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Abstract 21 

Aquaporins (AQPs) are a family of transmembrane channel proteins responsible not only for the 22 

transport of water but also small uncharged molecules. The discovery of AQPs revolutionized the 23 

study of physiological water transport and, currently, AQPs are regarded as pivotal for both, tissue 24 

and cellular fluid homeostasis. Thirteen distinct isoforms have been identified in mammals 25 

(AQP0-12), being roughly classified into three main groups based on their homology for 26 

substrates and biophysical properties of molecular transport. Throughout the male reproductive 27 

tract, AQPs greatly enhance water transport across all biological barriers, providing a constant 28 

and expeditious movement of water and playing an active role in the regulation of water and ion 29 

homeostasis. This regulation of fluids is particularly important in the male reproductive tract, 30 

where proper fluid composition is directly linked with a healthy and competent spermatozoa 31 

production. For instance, in the testis, fluid regulation is essential for spermatogenesis and 32 

posterior spermatozoa transport into the epididymal ducts, while maintaining proper ionic 33 

conditions for their maturation and storage. On the other hand, alterations in the expression pattern 34 

of AQPs or their dysfunction is linked with male subfertility and infertility. Thus, AQPs are of 35 

considerable importance for male reproductive health. In this review, we will discuss the most 36 

recent data on the expression and function of the different AQPs isoforms in the human, mouse 37 

and rat male reproductive tract. In addition, the regulation of AQPs expression and dysfunction 38 

linked with male infertility will be discussed along with their potential pharmacological value. 39 

 40 

 41 

 42 
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 48 

1. Introduction 49 

Aquaporins (AQPs) are a family of transmembrane channel proteins responsible for the transport 50 

of water and a series of small uncharged molecules such as glycerol [1], urea [2], ammonia [3], 51 

hydrogen peroxide [4], some metalloids [5], small metabolites, like lactate and certain gases 52 

across biological membranes [6]. The discovery of AQPs in 1992, by Peter Agre and 53 

collaborators, revolutionized the study of cellular water transport. For the first time, a protein 54 

acting as a selective water pore was identified and characterized, not only in mammals but also 55 

in plants (Maurel et al, EMBO J 1993_PMID 8508761) and bacteria (Calamita et al, JBC 56 

1995_PMID 7493926). Meritoriously, Agre was laureated in 2003 with the Nobel Prize in 57 

Chemistry for his detailed study of the structure and function of AQPs [7]. Since then, thirteen 58 

distinct isoforms have been identified (AQP0-12) in mammals and grossly (Pedro this 59 

classification is by now outdated as it does not suit the real transport functions of the AQPs) 60 

classified into three main groups based on their homology and biophysical properties (Figure 1). 61 

Interestingly, all AQPs are tetramers of four pores, where each monomer establishes an 62 

independent pore. However, this tetrameric structure also assembles a fifth central pore, which is 63 

described with hydrophobic nature and whose size and biophysical properties vary among groups 64 

and even among isoforms of the same group [8]. The first group is constituted by the orthodox 65 

AQPs. Seven AQPs belong in the orthodox group: AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, 66 

and AQP8. Orthodox AQPs are described as selective to water molecules, although there are few 67 

exceptions. For instance, AQP6 was reported to be involved in the transport of Cl- under acidic 68 

conditions [9] and AQP8 has a role in the transport of ammonia and hydrogen peroxide, which 69 
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justify the designation of ammoniaporin or peroxiporin [10, 11]. The second group concerns to 70 

aquaglyceroporins and includes four homologues: AQP3, AQP7, AQP9, and AQP10. 71 

Aquaglyceroporins have a bigger pore size [12] and are permeable not only to water but also to 72 

small uncharged solutes, such as glycerol, urea, or hydrogen peroxide [13, 14]. The last group is 73 

constituted by the so-called unorthodox AQPs, AQP11 and AQP12, also known as 74 

superaquaporins. Superaquaporins present low homology in comparison to orthodox AQPs and 75 

aquaglyceroporins [15]. Moreover, superaquaporins are often localized in the membrane of 76 

intracellular organelles. Thus, it has been suggested that the role of AQP11 and AQP12 is mainly 77 

linked with intracellular water and glycerol transport, regulating organelles volume and 78 

homeostasis [16-18]. Further work is needed to fully understand the properties and biological 79 

relevance of AQP11 and AQP12. 80 

The transport of water through biological membranes is a vital process in cellular physiology, not 81 

only for tissue fluid homeostasis but also for intracellular processes. For instance, the regulation 82 

of water homeostasis is particularly important in the male reproductive tract for a healthy and 83 

competent spermatozoa production [19, 20]. In the testis, fluid regulation is essential for 84 

spermatogenesis and posterior transport of spermatozoa into the epididymal ducts, while 85 

maintaining proper conditions for their maturation. In the seminiferous tubules, fluid homeostasis 86 

is mainly regulated by Sertoli cells and partly by differentiating germ cells [21]. Indeed, it is 87 

estimated that 70% of cell volume is osmotically eliminated from the cytoplasm of spermatids 88 

during their differentiation into spermatozoa [22]. Subsequently, the maturation, concentration 89 

and storage of spermatozoa are associated with the secretion and absorption of fluid [23-25]. In 90 

this sense, AQPs greatly enhance water transport across all biological barriers, including in the 91 

male reproductive tract, while providing a constant and expeditious movement of water across 92 

tight junction barriers and playing an active role in the epithelial regulation of water homeostasis 93 

[26]. In this review, we will discuss the most recent data concerning the expression and function 94 

of the different AQPs isoforms in the human and rodent (mouse and rat) male reproductive tract. 95 
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In addition, the regulation of their expression and the association with male (in)fertility will be 96 

discussed. 97 

 98 

2. Aquaporins expression and functions throughout the male reproductive tract 99 

AQPs are widely expressed in the human male reproductive tract (Table 1). However, the data 100 

available concerning some isoforms are not consistent or even scarce. The presence of AQPs 101 

greatly differs among tissue regions and cell types, evidencing a complex regulatory and 102 

functional network. Besides, AQPs expression is generally disparate between mammals, with a 103 

few exceptions. Curiously, rodents (such as mouse and rat) share some similarities with humans, 104 

which has proven to be helpful as the majority of functional and knockout studies have been 105 

conducted in these species. Yet, only the first steps have been taken in order to elucidate the full 106 

extent of AQPs expression and function in human reproductive system. On the following topics, 107 

the most recent data concerning AQPs expression in the human reproductive system will be 108 

discussed, highlighting the putative function obtained from studies in humans and also rodent 109 

animal models. 110 

 111 

2.1. Aquaporin 0 (AQP0) 112 

Although not yet identified in the testicular environment of humans, the major intrinsic protein 113 

(MIP) of lens fiber, also known as AQP0, is predicted to be expressed in the human testis [27]. 114 

As an orthodox isoform, AQP0 is reported to mediate mostly water transport, although at a lower 115 

extent, when compared with other orthodox AQPs [28]. Besides, AQP0 is also reported to act as 116 

a cell-to-cell adhesion protein in the human eye, more properly in the lens fiber cells. In this 117 

tissue, AQP0 dysfunction is associated with cataractogenesis, both in humans and in knockout 118 

mice models [29, 30]. However, the consequences for the male reproductive system are unknown 119 

as it was not studied in these knockout mice models [30]. Nonetheless, Hermo et al. [31] identified 120 
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AQP0 in rat testis, more specifically in Leydig and Sertoli cells. In this study, the authors reported 121 

that the expression in Sertoli cells seems to be region-specific and stage-dependent, more 122 

specifically in a semicircular pattern at stages VI-VIII of the spermatogenic cycle. These results 123 

suggest a significant role in the transport of water into the lumen of the seminiferous tubules 124 

during specific stages of spermatogenesis, which are related to the release of elongating 125 

spermatids. Hence, AQP0 may improve the movement of spermatozoa into the epididymis by 126 

transporting water into seminiferous tubules. Interestingly, AQP0 is reported to be modulated by 127 

pH and Ca2+ [32, 33], which are tightly regulated in the testis and suggests that AQP0 might be 128 

important for proper fluid homeostasis in the seminiferous tubules.  129 

 130 

 131 

 132 

2.2. Aquaporin-1 (AQP1) 133 

AQP1 was in fact the first water channel discovered, while also the first described to act as a gas 134 

channel [34, 35]. AQP1 is widely expressed in humans, where it functions as a major water 135 

transporter. Besides, AQP1 is reported as crucial for angiogenesis, cell migration and cell growth 136 

[36]. AQP1 is expressed in the human testis, although restricted to the endothelial cells of blood 137 

vessels [37]. On the other hand, AQP1 is absent in germ cells and ejaculated spermatozoa [38]. 138 

Outside the testis, AQP1 was found in noncilitated epithelial cells of human efferent ducts and 139 

epididymis [39]. Based on its expression, it has been suggested that AQP1 plays a major role in 140 

the re-absorption of water to increase sperm concentration. Similarly to what was seen in humans, 141 

AQP1 is mainly expressed in rat efferent ducts and epididymis [40, 41], but not on murine 142 

spermatozoa [42]. In addition, AQP1 was also identified in the rete testis, vas deferens, prostate, 143 

and seminal vesicles from mouse [42].  144 

 145 
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2.3. Aquaporin-2 (AQP2) 146 

AQP2 is an arginine vasopressin-regulated AQP that is exclusively permeable to water. AQP2 is 147 

widely expressed in the kidney and it is well known that mutations on the gene encoding AQP2 148 

lead to severe forms of nephrogenic diabetes insipidus [43]. Thus, it is suggested that AQP2 main 149 

function specifies in water reabsorption in the kidney. However, AQP2 might not be specific for 150 

the kidney as it has been also found to be expressed in the human epididymis and seminal vesicles 151 

[44].  152 

In rodents, the expression of AQP2 is rather distinct. In mouse, AQP2 was found in the epithelial 153 

cells of the vas deferens and seminiferous tubules [45]. In rats, Stevens et al. [46] found that 154 

AQP2 is expressed in the ampulla of the vas deferens [46]. This pattern of expression led the 155 

authors to suggest that AQP2, similarly to AQP1, may have a role in water absorption in order to 156 

increase sperm concentration [46]. Besides, Arrighi et al. [41] identified AQP2 in the cauda of 157 

the epididymis of young rats and its expression appears to decrease with the transition into 158 

adulthood, which suggests a role in the post-natal development.  159 

2.4. Aquaporin-3 (AQP3) 160 

AQP3 is an aquaglyceroporin that is widely expressed in humans. AQP3 is reported to be 161 

permeable to several molecules besides water, such as glycerol, urea [6], and hydrogen peroxide 162 

[47, 48]. In the human reproductive system, AQP3 was identified at the basolateral membranes 163 

of the prostatic epithelium and in the seminiferous tubules [49]. In addition, AQP3 was predicted 164 

to be expressed in human seminal vesicles and epididymis [44]. In human spermatozoa, AQP3 is 165 

not only present but is also considered essential for its physiology and function. AQP3 is found 166 

in spermatozoa’s tail membrane and in its absence the male gamete exhibits alterations in volume 167 

regulation and excessive cell swelling when in the female reproductive tract [50, 51]. Therefore, 168 

as upon ejaculation spermatozoa experiences an osmotic decrease within the transition to the 169 

female reproductive tract, AQP3 was found to be crucial for spermatozoa osmoregulation. 170 
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Besides, AQP3 is reported to be responsive to the pH [52], further highlighting its function in 171 

osmoregulation and fluid dynamics.  172 

In mouse, AQP3 was also identified in the midpiece of spermatozoa [51]. Moreover, AQP3 was 173 

identified in mouse testis [53, 54]. More recently, we also identified AQP3 expression in the TM4 174 

cells, a cell line derived from a primary culture of mouse Sertoli cells [54]. In that study, the 175 

authors reported that not only AQP3 is expressed in mouse Sertoli cells, but also that it is 176 

important for the transport of glycerol in these cells. In rats, AQP3 was found to be expressed in 177 

the prostate [55] and in the epididymis, more specifically in the basal cells, suggesting a role in 178 

the transport of water and glycerol to the epididymal lumen during sperm maturation [31]. 179 

 180 

2.5. Aquaporin-4 (AQP4) 181 

Although present, limited data are available concerning the expression of AQP4 in the human 182 

male reproductive tract. Data from microarrays identified the expression of AQP4 in human 183 

seminiferous tubules, seminal vesicles, prostate and epididymis [56]. In rats, AQP4 was identified 184 

in the prostate [55] and Sertoli cells [57]. Interestingly, our group was able to report that AQP4 185 

physically interacts with CFTR, which suggests that AQP4 may play a role in water and ion 186 

homeostasis in seminiferous tubule and consequently in the constitution of seminiferous tubular 187 

fluid ionic content [57]. 188 

 189 

2.6. Aquaporin-5 (AQP5) 190 

In a similar mode to what happens with AQP4, the data available on the presence and function of 191 

AQP5 in the human male reproductive system is quite scarce. AQP5 is predicted to be present in 192 

the human testis, more specifically in germ cells and Leydig cells [44]. In rats, AQP5 is only 193 

present in the corpus and cauda of epididymis, but the relevance for male reproductive potential 194 

is not known yet [58].  195 
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 196 

2.7. Aquaporin-6 (AQP6) 197 

Contrariwise to other orthodox AQPs, the function of AQP6 is rather distinct. AQP6 is reported 198 

to be colocalized with the H+-ATPase in intracellular vesicles in the kidney, but not in the plasma 199 

membrane, suggesting that AQP6 may act as an intra-vesicle pH regulator [59]. Interestingly, in 200 

this same study Yasui and collaborators reported that AQP6 seems to be permeable to water only 201 

at acidic conditions or in the presence of HgCl2. Additionally, AQP6 is reported to transport urea, 202 

glycerol [60], and nitrate [61], which led some authors to classify this isoform as an unorthodox 203 

AQP. Nonetheless, there is no evidence that AQP6 is expressed in the human male reproductive 204 

tract. The sole evidence was obtained in rats, with AQP6 mRNA transcripts being identified in 205 

whole epididymis lysates, while its protein was not detected in the epididymal epithelial cells 206 

[58].  207 

 208 

2.8. Aquaporin-7 (AQP7) 209 

AQP7 is an aquaglyceroporin that is able to mediate the transport of water, glycerol, urea [62], 210 

ammonia, and arsenite [5]. AQP7 is mostly known for its expression in the adipose tissue, where 211 

it is reported to mediate the efflux of lipolytic glycerol [63, 64]. Herein, abnormal regulation of 212 

glycerol transport is associated with the development of metabolic disease, highlighting that an 213 

AQP7 dysfunction may be associated with obesity [65, 66] (here I would also cite the review 214 

Rodriguez et al 2015_PMID 26594198).  215 

In the human reproductive system, Saito et al. [67] identified AQP7 in the testis, more specifically 216 

in round and elongated spermatids, and in the tail of spermatozoa. Conversely, different studies 217 

reported different patterns of expression in human spermatozoa. While Moretti et al. [68] reported 218 

that AQP7 was indeed present in the tail and midpiece, Laforenza et al. [69] reported presence of 219 

AQP7 only in the head of human spermatozoa. In fact, there is evidence that different patterns of 220 
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expression or even the absence of AQP7 in human spermatozoa are linked with abnormal 221 

morphology and decreased motility, and thus infertility, which will be further discussed. 222 

In rats, AQP7 was identified in the seminiferous epithelium [62], round and elongated spermatids, 223 

residual bodies [70], and in the epididymis [58, 71]. Due to its pattern of expression, it was 224 

suggested that AQP7 may play a role in testis development (to insert ref 70, here) and in the 225 

reduction of cytoplasm during spermiogenesis [62]. Besides, AQP7 expression in the male 226 

reproductive tract was also reported to vary with age. Unlike AQP2, AQP7 expression seems to 227 

increase with the transition to adulthood [70]. In mouse, our group identified the expression of 228 

Aqp7 mRNA in the testis, although no expression was detected in Sertoli cells [54].  229 

 230 

2.9. Aquaporin-8 (AQP8) 231 

AQP8, a homologue with permeability to ammonia and hydrogen peroxide besides that of water, 232 

was firstly identified in the intracellular domains of the proximal tubule and the collecting ducts 233 

cells [72]. Although it is expressed in the plasma membrane, AQP8 is also found in the 234 

mitochondrial membrane (here, to insert Ferri et al Hepatology_PMID 14512882)[73], where, 235 

at least in hepatocytes, it is suggested facilitates the transport of hydrogen peroxide [4, 48] and 236 

ammonia (Soria et al Hepatology_PMID 23299935) rather than water (Calamita et al J 237 

Endocrinol_PMID 17210748).  238 

In the human male reproductive system, AQP8 appears to be expressed in the cytoplasmic 239 

compartment (in intracellular organelles or vesicles) of Sertoli cells and of spermatogonia and 240 

spermatids [38, 74]. The presence of this aquaporin in the plasma membrane was observed all 241 

germ cells and ejaculated spermatozoa, more specifically in the tail and midpiece [38]. 242 

Interestingly, in this same study the authors reported that the expression of AQP8 was transversal 243 

to all donors and it was not correlated with motility. As mature spermatozoa exhibits an increased 244 

mitochondrial activity, and thus high reactive oxygen species and hydrogen peroxide production 245 

[75], it was postulated that AQP8 facilitates their efflux minimizing the oxidative stress damage. 246 
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Similarly to the human, in rat testes, AQP8 is expressed in primary spermatocytes, elongated 247 

spermatids, Sertoli cells, and residual bodies [70, 76]. In fact, the expression of AQP8 in the 248 

plasma membrane of Sertoli cells was found at all stages of the seminiferous epithelium cycle 249 

suggesting relevance for AQP8 in fluid homeostasis in this epithelium [76, 77]. However, its 250 

expression in the epididymis is still inconclusive [72, 76]. Like AQP7, AQP8 has been suggested 251 

to exert a role in the reduction of cytoplasm during spermiogenesis. Additionally, its expression 252 

in the testes also seems to vary with age, increasing from 15 to 20 post-natal days [70, 78]. In 253 

mouse, few data are available on AQP8 expression and relevance in the male reproductive tract. 254 

This AQP was described in the mouse testis, more specifically in the residual cytoplasm of 255 

elongated spermatids [23]. No functional data are available. 256 

 257 

2.10. Aquaporin-9 (AQP9) 258 

AQP9 has been the focus of intensive research over the last years. AQP9 is thought to have a 259 

main role in transporting water, glycerol, and other solutes essential for sperm production and 260 

maturation [79]. AQP9 has been also reported to permeable to monocarboxylic acids, such as 261 

lactic acid and acetic acid, probably due to its larger pore size [80]. In the human reproductive 262 

system, AQP9 was found with low expression in the germinal epithelium, spermatocytes and 263 

Sertoli cells [38]. As lactate is a vital energetic substrate for germ cells and spermatogenesis [81], 264 

the presence of AQP9 in Sertoli cells indicates that this channel may help in the transport of 265 

lactate to the tubular fluid, sharing this role with the high expression of monocarboxylate 266 

transporters (MCTs) [82]. In addition, AQP9 was identified in the vas deferens, efferent ducts, 267 

more specifically on the apical membrane of nonciliated cells, and principal cells of the 268 

epididymis [83]. Based on its pattern of expression in this tissue, AQP9 is tought to play a role in 269 

fluid reabsorption and homeostasis. On the other hand, AQP9 is reported to be absent in human 270 

spermatozoa [38].  271 
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With some similarities with humans, AQP9 is reported to be expressed in Sertoli cells [84], 272 

Leydig cells, efferent ducts, all regions of epididymis, vas deferens, prostate, and coagulating 273 

gland of rats [76, 83]. In fact, there is evidence that AQP9 expression is cell-specific in the testis 274 

and region-specific in the efferent ducts and epididymis [76]. In mouse, our group recently 275 

identified the expression of AQP9 in both testis and Sertoli cells [54]. Additionally, we showed 276 

that AQP9 is the major aquaglyceroporin expressed in mouse Sertoli cells, where this isoform is 277 

essential to regulate the transport of water and glycerol. While widely distributed in the male 278 

reproductive tract of rodents, its expression in spermatozoa is still a matter of debate. Although 279 

AQP9 transcripts were found in mouse spermatozoa, immunoblotting did not confirm the result 280 

[23].  281 

 282 

2.11. Aquaporin-10 (AQP10) 283 

AQP10 is an aquaglyceroporin which seems to be specifically expressed in the human 284 

gastrointestinal tract and adipocytes [85, 86]. AQP10 is mainly responsible for water and glycerol 285 

transport, being highlighted in pair with AQP7 as a major glycerol transporter of adipocytes [87]. 286 

However, data concerning AQP10 in male reproductive tissues are still scarce. There is no 287 

evidence that AQP10 is expressed in the human male reproductive tract. In rats, AQP10 is 288 

expressed in the efferent ducts and epididymis [31]. Conversely, AQP10 is a pseudogene in mice 289 

and may lead to proteins without functional activity [88].  290 

 291 

2.12. Aquaporin-11 (AQP11) and Aquaporin-12 (AQP12) 292 

AQP11 is a relatively recent discovered isoform that has been classified as a superaquaporin. 293 

AQP11 is described as a water and glycerol channel that is mainly expressed in the vicinity of 294 

lipid droplets and in the endoplasmic reticulum membrane [18]. Few studies also addressed 295 

AQP11 expression and function in the human male reproductive system. AQP11 mRNA was 296 

identified in human testicular tissue [89]. Using immunocytochemistry techniques Laforenza et 297 
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al. [69] identified this channel in granules and vesicles of soma and in the plasma membrane of 298 

the tail of ejaculated human spermatozoa. Hence, the subcellular localization of AQP11 remains 299 

debatable.  300 

In rats, AQP11 was identified in the epididymis and testes [71]. Interestingly, Hermo et al. [90] 301 

reported that AQP11 expression varies with age, as this transmembrane protein expression was 302 

observed to decrease from young to adult rats. Additionally, AQP11 was identified in rat 303 

elongated spermatids and mouse testes [89]. However, as knockout Aqp11 animal models are not 304 

viable due to the development of polycystic kidney and subsequent premature death due kidney 305 

failure [91], few studies addressed AQP11 in the male reproductive tract and new methodologies 306 

are needed to further investigate the role of this superaquaporin in the reproductive health. 307 

Concerning AQP12, this isoform is reported to be exclusively expressed in acinar cells of the 308 

pancreas and, thus, absent from the male reproductive tract [92].  309 

 310 

3. Alteration of aquaporins expression is linked with male infertility 311 

As aforementioned, AQPs are widely distributed throughout the male reproductive tract and in 312 

male gametes. Their main functions comprise absorption/secretion dynamics in order to maintain 313 

the homeostasis of the reproductive system to produce healthy and functional spermatozoa. 314 

Specific expression patterns in cells, regions, variation with age, and evidence of compensatory 315 

mechanisms are indicators of a precise and complex mechanism of regulation and function. 316 

Besides, AQPs also play a role in accessory glands, contributing to the composition of seminal 317 

fluid [42, 83], and in spermatozoa adaptation phenomena after ejaculation, due to the variation of 318 

osmotic conditions [50]. Thus, AQPs are of extreme importance for the reproductive health and 319 

their dysfunction is related to reproductive disorders.  320 

Although data are scarce, there is evidence suggesting that alterations in the expression and 321 

function of these transport proteins are associated with subfertility or infertility [93]. Association 322 

between a deficit in AQP7 expression in spermatozoa and diminished quality and fertilizing 323 
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ability has been reported. In humans, it was found that spermatozoa from infertile individuals’ 324 

presents lower amounts or were devoid of AQP7. In addition, spermatozoa lacking AQP7 325 

presented significantly lower motility in comparison with spermatozoa exhibiting positive AQP7 326 

staining [38, 67]. In another study, Moretti et al. [68] also reported that AQP7 expression was 327 

diminished in morphologically abnormal spermatozoa. On the other hand, there are studies with 328 

a knockout Aqp7 animal model that may jeopardize those findings. Knockout mice for Aqp7 were 329 

described as fertile, without differences in testis morphology and with healthy functional 330 

spermatozoa [94]. Moreover, other study with knockout mice for Aqp7 reported that an 331 

upregulation of Aqp8 expression might have a compensatory effect [23]. Hence, further research 332 

is necessary to elucidate the role of AQP7 in the male reproductive health.  333 

Like AQP7, alterations in AQP3 and AQP8 expression were associated with reduced reproductive 334 

capability. It was found that a deficit of AQP3 led to impaired sperm motility and tail 335 

deformations [51]. Concerning AQP8, although few studies addressed its expression and function 336 

in spermatozoa, it has been reported that its expression is inversely correlated with the coiling 337 

degree of the tail, suggesting that this AQP may play a role in the adaptation to osmolality 338 

variations [38]. Additionally, Laforenza et al. [69] proposed that AQP8 malfunction could lead 339 

to hydrogen peroxide accumulation in the mitochondria, hence affecting sperm function. Still, no 340 

differences in AQP8 expression were found between fertile and infertile human individuals [38] 341 

and it was reported that knockout Aqp8 animal models remain fertile, which suggests a functional 342 

compensation [95]. Thus, the importance of AQP8 for the reproductive health requires further 343 

investigation. 344 

 345 

3.1. Hormonal regulation of aquaporins 346 

Hormonal alterations are a known factor linked with reduced male reproductive health and those 347 

alterations might be associated with altered AQPs expression and function. For instance, there is 348 

evidence that AQP1 and AQP9 are regulated by estrogens. In studies with knockout mice for 349 
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estrogen receptor α (Erα) it was found a reduced expression of AQP1 and AQP9 in the epididymis 350 

and efferent ducts, suggesting that estrogens may regulate the fluid absorption in these ducts. 351 

These animals also presented a fluid accumulation in efferent ducts with consequently testicular 352 

atrophy and infertility [96, 97]. In addition, in a recent study by our group, we found that AQP9 353 

is downregulated by increased estrogen levels in mouse Sertoli cells [54]. Besides, it was also 354 

reported that the administration of estrogens to rats reduces the expression of AQP9 in the 355 

epididymis, but these effects were reversed with the administration of testosterone [98]. Still in 356 

the epididymis, it has been reported that orchiectomized rats were devoid of AQP3 in basal 357 

epididymal cells. However, when testosterone was administrated a slightly restoration of AQP3 358 

expression was noticed, suggesting that testosterone can modulate the expression of AQP3 in the 359 

epididymis [31]. Curiously, similar effects were also reported for AQP9 expression [99], 360 

suggesting that estrogens would decrease specific isoforms of AQPs expression while 361 

testosterone administration would attenuate those effects. Nevertheless, there are contradictory 362 

data. Studies showed that while androgens do modulate AQP9 in the initial segment of the 363 

epididymis, estrogens did not alter its expression [100], or that estrogens administration increased 364 

AQP9 expression in efferent ducts [101]. These inconsistencies in the literature illustrate the 365 

complexity surrounding the regulation of AQPs. In sum, while there is evidence to support that 366 

AQPs are under hormonal regulation, few data are available and further research on the topic is 367 

required.  368 

 369 

3.2. Interactions between AQPs and CFTR 370 

Cystic fibrosis transmembrane conductance regulator, or CFTR, is a transmembrane channel 371 

protein responsible for the transport of Cl- and HCO3
-, regulating the ionic balance and pH in the 372 

tubular fluid [102, 103]. Mutations in CFTR are correlated with cystic fibrosis, a pathology related 373 

with infertility scenarios. CFTR is widely expressed and performs an essential role in the male 374 

reproductive tract, which requires a tight regulation of water and electrolytes in order to produce 375 
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healthy spermatozoa. In fact, mutations in CFTR can lead to anatomical abnormalities of the 376 

reproductive tract, mainly a congenital bilateral absence of the vas deferens and, consequently, 377 

infertility [104]. Although CFTR is not permeable to water, this protein acts as a regulator of 378 

other protein channels, such as AQPs. In fact, CFTR acts as a molecular partner of AQPs in 379 

epithelial cells, regulating fluid homeodynamics. For instance, our group described the expression 380 

of CFTR, AQP4 and AQP9 in cultured rat primary Sertoli cells [57, 84]. In this study we also 381 

investigated the physical interaction between CFTR and AQP4 and AQP9 in Sertoli cells. Taking 382 

advantage of co-immunoprecipitation techniques, we observed a molecular interaction between 383 

CFTR and both AQP4 and AQP9. Since AQP4 and AQP9 are reported as crucial for water and 384 

ion homeostasis in several tissues [23, 38, 98], it is also expectable that both these AQPs regulate 385 

water homeostasis in Sertoli cells and consequently inside the seminiferous tubules. Taken 386 

together, these results support the hypothesis that CFTR is, at least in Sertoli cells, a regulator of 387 

AQPs activity in water homeodynamics. Additionally, there is further evidence that CFTR 388 

interacts with AQP9. Both CFTR and AQP9 are co-localized in the luminal membrane of the 389 

principal cells in the epididymis of rat and humans [105, 106]. In fact, in vivo and in vitro 390 

inhibition of both AQP9 and CFTR reduced water permeability [105]. Thus, it has been suggested 391 

that CFTR may potentiate water permeability of AQP9 in the epididymal epithelium, which is 392 

essential for proper sperm maturation and movement. On a side note, it was also described that 393 

AQP7 and AQP8 are expressed with in a highly similar pattern with CFTR in the testis, 394 

highlighting a possible interaction [93, 107]. In support of this hypothesis, CFTR was co-localized 395 

with several other AQPs in different tissues, such as AQP1 and AQP5 in the pancreas [108]. 396 

Notwithstanding, it is still unclear how CFTR physically regulates AQPs function.  397 

 398 

3.3. Relevance of AQPs in obesity and metabolic diseases 399 

Obesity and metabolic syndrome have also been associated with impaired male reproductive 400 

function [82, 109, 110]. During obesity scenarios, there is not only an increased aromatization of 401 
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testosterone to estradiol [111, 112], but also an increased plasmatic concentration of free fatty 402 

acids and glycerol (for review [113]). High glycerol concentrations are responsible for the 403 

disruption of the homeostasis of the tubular fluid due to the impaired function of the blood-testis 404 

barrier, leading to the apoptosis of germ cells. Thus, while acute exposition to high concentration 405 

of glycerol could lead to temporary arrest of spermatogenesis, chronic exposition may result in 406 

permanent oligospermia or even azoospermia [114, 115]. Since aquaglyceroporins are 407 

responsible for the transport of glycerol, their function or expression might be altered in cases of 408 

obesity or, more in general in the metabolic syndrome. In fact, high-fat diet was already associated 409 

with increased AQP9 and decreased AQP1 expression in the epididymis [116]. In another study, 410 

Pei et al. [55] reported a decreased expression of AQP1, AQP3 and AQP4 in the prostate of 411 

diabetic rats. Still, much of the role of AQPs in male reproductive tract in obesity and metabolic 412 

syndrome cases is unknown and an interesting matter of investigation.  413 

 414 

3.4. Varicocele and possible role of AQPs 415 

It is worth mentioning that AQPs differential expression is also associated with varicocele. When 416 

comparing healthy individuals with those who suffer from idiopathic varicocele, it was found that 417 

AQP9 expression was reduced or absent in the primary spermatocytes and germ cells of the later 418 

(of the later?) [117]. Moreover, AQP1 was identified in Sertoli and germ cells of individuals 419 

suffering from varicocele, in opposition to the absence of this AQP in healthy individuals [39].   420 

 421 

4. Conclusion and future perspectives 422 

Since the discover of AQPs, the perspective on water transport has been revolutionized. AQPs 423 

are now the matter of intense research worldwide, where the elucidation of patterns of expression 424 

and function may lead to new therapeutic approaches for several diseases. Herein, we highlight 425 

that AQPs are widely distributed through the male reproductive tract, where these transmembrane 426 
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proteins are vital for a healthy spermatogenesis and the maintenance of fluid homeostasis. 427 

Expression patterns were found to be specific to cell and tissue regions, or even age of the 428 

individual, indicating a precise and complex mechanism of regulation and function. Indeed, AQPs 429 

are of extreme importance for the reproductive health and their malfunction is related to 430 

reproductive disorders. Nevertheless, the available data are not always consistent and few are the 431 

studies directly addressing the pathogenetic relevance of these channels in the male reproductive 432 

tract. In this sense, knockout animal models provide valuable evidence, despite of some 433 

differences among species. In sum, AQPs pattern of expression may indeed constitute one 434 

important biomarker for male reproductive health. Further studies are essential to clarify the role 435 

of AQPs in male fertility and how these channel proteins may be targets for future therapeutic 436 

interventions.   437 
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Figure Legend 772 

Figure 1 – Aquaporins classification based on their homology and biophysical properties. 773 

Currently, thirteen distinct isoforms have been identified in mammals (AQP0-12) and grossly 774 

classified into three main groups: orthodox, aquaglyceroporins and superaquaporins. Although 775 

high homology exists among homologues of the same group, each homologue may exhibit a 776 

different specificity in its permeability to solutes. 777 
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Table 1 – Male reproductive tract distribution and suggested functions of all aquaporin isoforms. 778 

Isoform Localization Putative function in male reproduction References 

AQP0 
Human testis* 

Rat Leydig and Sertoli cells 

Homeostasis of the tubular fluid; transport of water into the 

lumen of seminiferous tubules 
[27], [31] 

AQP1 

Human testis, efferent ducts and epididymis 

Rat efferent ducts and epididymis 

Mouse rete testis, vas deferens, prostate, and seminal vesicles 

Absorption of water and regulation of sperm concentration [37], [39], 

[40], [41], 

[42] 

AQP2 

Human epididymis* and seminal vesicles* 

Rat vas deferens and cauda of epididymis 

Mouse vas deferens and seminiferous tubules 

Absorption of water and regulation of sperm concentration; 

possible role in post-natal development 
[41], [44], 

[45], [46] 

AQP3 

Human prostate, seminiferous tubules, seminal vesicles*, 

epididymis*, and spermatozoa 

Rat epididymis and prostate 

Mouse Sertoli cells and spermatozoa 

Transport of water and glycerol to the epididymal lumen; 

regulation of spermatozoa volume and osmoadaptation in the 

uterine cavity 

[44], [49], 

[50], [51], 

[53], [54], 

[55] 

AQP4 

Human seminiferous tubules, seminal vesicles, prostate, and 

epididymis 

Rat prostate and Sertoli cells 

Water and ionic homeostasis 
[55], [56], 

[57] 

AQP5 
Human testis*, germ cells*, and Leydig cells* 

Rat corpus and cauda of epididymis 

Transport of water and small molecules 
[44], [58] 

AQP6 No evidence of expression - [58] 
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AQP7 

Human testis, round and elongated spermatids, and 

spermatozoa 

Rat seminiferous epithelium, round and elongated spermatids, 

residual bodies, and epididymis 

Transport of water, glycerol and small molecules; reduction of 

the cytoplasm during spermatogenesis; sperm motility 

[58], [62], 

[67], [68], 

[69], [70], 

[71] 

AQP8 

Human germ cells, Sertoli cells, spermatids, and spermatozoa; 

Rat testis, primary spermatocytes, elongated spermatids, Sertoli 

cells, and residual bodies 

Tubular fluid homeostasis; reduction of cytoplasm during 

spermiogenesis; release of hydrogen peroxide accumulated in 

spermatozoa mitochondria 

[38], [70], 

[74], [76], 

[77], [78] 

AQP9 

Human germ cells, spermatocytes, Sertoli cells, vas deferens, 

efferent ducts, and epididymis  

Rat Sertoli cells, Leydig cells, efferent ducts, epididymis, vas 

deferens, and prostate  

Mouse testis and Sertoli cells 

Water and glycerol transport; fluid reabsorption; possible role in 

the transport of lactate to the tubular fluid 
[38], [54], 

[77], [81], 

[82], [83], 

[84] 

AQP10 Rat efferent ducts and epididymis Water and glycerol transport [31] 

AQP11 

Human testis and spermatozoa 

Rat epididymis, testis, and elongated spermatids 

Mouse testis 

Water and glycerol transport 
[69], [71], 

[89], [90] 

AQP12 No evidence of expression - [92] 

*Predicted based on mRNA microarrays 779 


