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Small data solutions for the Euler-Poisson-Darboux
equation with a power nonlinearity
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Abstract

We study the Cauchy problem for the Euler-Poisson-Darboux equation, with a power nonlinearity:

utt − uxx +
µ

t
ut = tα |u|p , t > t0, x ∈ R ,

where µ > 0, p > 1 and α > −2. Here either t0 = 0 (singular problem) or t0 > 0 (regular problem). We show that this
model may be interpreted as a semilinear wave equation with borderline dissipation: the existence of global small

data solutions depends not only on the power p, but also on the parameter µ. Global small data weak solutions exist if

(p − 1) min
{

1, µ,
µ

2
+

1
p

}
> 2 + α.

In the case of α = 0, the above condition is equivalent to p > pcrit = max{pStr(1 + µ), 3}, where pStr(k) is the critical
exponent conjectured by W.A. Strauss for the semilinear wave equation without dissipation (i.e. µ = 0) in space
dimension k. Varying the parameter µ, there is a continuous transition from pcrit = ∞ (for µ = 0) to pcrit = 3 (for
µ ≥ 4/3). The optimality of pcrit follows by known nonexistence counterpart results for 1 < p ≤ pcrit (and for any

p > 1 if µ = 0).
As a corollary of our result, we obtain analogous results for generalized semilinear Tricomi equations and other

models related to the Euler-Poisson-Darboux equation.

Keywords: semilinear wave equations, semilinear Euler-Poisson-Darboux equation, semilinear Tricomi equations,
global existence, dissipation, critical exponent, Fujita exponent, Strauss exponent
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1. Introduction

In this paper, we study the existence of global-in-time small data (weak) solutions to the Cauchy problem for the
Euler-Poisson-Darboux ( E. P. D. ) equation with a power nonlinearity:utt − uxx +

µ

t
ut = f (u), t > t0, x ∈ R ,

u(t0, x) = u0(x) , ut(t0, x) = u1(x) .
(1)

Here µ > 0 and f (u) = |u|p or, more in general, f is locally Lipschitz-continuous and

f (0) = 0, | f (u) − f (w)| ≤ C |u − w|
(
|u|p−1 + |w|p−1) , (2)
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for some p > 1. The initial time t0 may be zero (singular Cauchy problem) or may be positive (regular Cauchy5

problem).
The study of the solution to the linear Cauchy problem, i.e., f = 0 in (1), goes back to the first investigations of

Euler [15], Poisson [49] and Darboux [12] for the singular problem (t0 = 0), and goes back to [4, 13] for the regular
problem (t0 > 0). Some blow-up results for (1) in the singular case t0 = 0 goes back to [32] (see also [35]), whereas the
study of the solution of the singular Cauchy problem for the E. P. D. equation with inhomogeneous term f = f (t, x)10

goes back to [64].
The term µt−1ut in (1) may be interpreted as a dissipation acting on the wave model, in the sense that the wave

energy

E(t) =
1
2
∥ut(t, ·)∥2L2 +

1
2
∥ux(t, ·)∥2L2 (3)

for the regular linear problem, i.e. f = 0 and t0 > 0 in (1), dissipates as t → ∞; in particular, E(t) ≤ C t−min{µ,2}

if (u0, u1) ∈ H1 × L2 (see [62]). The same effect appears for the damped wave equation utt − uxx + µut = 0, but15

in this latter case, E(t) ≤ C t−1, for any µ > 0. This decay profile is a consequence of the “diffusion phenomenon”
(see, for instance, [22, 25, 38, 40]): the asymptotic profile of the solution is described by the solution to the heat
equation µut − uxx = 0. The crucial difference is that the asymptotic profile of the solution to the E. P. D. equation is
described by the solution to the heat equation µut − tuxx = 0 only for sufficiently large µ.

A consequence of the diffusion phenomenon is that the critical exponent for global-in-time small data solutions20

to the semilinear damped wave equation utt − ∆u + ut = |u|p for t > 0 and x ∈ Rn, is 1 + 2/n (see [57]), the same
of the semilinear heat equation ut − ∆u = |u|p. By critical exponent pcrit we mean that global-in-time small data
solutions exist for p > pcrit in a suitable space, and, in general, do not exist for p ∈ (1, pcrit], under suitable data sign
assumptions. The study of these kind of problems has been originated by the pioneering paper of H. Fujita [16] about
the semilinear heat equation. In general, nonlinear phenomena may break the boot-strap argument which allows to25

prolong local-in-time solutions. H. Fujita investigated how this occurrence is prevented for sufficiently small initial
data if, and only if, the power nonlinearity is larger than a given threshold exponent.

The critical exponent remains 1 + 2/n also for the damped wave equation utt − ∆u + b(t)ut = |u|p, for a large class
of coefficients b(t) verifying tb(t)→ ∞ as t → ∞ (see [8]), in particular for b(t) = µ(1+ t)β, with µ > 0 and β ∈ (−1, 1)
(see [36, 41]). We stress that the critical exponent remains 1 + 2/n in the latter case, even if µ is very small.30

In the case µ = 0 in (1) (wave equation) the critical exponent is ∞, in the sense that no global-in-time solution
to (1) exists, for any p > 1, under a sign assumption on the initial data. On the other hand, for small data in suitable
functional spaces, global-in-time (weak) solutions exist for the wave equation utt−∆u = |u|p in space dimension n ≥ 2,
if p > pStr(n), where pStr(k) is the critical exponent conjectured by W.A. Strauss [53] (see also [54]), i.e., the solution
to (p − 1)γ(k, p) = 2, where we put35

γ(k, p) =
k − 1

2
+

1
p
. (4)

The conjecture was supported by the result obtained in the pioneering paper by F. John [29] in space dimension n = 3
and by the blow-up result obtained by R.T. Glassey [20] in space dimension n = 2. It was later proved in a series of
papers, see [28, 50, 51, 63] for blow-up results, and [1, 18, 19, 21, 33, 37, 55, 66] for existence results.

In our paper, we show that global-in-time (weak) solutions to (1) exist in L∞([t0,∞), Lp) for p > pcrit = max{pStr(1+
µ), 3}, for any µ > 0, under the assumption of small data, for both the singular and the regular problem. This shows40

a continuous transition with respect to µ from a shifted Strauss exponent pStr(1 + µ) for µ ∈ (0, 4/3] to the Fujita
exponent 3 for µ ≥ 4/3, typical of semilinear diffusive models.

In view of this effect, we may say that the dissipation t−1µut in (1) is borderline, and that the E. P. D. equation
bridges the gap between pure semilinear wave models (µ = 0) and semilinear dissipative wave models for which
the diffusion phenomenon holds. The transition from one model to the other is described by how pcrit shrinks as the45

dissipation parameter µ increases from zero up to some threshold.
The critical exponent of the regular problem for the multidimensional version of the E. P. D. equationutt − ∆u +

µ

t
ut = f (u), t ≥ t0 > 0, x ∈ Rn ,

u(t0, x) = u0(x) , ut(t0, x) = u1(x) .
(5)

2



is pcrit = max{pStr(n + 2), 1 + 2/n} (see [9], see also [7, 44]) in the special case µ = 2 (via the change of variable
w(t, x) = t u(t, x), the E. P. D. equation with µ = 2 reduces to a wave equation, see Remark 2.5). On the other hand, the
critical exponent for (5) is 1 + 2/n if µ is sufficiently large, in particular, if µ ≥ n + 2 (see [5]). Up to our knowledge,50

there is no corresponding result for the singular problem. For some results for global-in-time solutions for some
semilinear singular Cauchy problems for the multidimensional E. P. D. equation we address the reader to [59, 65].

The result in [9] leaded to the conjecture that the critical exponent for (5) is pcrit = max{pStr(n + µ), 1 + 2/n}, for
any µ > 0. That is, pcrit = 1 + 2/n for µ ≥ µ̄ and pcrit = pStr(n + µ) for µ ≤ µ̄, where

µ̄(n) = n − 1 +
4

n + 2
. (6)

M. Ikeda and M. Sobajima [26] obtained blow-up in finite time for (5) with f = |u|p if µ ≤ µ̄ and 1 < p ≤ pStr(n + µ)55

for suitable compactly supported data (see also [58]), strengthening the conjecture. Their result extended the blow-up
result obtained for 1 < p ≤ pStr(n + 2µ) by N.- A. Lai, H. Takamura, K. Wakasa in [34]. For lifespan estimates of the
local-in-time solutions we address the reader to [27, 30, 31, 60].

In this paper, we prove the above conjecture for (5) in space dimension n = 1, and we show the existence of
global-in-time small data solutions in L∞([t0,∞), Lp) for p > pcrit = max{pStr(1 + µ), 3} also for the more challenging60

singular problem with t0 = 0. Moreover, we extend this result to the E. P. D. equation with the more general right-hand
side tα f (u).

On the one hand, this generalization is of interest for the possibility to obtain, by a change of variable, results for
semilinear generalized Tricomi equations [56] wtt − t2ℓ wxx = f (w), setting µ = ℓ/(ℓ + 1) and α = 2µ, and for other
models related, like the semilinear modified E. P. D. equation. On the other hand, this generalization provides more65

insights about how the size of µ influences the critical exponent pcrit (see Remark 2.1).

2. Results

We consider both the singular problemutt − uxx +
µ

t
ut = tα f (u), t > 0, x ∈ R ,

u(0, x) = u0(x) , ut(0, x) = 0 ,
(7)

and the regular problem utt − uxx +
µ

t
ut = tα f (u), t ≥ t0 > 0, x ∈ R ,

u(t0, x) = 0 , ut(t0, x) = u1(x) .
(8)

We stress that the assumption ut(0, x) = 0 is natural for the singular problem, even in the linear case f = 0, whereas70

for the regular problem both initial data may be considered [4]. However, for this latter, we assume u(t0, x) = 0 for
brevity.

For both the singular problem (7) and the regular problem (8), we prove the existence of global-in-time small data
weak solutions (in L∞([t0,∞), Lp) or in L∞loc([t0,∞), Lp)) for p > pcrit, with

pcrit = max
{

1 +
2 + α

min{1, µ}
, pStr(1 + µ, α)

}
, (9)

for any α > −2, where pStr(k, α) is the solution, for a given k > 1, to75

(p − 1)γ(k, p) = 2 + α,

and γ(k, p) is given by (4). Explicitly,

γ(1 + µ, p) =
µ

2
+

1
p
, so that (p − 1)

(
µ

2
+

1
p

)∣∣∣∣∣
p=pStr(1+µ,α)

= 2 + α .
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Remark 2.1. We may interpret 1 + (2 + α)/min{1, µ} as a modified Fujita exponent, and pStr(1 + µ, α) as a modified,
shifted Strauss exponent. The modification in the exponent is related to the presence of the coefficient tα in front of
the nonlinearity f (u). The condition p > pcrit is equivalent to the inequality80

(p − 1) min
{

1, µ,
µ

2
+

1
p

}
> 2 + α, (10)

and is related to the L1 − Lp decay rate determined in Proposition 3.3 in §3 for the regular linear problem with starting
time s > 0: vtt − vxx +

µ

t
vt = 0, t ≥ s > 0, x ∈ R ,

v(s, x) = 0 , vt(s, x) = v1(x) .
(11)

Indeed, summing the power of s, and p times the power of t in (42) (ignoring the logarithmic terms), we find the
number

1 − (p − 1) min
{

1, µ,
µ

2
+

1
p

}
.

We mention that the role of the power of the parameter s in the decay estimate to determine pcrit does not appear in85

problems with constant coefficient. Due to the invariance for time translations, the decay rate for these problems with
starting time s is simply obtained replacing t by t − s in the problem with starting time 0.

Theorem 2.1. Let µ > 0, p > max{1, 1/µ}, and define q ∈ [1, p) such that

q = max{1, 1/µ} if
2
p
≥ min{µ, 2 − µ}, or

1
q
−

1
p
=
µ

2
, if

2
p
< min{µ, 2 − µ}. (12)

If
p − 1

p
≤ α + 2 < (p − 1) min

{
1, µ,

µ

2
+

1
p

}
, (13)

then there exists ε > 0 such that for any initial data90

u0 ∈ Lq ∩ Lp, with ∥u0∥Lq + ∥u0∥Lp ≤ ε, (14)

there is a unique global-in-time weak solution u ∈ L∞([0,∞), Lp), to (7). Moreover, the solution to (7) satisfies the
decay estimate

∥u(t, ·)∥Lp ≤ C g(1 + t)
(
∥u0∥Lq + ∥u0∥Lp

)
, with g(1 + t) = (1 + t)−min{1,µ, µ2+

1
p }+

1
p d1(t) d2(t) , (15)

where C > 0, is independent of t and of the initial data, and d1(t) and d2(t) are small loss terms determined as follows:
either d1 = 1 if µ , 1 or d1 = 1 + log(1 + t) if µ = 1; either d2(t) = 1 if 2/p , min{µ, 2 − µ}, or we may take
d2(t) = cδ (1 + t)δ for any small δ > 0 if 1 ≤ µ = 2 − 2/p, or d2(t) = 1 + (log(1 + t))1− µ

2 if 2/p = µ < 1.95

Remark 2.2. We notice that we may compute

−min
{

1, µ,
µ

2
+

1
p

}
+

1
p
=

−min{1, µ} + 1
p if 2/p ≥ min{µ, 2 − µ},

−
µ
2 if 2/p ≤ min{µ, 2 − µ},

in (15). The two cases above correspond to the behavior of the multiplier associated to the fundamental solution to the
linear regular problem at “intermediate frequencies” (see the proof of Proposition 3.3). They may also be considered
as the cases of:

• effective dissipation if 2/p ≥ min{µ, 2 − µ}; the decay rate is analogous to the L1 − Lp decay rate of a heat100

equation (for µ ≥ 1, this decay rate is t−1+ 1
p );

• non effective dissipation if 2/p ≤ min{µ, 2 − µ}; the decay rate is independent of p.
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Remark 2.3. As mentioned in Remark 2.1, the right-hand inequality in (13), i.e., (10), is equivalent to p > pcrit. The
left-hand inequality in (13) is equivalent to α ≥ −1 − 1/p. This condition is fundamental in the proof of Theorem 2.1
to avoid a non integrable singularity at t = 0. The interval in (13) is nonempty if, and only if, p > 1/µ when µ ∈ (0, 1)105

and this motivates the assumption p > max{1, 1/µ}. The fact that p > 1/µ also implies that q < p in (12), for
any µ > 0.

The condition α ≥ −1 − 1/p does not appear in the subsequent Theorem 2.2, since the Cauchy problem is regular
and there is no singularity at t = t0 > 0. We stress that when α < −1 − 1/p, estimate (17) is not necessarily a decay
estimate for p > pcrit. Indeed, for p ∈ (pcrit, 1/µ], g(t) = t

1
p−µ in (17) does not vanish as t → ∞. However, even if the110

norm ∥u(t, ·)∥Lp does not vanish as t → ∞ in this case, the function t−α decays sufficiently fast to imply the existence
of a global-in-time solution in L∞loc([t0,∞), Lp).

Theorem 2.2. Let µ > 0, α > −2 and p > pcrit, where pcrit is as in (9), or p > 1 if α ≤ −2. Then there exists ε > 0
such that for any initial data

u1 ∈ L1, with ∥u1∥L1 ≤ ε, (16)

there is a unique global-in-time weak solution u ∈ L∞loc([t0,∞), Lp), to (8). Moreover, the solution to (8) satisfies the115

estimate
∥u(t, ·)∥Lp ≤ C g(t) ∥u1∥L1 , with g(t) = t−min{1,µ, µ2+

1
p }+

1
p d1(t) d2(t), (17)

where C = C(t0) > 0, is independent of t, and of the initial data, and d1(t) and d2(t) are logarithmic loss terms
determined as follows: either d1 = 1 if µ , 1 or d1 = 1 + log(1 + t) if µ = 1; either d2(t) = 1 if 2/p , min{µ, 2 − µ},
or d2(t) = 1 + (log(1 + t))1− µ

2 if 2/p = min{µ, 2 − µ}.

Remark 2.4. Let us determine pcrit according to the value of µ and α > −2. We stress that120

1 +
2 + α

min{1, µ}
> pStr(1 + µ, α) ⇐⇒ min{1, µ} <

µ

2
+

1
pcrit

⇐⇒
2

pcrit
> min{µ, 2 − µ}.

It holds pcrit = pStr(1 + µ, α) if, and only if, α ≥ −1 and −α ≤ µ ≤ µ̄, where

µ̄ =
2(2 + α)

3 + α
. (18)

It holds pcrit = 3 + α if, and only if, either µ ≥ µ̄, when α > −1, or µ ≥ 1 when α ≤ −1. It holds pcrit = 1 + (2 + α)/µ
if, and only if, 0 < µ ≤ −α if α ∈ (−1, 0), or µ ≤ 1 if α ≤ −1.

If α = 0, then pcrit = max{pStr(1 + µ), 3}, and pcrit = pStr(1 + µ) if, and only if, µ ∈ (0, 4/3].

By the change of variable125

w(t, x) = u(Λ(t), x), where Λ(t) =
tℓ+1

ℓ + 1
, (19)

the singular Cauchy problem (7) for the E. P. D. equation is equivalent to the weakly hyperbolic semilinear Cauchy
problem for the generalized Tricomi equationwtt − t2ℓ wxx +

µ∗
t

wt = tα∗ f (w), t > 0, x ∈ R ,

w(0, x) = w0(x) , wt(0, x) = 0 ,
(20)

with ℓ > −1 and µ∗ > −ℓ, where

µ =
ℓ + µ∗
ℓ + 1

, α =
α∗ − 2ℓ
ℓ + 1

. (21)

Therefore, as a corollary of Theorem 2.1, we can prove the existence of global-in-time (weak) solutions to prob-
lem (20).130
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Corollary 2.1. Let ℓ > −1, µ∗ > −ℓ and p > max{1, (ℓ + 1)/(ℓ + µ∗)}. Assume that

p − 1
p

(ℓ + 1) ≤ α∗ + 2 < (p − 1) min
{
ℓ + 1, ℓ + µ∗,

ℓ + µ∗
2
+
ℓ + 1

p

}
, (22)

Let q ∈ [1, p) be such that

q = max
{

1,
ℓ + 1
ℓ + µ∗

}
if

2
p
≥
ℓ +min{µ∗, 2 − µ∗}

ℓ + 1
, or

1
q
−

1
p
=
µ

2
, if

2
p
<
ℓ −max{µ∗, 2 − µ∗}

ℓ + 1
. (23)

Then there exists ε > 0 such that for any initial data

w0 ∈ Lq ∩ Lp, with ∥w0∥Lq + ∥w0∥Lp ≤ ε, (24)

there exists a unique global-in-time weak solution w ∈ L∞([0,∞), Lp), to (20). Moreover, for any δ > 0, the solution
to (20) satisfies the decay estimate135

∥w(t, ·)∥Lp ≤ C g∗(1 + t)
(
∥w0∥Lq + ∥w0∥Lp

)
, with g∗(1 + t) = (1 + t)−min

{
ℓ+1,ℓ+µ∗,

ℓ+µ∗
2 +

ℓ+1
p

}
+ ℓ+1

p d1(t) d2(t), (25)

where C > 0, is independent of t, and of the initial data, and d1(t) and d2(t) are small loss terms determined as
follows: either d1 = 1 if µ∗ , 1 or d1 = 1 + log(1 + t) if µ∗ = 1; either d2(t) = 1 if 2/p , ℓ−max{µ∗,2−µ∗}

ℓ+1 , or we may take
d2(t) = cδ (1 + t)δ for any small δ > 0, if µ∗ ≥ 1 and 2

p =
ℓ+2−µ∗
ℓ+1 , or d2(t) = 1 + (log(1 + t))1− µ

2 if µ∗ < 1 and 2
p =

ℓ+µ∗
ℓ+1 .

For any α∗ > −2, the right-hand side of (22) is equivalent to p > pcrit, where

pcrit = max
{

1 +
2 + α∗

ℓ +min{1, µ∗}
, pStr

(
2ℓ + µ∗ + 1

ℓ + 1
,
α∗ − 2ℓ
ℓ + 1

)}
, (26)

and the left-hand side of (22) is equivalent to p ≤ 1 + (2 + α∗)/(ℓ − α∗ − 1) if ℓ > α∗ + 1.140

The nonexistence of global-in-time weak solutions to (20) for µ∗ = 0 and p ∈ (1, 1+(2+α∗)/ℓ], under suitable sign
condition on the data, is proved in Theorem 3.1 in [11]. In the special case µ∗ = α∗ = 0, Corollary 2.1 provides the
global existence of solutions to (20) in L∞([0,∞), Lp), for p > pcrit = 1 + 2/ℓ, and small data w0. The global-in-time
existence of small data solutions to (20) for p > 1 + 2/ℓ, in this special case µ∗ = α∗ = 0 has been recently proved
in [23], see also [17].145

Similarly, by the change of variable (19), the regular Cauchy problem (8) for the E. P. D. equation is equivalent to
the strictly hyperbolic semilinear Cauchy problem for the generalized Tricomi equationwtt − t2ℓ wxx +

µ∗
t

wt = tα∗ f (w), t ≥ t1 > 0, x ∈ R ,

w(t1, x) = 0 , wt(t1, x) = w1(x) ,
(27)

where µ and α are given by (21), t1 = Λ−1(t0) = ((ℓ + 1)t0)
1
ℓ+1 , and w1(x) = tℓ1 u1(x).

As a corollary of Theorem 2.2, we can prove the existence of global-in-time (weak) solutions to problem (27).

Corollary 2.2. Let ℓ > −1, µ∗ > −ℓ, α∗ > −2, and p > pcrit, where pcrit is as in (26), or p > 1 if α∗ ≤ −2. Then there150

exists ε > 0 such that for any initial data

w1 ∈ L1, with ∥w1∥L1 ≤ ε, (28)

there exists a unique global-in-time weak solution w ∈ L∞loc([t1,∞), Lp), to (27). Moreover, the solution to (27) satisfies
the estimate

∥w(t, ·)∥Lp ≤ C g∗(t) ∥w1∥L1 , with g∗(t) = t−min
{
ℓ+1,ℓ+µ∗,

ℓ+µ∗
2 +

ℓ+1
p

}
+ ℓ+1

p d1(t) d2(t), (29)

where C > 0, is independent of t, and of the initial data, and d1(t) and d2(t) are logarithmic loss terms determined
as follows: either d1 = 1 if µ∗ , 1 or d1 = 1 + log(1 + t) if µ∗ = 1; either d2(t) = 1 if 2/p , ℓ−max{µ∗,2−µ∗}

ℓ+1 , or155

d2(t) = 1 + (log(1 + t))1− µ
2 if 2

p =
ℓ−max{µ∗,2−µ∗}

ℓ+1 .
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Remark 2.5. By the change of variable v(t, x) = tβ w(t, x), Cauchy problem (27) with f (w) = |w|p is equivalent tovtt − t2ℓ vxx +
µ◦
t

vt +
m
t2 w = tα◦ |v|p, t ≥ t1 > 0, x ∈ R ,

v(t1, x) = 0 , vt(t1, x) = v1(x) ,
(30)

where µ◦ = µ∗ − 2β, m = −β(µ◦ + β− 1) and α◦ = α∗ − β(p− 1), and we put v1(x) = tβ1 w1(x). Therefore, Theorem 2.2
may be easily applied to obtain the existence of global-in-time small data weak solutions to (30). For the ease of
reading, we postpone the details to §5.160

The equation in (30) is called modified E. P. D. equation when ℓ = 0 and β = µ/2 (see [4]). It is also called wave
equation with scale-invariant mass and dissipation when ℓ = 0 and β < µ/2. For several studies on this model and its
multidimensional version, we address the reader to [3, 10, 14, 42, 43, 45, 46, 47, 48] and the references therein.

3. Estimates for the linear problem

The E. P. D. equation is not invariant by time-translation, due to the time-dependent coefficient µt−1 in front of ut.165

For this reason, we study the regular linear Cauchy problem (11), where the starting time is a parameter s > 0, in view
of the application of Duhamel’s principle to both the inhomogeneous singular and regular Cauchy problems.

The dependence on the parameter s of the estimates obtained for the solution to (11) plays a crucial role in the
argument employed to prove the existence of global-in-time solutions: a precise evaluation of the dependence on the
parameter s in the estimates is fundamental to find the critical exponent in the application to the semilinear problem170

(see Remark 2.1).
In order to prove our results, we will use the following multiplier theorem.

Proposition 3.1. [see [39, Theorem 4.2] and the references therein] For any ξ ∈ R, let

m(ξ) = ψ(|ξ|) |ξ|−ke±i|ξ|,

where k > 0 and ψ ∈ C∞ vanishes near the origin and is 1 for large values of |ξ|. Then m ∈ Mp
q if, and only if,

1/q − 1/p ≤ k when 1 < q ≤ p < ∞, and if, and only if, 1/q − 1/p < k, when q = 1 or p = ∞.175

We say that m is a multiplier in Mp
q , for some 1 ≤ q ≤ p ≤ ∞ if for any f ∈ Lq it holds Tm f = F−1(m f̂ ) ∈ Lp; the

quantity
∥m∥Mp

q
= sup
∥ f ∥Lq=1

∥Tm f ∥Lp , (31)

is a norm on Mp
q . In particular, Mp

p ⊂ M2
2 = L∞ and Mp

1 = F(Lp) for p > 1 (see [24, Theorem 1.4]).
To write the Fourier transform with respect to the space variable, of the fundamental solution to (11), we will use

the Bessel functions of first kind, whose definition by series is180

Jρ(z) =
∞∑

m=0

(−1)m

m!Γ(m + ρ + 1)
(z/2)2m+ρ, (32)

for ρ , −1,−2, . . . ,. We will also use the asymptotic expansion (see [61, §7.21]) of the Bessel functions Jρ(z) for
large values of z,

Jρ(z) = (zπ/2)−
1
2 cos(z − ρπ/2 − π/4) R|ρ|,0(z) − (zπ/2)−

1
2 sin(z − ρπ/2 − π/4) R|ρ|,1(z), where

R|ρ|, j(z) =
∞∑

m=0

(−1)m(|ρ|, 2m + j)(2z)−2m− j.
(33)

In particular,

|Jρ(z)| ≤

C zρ for z ∈ (0, 1],
C z−

1
2 for z ∈ [1,∞).

(34)
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3.1. Estimates for the linear singular problem
Before studying how the parameter s influences the estimates for problem (11), by straightforward calculations185

we obtain Lq − Lp estimates for the singular linear Cauchy problemvtt − vxx +
µ

t
vt = 0, t > 0, x ∈ R ,

v(0, x) = v0(x) , vt(0, x) = 0 .
(35)

Proposition 3.2. Let µ > 0, p ∈ (1,∞) and q ∈ [1, p]. Assume that 1 − 1/p < µ/2 if q = 1, or that 1/q − 1/p ≤ µ/2
otherwise. Then the solution to (35) verifies the following Lq − Lp decay estimate:

∥v(t, ·)∥Lp ≤ C t−
1
q+

1
p ∥v0∥Lq , (36)

for some C > 0, independent of t.

Proof. Let K(t) be the fundamental solution to (35). The Fourier transform of K(t) with respect to the space variable x190

solves the Cauchy problem K̂tt + ξ
2K̂ +

µ

t
K̂t = 0, t > 0,

K̂(0) = 1 , K̂t(0) = 0 .
(37)

The equation in (37) is equivalent to a Bessel’s differential equation [61, §4.3] of order ±ν, where ν := (µ − 1)/2:

τ2y′′ + τy′ + (τ2 − ν2)y = 0 , τ > 0. (38)

Indeed, if we define τ = t|ξ| and w(t|ξ|) = K̂(t), then Cauchy problem (37) may be written asw′′ + w +
µ

τ
w′ = 0, τ > 0 ,

w(0) = 1 , w′(0) = 0 .
(39)

The equation in (39) becomes the Bessel’s differential equation (38), if we put y(τ) = τν w(τ). Therefore, the solution
to (39) is195

w(τ) = 2ν Γ(1 + ν) τ−ν Jν(τ),

since it verifies w(0) = 1 and w′(0) = 0; replacing τ = t|ξ|, we get (see also [2])

K̂(t) = 2ν Γ(1 + ν) (t|ξ|)−ν Jν(t|ξ|). (40)

By homogeneity,
∥K̂(t)∥Mp

q
= t−

1
q+

1
p ∥K̂0∥Mp

q
,

where we put K0 = K(1), so that it is sufficient to prove that K̂0 ∈ Mp
q if 1/q−1/p ≤ µ/2 when q > 1, or if 1−1/p < µ/2

when q = 1.
Indeed, these statements immediately follow by the explicit expression (see [52])200

K0 = c1,µ (1 − x2)−1+ µ
2

+ ,

thanks to Young’s theorem on convolution. However, we may also provide an alternative proof which only relies
on the expression of K̂0, to emphasize the differences with the strategy employed to derive the analogous estimates
for (11).

Let χ ∈ C∞c , even, be such that χ = 1 in a neighborhood of the origin, say χ(ξ) = 1 for ξ ∈ [0, 1/2] and χ(ξ) = 0
for ξ ≥ 1.205

We first prove that K̂0χ ∈ Mp
q , for any q ∈ [1, p]. By (34) we find that K̂0χ is bounded. Using the property of the

Bessel functions zJ′ρ = −ρJρ + z Jρ−1, we obtain

∂ξJρ(|ξ|) = J′ρ(|ξ|) signξ =
(
− |ξ|−1ρJρ(|ξ|) + Jρ−1(|ξ|)

)
signξ, (41)
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so that, recalling that χ is supported in {ξ : |ξ| ≤ 1} and it is smooth, we derive∣∣∣∂ξ(K̂0(ξ)χ(ξ)
)∣∣∣ ≤ C |ξ|−1.

If q = p, by Mikhlin-Hörmander theorem (see [24, Theorem 2.5]), we obtain K̂0χ ∈ Mp
p for any p ∈ (1,∞). Due to

χ ∈ C∞c , it also follows (see [24, Theorem 1.8]) that K̂0χ ∈ Mp
q for 1 ≤ q < p < ∞.210

To prove that (1 − χ)K̂0 ∈ Mp
q if 1/q − 1/p ≤ µ/2 when q > 1, or if 1 − 1/p < µ/2 when q = 1, we rely on

Proposition 3.1. Indeed, it is sufficient to use (33), and to notice that |ξ|−ν−k ei|ξ| (1 − χ) ∈ Mp
q for any 1 ≤ q ≤ p ≤ ∞

if k = 1, 2, . . ., whereas |ξ|−ν ei|ξ| (1 − χ) ∈ Mp
q if, and only if, 1 − 1/p < µ/2 if q = 1, or 1/q − 1/p ≤ µ/2, otherwise.

This concludes the proof.

3.2. Estimates for the linear regular problem depending on the parameter s215

For the sake of brevity, we only consider L1 − Lp estimates for the solution to (11), since these estimates will be
used to prove Theorems 2.1 and 2.2. More general Lq − Lp estimates may be obtained by minor modifications. For
some Lp′ − Lp estimates, with 2 ≤ p < ∞ and p′ = p/(p − 1), we address the reader to [62, Theorem 3.5].

Proposition 3.3. Let µ ∈ R and p ∈ (1,∞]. Then the solution to (11) verifies the following L1 − Lp estimate:

∥v(t, ·)∥Lp ≤ C (t/s)−min{1,µ, µ2+
1
p } t

1
p d1(t/s) d2(t/s) ∥v1∥L1 , (42)

for some C > 0, independent of s, t, where d1(t/s) and d2(t/s) are logarithmic loss terms determined as in Theorem 2.2:220

either d1 = 1 if µ , 1, or d1(t/s) = 1 + log(1 + t/s) if µ = 1; either d2 = 1 if 2/p , min{µ, 2 − µ} or d2(t/s) =
1 + (log(t/s))1− 1

p if 2/p = min{µ, 2 − µ}.

Remark 3.1. It is sufficient to prove Proposition 3.3 for µ ≥ 1. Indeed, let µ ∈ (−∞, 1) in (11). If we define

v♯(t, x) = tµ−1 v(t, x) , and µ♯ = 2 − µ , (43)

then Cauchy problem (11) becomesv♯tt − v♯xx +
µ♯

t
v♯t = 0, t > s , x ∈ Rn ,

v♯(s, x) = 0, v♯t (s, x) = s1−µ♯ v1(x).
(44)

Applying Proposition 3.3 to (44) with µ♯ > 1, we obtain the statement of Proposition 3.3 for µ < 1.225

Proof. Let K = K(t, s) be the fundamental solution to (11). The Fourier transform of K with respect to the space
variable solves the problem K̂tt + ξ

2K̂ +
µ

t
K̂t = 0, t > s,

K̂(s, s) = 0 , K̂t(s, s) = 1 .
(45)

If we set
τ = t|ξ|, σ = s|ξ|, w(t|ξ|) = K̂(t, s),

we find the equivalent problem w′′ + w +
µ

τ
w′ = 0, τ ≥ σ ,

w(σ) = 0 , w′(σ) = |ξ|−1 .
(46)

If we put ν := (µ − 1)/2 and y(τ) = τν w(τ), then from (46) we obtain the following Cauchy problem for the Bessel’s230

differential equation (38) of order ±ν:τ2y′′ + τy′ + (τ2 − ν2)y = 0 , τ ≥ σ ,

y(σ) = 0, y′(σ) = sσν−1.
(47)
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We assume that ν > 0 is not an integer, that is, µ > 1 is not an odd integer. Then a system of linearly independent
solutions to (47) is given by the pair of Bessel functions (of first kind) J±ν(τ). Hence, we put

y = C+(σ) Jν(τ) +C−(σ) J−ν(τ).

We postpone the case where ν is an integer to the end of the proof. In that case, we use a different system of linearly
independent solutions to (47). However, only minor changes appear, unless ν = 0, that is, µ = 1.235

Recalling that the Wronskian satisfies [61, §3.12]

W[Jν, J−ν](σ) = Jν(σ)J′−ν(σ) − J′ν(σ)J−ν(σ) =
−2 sin(νπ)

πσ
,

we obtain the solution
y =

π

2 sin(νπ)
(
J−ν(σ)Jν(τ) − Jν(σ)J−ν(τ)

)
sσν,

so that, replacing σ = s|ξ| and τ = t|ξ|, we find

K̂(t, s) =
π

2 sin(νπ)
(
J−ν(s|ξ|)Jν(t|ξ|) − Jν(s|ξ|)J−ν(t|ξ|)

)
sν+1 t−ν.

We now want to estimate the multiplier norm (31) of K̂(t, s), depending on both s, t.
We define a = s/t ∈ (0, 1]. By a dilation argument, for any t > 0 it holds240

∥K̂(t, s)∥Mp
1
= s t−1+ 1

p ∥K̂a∥Mp
1
, (48)

where
K̂a(ξ) =

π

2 sin(νπ)
aν

(
J−ν(a|ξ|)Jν(|ξ|) − Jν(a|ξ|)J−ν(|ξ|)

)
. (49)

Incidentally, we notice that, using Euler’s reflection formula, for any given ξ,

K̂a(ξ) ∼
π

2 sin(νπ)
2ν |ξ|−ν

Γ(1 − ν)
Jν(|ξ|) =

1
2

K̂0(ξ), as a→ 0,

with K̂0 as in the proof of Proposition 3.2. First, we consider the easier case p ≥ 2.
For |ξ| ≤ 1, K̂a is uniformly bounded with respect to a; indeed, thanks to (34),

|K̂a(ξ)| ≤ C aν
(
a−ν + aν

)
≤ 2C.

Let |ξ| ∈ [1, a−1]. In this case, using (34), noticing that a|ξ| ≤ 1 ≤ |ξ|, we obtain245

|K̂a(ξ)| ≤ C |ξ|−ν−
1
2 = C |ξ|−

µ
2 .

On the other hand, for |ξ| ∈ [a−1,∞), we use (34) to estimate

|K̂a(ξ)| ≤ C aν−
1
2 |ξ|−1 = C a

µ−2
2 |ξ|−1.

In all the above estimates, C > 0 is independent of a. By the Hausdorff-Young inequality, we have ∥K̂a∥Mp
1
≤ C ∥K̂a∥Lp′ ,

where p′ = p/(p − 1). Hence, we obtain

∥K̂a∥Mp
1
≤ C1 +C2

( ∫ a−1

1
|ξ|−

µ
2 p′ dξ

) 1
p′
+C3 a

µ−2
2

( ∫ ∞

a−1
|ξ|−p′ dξ

) 1
p′
≤ C1 + C̃3a

µ
2−

1
p′ +


C̃2 a

µ
2−

1
p′ if p′ < 2/µ,

C̃2 (− log a)
1
p′ if p′ = 2/µ,

C̃2 if p′ > 2/µ.

The first and the second term are dominated by the latter one in the sum above, so that we conclude

∥K̂a∥Mp
1
≤


C a

µ
2−

1
p′ if 1 − 1/p > µ/2,

C (log(e + 1/a))
1
p′ if 1 − 1/p = µ/2,

C if 1 − 1/p < µ/2,

(50)

10



with C > 0, independent of a. Now let p ∈ (1, 2). In order to prove (50) it is sufficient to prove that ∥K̂a∥Mp
1
≤ C,250

since 1 − 1/p < 1/2 ≤ µ/2.
In this case, we cannot use the Hausdorff-Young inequality, so we follow the proof of Proposition 3.2. However,

in order to take into account of the influence from the parameter a, we fix three localizing functions χ0, χ1, χ2 ∈ C
∞,

with the following properties:

• χ0(ξ) = 1 for |ξ| ≤ 1/2, and χ0 is supported in the “low frequencies zone” {ξ : |ξ| ≤ 1};255

• χ2(ξ) = 1 for a|ξ| ≥ 2, and χ2 is supported in the “high frequencies zone” {ξ : a|ξ| ≥ 1}, say χ2 = 1−χ0(a|ξ|/2);

• it holds 1 = χ2
0 + χ

2
1 + χ

2
2; in particular, χ1 is supported in the “intermediate frequencies zone” {ξ : 1/2 ≤ |ξ| ≤

2a−1}.

Then (50) follows, if we prove that ∥K̂aχ
2
j∥M

p
1
≤ C, for j = 0, 1, 2.

Thanks to Young inequality,260

∥K̂aχ
2
0∥Mp

1
≤ C∥F−1(K̂aχ

2
0)∥Lp .

The function K̂aχ
2
0 is continuous and compactly supported. Using (41) and

∂ξJρ(a|ξ|) = a J′ρ(a|ξ|) signξ =
(
− |ξ|−1ρJρ(a|ξ|) + aJρ−1(a|ξ|)

)
signξ,

we derive ∣∣∣∂ξ(K̂a(ξ)χ2
0(ξ)

)∣∣∣ ≤ C |ξ|−1,

with C independent of a. Proceeding as in the proof of Proposition 3.2, by Mikhlin-Hörmander theorem, it follows
that ∥K̂aχ

2
0∥M

p
1
≤ C, with C > 0, independent of a, for any p > 1.

To deal with the intermediate frequencies, we use different multiplier estimates for J±ν(a|ξ|) and J∓ν(|ξ|), noticing265

that

∥K̂aχ
2
1∥Mp

1
≤

π

2 sin(νπ)
aν

(
∥J−ν(a|ξ|)χ1∥Mp

p
∥Jν(|ξ|)χ1∥Mp

1
+ ∥Jν(a|ξ|)χ1∥Mp

p
∥J−ν(|ξ|)χ1∥Mp

1

)
.

Proceeding as before, we estimate

|J±ν(a|ξ|)χ1(ξ)| ≤ C(a|ξ|)±ν, |∂ξ(J±ν(a|ξ|)χ1(ξ))| ≤ C(a|ξ|)±ν |ξ|−1,

with C > 0, independent of a. Since we are at intermediate frequencies, we may estimate (a|ξ|)ν ≤ 2ν and (a|ξ|)−ν ≤
2ν a−ν. Therefore, by Mikhlin-Hörmander multiplier theorem, we obtain

∥Jν(a|ξ|)χ1∥Mp
p
≤ C ∥J−ν(a|ξ|)χ1∥Mp

p
≤ C a−ν.

On the other hand,270

∥J±ν(|ξ|)χ1∥Mp
1
≤ C,

with C > 0, independent of a. Indeed, using (33), the previous estimate follows from the fact that

∥|ξ|−
1
2−k ei|ξ| χ1∥Mp

1
≤ C, k = 0, 1, . . . ,

due to p ∈ (1, 2) (see Proposition 3.1). Summarizing,

∥K̂aχ
2
1∥Mp

1
≤ C , (51)

with C > 0, independent of a.
At high frequencies, we use (33) for both J±ν(a|ξ|) and J∓ν(|ξ|). By the cosine and sine addition formulas, a

straightforward computation leads to275

K̂a(ξ) = aν−
1
2 |ξ|−1 R(a, |ξ|),
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with

R(a, |ξ|) = sin((1 − a)|ξ|)(R|ν|,0(a|ξ|)R|ν|,0(|ξ|) + R|ν|,1(a|ξ|)R|ν|,1(|ξ|))
+ cos((1 − a)|ξ|)(R|ν|,0(a|ξ|)R|ν|,1(|ξ|) − R|ν|,1(a|ξ|)R|ν|,0(|ξ|))

so that
K̂a(ξ) =

1
2

aν−
1
2 |ξ|−1 sin((1 − a)|ξ|) + . . .

By Proposition 3.1, we may estimate

aν−
1
2− j∥|ξ|−1−k− j sin((1 − a)|ξ|) χ2

2∥Mp
1
≤ aν+k ∥(a|ξ|)−

1
2−k− jχ2∥Mp

p
∥ |ξ|−

1
2 sin((1 − a)|ξ|) χ2∥Mp

1
≤ C aν+k ≤ C,

for k + j = 0, 2, 4, . . . , due to p ∈ (1, 2), and similarly for the cosine terms, for k + j = 1, 3, 5, . . .
Summarizing, we concluded the proof of (50). Recalling (48), and replacing a = s/t, we proved so far that280

∥K(t, s)∥Mp
1
≤ C s t−1+ 1

p ×


(t/s)1− 1

p−
µ
2 if 1 − 1/p > µ/2,

(log(e + t/s))1− 1
p if 1 − 1/p = µ/2,

1 if 1 − 1/p < µ/2,

and this concludes the proof of (42) for µ > 1, not an odd integer.
If µ ∈ 2N + 1, that is, ν is a nonnegative integer, then we write the fundamental solution to (47) as

y = C+(σ) Jν(τ) +C−(σ) Yν(τ).

where
Yν = lim

k→ν

Jk − (−1)νJ−k

k − ν
= (∂k Jk − (−1)ν∂k J−k)k=ν ,

is a Bessel function of second kind. The Wronskian satisfies [61, §3.63] W[Jν,Yν](σ) = 2/σ. Imposing the initial
conditions, we derive285

y =
1
2

(
Jν(σ)Yν(τ) − Yν(σ)Jν(τ)

)
sσν.

After replacing σ = s|ξ| and τ = t|ξ|, we find

K̂(t, s) =
1
2

(
Jν(s|ξ|)Yν(t|ξ|) − Yν(s|ξ|)Jν(t|ξ|)

)
sν+1 t−ν.

Once again, we study K̂a where

K̂a =
aν

2
(
Jν(a|ξ|)Yν(|ξ|) − Yν(a|ξ|)Jν(|ξ|)

)
.

The estimates at high frequencies are analogous to the case of non-integer ν, due to the asymptotic expansion (see [61,
§7.21]):

Yν(z) = (z/(2π))−
1
2 sin(z − νπ/2 − π/4) Rν,0(z) − (z/(2π))−

1
2 cos(z − νπ/2 − π/4) Rν,1(z).

Moreover, as z→ 0,290

Yν(z) ∼ −(ν − 1)! (z/2)−ν, ν ∈ N \ {0}, but Y0(z) ∼ 2 log(z/2),

and similarly for their derivative, using Y′ν = νz−1Yν − Yν+1.
At low and intermediate frequencies we may still proceed as we did for the case of non-integer ν if ν ∈ N\ {0}. For

that reason, we consider in the following only the case ν = 0, that is, µ = 1. In this case, we shall take into account of
the logarithmic term in

K̂a =
1
2

(
J0(a|ξ|)Y0(|ξ|) − Y0(a|ξ|)J0(|ξ|)

)
.
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At low frequencies, cancelations occur, in the sense that295

K̂a ∼ − log(a|ξ|/2) + log(|ξ|/2) = − log a, as ξ → 0. (52)

At intermediate frequencies, use that − log(a|ξ|) ≤ log 2 − log a.
First, let p ∈ [2,∞]. Then, we estimate

∥K̂a∥Lp′ ≤ C1 log(e + 1/a) +C2 log(e + 1/a)
( ∫ 1

a

1
|ξ|−

p′

2 dξ
) 1

p′
+C3 a−

1
2

( ∫ ∞

1
a

|ξ|−p′ dξ
) 1

p′

≤ C1 log(e + 1/a) + C̃3a
1
p−

1
2 + C̃2 log(e + 1/a) ×

a
1
p−

1
2 if p > 2,

(− log a)
1
2 if p = 2.

The first and the second term are dominated by the latter one in the sum above, so that we conclude

∥K̂a∥Mp
1
≤

C a
1
p−

1
2 log(e + 1/a) if p > 2,

C (log(e + 1/a))
3
2 if p = 2.

Now let p ∈ (1, 2). Taking χ j as in the case of non-integer ν, we claim that

∥K̂aχ
2
j∥Mp

1
≤ C log(e + 1/a), j = 0, 1, ∥K̂aχ

2
2∥Mp

1
≤ C . (53)

At low frequencies, using (52), we may estimate300

|∂k
ξK̂a(ξ)| ≤ C log(e + 1/a) |ξ|−k, k = 0, 1,

so that, following as in the proof of Proposition 3.2, we prove (53) for j = 0. At intermediate frequencies, we obtain

∥J0(a|ξ|) χ1∥Mp
p
≤ C, ∥Y0(|ξ|) χ1∥Mp

1
≤ C,

∥Y0(a|ξ|) χ1∥Mp
p
≤ C log(e + 1/a), ∥J0(|ξ|) χ1∥Mp

p
∥ ≤ C,

so that we prove (53) for j = 1. At high frequencies, we obtain (53), proceeding as we did for non-integer values of ν.
This concludes the proof of (42) for µ = 1.

Recalling that the case µ < 1 may be treated by the change of variable in Remark 3.1, this concludes the proof of
Proposition 3.3.305

Remark 3.2. We notice that we used the assumption µ > 1, that is, ν > 0, in (51). For negative, non-integer, ν, we
should replace (51) by

∥K̂aχ
2
1∥Mp

1
≤ C a2ν = C aµ−1 . (54)

This modification, eventually, leads to prove Proposition 3.3 for µ < 1, without the use of Remark 3.1.

In view of the estimates obtained in Proposition 3.3, the following straightforward consequence of Proposition 3.2 is
of interest to study the semilinear problem (7).310

Corollary 3.1. Let µ > 0 and p > max{1, 1/µ}. Assume that v0 ∈ Lq ∩ Lp, where q is defined as in (12). Then the
solution to (35) verifies the Lq − Lp estimate

∥v(t, ·)∥Lp ≤ C
(
∥v0∥Lq + ∥v0∥Lp

)
×


(1 + t)−min{1,µ}+ 1

p if 2/p > min{µ, 2 − µ},
(1 + t)−

µ
2 if 2/p < min{µ, 2 − µ},

(1 + t)−
µ
2 if µ ∈ (0, 1) and 2/p = µ,

(55)

where C > 0 is independent of t and v0. If µ ≥ 1 and 1 − 1/p = µ/2, for any small ε ∈ (0, 1 − 1/p) there exists Cε > 0
such that:

∥v(t, ·)∥Lp ≤ Cε (1 + t)ε−
µ
2
(
∥v0∥L1 + ∥v0∥Lp

)
. (56)
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Proof. If t ∈ [0, 1], then (55) and (56) follow by the (nonsingular) Lp − Lp estimate in (36).315

Estimate (55) for t ≥ 1 follows by (36) with q as in (12). Indeed:

• q = 1 if µ ≥ 1 and 1 − 1/p < µ/2, and the decay rate for the L1 − Lp estimate in (36) is t−1+ 1
p , as in (55);

• q = 1/µ if µ ∈ (0, 1) and 1/p ≤ µ/2, so that 1/q− 1/p = µ/2 and the decay rate for the L
1
µ − Lp estimate in (36)

is t−
1
µ+

1
p , as in (55);

• q is obtained by 1/q − 1/p = µ/2 if 2/p < min{µ, 2 − µ}, so that (55) follows immediately by (36), since q > 1.320

On the other hand, estimate (56) for t ≥ 1 follows by taking q ∈ (1, p] such that 1 − 1/q = ε in (42), so that
t−

1
q+

1
p = tε−

µ
2 , as in (56).

4. Proofs of Theorems 2.1 and 2.2, and of Corollaries 2.1 and 2.2

To prove Theorems 2.1 and 2.2, we use a contraction argument, exploiting the sharpness of the L1 − Lp decay
estimates derived in Proposition 3.3, in particular the dependence on s in (42), to construct a suitable solution space,325

in which we may prove the global-in-time existence of small data solutions for p > pcrit.

Proof (Proof of Theorem 2.1). For a general T > 0, we define

X(T ) = {u ∈ L∞([0,T ], Lp) : ∥u∥X(T ) < ∞},

equipped with the norm
∥u∥X(T ) = sup

t∈[0,T ]
(g(1 + t))−1 ∥u(t, ·)∥Lp , (57)

where g(1 + t) is as in (15), for a sufficiently small δ > 0 which we will fix later. Thanks to Corollary 3.1, there
exists C > 0, independent of T , such that the solution to the linear singular problem (35) with v0 = u0 verifies the330

estimate
∥v∥X(T ) ≤ C

(
∥u0∥Lq + ∥u0∥Lp

)
. (58)

We want to prove that there exists a constant C > 0, independent of T > 0, such that the operator

F : X(T )→ X(T ), Fu(t, x) =
∫ t

0
K(t, s) ∗ f (u(s, x)) ds,

where K = K(t, s) is the fundamental solution to (11), verifies the contractive estimate

∥Fu − Fw∥X(T ) ≤ C ∥u − w∥X(T )
(
∥u∥p−1

X(T ) + ∥w∥
p−1
X(T )

)
. (59)

Properties (58) and (59), imply that there exists ε > 0 such that if u0 verifies (14), then there is a unique global-in-time
solution to (7), verifying335

∥u∥X(T ) ≤ C
(
∥u0∥L1 + ∥u0∥Lp

)
,

for any T > 0, with C > 0, independent of T .
Indeed, let R > 0 be such that CRp−1 < 1/2. Then F is a contraction on XR(T ) = {u ∈ X(T ) : ∥u∥X(T ) ≤ R}. The

solution to (7) is a fixed point for v(t, x)+Fu(t, x), so if ∥v∥X(T ) ≤ R/2, then u ∈ XR(T ) and the uniqueness and existence
of the solution in XR(T ) follows by the Banach fixed point theorem on contractions. The condition ∥v∥X(T ) ≤ R/2 is
obtained taking initial data as in (14), with Cε ≤ R/2. Since C, R and ε do not depend on T , the solution is global-in-340

time.
We now prove the contractive estimate (59) for u,w ∈ X(T ). Using (2) and Hölder inequality, due to the fact

that u,w ∈ X(T ), we may estimate

∥( f (u)− f (w))(s, ·)∥L1 ≤ C ∥(u−w)(s, ·)∥Lp
(
∥u(s, ·)∥p−1

Lp +∥w(s, ·)∥p−1
Lp

)
≤ C (g(1+s))p ∥u−w∥X(T )

(
∥u∥p−1

X(T )+∥w∥
p−1
X(T )

)
. (60)
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Then, using (42) and (60) we obtain

∥(Fu − Fw)(t, ·)∥Lp ≤ C t−min{1,µ, µ2+
1
p }+

1
p d1(t) d2(t) I(t) ∥u − w∥X(T )

(
∥u∥p−1

X(T ) + ∥w∥
p−1
X(T )

)
, (61)

where345

I(t) =
∫ t

0
smin

{
1,µ, µ2+

1
p

}
+α (g(1 + s))p ds. (62)

In order to prove (59) for t ≤ 1 we use the left-hand side of (13) and p > max{1, 1/µ} (see Remark 2.3) to estimate

α ≥ −1 −
1
p
> −1 − µ.

Using g(1 + s) ≤ 1, and using again α ≥ −1 − 1/p, we find

I(t) ≤ C tmin
{
1,µ, µ2+

1
p

}
+α+1
≤ C tmin

{
1,µ, µ2+

1
p

}
− 1

p .

This concludes the proof of (59) for t ≤ 1.
In order to prove (59) for t ≥ 1, it is sufficient to show that I(t) is uniformly bounded, with respect to t, i.e., that I(∞)

is a convergent integral. As before, the convergence of the integral as s → 0, is a consequence of α ≥ −1 − 1/p350

and p > max{1, 1/µ}. Recalling the definition of g in (15), we find that the integral is convergent at infinity if, and
only if,

min
{

1, µ,
µ

2
+

1
p

}
+ α − p

(
min

{
1, µ,

µ

2
+

1
p

}
−

1
p

)
< −1, (63)

provided that we take a sufficiently small δ in (15), if p ∈ [2,∞) and µ = 2 − 2/p.
Condition (63) is equivalent to (10) and p > pcrit (see Remark 2.1). Therefore, we proved (59), and this concludes

the proof.355

The proof of Theorem 2.2 is simpler than the proof of Theorem 2.1. On the one hand, for both v and Fu − Fw we
may rely on the same estimates provided by Proposition 3.3. On the other hand, since the problem is not singular, due
to t0 > 0, we do not need to discuss the short time estimates to avoid possible singular behaviors.

Proof (Proof of Theorem 2.2). We follow the proof of Theorem 2.1 with the following modifications. The space

X(T ) = {u ∈ L∞([t0,T ], Lp) : ∥u∥X(T ) < ∞},

equipped with norm360

∥u∥X(T ) = sup
t∈[t0,T ]

(g(t))−1 ∥u(t, ·)∥Lp ,

is defined for a general T > t0, with g(t) given by (17). Thanks to Proposition 3.3, there exists C = C(t0) > 0,
independent of T , such that the solution to the linear regular problem (11) with s = t0 and v1 = u1 verifies the estimate

∥v∥X(T ) ≤ C ∥u1∥L1 . (64)

We want to prove that the operator F verifies the contractive estimate (59). As in the proof of Theorem 2.1, properties
(64) and (59) imply that there exists ε > 0 such that if u1 verifies (16), then there is a unique global-in-time solution
to (8), verifying ∥u∥X(T ) ≤ C ∥u1∥L1 , for any T > t0, with C = C(t0) > 0, independent of T .365

To prove the contractive estimate (59) for u,w ∈ X(T ), we proceed as in the proof of Theorem 2.1, but due to t ≥
t0 > 0 we may avoid to discuss the behavior at short times. Moreover, we may remove the restriction α ≥ −1 − 1/p,
which was used to avoid a nonintegrable singularity at t = 0. To prove (59) it is sufficient to show that∫ ∞

t0
smin

{
1,µ, µ2+

1
p

}
+α (g(s))p ds ≤ C(t0),

and, recalling the definition of g in (17), this estimate is verified if, and only if, p > pcrit when α > −2, whereas it
holds for any p > 1 if α ≤ −2. This concludes the proof of Theorem 2.2.370
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Proof (Proof of Corollaries 2.1 and 2.2). The proof is a straightforward application of Theorems 2.1 and 2.2, with µ
and α as in (21). The decay rate g∗(1 + t) in (25) is obtained by (15), using

∥w(t, ·)∥Lp = ∥u(Λ(t), ·)∥Lp ≤ C g(1 + Λ(t))
(
∥u0∥Lq + ∥u0∥Lp

)
,

and replacing u0 = w0,

min{µ, 2 − µ} =
ℓ +min{µ∗, 2 − µ∗}

ℓ + 1
,

and
Λ(t)−

µ
2 = c1 t−

ℓ+µ∗
2 , Λ(t)−min{1,µ}+ 1

p = c2 t−ℓ−min{1,µ∗}+ ℓ+1
p .

Similarly, the decay rate g∗(t) in (29) is obtained by (17).375

5. Concluding remarks and open problems

In this section we collect some open problems and we add some concluding remarks.

In a forthcoming paper, we will study the semilinear multidimensional E. P. D. equation. Indeed, the technique
employed in Proposition 3.3 to study the linear regular problem (11) is not directly applicable to the multidimensional
Cauchy problem (5), in general. A complete global existence result in space dimension n ≥ 2, for small values of µ is380

still an open problem.
Also, a complete knowledge of blow-up results for the semilinear E. P. D. equation considered in this paper is

lacking so far.

Open problem 1. Theorem 1.1 in [6] implies that there is no global-in-time weak solution to both the singular prob-
lem (7) and the regular problem (8), if 1 < p ≤ 3 + α, under suitable data sign assumption. If µ ∈ (0, 1), thanks to the385

change of variable in Remark 3.1, the same theorem implies the nonexistence of global-in-time weak solutions to the
regular problem (8), if 1 < p ≤ 1 + (2 + α)/µ. We expect that this nonexistence result remains valid for the singular
problem, as well. Moreover, we expect that it is possible to prove the nonexistence of global-in-time solutions to both
the singular and the regular problem (8) for 1 < p ≤ pStr(1 + µ, α), possibly extending the result in [26] which holds
for the regular problem (8) when α = 0.390

In (8), we assumed the initial condition u(t0, x) = 0, for brevity. If we replace this condition by u(t0, x) = u0(x),
for some nontrivial u0, then we may replace (16) in Theorem 2.2 by

u0 ∈ L1 ∩ Lp, u1 ∈ L1, with ∥u0∥L1 + ∥u0∥Lp + ∥u1∥L1 ≤ ε. (65)

Indeed, following as in the proof of Proposition 3.3, the solution toτ2y′′ + τy′ + (τ2 − ν2)y = 0 , τ ≥ σ ,

y(σ) = σν, y′(σ) = 0,
(66)

when ν > 0 is not an integer, is

y = −
π

2 sin(νπ)
(
J′−ν(σ)Jν(τ) − J′ν(σ)J−ν(τ)

)
σν+1 ,

so that, replacing w(τ) = τ−νy(τ), σ = s|ξ| and τ = t|ξ|, we find395

w = −
π

2 sin(νπ)
(
J′−ν(s|ξ|)Jν(t|ξ|) − J′ν(s|ξ|)J−ν(t|ξ|)

)
sν+1 t−ν |ξ|.

In particular, the contribution from |ξ| in the expression above, together with the asymptotic behavior (33), motivates
the assumption u0 ∈ Lp to obtain the Lp − Lp high frequencies estimate. For the sake of brevity, we omit the details of
the proof.
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As a final remark, we provide some details about global existence of small data solutions for (30). The equation
in (30) appears in a general formulation which includes the E. P. D. equation, the Tricomi generalized equation, the400

wave equation with scale-invariant damping and mass. We stress that we cannot consider the singular Cauchy problem
corresponding to t1 = 0 for this equation with our approach, since the coefficients of both ut and u in the equation
in (30) are singular at t = 0.

Taking into account of the expression m = −β(µ◦ + β − 1), we shall assume m ≤ (µ◦ − 1)2/4 in (30), so that we
may fix β = (1 − µ◦ ± δ)/2, where405

δ =

√
(µ◦ − 1)2 − 4m . (67)

On the other hand, µ∗ = µ◦ + 2β = 1 ± δ and α∗ = α◦ + β(p − 1). We now consider the condition p > pcrit, with pcrit
as in (26), which is equivalent to the right-hand side of (22). Replacing the expressions for µ∗ and α∗, we find

(p − 1) min
{
ℓ +

µ◦ + 1 − δ
2

,
ℓ + µ◦

2
+
ℓ + 1

p

}
> α◦ + 2 . (68)

Therefore, as a consequence of Corollary 2.2, we may prove the following result for (30).

Corollary 5.1. Let ℓ > −1, µ◦ ∈ R, m ≤ (µ◦ − 1)2/4, α◦ ∈ R, and assume that p satisfies (68), where δ is as in (67).
Then there exists ε > 0 such that for any initial data410

v1 ∈ L1, with ∥v1∥L1 ≤ ε, (69)

there exists a unique global-in-time weak solution v ∈ L∞loc([t1,∞), Lp), to (30). Moreover, the solution to (30) satisfies
the estimate

∥v(t, ·)∥Lp ≤ C g◦(t) ∥v1∥L1 , with g◦(t) = t−
µ◦
2 −min

{
ℓ+ 1−δ

2 , ℓ2+
ℓ+1

p

}
+ ℓ+1

p d1(t) d2(t), (70)

where C > 0, is independent of t, and of the initial data, and d1(t) and d2(t) are logarithmic loss terms determined as
follows: either d1 = 1 if δ , 0 or d1 = 1+log(1+t) if δ = 0; either d2(t) = 1 if 2/p , ℓ−1−δ

ℓ+1 , or d2(t) = 1+(log(1+t))1− µ
2

if 2
p =

ℓ−1−δ
ℓ+1 .415

Proof. The proof follows by applying Corollary 2.2 with µ∗ = 1+ δ and α∗ = α◦ + β(p− 1), where β = (1− µ◦ + δ)/2.
We stress that the condition µ∗ > −ℓ in Corollary 2.2 is satisfied, due to µ∗ ≥ 1 and ℓ > −1.

Replacing v(t, x) = tβ w(t, x), we may compute

∥v(t, ·)∥Lp = tβ ∥w(t, ·)∥Lp ≤ C tβ g∗(t) ∥v1∥L1 = t
1−µ◦+δ

2 −min
{
ℓ+1, ℓ+1+δ

2 + ℓ+1
p

}
+ ℓ+1

p d1(t) d2(t) ∥v1∥L1 ,

and this concludes the proof.

Let ℓ = 0, µ◦ > 0, and α◦ > −2. Assuming µ◦ + 1 − δ > 0, that is, −µ◦ < m ≤ (µ◦ − 1)2/4, we find that (68) is420

equivalent to p > pcrit, where

pcrit = max
{

1 +
2(2 + α◦)
µ◦ + 1 − δ

, pStr(1 + µ◦, α◦)
}
.

We stress that pStr(1 + µ◦, α◦) in the expression above is the same modified shifted Strauss exponent appearing in (9).
That is, the role played by the mass term m in the quantity δ in (67) only influences the contribution to the critical
exponent coming from the Fujita-type exponent 1 + 2(2 + α◦)/(µ◦ + 1 − δ).
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