning and management; climate change and intensity of disruptions;
strengthening of infrastructure; congestion; increase in socio-economic indicators) that
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empirical research suggests to have a significant effect on transport network resilience.
The empirical results are consistent with the 4R framework proposed by Bruneau et al.
(2003), which is often referenced in resilience studies. Both spatial patterns and influen-
cing factors contribute to or negatively affect one or more of the four resilience attributes
defined by the 4R framework. One key finding of this paper is that spatial patterns and
influencing factors can have contradictory effects on ultimate resilience, contributing to
or negatively affecting two or more attributes. Therefore, metrics that aggregate attri-
butes should be preferred over single-attribute metrics.

While the empirical results align with the attribute-based categorisation of resilience,
they only partially support the graphical pattern of resilience initially proposed by
Bruneau et al. (2003). Two main methodological issues arise when setting the pre-disrup-
tion reference performance (baseline) and post-disruption full recovery (target) points. In
empirical studies, it is challenging to define these points based on clear common trends of
pre-event performance. The starting and ending points of the disruptive event may not
necessarily represent the 100% reference point, as they are conditional on the system’s
state at the moment of disruption, making it difficult to differentiate the effects of the dis-
ruption on performance from the operational volatility of performance itself. The paper
highlights strengths and criticalities in transport network resilience from empirical
studies, offering insights for practitioners and future directions for researcher. In particu-
lar, future studies should focus on developing a comprehensive typology of different per-
turbation effects and on classifying mode- and mode class-specific disruptions’ impacts
on specific resilience attributes. Additionally, examining the link between economic
growth and transport resilience and integrating multiple modes (multimodal network)
in empirical assessments will contribute to our understanding and knowledge of the resi-
lience of transport networks.

Notes

1. We acknowledge that both spatial patterns and influencing factors identified are not fully
exhaustive in respect to what has been found in the entire transport resilience literature,
but they represent a set of interesting results found in the pool of studies we considered.

2. A network is considered to have high infrastructural redundancy when there are numerous
available paths that can be chosen to reach a destination.

3. Travel cost refers to the amount of families’ expenditures allocated to transportation (Fer-
nandes et al., 2019), rail operator loss of profits (Janić, 2018) and cost of users passenger in
terms of value of time (Janić, 2018; Safitri & Chikaraishi, 2022).
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