
Detecting Patterns of Attacks to Network Security in
Urban Air Mobility with Answer Set Programming

Gioacchino Sterlicchioa,*,1 and Francesca Alessandra Lisib,1

aDMMM, Polytechnic University of Bari, Italy
bDIB and CILA, University of Bari Aldo Moro, Italy

ORCID (Gioacchino Sterlicchio): https://orcid.org/0000-0002-2936-0777, ORCID (Francesca Alessandra Lisi):
https://orcid.org/0000-0001-5414-5844

Abstract. The growth of unmanned aerial vehicles (UAVs) will
make the sky more crowded and pose several challenges as regards
safety and security. Enabling high-rate, low-latency and ultra-reliable
wireless communication between UAVs and ground base is crucial to
realize their large-scale usage in the future, especially in the field of
Urban Air Mobility. Recently, cellular-connected UAVs have drawn
significant attention as a promising technology for Automatic Depen-
dence Surveillance Broadcast (ADS-B) Like communication, which
leverages other types of communication such as 4G LTE. In this
work, we address the current lack of ADS-B security features and
propose to use Answer Set Programming (ASP) for finding contrast
sequential patterns that characterize different attacks on the 4G LTE
network. The experiments show that a declarative approach is fea-
sible in this context, and that the implementation of span and gap
constraints make the search for patterns more efficient and effective.

1 Introduction

In the past few years there has been a tremendous increase in the use
of unmanned aerial vehicles (UAVs) in civilian applications, such as
aerial surveillance, traffic control, photography and communication
relaying. A new aviation market is developing as Urban Air Mobility
(UAM), a new air transportation system for passengers and cargo in
urban environments thanks to new advanced technologies [24]. The
transportation task is performed by electric aircraft that take off and
land vertically, remotely piloted, with a pilot onboard or autonomous
(in the future). The aircraft used range from small drones for par-
cel deliveries to air taxis for passenger transport. Among the several
features like safety, sustainability, privacy and affordability, we have
focused on security. UAM has a complex ecosystem made by differ-
ent interconnected technologies which makes it vulnerable to cyber-
threats disrupting UAM operations or corrupt the data exchanged be-
tween stakeholders and supporting infrastructure systems, likely re-
sulting in potentially high-impact risks for the broader aviation trans-
portation system [14].

Cellular-connected UAV [33] is a promising technology to achieve
the essential UAM requirements of high-capacity, low-latency and
ultra-reliable wireless communications between UAVs and their as-
sociated ground entities, not only for supporting their safe operation,

∗ Corresponding Author. Email: g.sterlicchio@phd.poliba.it
1 Equal contribution.

but also for enabling mission-specific rate-demanding payload com-
munications. This kind of technology can be used together by un-
manned aerial system traffic management (UTM) and ADS-B Like
communication ensuring safety and security [28] to organize the op-
eration of the UAV. Automatic Dependent Surveillance Broadcast
(ADS-B) is a surveillance technology in aviation that automatically
and periodically broadcasts flight information (altitude, heading, and
position based on Global Navigation Satellite System). An evolution
is ADS-B Like communication that is similar to ADS-B but uses
other technologies such as 4G long-term evolution (LTE) networks
and broadcast technologies such as Wi-Fi beacons, APRS, XBee, and
LoRaWAN (long-range wide area network) [28].

The threats could lead to a loss of confidentiality, integrity, or
availability of the data exchanged or stored across the UAM ecosys-
tem [12]. Threats that could affect data confidentiality would allow
access and disclosure of restricted information, including proprietary
and personal privacy information. The loss of data confidentiality
could result from providing unauthorized information access to an
attacker. Threats that could affect the integrity of the data in the UAM
systems would risk the modification or destruction of the data. Mes-
sage tampering, service supplier spoofing, data injection, and data
manipulation could lead to the loss of data authenticity and validity,
resulting in a loss of data integrity. The availability of data in UAM
systems could be affected by threats that target the reliable or timely
access to information, such as Global Positioning System (GPS) jam-
ming or denial of service attacks. Furthermore, the threats of GPS
spoofing or man-in-the-middle attacks have the additional risk of po-
tentially leading to the disruption of UAM operations and the loss of
UAM vehicles in flight.

In this paper we consider the problem of detecting patterns of at-
tacks to 4G LTE network security in UAM. Traces are sequential
data that need to be analyzed to discover regularities that character-
ize attacks in contrast with the normal network activities. To this aim,
we leverage the Contrast Sequential Pattern Mining (CSPM) task
[4], and a declarative approach that exploits Answer Set program-
ming (ASP) [19]. The work follows therefore the stream of research
known as Declarative Pattern Mining (DPM). We consider a couple
of attacks: the authentication failure attack on the attach procedure
and the numb attack on the paging procedure [11]. However, the pro-
posed methodology can be applied for other attacks to which the 4G
network is vulnerable but also to 5G. Given that, this kind of analy-
sis can be useful in UAM from at least two points of view: 1) better

ECAI 2024
U. Endriss et al. (Eds.)
© 2024 The Authors.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA240626

1285

understanding of the attack strategy suffered through a retrospective
forensic analysis, and 2) use of detected patterns to monitor the be-
havior of the 4G network and identify an attack in progress online.

The paper is organized as follows. In Section 2 we overview the
current research in network security and in DPM. In Section 3 we
provide the necessary background on ASP and CSPM. In 4 we de-
scribe our ASP enconding for the data and the problem, and in Sec-
tion 5 we report the experimental results obtained on the chosen
datasets. Section 6 concludes the paper with final remarks.

2 Related works

Works related to this paper come from two research areas: Cyberse-
curity, and (Declarative) Pattern Mining.

First, we cite existing efforts that focus on security, privacy and
availability on networks, with particular reference to formal meth-
ods for the security of 4G LTE. In [11], Hussain et al. investigate
the security and privacy of three critical procedures of the 4G LTE
protocol and propose LTEInspector which combine a model checker
and a cryptographic protocol verifier. In [31] they focus on identi-
fying non-trivial interactions, using an explicit-state model checker,
between the different control-plane protocol layers of LTE. Broek et
al. [32] and Khan et al. [15] both proposed changing pseudonym-
based (PMSI) defense against IMSI catching attack.

Network security is also field of application for pattern mining
algorithms. In [3], Buczak et al. survey methods of machine learn-
ing and data mining that can be successfully applied to intrusion
detection. Sequence mining is one of them. Li et al. [18] use se-
quential pattern mining in real time to find out the frequency and se-
quence features of multi-stage attacks. In [16], the authors construct
attack graph from transaction database using sequential pattern min-
ing. Husák et al. [10] use sequential pattern mining and rule mining
in the analysis of cyber security alert sharing SABU. Whereas se-
quence mining is widely explored in network security, the CSPM
task has not been addressed so far in this application domain to the
best of our knowledge.

In recent years there has been an increasing interest in DPM, a
research stream in which the objective is to develop declarative ap-
proaches to pattern mining. Several encodings have been presented
so far, to cover pattern mining tasks such as sequence mining [23, 6]
and frequent itemset mining [13, 7]. ASP is widely used in DPM. The
first proposal is described by Guyet et al. [8]. The authors explore the
SPM problem with ASP and compare their method with a dedicated
algorithm. Gebser et al. [6] use ASP for extracting condensed repre-
sentations of sequential patterns. Samet et al. in [29] mine rare se-
quential patterns with ASP. Guyet et al. [9] present the use of ASP to
mine sequential patterns within two representations of embeddings
(fill-gaps vs skip-gaps) and compare them with Constraint Program-
ming. A hybrid ASP approach is proposed by Paramonov et al. [25]
which combines dedicated algorithms for pattern mining and ASP.
In [20] Lisi and Sterlicchio propose an ASP-based approach to Con-
trast Pattern Mining. In [21], the same authors present the first ASP
encoding for the CSPM problem. We will refer to this declarative
approach to CSPM as MASS-CSP (Mining with Answer Set Solving
- Contrast Sequential Patterns) hereafter. MASS-CSP is our starting
point for the ASP encoding presented in Section 4.

3 Background

3.1 Contrast Sequential Pattern Mining

Contrast Sequential Pattern Mining (CSPM) is a data mining tech-
nique that aims to discover patterns in data which contrast with a set
of negative examples [4]. Unlike traditional sequential pattern min-
ing [22], which focuses on finding patterns that occur frequently in
a dataset, CSPM looks for patterns that are significantly different
between a set of positive and negative examples. CSPM is partic-
ularly useful for analyzing time-ordered sequences of transactions,
events or actions to uncover hidden associations or trends that may
not be apparent when analyzing each group separately. This can lead
to new discoveries and insights into complex datasets where tradi-
tional pattern mining techniques may fall short. More formally, given
two sequences dataset, D1 labeled with the C1 class and D2 la-
beled as C2. Each sequence s is represented as list of ordered items
s = 〈i1, i2, . . . , in〉 from an alphabet Σ and an attribute from a
set A that represents the class label (e.g., positive/negative). First,
we look sequential patterns p, defined as an ordered list of items
p = 〈a1, a2, . . . , ak〉 such that each ai ∈ Σ and occurs consec-
utively in at least one sequence in S. The support of a sequential
pattern p, supp(p), is the number of sequences in which it occurs.
Given a minimum support threshold minsup, we find all frequent se-
quential patterns pi, such that supp(p) ≥ minsup. Frequent se-
quential patterns are those that occur frequently enough within the
dataset based on the specified support threshold. Then, given the
growth rate from D2 to D1 of a sequential pattern p as GRC1(p) =
supp(p,D1)/|D1|
supp(p,D2)/|D2| . If supp(p, D2) = 0 and supp(p, D1) �= 0 then
GRC1(p) = ∞. After, the growth rate from D1 to D2 of p is de-
fined as GRC2(p) = supp(p,D2)/|D2|

supp(p,D1)/|D1| . If supp(p, D1) = 0 and
supp(p, D2) �= 0, then GRC2(p) = ∞. The contrast rate of p is
defined as CR(p) = max{GRC1 , GRC2} and if GRC1(p) = 0
and GRC2(p) = 0 then CR(p) = ∞. We say that p is a contrast
sequential pattern if CR(p) ≥ mincr, where mincr is the minimum
contrast rate threshold.

Table 1 shows a sequences dataset D of bank customers
which is obtained by merging the datasets D1 and D2 that
contain compliant and non-compliant customers, respectively. We
start by finding sequential patterns first and given minsup =
2, 〈deposit, withdrawal, transfer〉 is a sequential pattern be-
cause it occurs in sequences 1, 2, and 3. Another exam-
ple is 〈deposit, withdrawal〉 within all. Assuming we have
found all the sequential patterns, we check whether these are
contrasting for one of the two classes. Given mincr =
2, p1 = 〈deposit, withdrawal, transfer〉 and the metrics
supp(p1, D1) = 2, supp(p1, D2) = 1, GRcompliant(p1) = 2,
GRnon-compliant(p1) = 0.5, and CR(p1) = 2, p1 is a contrast se-
quential pattern for compliant because CR(p1) ≥ mincr. Given
p2 = 〈deposit, withdrawal〉 and its metrics supp(p2 D1) = 2,
supp(p2, D2) = 2, GRcompliant = 1, GRnon-compliant = 1, p2 is not a
contrast sequential pattern for any of the two classes. In this case the
pattern is present equally in the two classes. This toy example sug-
gests how contrast patterns can help in identifying key differences
in transaction sequences between compliant and non-compliant cus-
tomers which can be used for fraud detection or for improving cus-
tomer compliance measures within the bank domain.

3.2 Answer Set programming

Answer Set Programming (ASP) is a declarative programming
paradigm [19, 2] that is based on logic programming and non-

G. Sterlicchio and F.A. Lisi / Detecting Patterns of Attacks to Network Security in Urban Air Mobility1286

Table 1. An example of sequence dataset concerning
compliant/non-compliant bank customers.

ID Sequence Class

1 〈deposit, withdrawal, transfer 〉 compliant
2 〈deposit, withdrawal, transfer〉 compliant
3 〈deposit, withdrawal, transfer〉 non-compliant
4 〈deposit, withdrawal, deposit〉 non-compliant

monotonic reasoning, which allows for the representation of incom-
plete or uncertain information.

Formally, an ASP program consist of a set of rules, where
each rule has the following form: a1 ∨ . . . ∨ an ←
b1, . . . , bk, not bk+1, . . . , not bm. It says that if b1, . . . , bk are true
and there is not reason for believing that bk+1, . . . , bm are true then
at least one of the a1, . . . , an is believed to be true. The left hand
side and the right hand side of the ← are called head and body re-
spectively. Rules without body are called facts. The head is uncon-
ditionally true and the arrow is usually omitted. Conversely, rules
without head are called denials (or integrity constraints).

The semantics of an ASP program is defined in terms of answer
sets, which are sets of atoms that represent solutions to the program,
i.e. that satisfy all the rules in the program. Formally, an answer set
for an ASP program P is a set of atoms A such that: 1) A satisfies
every rule in P , i.e., for every rule r in P , there is a literal L in r such
that L is true in A, and 2) A is minimal, i.e., no proper subset of A
satisfies every rule in P . Denials are used to discard stable models,
thus reducing the number of answers returned by the ASP solver.

ASP solvers (e.g. Clingo [5] and DLV [17]) use efficient algo-
rithms based on non-monotonic reasoning and logic programming
techniques to compute answer sets for given programs. These solvers
typically employ grounding techniques to convert first-order logic
into propositional form so that ASP solvers can be used for solving
them as efficiently as possible with the current knowledge.

4 A Declarative Approach

In this section, we describe how to encode traces in ASP and how to
mine them for finding contrast sequential patterns.

4.1 ASP encoding of traces

Table 2. Propositions for the numb and the authentication failure attacks.

Idx Numb attack Authentication failure attack

1 tracking_area_update_request attach_complete
2 attach_accept security_mode_complete
3 service_request identity_request
4 attach_request tracking_area_update_complete
5 detach_accept identity_response
6 attach_complete emm_information
7 authentication_request authentication_failure
8 security_mode_command tracking_area_update_request
9 identity_response attach_request

10 emm_information detach_accept
11 tracking_area_update_accept security_mode_command
12 detach_request tracking_area_update_accept
13 identity_request authentication_request
14 extended_service_request detach_request
15 authentication_response attach_accept
16 authentication_reject authentication_response
17 security_mode_complete service_request
18 tracking_area_update_complete

We consider several traces of a 4G-LTE formal modelling, each
of them is labelled as normal or attack. Each row is a state where
each value represents the truth value of a proposition (see Ta-
ble 2 to understand order and name), where 1 means that the
proposition is true in that state, 0 otherwise. Each state is sepa-
rated by the semicolon symbol and only one proposition in true
in each state. As regards the authentication failure attack, a frame
of normal traces is given in Listing 1 where the sequence of
normal events is 〈. . . , security_mode_complete, attach_accept, at-
tach_complete, detach_request , . . . 〉. Conversely, Listing 2 shows
the sequence 〈. . . , authentication_failure, authentication_request,
authentication_response, security_mode_command , . . . 〉 that high-
lights the occurrence of an authentication failure attack.

Listing 1. An example of normal trace from authentication failure.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
−−
. . .
0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ;
1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ;
. . .

Listing 2. An example of attack trace from authentication failure.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
−−
. . .
0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ;
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 ;
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
. . .

We assume traces to be uniquely indexed by integers, and in par-
ticular we will assume that a trace πi is referred to by the integer i.
We encode a trace πi as a sequence by means of a set of facts match-
ing the predicate seq/3. The atom seq(t, p, i) models that i ∈ πi

p.
The only additional information to encode is whether each sequence
is labeled as either normal or attack and this is done through the atom
cl(t, c) where c ∈ {normal, attack}. We denote by P (π) the set of
facts that encode the trace π.

Listing 3. ASP encoding of the normal trace shown in Listing 1.
c l (0 , normal) .
. . .
s eq (0 , 4 , s e c u r i t y _ m o d e _ c o m p l e t e) .
seq (0 , 5 , a t t a c h _ a c c e p t) .
seq (0 , 6 , a t t a c h _ c o m p l e t e) .
seq (0 , 7 , d e t a c h _ r e q u e s t) .
. . .

Listing 4. ASP encoding of the attack trace shown in Listing 2.
c l (2 0 , a t t a c k) .
. . .
s eq (2 0 , 4 , a u t h e n t i c a t i o n _ f a i l u r e) .
seq (2 0 , 5 , a u t h e n t i c a t i o n _ r e q u e s t) .
seq (2 0 , 6 , a u t h e n t i c a t i o n _ r e s p o n s e) .
seq (2 0 , 7 , secur i ty_mode_command) .
. . .

Examples of ASP encoding of traces are given by Listings 3 and
4. The first line of each says that the sequence has normal/attack
class, whereas the other lines describe which proposition is true in
each timestamp of that sequence. In other words they describe the
evolution of the system (normal or bad) over time.

4.2 ASP encoding of CSPM with constraints

As already mentioned in Section 3, we have considered the ASP en-
coding reported in [21] as a starting point for the work presented in
this paper. The problem variant of CSPM addressed in [21] is a basic

G. Sterlicchio and F.A. Lisi / Detecting Patterns of Attacks to Network Security in Urban Air Mobility 1287

one. We start with a couple of observations on the limits of that vari-
ant. For illustrative purposes, let us consider the pattern 〈a, b〉 and
the sequences 〈a, b, c〉 and 〈a, c, c, b〉. First, they do not deal with
the number of gaps between one embedding and another. In other
words, two consecutive items of a sequential pattern can be n gaps
apart within a sequence, in the example 0 and 2 respectively. Sec-
ondly, 〈a, b〉 has support in both sequences but with different span,
namely 1 and 3 respectively. Our work develops on the basis of these
two observations because in various application domains, patterns
that reflect certain characteristics are more informative.

In [27] there were defined many types of constraints on patterns
and embeddings, among which the ones based on the notion of gap
and span (illustrated in Figure 1). These constraints are useful in
several ways: 1) by applying the span and gap constraints, we can
reduce the number of candidate patterns that need to be generated
and checked, which can significantly improve the efficiency of the
mining process; 2) the span and gap constraints can help filter out
patterns that do not make sense in the context of the data. For exam-
ple, if we know that certain events should happen closely together
in time, we can set a small span constraint to filter out patterns that
have a large gap between them; 3) by applying the span and gap con-
straints, we can identify patterns that are meaningful and interesting,
rather than just finding random combinations of items; 4) by limiting
the number of items between two items in a pattern, we can improve
the interpretability of the pattern and make it easier to understand the
relationships between the items; 5) by limiting the number of items
between two items in a pattern, we can reduce the noise in the data
and focus on the most important items.

In the next subsections we briefly describe how we have imple-
mented these constraints in MASS-CSP, more precisely in the ASP
encoding for sequence mining originally described in [9] and ex-
ploited subsequently in [21] for CSPM. The full encoding is reported
in the supplementary material [30]. The goal is to improve the effi-
ciency of the overall ASP encoding of the CSPM problem. As dis-
cussed in [9], the gap and span constraints can be encoded in two
ways in ASP. 1) We can use denials to delete answer sets that do
not satisfy the constraints. The problem is that they act a posteriori
during the test stage for validating candidate models. In this way we
loose the benefits of applying the constraints. 2) A more effective
method consists in introducing constraints in the generate stage for
pruning the search space earlier. This is possible if we implement
the gap and span constraints as choice rules. We have chosen to fol-
low this second implementation strategy for the fill-gaps technique,
that is the representation of embeddings adopted in MASS-CSP [21].
Note that, in [9] the implementation of the constraints as choice rules
was presented only for the skip-gap technique. So our implementa-
tion complements previous work.

Figure 1. Illustration of the gap and span notions.

Span constraint

The span constraint specifies the minimum/maximum length allowed
for a sequential pattern. As illustrated in Figure 1, it is the difference
between its last item timestamp that is 8 and its first item timestamp,
i.e. 3, and thus 〈a, b, c〉 has span 5 in that sequence. A span con-
straint requires that the pattern duration should be longer or shorter
than a given time period. By setting a span constraint, we can focus
on identifying shorter or longer sequences of events based on our spe-
cific requirements. For instance, if we set a short span constraint, we
may discover frequent itemsets that occur closely together in a short
period, while a larger span allows us to capture more spread-out oc-
currences. The maximal span constraint is anti-monotonic while the
minimal span constraints is monotonic [26].

In our encoding, the predicate seq(T, P, I) defines the timestamp of
I in sequence T as the integer position P. The idea is to add an ar-
gument to occS/3 to denote the position of the occurrence of the first
pattern item (Listing 5). Line 1 finds the first occurrence of pattern
item within a sequence, Line 2 maintains the knowledge that the P-th
pattern item has been mapped all along the further sequence indexes.
Lines 3-4 make a comparison among the minspan and maxspan pa-
rameters (#const statement) and the difference between the first item
position IP and the last item position P.

Listing 5. ASP encoding of the span constraint in the fill-gaps approach.
1 occS (T , 1 , P , P) : − seq (T , P , I) , p a t (1 , I) .
2 occS (T , L , P , IP) : − occS (T , L , P −1 , IP) , seq (T , P , _) .
3 occS (T , L , P , IP) : − occS (T , L−1 ,P −1 , IP) , seq (T , P , C) ,
4 p a t (L , C) , P−IP +1>=minspan , P−IP +1<=maxspan .

Gap constraint

The gap constraint controls the minimum/maximum gap allowed be-
tween consecutive occurrences of items within a sequence. It speci-
fies how many time units may intervene before an item is observed
again. In Figure 1, the gap between a and b is 1 while 2 between b
and c. Gap constraints are essential for capturing temporal relation-
ships between events. Setting appropriate gap values helps identify
patterns where there might be delays or interruptions between related
events but still maintain their significance. The minimal and maximal
gap constraints are anti-monotonic [26]. A gap constraint imposes a
constraint on all embeddings, if an embedding does not satisfy the
constraint, the whole pattern is unsatisfied.

Listing 6 shows the ASP encoding of the gap constraint with the
mingap and maxgap parameters provided by the user using the #const
statement. Only embeddings that satisfy mingap and maxgap will be
considered pattern occurrences within a sequence (Lines 3-6). Lines
1-2 are similar to the corresponding ones in Listing 5.

Listing 6. ASP encoding of the gap constraint in the fill-gaps approach.
1 occG (T , 1 , P) : − seq (T , P , I) , p a t (1 , I) .
2 occG (T , L , P) : − occG (T , L , P −1) , seq (T , P , _) .
3 occG (T , L , P) : − occG (T , L−1 ,P −1) , seq (T , P , C) , p a t (L , C) ,
4 p a t (L−1 ,C1) , seq (T , P2 , C1) ,
5 P−P2−1>=mingap , P−P2−1<=maxgap .

Span and gap constraints can be jointly applied by merging the
two encodings above as shown in Listing 7.

Listing 7. ASP encoding of the span+gap constraint in the fill-gaps ap-
proach.
1 occSG (T , 1 , P , P) : − seq (T , P , I) , p a t (1 , I) .
2 occSG (T , L , P , IP) : − occSG (T , L , P −1 , IP) , seq (T , P , _) .
3 occSG (T , L , P , IP) : − occSG (T , L−1 ,P −1 , IP) , seq (T , P , C) ,
4 p a t (L , C) , p a t (L−1 ,C1) , seq (T , P2 , C1) ,
5 P−P2−1>=mingap , P−P2−1<=maxgap ,
6 P−IP +1>=minspan , P−IP +1<=maxspan .

G. Sterlicchio and F.A. Lisi / Detecting Patterns of Attacks to Network Security in Urban Air Mobility1288

5 Experiments

CSPM can be particularly useful to 4G-LTE for different reasons,
e.g., optimizing network performance by analyzing contrast patterns
and making informed decisions on network configurations, resource
allocations, and traffic management strategies and ensuring quality
of services requirements. Since our focus is on security, anomalies
or unusual behavior in the network traffic can be detected by mining
contrast sequential patterns, thus helping in identifying potential se-
curity threats. Contrast sequential patterns are those that characterize
normal and attack behaviour given different traces.

In this paper, we consider a couple of attacks - namely the authen-
tication failure attack and the numb attack [11] - as a case study. Ta-
ble 4 shows example patterns for both attacks. More precisely they
are the longest contrast sequential patterns found having 30% sup-
port across all sequences. They describe the behavior or timeline of
events that leads to the attack. Interestingly, both attacks share com-
mon behavior with the exception of the authentication_failure event
that occurs always in subsequence 〈. . . , authentication_request, au-
thetication_failure, authentication_request , . . . 〉 in (a) but not in (b).

In the rest of the section we report the experimental results ob-
tained on two different sets of execution traces for these attacks.
More details about the results can be found in the supplementary
material. The main goal is to show the feasibility of a declarative
approach to CSPM in the context of network security. Also, exper-
iments have been designed in order to provide a comparative eval-
uation between the basic ASP encoding of MASS-CSP reported in
[21] and the ASP encodings proposed here that implement the span/-
gap constraints. In fact, in [21] the performance of MASS-CSP was
evaluated on a couple of datasets. In the present work we consider a
real-world case study that exploits CSPM by applying an improved
version of MASS-CSP in order to speed up its performance and re-
duce the explosion in the number of patterns. We empirically show
what are the advantages of adding constraints on pattern embeddings.

5.1 Experimental setup

For the evaluation we have used the events logs made available by
[1] for the authentication failure and numb attack on 4G-LTE cel-
lular network, and partition each event log into positive and nega-
tive traces. A comprehensive description of each log can be found
in [1] and in their github repository. 2 Table 3 summarizes the main
features of the datasets used in the experiments. The number within
each dataset name is the number of traces equally distributed in nor-
mal and attack traces. We report the dataset name, the number of
distinct symbols (|Σ|), the number of sequences (|D|), the total num-
ber of symbols in the dataset (‖D‖), the maximum and the average
sequence length (|T|), and the density that is calculated by ||D||

|Σ||D| .
As an ASP solver in the experiments, we have used clingo 5.4.0

with default solving parameters, only the timeout has been set to 1
hour. The ASP programs have been run on a laptop computer with
AMD Ryzen 5 3500U @ 2.10 GHz, 8GB RAM without using the
multi-threading mode of clingo. Multi-threading reduces the mean
runtime but introduces variance due to the random allocation of tasks.
However, such variance is inconvenient for interpreting results with
repeated executions.

2 https://github.com/CLC-UIowa/SySLite

Table 3. Trace datasets for authentication failure and numb attacks.

Dataset |Σ| |D| ‖D‖ max|T| avg|T| density

Auth_failure_40 17 40 748 35 17.70 1.10
Auth_failure_80 17 80 1,796 78 21.45 1.32
Auth_failure_200 17 200 4,188 76 19.94 1.23
Auth_failure_400 18 400 9,265 91 22.16 1.29
Auth_failure_1000 18 1,000 24,024 96 23.02 1.33
Numb_attack_40 18 40 522 57 12.05 0.73
Numb_attack_80 18 80 1,186 63 13.83 0.82
Numb_attack_200 19 200 3,129 51 14.65 0.82
Numb_attack_400 19 400 5,865 73 13.66 0.77
Numb_attack_1000 20 1,000 15,836 98 14.84 0.79

5.2 Results with the basic MASS-CSP

In the first bunch of experiments we have tested the ability of the
basic algorithm to extract patterns that characterize attack traces. To
this aim we have run it under different configurations to understand
the amount of extracted patterns, the execution times and the mem-
ory needed. We started by extracting patterns of minimum length of
2 and maximum length of 2 (minlen and maxlen parameters), then 3
up to 6 by varying the minimum support threshold (minsup) and the
minimum contrast rate threshold (mincr). This work has been done
for all versions of each dataset. In [21], we showed how the encod-
ing works with different input size in time and memory by increasing
or decreasing minsup and/or mincr. In this paper, we go further and
analyze how an increase in the length of the patterns affects the mem-
ory consumption and the time taken, considering the grounding and
solving time. Before continuing with the discussion it is worthy to
point out that the number of patterns both in this section and in the
following one is on a logarithmic scale so as to facilitate the com-
parison. Figures 2 and 3 summarize what we said before, i.e., when
we are looking for longer patterns (from 2 to 6), the program gets
bigger and thus, more patterns are found, time is much higher and
memory grows up. We have a huge number of patterns because the
basic encoding does not take into account more effective and efficient
constraints on embeddings like span and/or gap.

(a) (b)

(c) (d)

Figure 2. Number of patterns (a, b), memory consumption (c), and runtime
(d) by varying the maximum pattern length maxlen on Auth_failure_1000.

5.3 Results with the improved MASS-CSP

In Section 4.2 we have described what type of constraints can be
added to the basic version of MASS-CSP to enhance first of all ef-
fectiveness and efficiency but also improve searching for patterns by

G. Sterlicchio and F.A. Lisi / Detecting Patterns of Attacks to Network Security in Urban Air Mobility 1289

(a) (b) (c)

Figure 3. Number of patterns (a), memory consumption (b), and runtime (c) by varying the maximum pattern length maxlen on Numb_attack_1000.

filtering out useless ones according to the new constraints. For exam-
ple, we would like patterns of behavior that have a certain temporal
duration or that fall within a certain minimum and/or maximum tem-
poral range. In the specific case study, contrast sequential patterns
that describe sequential events during an attack may be useless if
there are gaps between one item and another within the sequence. In-
teresting patterns are those that describe the evolution of the system
whose items are sequential without gaps between them or understand
the duration of bad sequential events that can led to an attack. This
way we can accurately capture the crucial steps that may lead to de-
tect an attack rather than stating that the evolution of the system is
correct and is functioning normally.

To demonstrate the usefulness of the improvements described in
Section 4.2, Figures 4 and 5 make a comparison between the basic
MASS-CSP (dotted lines) and the improved one with the span/gap
constraints (continuous lines). The advantage of adding constraints
on the gap when calculating the embeddings of a pattern is clear.
First, we have control over the type of pattern we want with the min-
imum and maximum gap. The pattern set is considerably reduced,
extracting only those actually useful for our purpose with an advan-
tage on time and memory as we act directly in the pattern genera-
tion phase, having a smaller ground program than the previous one.
Analogously, using the span constraint, we are able to reduce the
number of patterns and the execution times but it seems that we do
not have improvement in memory consumption. This is because we
are looking for patterns of a minimum and/or maximum duration and
with a maximum length but we have no control over the gap between
items within the sequence. Obviously the constraints on gap and span
are successful when we want to find patterns because we reduce the
search space and we are sure to eliminate superfluous ones. When we
apply jointly the two constraints (Gap+Span), the number of patterns
is lower than with the gap and span constrains taken separately but
memory consumption and execution time are higher than with the
gap constraint only. The gap constraint is the one that brings the best
advantages in terms of overall performance.

6 Conclusions

This paper addresses the problem of detecting attack patterns to the
network security in the context of UAM. As a case study we have
considered only a couple of attacks to 4G LTE, namely the authen-
tication failure and the numb attack. We have suggested that CSPM
can be helpful and presented an ASP-based approach to mine con-
trast sequential patterns from 4G-LTE traces. The goal is to charac-
terize normal and attack behavior on different type of attacks. The
patterns found with our approach may be useful for post-attack anal-
ysis in order to understand the steps of the immediate attack and
implement defensive mechanisms. Thanks to the generate-and-test
approach of ASP, MASS-CSP does an exhaustive search of all the

(a) 〈attach_request, authentication_request, authentication_failure,
authentication_request, authentication_response, secu-
rity_mode_command, security_mode_complete, attach_accept,
attach_complete, detach_request, detach_accept, attach_request,
authentication_request, authentication_failure, authentica-
tion_request, authentication_response, security_mode_command,
security_mode_complete, attach_accept, attach_complete, de-
tach_request, detach_accept〉

(b) 〈attach_request, authentication_request, authentication_response,
security_mode_command, security_mode_complete, at-
tach_accept, attach_complete, detach_request, detach_accept, at-
tach_request, authentication_request, authentication_response, se-
curity_mode_command, security_mode_complete, attach_accept,
attach_complete〉

Table 4. Examples of longer attack patterns found with 30% support in (a)
Auth_Failure_40 and (b) Numb_Attack_40.

possible patterns present in the data set to possibly attribute them to
a specific class based on threshold values for contrast rate. So, de-
pending on the values considered, a very large value may find the
very likely (but not in the probabilistic sense) ones but may cause
others to be missed. Conversely, a low value could lead to noise and
therefore an increase in false positives. A lot is played on the thresh-
old values of the measures considered (support and contrast rate).

Experiments have shown that applying a declarative approach is
feasible. Also, results have highlighted the benefits of adding con-
straints to embeddings. In particular, the span and gap constraints
allow pruning the set of patterns found, thus decreasing the mem-
ory consumption and the execution time. The mining process has
been made more effective since constraints better limit the search
for desired behaviors. The proposed implementation of the span and
gap constraints for the fill-gaps representation of embeddings com-
plements previous work in ASP-based sequence mining. Moreover,
since the constraints are implemented in the sequential pattern search
phase, the advantage is brought not only to CSPM tasks but also to
any other pattern mining task that is based on sequence mining. Fi-
nally, since the only input is the set of execution traces, the approach
applies also to other attacks on the same network or even on other
networks such as 5G.

In this work, the negative behaviors, i.e. the attacks, have been
identified because normal traces are also available with which to
compare and find the differences. As future work, it would be in-
teresting to explore the applicability of a declarative approach to dis-
cover anomalies or behaviors that occur with some regularity but not
so frequently in traces where we do not know a corresponding class.
From the ASP encoding point of view one could consider to use an
incremental version of Clingo to expand the size of patterns in each
iteration as well as a hybrid approach as shown in [21].

G. Sterlicchio and F.A. Lisi / Detecting Patterns of Attacks to Network Security in Urban Air Mobility1290

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Comparison as regards number of patterns, execution time, and memory consumption between the basic ASP encoding and the encodings with gap
(a-c), span (d-f), and gap+span (g-i) constraints on the datasets Auth_Failure with mingap=0, maxgap=0, minspan=1, maxspan=10 minlen=2, and maxlen=6.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Comparison as regards number of patterns, execution time, and memory consumption between the basic ASP encoding and the encodings with gap
(a-c), span (d-f), and gap+span (g-i) constraints on the datasets Numb_Attack with mingap=0, maxgap=0, minspan=1, maxspan=10 minlen=2, and maxlen=6.

G. Sterlicchio and F.A. Lisi / Detecting Patterns of Attacks to Network Security in Urban Air Mobility 1291

Acknowledgements

This work was partially supported by the project FAIR - Future AI
Research (PE00000013), under the NRRP MUR program funded by
the NextGenerationEU.

References

[1] M. F. Arif, D. Larraz, M. Echeverria, A. Reynolds, O. Chowdhury,
and C. Tinelli. Syslite: Syntax-guided synthesis of PLTL formu-
las from finite traces. In 2020 Formal Methods in Computer Aided
Design (FMCAD), pages 93–103, 2020. doi: 10.34727/2020/isbn.
978-3-85448-042-6_16.

[2] G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming
at a glance. Communications of the ACM, 54(12):92–103, 2011. doi:
10.1145/2043174.2043195. URL http://doi.acm.org/10.1145/2043174.
2043195.

[3] A. L. Buczak and E. Guven. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Commu-
nications surveys & tutorials, 18(2):1153–1176, 2015.

[4] Y. Chen, W. Gan, Y. Wu, and P. S. Yu. Contrast pattern mining: A
survey, 2022.

[5] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo= ASP+
control: Preliminary report. arXiv preprint arXiv:1405.3694, 2014.

[6] M. Gebser, T. Guyet, R. Quiniou, J. Romero, and T. Schaub.
Knowledge-based sequence mining with ASP. In IJCAI 2016-25th In-
ternational joint conference on artificial intelligence, page 8. AAAI,
2016.

[7] T. Guns, A. Dries, S. Nijssen, G. Tack, and L. De Raedt. Miningzinc:
A declarative framework for constraint-based mining. Artificial Intelli-
gence, 244:6–29, 2017.

[8] T. Guyet, Y. Moinard, and R. Quiniou. Using answer set programming
for pattern mining. arXiv preprint arXiv:1409.7777, 2014.

[9] T. Guyet, Y. Moinard, R. Quiniou, and T. Schaub. Efficiency analysis
of ASP encodings for sequential pattern mining tasks. In Advances in
Knowledge Discovery and Management, pages 41–81. Springer, 2018.

[10] M. Husák, J. Kašpar, E. Bou-Harb, and P. Čeleda. On the sequential
pattern and rule mining in the analysis of cyber security alerts. In Pro-
ceedings of the 12th International Conference on Availability, Reliabil-
ity and Security, ARES ’17, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450352574. doi: 10.1145/3098954.
3098981. URL https://doi.org/10.1145/3098954.3098981.

[11] S. R. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino. LTEInspec-
tor: A systematic approach for adversarial testing of 4g LTE. In 25th An-
nual Network and Distributed System Security Symposium, NDSS 2018,
San Diego, California, USA, February 18-21, 2018. The Internet Soci-
ety, 2018. URL https://www.ndss-symposium.org/wp-content/uploads/
2018/02/ndss2018_02A-3_Hussain_paper.pdf.

[12] C. Ippolito and K. Krishnakumar. An interface-based cybersecurity sub-
system analysis on a small unmanned aerial systems. AIAA SciTech,
2019.

[13] S. Jabbour, L. Sais, and Y. Salhi. Decomposition based SAT encodings
for itemset mining problems. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 662–674. Springer, 2015.

[14] A. Jordan, K. K. Jaskowska, A. Monsalve, R. Yang, M. Rozenblat,
K. Freeman, and S. Garcia. Systematic evaluation of cybersecurity
risks in the Urban Air Mobility operational environment. In 2022
Integrated Communication, Navigation and Surveillance Conference
(ICNS), pages 1–15. IEEE, 2022.

[15] M. S. A. Khan and C. J. Mitchell. Trashing IMSI catchers in mobile
networks. In Proceedings of the 10th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, pages 207–218, 2017.

[16] J. Lei and Z.-t. Li. Using network attack graph to predict the future
attacks. In 2007 Second International Conference on Communications
and Networking in China, pages 403–407. IEEE, 2007.

[17] N. Leone, C. Allocca, M. Alviano, F. Calimeri, C. Civili, R. Costa-
bile, A. Fiorentino, D. Fuscà, S. Germano, G. Laboccetta, B. Cu-
teri, M. Manna, S. Perri, K. Reale, F. Ricca, P. Veltri, and J. Zan-
gari. Enhancing DLV for large-scale reasoning. In M. Balduccini,
Y. Lierler, and S. Woltran, editors, Logic Programming and Non-
monotonic Reasoning - 15th International Conference, LPNMR 2019,
Philadelphia, PA, USA, June 3-7, 2019, Proceedings, volume 11481 of
Lecture Notes in Computer Science, pages 312–325. Springer, 2019.
doi: 10.1007/978-3-030-20528-7_23. URL https://doi.org/10.1007/
978-3-030-20528-7_23.

[18] Z. Li, A. Zhang, J. Lei, and L. Wang. Real-time correlation of network
security alerts. In IEEE International Conference on e-Business Engi-
neering (ICEBE’07), pages 73–80. IEEE, 2007.

[19] V. Lifschitz. Answer sets and the language of answer set programming.
AI Magazine, 37(3):7–12, 2016.

[20] F. A. Lisi and G. Sterlicchio. A declarative approach to contrast
pattern mining. In A. Dovier, A. Montanari, and A. Orlandini, edi-
tors, AIxIA 2022 - Advances in Artificial Intelligence - XXIst Interna-
tional Conference of the Italian Association for Artificial Intelligence,
AIxIA 2022, Udine, Italy, November 28 - December 2, 2022, Pro-
ceedings, volume 13796 of Lecture Notes in Computer Science, pages
17–30. Springer, 2022. doi: 10.1007/978-3-031-27181-6_2. URL
https://doi.org/10.1007/978-3-031-27181-6_2.

[21] F. A. Lisi and G. Sterlicchio. Mining contrast sequential patterns
with ASP. In R. Basili, D. Lembo, C. Limongelli, and A. Orlan-
dini, editors, AIxIA 2023 - Advances in Artificial Intelligence - XXI-
Ind International Conference of the Italian Association for Artificial
Intelligence, AIxIA 2023, Rome, Italy, November 6-9, 2023, Proceed-
ings, volume 14318 of Lecture Notes in Computer Science, pages 44–
57. Springer, 2023. doi: 10.1007/978-3-031-47546-7_4. URL https:
//doi.org/10.1007/978-3-031-47546-7_4.

[22] C. H. Mooney and J. F. Roddick. Sequential pattern mining–approaches
and algorithms. ACM Computing Surveys (CSUR), 45(2):1–39, 2013.

[23] B. Negrevergne and T. Guns. Constraint-based sequence mining using
constraint programming. In International Conference on Integration
of Constraint Programming, Artificial Intelligence, and Operations Re-
search, pages 288–305. Springer, 2015.

[24] H. Pak, L. Asmer, P. Kokus, B. I. Schuchardt, A. End, F. Meller,
K. Schweiger, C. Torens, C. Barzantny, D. Becker, J. M. Ernst, F. Jäger,
T. Laudien, N. Naeem, A. Papenfuß, J. Pertz, P. Shiva Prakasha, P. Ratei,
F. Reimer, P. Sieb, and C. Zhu. Can Urban Air Mobility become reality?
Opportunities, challenges and selected research results. arXiv e-prints,
art. arXiv:2309.12680, Sept. 2023. doi: 10.48550/arXiv.2309.12680.

[25] S. Paramonov, D. Stepanova, and P. Miettinen. Hybrid ASP-based ap-
proach to pattern mining. Theory Pract. Log. Program., 19(4):505–535,
2019. doi: 10.1017/S1471068418000467. URL https://doi.org/10.1017/
S1471068418000467.

[26] J. Pei, J. Han, and W. Wang. Mining sequential patterns with con-
straints in large databases. In Proceedings of the Eleventh International
Conference on Information and Knowledge Management, CIKM ’02,
page 18–25, New York, NY, USA, 2002. Association for Computing
Machinery. ISBN 1581134924. doi: 10.1145/584792.584799. URL
https://doi.org/10.1145/584792.584799.

[27] J. Pei, J. Han, and W. Wang. Constraint-based sequential pattern min-
ing: the pattern-growth methods. Journal of Intelligent Information Sys-
tems, 28(2):133–160, 2007.

[28] N. Ruseno, C.-Y. Lin, and S.-C. Chang. UAS traffic management com-
munications: The legacy of ADS-B, new establishment of remote ID,
or leverage of ADS-B-Like systems? Drones, 6(3), 2022. ISSN 2504-
446X. doi: 10.3390/drones6030057. URL https://www.mdpi.com/
2504-446X/6/3/57.

[29] A. Samet, T. Guyet, and B. Negrevergne. Mining rare sequential pat-
terns with ASP. In ILP 2017-27th International Conference on Induc-
tive Logic Programming, 2017.

[30] G. Sterlicchio and F. A. Lisi. Detecting Patterns of Attacks to Network
Security in Urban Air Mobility with Answer Set Programming, July
2024. URL https://doi.org/10.5281/zenodo.13135192.

[31] G.-H. Tu, Y. Li, C. Peng, C.-Y. Li, H. Wang, and S. Lu. Control-plane
protocol interactions in cellular networks. ACM SIGCOMM Computer
Communication Review, 44(4):223–234, 2014.

[32] F. Van Den Broek, R. Verdult, and J. De Ruiter. Defeating IMSI catch-
ers. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, pages 340–351, 2015.

[33] Y. Zeng, J. Lyu, and R. Zhang. Cellular-Connected UAV: Potential,
challenges, and promising technologies. IEEE Wireless Communica-
tions, 26(1):120–127, 2018.

G. Sterlicchio and F.A. Lisi / Detecting Patterns of Attacks to Network Security in Urban Air Mobility1292

