
ClayRS: an End-to-End Framework for Reproducible
Knowledge-aware Recommender Systems

Pasquale Lops, Marco Polignano, Cataldo Musto, Antonio Silletti,
Giovanni Semeraro

Department of Computer Science, University of Bari Aldo Moro, Via E. Orabona 4, 70125
Bari, Apulia, Italy

Abstract

Knowledge-aware recommender systems represent one of the most innova-
tive research directions in the area of recommender systems, aiming at giving
meaning to information expressed in natural language and obtaining a deeper
comprehension of the information conveyed by textual content.

Though rich and constantly evolving, the literature on knowledge-aware rec-
ommender systems is particularly scattered when considering software libraries.
This makes it difficult to easily exploit advanced content representation and
implement replicable experimental protocols. Accordingly, this work aims to fill
in these gaps by introducing ClayRS, an end-to-end framework for replicable
knowledge-aware recommender systems. ClayRS provides researchers and prac-
titioners with the most recent state-of-the-art methodologies to build knowledge-
aware content representations and also includes methods to exploit these repre-
sentations in content-based recommendation algorithms. Finally, the structure
of the framework also allows for building replicable pipelines to push forward the
current research in the area and to develop accountable recommender systems.

Keywords: knowledge-aware recommender systems, reproducibility, graph
embeddings, BERT embeddings, USE embeddings, deep learning,
recommender systems

1. Introduction

Recommender Systems (RS) are personalized systems representing one of
the most disruptive technologies that appeared on the scene in the last decades
[1]. Such systems support users in several decision-making tasks by acquiring

∗Corresponding author: Pasquale Lops
Email addresses: pasquale.lops@uniba.it (Pasquale Lops), marco.polignano@uniba.it

(Marco Polignano), cataldo.musto@uniba.it (Cataldo Musto),
a.silletti6@studenti.uniba.it (Antonio Silletti), giovanni.semeraro@uniba.it (
Giovanni Semeraro)

Preprint submitted to Information Systems October 23, 2024

information about their needs, interests and preferences, in order to personalize
the user experience on the ground of such information. RS have a great influence
on consumers’ behaviors since many people use these systems to buy products,
listen to music, choose restaurants, or even read the posts that Facebook has
ranked at the top of our feed. RS are also very important for companies, which
report that RS contribute from 10% to 30% of their total revenues [2].

In literature there are different recommendation paradigms, but choosing
which is the best one to fit a specific scenario is not trivial. Usually there is
not a recommendation paradigm which is universally acknowledged as the best.
The paradigms that gained more popularity are Collaborative Filtering and
Content-based Filtering. Despite the wide use of collaborative filtering, alone
or in combination with other approaches, as it usually happens in deep archi-
tectures [3], the adoption of the content-based paradigm has several advantages
when compared to the collaborative one:

• User independence: differently from collaborative filtering methods
which rely on the ratings of the whole community of users, content-based
RS are able to generate recommendations by leveraging only the ratings
of the active user, and this helps to mitigate the data sparsity issue

• Transparency: Content-based RS rely on the match between content
features or descriptions in the user profile and those in the item rep-
resentations for providing explanations and making the algorithm more
transparent. This differs from collaborative filtering algorithms which are
mainly black boxes and whose explanations should be based on the user
or item similarities or on more complex representations based on latent
factors

• New item: Content-based RS do not suffer from the first-rater problem
which affects collaborative RS. Indeed, they rely solely on users’ prefer-
ences to make recommendations.

Nonetheless, content-based RS have several shortcomings:

• Limited content analysis: Shallow representation mechanisms based
on keywords, not able to deal with the natural language ambiguity, could
lead to content-based RS not able to correctly catch and represent user
preferences

• Over-specialization: The matching between user profiles and items in
content-based RS could lead to the suggestions of more of the same items,
i.e. items very similar to those liked in the past, hence with a limited
degree of novelty.

Accordingly, it is necessary to improve such representations in order to fully
exploit the potential of content-based features and textual data by implementing
more advanced models that allow machines to better understand information
provided in natural language.

2

Knowledge-aware recommender systems represent one of the most innova-
tive research directions in the area of recommender systems, aiming at giving
meaning to information expressed in natural language and obtaining a deeper
comprehension of the information conveyed by textual content [4]. The litera-
ture on knowledge-aware recommender systems is actually rich, and constantly
evolving. Novel research directions in the area of semantics-aware content-
based recommender systems are described in [5], which integrates and extends
the content previously presented in [4], by giving an updated overview of the
main techniques to incorporate semantics into items and user profiles. From
now on, semantics-aware and knowledge-aware recommender systems will be
used interchangeably to refer to the same family of systems.

On the other hand, when considering software libraries, the literature is also
very scattered. These techniques are often implemented in different ways, with-
out a comprehensive software library offering a common pipeline to process the
textual content and implement knowledge-aware content representations. This
means that every researcher needs to continuously recreate a complex pipeline
to process and represent content, recommend items by exploiting those rep-
resentations, and evaluate the related performance. Hence, the experimental
workflow related to recommender systems that exploit complex representations
for items and users is becoming more and more complex, making the replicability
of experiments a challenge.

To tackle both these issues, in this paper we present ClayRS, a new end-
to-end Python framework which will make the entire recommendation pipeline
simple, fast, and replicable. In our vision, this work provides a common ground
for both researchers and practitioners interested in the latest knowledge-aware
content representations to be exploited for user modeling and recommender sys-
tems.

The paper is organized as follows: Section 2 gives an overview of (i) the chal-
lenges to develop accountable recommender systems through the replicability of
the experimental evaluation, with a specific focus on knowledge-aware recom-
mender systems; (ii) the most recent techniques for knowledge-aware content-
based recommender systems, covering the approaches classified as exogenous
and endogenous; (iii) a state of the art about the frameworks to implement
a complete recommendation pipeline which satisfies all or part of the require-
ments to facilitate replicability. Section 3 introduces ClayRS, a novel end-to-end
Python framework covering the whole pipeline for implementing and evaluating
knowledge-aware content-based recommender systems. ClayRS allows complex
representations of users and items to feed knowledge-aware content-based recom-
mendation algorithms, and compute the performance of recommendations mak-
ing the whole process customizable and replicable. Section 4 gives an overview
of using ClayRS to configure, execute and evaluate an experimental scenario,
Section 5 sketches some open challenges addressed by ClayRS, and Section 6
draws some conclusions and gives an outlook to future work.

3

2. Background and Related Work

2.1. Accountability in Recommender Systems

Although replicability is a cornerstone of science and a fundamental require-
ment for scientific progress, a large amount of published research cannot be
replicated. Consequently, it is not always possible to completely trust reported
results and progress over state of the art. Unfortunately, even the proposing
researchers in some cases are not able to reproduce their own results. Hence the
scientific community is in agreement that there is an ongoing reproducibility
crisis [6].

Replicability is often confused with other terms, such as repeatability and
reproducibility [7]. In this paper we refer to the ACM definition1: repeatabil-
ity is when the same team obtains the same results on the same experimental
settings, i.e. researchers able to reliably repeat their own experiment; repro-
ducibility is when a different team obtains the same results by using the same
experimental settings, i.e. different researchers able to obtain the same result
using the authors’ own artifacts; replicability is when a different team obtains
the same results using different experimental settings, i.e. different researchers
able to obtain the same result using their own artifacts.

On August 25, 2022 the Executive Office of the US President issued a memo-
randum for the heads of executive departments and agencies which recommends
that federal agencies: i) update their public access policies as soon as possible
to make publications and their supporting data resulting from federally funded
research publicly accessible without an embargo on their free and public release;
ii) establish transparent procedures that ensure scientific and research integrity
is maintained in public access policies; iii) coordinate with Office of Science
and Technology Policy to ensure equitable delivery of federally funded research
results and data.

Replicability issues concern many research areas [8], such as artificial in-
telligence [9], machine learning [10] and also recommender systems. In [11],
an analysis of reproducibility of RS, published at prestigious scientific confer-
ences between 2015 and 2018, revealed that most of the top-n recommendation
strategies based on complex neural methods are outperformed even by very
simple baselines, e.g. nearest-neighbor heuristic, making most of the claimed
improvements simply not real. Indeed, many algorithms simply compare their
performance with respect to weak baselines, which have not been properly op-
timized [12]. Problems concerning replicability were already identified in 2011
as one of the main reasons for the slowdown of recommender systems research
[13], and also in 2013 Konstan and Adomavicius considered them as one of the
critical issues to achieve progress [14].

In [15], the authors claim that ensuring some levels of replicability in the rec-
ommender systems research allows getting accountable recommender systems.

1https://www.acm.org/publications/policies/artifact-review-and-badging-current

4

https://www.acm.org/publications/policies/artifact-review-and-badging-current

To this purpose, a set of requirements to lead to more replicable experimen-
tal evaluations has been proposed, i.e., the definition of proper stages in the
evaluation. Those stages need to be precisely documented and include dataset
collection and splitting, recommendation, candidate item filtering, evaluation
and statistical testing. All these aspects, when designing and implementing a
recommender system, may affect its final results and hinder replicability when
not explicitly specified. In [16], the authors provide guidelines to support the
replicability of experiments involving recommender systems. Referring back to
findings outlined in [15], in the following we describe some of the requirements
that any evaluation should meet to enable replicability:

• Dataset collection: documentation of the way data have been collected
and on specific pre-filtering or other modifications performed.

• Data splitting : documentation of the data partitioning strategies for ob-
taining training and test set, considering strategies such as the temporal
splitting, or those not taking into account time, e.g. cross validation.

• Recommendation: documentation of the recommendation algorithm im-
plementation, along with all the aspects that are not standardized, and
all the different parameter settings. There are multiple factors to re-
port to have reproducibility. For collaborative filtering based on kNN,
for example, it should be reported whether the method is a user-based or
item-based kNN, the number of neighbors, the formula for computing pre-
dictions, the similarity metric to find neighbors, and also the tie-breaking
strategy when producing a ranking. Similarly, for content-based recom-
mender systems, it is necessary to report all the aspects concerning the
representation of items and users.

• Candidate item filtering : documentation on the recommended items that
will be used to measure the performance of the recommender, i.e. the
set of target items the recommender shall rank [17]. There are cheap
methodologies considering a minimum set of recommendations not includ-
ing unrated items, e.g. TestRatings, which usually tend to overestimate
the performance, and other methodologies involving a high number of un-
rated items, e.g. TrainingItems, which better simulate a real system where
no test is available [17].

• Evaluation: documentation on the performance measurement performed
using evaluation metrics, such as error-based (MAE and RMSE), ranking-
based ones (precision, recall, nDCG, and MRR), or recently introduced
metrics to evaluate fairness. Multiple factors may influence the computa-
tion of a specific metric, such as normalizations, the way values are aver-
aged, the cutoff for ranking metrics, or the discounting function adopted.
The candidate item filtering may also impact the final value of the metrics.

• Statistical testing : documentation on data on which statistical method
was computed, along with information such as the test used, the p-value

5

threshold, any corrections for multiple comparisons, and the confidence
interval. As argued in [18], statistical inference is a key component of the
evaluation process that has not been given sufficient attention.

Unfortunately, even more variables must be taken into account for imple-
menting replicable content-based or knowledge-aware recommender systems.
Indeed, besides the complex recommendation pipeline common to all recom-
mendation strategies, the replicability for content-based and knowledge-aware
recommender systems can be ensured by the precise recreation of the represen-
tation of items and/or users, which feeds the recommendation algorithm. The
problem of processing textual content to obtain a set of features that describe
the items (or users) is not trivial, since many techniques to elaborate content-
based features exist. A classical Natural Language Processing pipeline identifies,
extracts and weights relevant words and phrases from the text (lexical analysis).
Moreover, it can also infer some information about the structure of the text in
order to identify the role of each word in the whole content (syntactic analysis)
[19]. Even simple operations in the pipeline, such as tokenization, removal of
stopwords, lemmatization, named entity recognition, just to mention a few, can
be performed in a different way and by different libraries. Different weighting
strategies for features (e.g. TF-IDF) may return different representations and
may affect final results of the evaluation. Similarly, to incorporate semantics
into textual content, different strategies exist. Some of them leverage external
information sources, namely exogenous techniques, others rely on the analysis
of large corpora of textual content, i.e. endogenous techniques [19]. Several
libraries exist for encoding endogenous and exogenous semantics, hence, it be-
comes more and more important to clearly report all the stages for representing
content and all the parameter settings in order to come up with replicable and
hence accountable recommender systems.

2.2. Knowledge-aware Content Representations

Semantic representation mechanisms allow to shift keyword-based represen-
tation of items and user profiles towards concept-based ones, since they have
the potential to deal with the ambiguity of natural language and to provide a
deeper comprehension of the information conveyed by the textual content.

The availability of several open knowledge sources and knowledge graphs
(KG), such as WordNet [20], BabelNet [21], Freebase, WikiData [22], to cite
a few, together with the recent spread of word embedding techniques, such as
Word2Vec [23], GloVe [24], BERT [25], GPT-3 [26] and so on, have fueled recent
progress in the field of content-based recommender systems.

The literature on knowledge-aware representations has been deeply described
in [4, 19, 5], where techniques have been classified as exogenous, when relying
on the integration of external knowledge sources, and endogenous, when relying
on the implicit semantics learned from the analysis of large corpora of textual
content to infer the usage of a word. The following subsections sketch the
techniques, and present some recent trends to represent content.

6

2.2.1. Encoding endogenous semantics

Approaches for endogenous semantics representation exploit textual content
to produce a vector space representation of the items to be recommended as well
as of the users. These approaches fall in the general class of Distributional Se-
mantics Models (DSMs) [27], which rely on the distributional hypothesis, which
states that “Words that occur in the same contexts (i.e. they typically co-occur
with the same other terms) tend to have similar meanings. These vector space
representations are called embeddings. The context is a fragment of text in
which a word appears, and may have different granularity. The classical Vector
Space Model is an implementation of a DSM, when the whole document is used
as context, but finer-grained options are possible, e.g. a paragraph, a sentence,
a window of surrounding words or even a single word. The finer the granularity,
the higher the dimensionality of vectors. For this reason, word embedding tech-
niques usually project the original vector space into a smaller but substantially
equivalent one, thus returning more compact representations.

Word embedding techniques which are included in the ClayRS framework
cover all the different research waves [28] in the area of word embeddings.

In particular, methods available in the framework include early approaches
such as Latent Semantic Analysis [29], Random Indexing [30], Latent Dirichlet
Allocation and, first-generation word embedding techniques, such as Word2Vec
[23], GloVe, and FastText, methods for sentence and documents representa-
tion such as Doc2Vec [31] and also more recent methods for contextual word
representations (CWR), such as BERT [25].

The intuition behind Latent Semantic Analysis is to apply Singular Value
Decomposition (SVD) to reduce the overall dimensionality of the input matrix,
typically a term-term matrix, to discover latent factors that represent the un-
derlying meaning of what is contained in the documents [32]. SVD allows to
collapse a usually large matrix of term and document vectors into a smaller-rank
approximation, in which highly correlated and co-occurring terms are captured
in a single factor.

Similarly to Latent Semantic Analysis, Random Indexing represents terms
and documents as points in a semantic vector space built according to the
distributional hypothesis, but instead of using SVD for dimensionality reduction,
Random Indexing adopts Random Projection [33, 34], which does not need to
factorize the original matrix, but relies on an incremental and effective method
performing the same process with less computational cost.

Latent Dirichlet Allocation is a generative statistical model used to discover
the topics that are present in a corpus. It takes as input a term-document matrix
containing the count of words in the corpus, and produces two smaller matrices,
one document to topic matrix and a word to topic matrix that, when multiplied
together, reproduce the original matrix with the lowest approximation error.

Word2Vec exploits neural networks to learn a vector space representation of
words. In a nutshell, Word2Vec learns (small) word embeddings by exploiting a
two-layer neural network which is fed with examples gathered from a corpus of
textual data to learn the contexts and the linguistic usage of words to generate

7

the embeddings. Given a corpus of textual data, we define an input layer of
size |V |, that corresponds to the dimension of the vocabulary V of the terms.
An output layer N is created, where N is the size of the embedding we want
to obtain at the end of the learning process (N is a parameter of the model
and has to be properly tuned). The edges connecting the nodes in the network
have different weights, initially randomly set and updated through the training
process. The final representation of a term is the set of weights that connects
its corresponding node in the input layer to all the nodes in the output layer.

Similarl to Word2Vec, GloVe - Global Vectors for Word Representation -
is an unsupervised learning algorithm for obtaining vector representations for
words. Training is performed on aggregated global word-word co-occurrence
statistics from a corpus, and the resulting representations showcase interesting
linear substructures of the word vector space [35].

FastText builds on Word2Vec by learning vector representations for each
word and the n-grams found within each word. The values of the representations
are then averaged into one vector at each training step. While this adds a lot
of additional computation to training, it enables word embeddings to encode
sub-word information. FastText vectors have been shown to be more accurate
than Word2Vec vectors by a number of different measures.

Doc2Vec is a neural approach that shares the same principles of Word2Vec
and focuses on the representation of documents. In particular, it aims to gener-
ate a single embedding vector for the entire document. For this purpose, as well
as Word2Vec, it receives as input the words to be worked on, but in addition
a vector providing information regarding the paragraph id of each word is also
provided. As well as the Word2Vec model, Doc2Vec can be based on two neural
architectures: Distributed Memory Version of Paragraph Vector (PV-DM) and
Distributed Bag of Words Version of Paragraph Vector (PV-DBOW).

Finally, the current state of the art in the area is represented by techniques
for CWR. As previously stated, the distinctive trait of CWR techniques is the
generation of a context-aware representation of words, which depends on the
other terms that co-occur with the target word in a particular sentence. In
other terms, the same word, encoded in different sentences (and surrounded by
different words), has a different representation.

Generally speaking, these methods put their roots in the area of sequence
modeling, since each sentence (and its resulting representation) is seen as a
sequence of words. Accordingly, early methods such as ElMo [36] embeddings
largely use Recurrent Neural Networks and related architecture. However, all
these recent techniques gained a lot of interest after the introduction of attention
mechanisms [37], that allow to generate a more precise representation of word
and sentences since they exploit attention to carry on much more information
about the dependencies of the target word with the other words in the sentence.
The current state-of-the-art in the area of CWR is represented by methods
based on Tranformers architecture. Indeed, BERT and its derived models are

8

currently lead several benchmark in the area of Natural Language Processing2

[38].

2.2.2. Encoding exogenous semantics

Approaches for exogenous semantics representations introduce a different
vision of the concept of semantics, that is obtained by exploiting data encoded
in structured and external knowledge sources, which can be built by experts
or constructed collaboratively. Example of such knowledge sources are Word-
Net3 [20], a lexical database for English, BabelNet4 [21], a large-scale multilin-
gual encyclopedic dictionary and semantic network integrating heterogeneous
resources, Wikidata [22], a free, collaborative and multilingual database built
with the goal of turning Wikipedia into a fully structured resource, and the
The Linked Open Data (LOD) cloud [39], which refers to the huge number of
datasets released through the Linked Open Data initiative, whose nucleus is
represented by DBpedia [40]. Two different strategies can be adopted to build a
semantics-aware representation of items by exploiting the data available in the
knowledge sources:

1. linking item features to concepts, e.g. through Word Sense Disambiguation
(WSD) [41], which tries to correctly identify which of the senses of an
ambiguous word is invoked in a particular use of the word itself, and
Entity Linking (EL) [42], which tries to associate the mention of an entity
in a text to an entity of the real world stored in a knowledge base

2. linking items to a knowledge graph, by directly linking items to nodes in
a knowledge graph rather than mapping word forms to word meanings
or entities. This process avoids the burden of processing textual content
and provides the items with new and descriptive characteristics extracted
from a knowledge base, e.g. the properties extracted from DBpedia.

ClayRS makes available an entity linking algorithm based on the BabelNet
3.0 [43] knowledge base, whose advantage is the unified approach of the two
tasks of entity linking and WSD in any of the languages covered by the native
multilingual semantic network.

As regards the methods to link items to concepts in a knowledge graph, the
huge amount of data freely available on the Web thanks to the Linked Open Data
initiative allows to improve the effectiveness of existing algorithms in different
ways. When an item is linked to the LOD cloud, descriptive features of the
items (and, in turn, of the profiles of the users) can be collected and exploited,
even when no textual content that describes the item is available. Moreover, a
more complex data model can be constructed, and this can in turn lead to a
more precise representation of the interests and more interesting (and maybe
surprising) recommendations. ClayRS provides a set of functionalities to deal

2https://gluebenchmark.com/leaderboard
3http://wordnet.princeton.edu
4http://babelnet.org

9

https://gluebenchmark.com/leaderboard
http://wordnet.princeton.edu
http://babelnet.org

with complex networks represented in form of graphs, in order to fully exploit
the potential of this form of representation.

2.3. Related Frameworks

As reported in [15], the use of a recommendation library may help to improve
the transparency of the research work, but it could be not enough to provide
full accountability, since the library might not be used properly or might not
provide support for all the stages to ensure replicability.

Reporting a complete overview of the frameworks in recommender systems
research and their support for the requirements to facilitate replicability is out
of the scope of the current publication, but we try to give an overall picture
of the current state of the art. A clear and updated overview is reported in
[15], which describes the capabilities of the most frequently cited libraries in
the recommender systems community, such as Apache Mahout, CaseRec [44],
LensKit [13, 45], LibRec [46], MyMediaLite [47], RankSys [48], Surprise [49],
DaisyRec [50], LibRec-auto [51], and Rival [52]. In our analysis we include
other recently introduced frameworks, such as Elliot [53], Cornac [54], RecBole
[55], OpenRec [56], LightFM [57], and also our ClayRS framework that will be
described in detail in the next section.

None of the above mentioned frameworks satisfies all the requirements to
facilitate replicability. Most of them supports strategies for data splitting (all
but RankSys and OpenRec), while just a few of them support candidate item
filtering (Lenskit, RankSys, RiVal, RecBole and ClayRS). Error (err) and ranking
(rank) metrics are provided by most of the frameworks, with the exception of
RankSys, DaisyRec, OpenRec and LightFM that only compute ranking metrics,
and Surprise which only provides error metrics. Fairness metrics (fair) are only
supported by Elliot and ClayRS. Statistical testing is supported only by Elliot,
CaseRec, LensKit and ClayRS.

In the following we give a detailed description of the recently introduced
frameworks, not discussed in [15].

A comprehensive and rigorous framework for reproducible recommender sys-
tems evaluation, called Elliot, has been introduced in [53]. Elliot has been com-
pared with most of the above mentioned frameworks and with others recently
introduced, such as Cornac [54] and RecBole [55]. The comparison has been
performed along different dimensions, such as pre-filtering strategies (filter by
rating and k-core), splitting strategies (temporal, random and fix), hyperpa-
rameter tuning (grid search, simulated annealing, Bayesian Optimization, and
Random Search strategies), implemented recommendation models, evaluation
metrics (accuracy, error, coverage, novelty, diversity, bias and fairness) and sta-
tistical tests (paired t-test and Wilcoxon). Elliot is competitive with most of
the frameworks for almost all the dimensions, and significantly for pre-filtering
strategies and families of metrics supported. It also implements a wide variety
of popular recommendation models and two statistical hypothesis tests.

To sum up, it seems there is an ever-growing attention of the recommender
systems community to the topic of replicability. Novel recommendation frame-
works are continuously developed for rapid prototyping and testing of traditional

10

recommendation models and new ones based on deep learning, for measuring
new performance dimensions such as bias and fairness, and for supporting com-
plex hyperparameter tuning and optimization.

Unfortunately, most of the frameworks focus on the collaborative filtering
paradigm, and they do not provide full support for the development of content-
based and knowledge-aware recommender systems [5, 19]. Actually, some frame-
works provide some basic or advanced functionalities to process text or other
types of side information.

Elliot [53] allows to include side information by adopting specific imple-
mentations of a loading module, able to handle additional data such as visual
features [58], and semantic features extracted from knowledge graphs. If needed,
it is possible to code a custom loader.

RecBole [55] uses different file types for including different side information
in the recommendation models. It adopts a specific file for representing user
interactions in terms of ratings, review text, and timestamp; a user feature
file to include user side information, such as gender, and occupation; an item
feature file to include item characteristics, such as title, release year and genres
adopted by MovieLens; a knowledge graph file containing a set of 〈head, tail,
relation〉 triplets, and a file reporting the correspondence between items and
the knowledge graph entities (item-to-entity mapping). Using additional files,
RecBole also allows to load features from other sources, e.g. pre-trained entity
embeddings.

The distinctive feature of Cornac [54] is to provide built-in functionalities to
process different kinds of raw data to obtain side information, and not only to
include them in the recommendation process. Cornac can process both image
data, and item textual descriptions to obtain basic representations, such as
sequences or bag-of-words, or advanced representations, such as graphs.

Similarly to Cornac, OpenRec [56] is a Python framework able to analyze
multi-modal data from users and items, benefiting from advancements in other
fields, such as natural language processing and computer vision.

LightFM [57] is a Python implementation of popular recommendation algo-
rithms for implicit and explicit feedback, which also allows to incorporate both
item and user metadata. The model learns embeddings for users and items in
a way that encodes user preferences over items. The user and item representa-
tions are expressed in terms of representations of their features: an embedding
is estimated for every feature, and these features are then summed together to
come up with representations for users and items.

All the above mentioned frameworks allow to include side information in the
recommendation process, and in some cases make available techniques to learn
embeddings from the user or item metadata, but there is not a comprehensive
set of methods for obtaining complex representations, such as those based on
exogenous and endogenous representation techniques [5]. To this purpose, we
have developed ClayRS, an exhaustive framework to address the need of having a
wide variety of knowledge-aware representations, and also able to reproduce the
experimental pipeline starting from the content representation, and including
the recommendation and the performance evaluation tasks.

11

Table 1 summarizes the compliance of the different recommendation frame-
works to the requirements for facilitating the replicability (see Section 2.1).
We have not reported the dataset collection and recommendation requirements,
since they do not concern the functionalities of a framework, but only a doc-
umentation to be reported by the researchers about the data collection and
filtering, and the recommendation algorithm.

Splitting
strategies

Candidate
item filtering

Evaluation
Metrics

Statistical
Testing

Mahout • err, rank
CaseRec • err, rank •
LensKit • • err, rank •
LibRec • err, rank
MyMedialite • err, rank
RankSys • rank
Surprise • err
DaisyRec • rank
LibRec-auto • err, rank
RiVal • • err, rank
Elliot • err, rank, fair •
Cornac • err, rank
RecBole • • err, rank
OpenRec rank
LightFM • rank
ClayRS • • err, rank, fair •

Table 1: Compliance of recommendation frameworks to the requirements for replicability.

3. ClayRS

ClayRS is a new end-to-end framework written in Python, which provides a
complete and customizable pipeline for content representation and recommen-
dation 5 6. The framework allows handling all the steps of the pipeline, i.e.
loading preferences and content information, representing content using several
approaches, running recommendation algorithms and evaluating their perfor-
mance. The ever increasing complexity of pipelines for representing users and
items, configuring the recommendation algorithms and computing the evalua-
tion metrics hinder the replicability of the experiments. To this purpose, ClayRS
tries to fulfill the requirements to satisfy replicability as described in [15] and
summarized in Section 2.1.

5https://github.com/swapUniba/ClayRS
6https://swapuniba.github.io/ClayRS/

12

https://github.com/swapUniba/ClayRS
https://swapuniba.github.io/ClayRS/

The general architecture of the framework is provided in Figure 1. In a nut-
shell, the Content Analyzer module is responsible for handling and managing
user and item representations by implementing most of the knowledge-aware
techniques described in [4, 5]. The Recommender module provides recommen-
dation algorithms which are fed with ratings and the above mentioned rep-
resentations. The Evaluator module evaluates recommendations according to
different families of metrics. The modules are completely independent one from
each other. For example, the evaluator can be used to evaluate the recommen-
dations produced by external libraries, e.g. those described in Section 2.3, and
the Content Analyzer can export the representations of users and items (e.g.,
embeddings) for feeding a neural network architecture to generate recommen-
dations.

The following sections briefly describe each module.

Figure 1: ClayRS Architecture.

3.1. Content Analyzer

The Content Analyzer is the most complex component of the ClayRS frame-
work, which makes available several strategies for representing users and items.
ClayRS allows to provide complex representations, where users and items are
represented using different fields, and each field can be represented using one or
more strategies at the same time. For example, users can be represented with
demographic attributes and personality traits, while items can be represented

13

using properties extracted from DBpedia and textual reviews represented using
two different strategies, e.g. TF-IDF vectors and pre-trained embeddings.

ClayRS is able to handle and manage the whole pipeline to load raw data
(ratings and content) by heterogeneous data sources, e.g. CSV, JSON and DAT
files, or SQL databases, pre-process and represent them according to different
knowledge-aware techniques.

3.1.1. Pre-processing.

The pre-processing step aims at obtaining a set of features that describes
the items, starting from the textual content. This is not trivial, since many
techniques to elaborate content-based features exist and the identification of the
sequence of algorithms that leads to better representation of the content often
varies depending on the particular use case. When information has no structure
(e.g., text, as the content of a news or the plot of a movie), some processing
steps are needed to extract relevant information from it. This would allow
to represent items such as documents, Web pages, news, product descriptions,
user comments or reviews, in a form suitable to be exploited by recommendation
algorithms. In other terms, the informative content conveyed by the items must
be properly analyzed through particular algorithms in order to shift from the
original unstructured representation to a structured one [19]. As an example, in
a movie recommendation scenario, possible features that describe the items are
actors, directors, genres, plot, which can be of different types, i.e. keywords,
phrases, entities, or concepts extracted from a dictionary or a knowledge graph.

ClayRS integrates a complete pipeline for text processing, which includes
the following operations: tokenization, stopwords removal, stemming, lemma-
tization, named entity recognition, part-of-speech tagging, and URL tagging.
Pre-processing operations are provided by different state-of-the-art libraries in-
tegrated in the framework, which can be used interchangeably. The framework
currently integrates the following libraries for Natural Language Processing,
even though it is designed in a way that allows the integration of other libraries:

• Natural Language Toolkit (NLTK)7 [59], an open-source Python library
providing interfaces to over 50 corpora and lexical resources, and a suite
of text processing libraries.

• SpaCy8 [60], a Python library implementing more sophisticated text pro-
cessing, e.g. pre-processing text for deep learning. It provides several
templates in different languages, including English, Italian, Russian and
Japanese, to perform tokenization, semantic tagging, and named entity
recognition.

• EkPhrasis9 [61], a collection of lightweight text tools, devoted to the pro-
cessing of text coming from social networks. EkPrhasis provides methods

7https://www.nltk.org/
8https://spacy.io/
9https://github.com/cbaziotis/ekphrasis

14

https://www.nltk.org/
https://spacy.io/
https://github.com/cbaziotis/ekphrasis

for tokenization, word normalization, word segmentation (i.e., hashtags
splitting) and spell correction, by using word statistics obtained English
Wikipedia, and a large corpora of English tweets. The tokenizer can cor-
rectly manage emoticons, emojis and many unstructured expressions like
dates, times and more.

3.1.2. Knowledge-aware Content Representations.

The framework currently integrates libraries for encoding exogenous and
endogenous semantics, and it is designed in a way that allows the integration of
other libraries.

Encoding endogenous semantics is realized through the integration of the
following libraries:

• Gensim10 [62], an open source Python library which provides efficient
use or creation of embeddings, including popular models such as Latent
Semantic Analysis (LSA) [29], Word2Vec [63], Doc2Vec [31], GloVe[24],
FastText[64], Latent Dirichlet Allocation (LDA) [65] and Random Index-
ing [66, 30].

• SBERT 11 [67], a Python framework for state-of-the-art sentence, text and
image embeddings. It is based on BERT-like models in order to allow
the generation of embeddings where the similarity properties of semantic
similar elements are preserved. These embeddings can then be compared
e.g. with cosine-similarity to find sentences with a similar meaning. In
order to achieve these results, the framework is based on a siamese neural
network.

• Hugging Face12 [68], which includes a huge number of transformers mod-
els. The library provides more than 59,000 models for hundreds of lan-
guages, such as BERT, RoBERTa, T5, GPT, BigBird, ELECTRA, etc.
The library allows such models to be used as classifiers or as text encoding
utilities for obtaining contextualized embeddings that are representative
of any individual token, sentence, or document. As an example it is pos-
sible to use the last encoding layer of the model or the [CLS] token as
embedding representations of a sentence.

• Scikit-learn [69] and Woosh13 for representations based on the classical
vector space model with the TF-IDF weighting scheme, with the possibil-
ity of indexing the content in order to make data searchable.

It is worth to mention that ClayRS allows to i) use already available models
pre-trained on large collections of documents, or ii) create them from scratch

10https://radimrehurek.com/gensim/
11https://www.sbert.net/
12https://huggingface.co/
13https://github.com/mchaput/whoosh

15

https://radimrehurek.com/gensim/
https://www.sbert.net/
https://huggingface.co/
https://github.com/mchaput/whoosh

by analyzing specific collection of documents, such as textual descriptions or
reviews related to items of the catalogue adopted by the recommender system.

Encoding exogenous semantics is realized through the integration of the
following libraries:

• BabelPy, the Python entity tagger based on Babelfy [70], a graph-based
approach to entity linking, whose output is a bag of concepts and named
entities in different languages supported by BabelNet

• NetworkX, the Python library for the creation and manipulation of com-
plex networks. It is possible to create bipartite graphs containing two dif-
ferent types of nodes for representing users, items and their preferences,
tripartite graphs which also allow to represent properties associated to
items, e.g. DBpedia properties, and full graphs which allow to also enrich
users with properties, e.g. personality traits, and allow the creation of
new types of nodes for more complex networks. For example, a full graph
may be used to create context nodes, to model the different contextual
situations in which an item can be consumed, as described in [71]. In
order to retrieve properties from a SPARQL endpoint, a specific wrapper
has been provided.

A new version of ClayRS has been released, which currently offers methods
to also process and include images as side information in the recommendation
algorithms, by providing full support to the replicability of the pre-processing
steps and the whole recommendation pipeline. More information can be found
in [72].

3.2. Recommender

The Recommender module provides the functionalities to train a recommen-
dation model by using imported ratings and the representations of users and
items obtained by the Content Analyzer. The module allows to split ratings ac-
cording to different strategies, i.e. fix split, bootstrap or k-fold cross validation,
and also allows to specify the candidate item filtering, according to the following
methodologies [17]:

• TestRatings, that computes the performance only for items rated by users
in the test set

• TestItems, that adds to the previous items those not rated (and therefore
not relevant) as well, by excluding only ratings in the training set of the
active user

• TrainingItems, that selects all the items belonging to the training set by
all users, except those rated by the target user

• AllItems, that selects the whole set of items, except those in the training
set of the active user.

16

Actually the framework implements the following recommendation algo-
rithms:

• CentroidVector, which computes the centroid of the items that the user
liked, and then computes the similarity between that centroid and all the
items to rank, by returning the most similar ones. It is possible to select
the item representation, e.g. the TF-IDF representation of the plot or the
Word2Vec representation for the plot and Doc2Vec for the director field,
the similarity measure to adopt, e.g. cosine similarity, and the threshold
to deem an item as relevant, e.g. a fixed score or the average user rating

• IndexQuery, which builds a query using the representation(s) of the items
the user liked, and then searches the items more similar to the query, by
ranking them according to the similarity score. A textual representation
of items is necessary to build a significant query and perform a significant
search. Woosh is used to index the content and perform the query, by
using classical similarity or BM25

• Classifiers, which implements recommendation through classification al-
gorithms. The framework provides the functionalities to train a classifier
by selecting specific features to represent each item, the threshold to deem
an item as relevant, and the specific classification algorithm, among those
made available in the Scikit-learn library, e.g. Decision Trees, k-Nearest
Neighbor, Random Forests, Logistic Regression, Gaussian Process, Sup-
port Vector Classifier. The framework also integrates Regressors to predict
ratings of unseen items, instead of classifying them as relevant or not. Al-
gorithms provided by the Scikit-learn library are available, such as Linear
Regression, Ridge and Bayesian Ridge Regression, Stochastic Gradient
Descent Regressor, and Huber Regressor to cite a few

• PageRank, which can be performed on graph-based representations. The
PageRank can be personalized, which means that it will be calculated
with Priors, considering the user profile as personalization vector. The
framework also allows to perform feature selection using several strategies,
in order to prune the graph before calculating predictions.

The framework also integrates the distex library 14 to offer a distributed pro-
cess pool to utilize multiple CPUs or machines for enhancing the computation
of recommendations.

3.3. Evaluator

This module allows to evaluate the performance of recommendations through
the use of specific metrics and statistical tests. Recommendations computed
by the Recommender module or computed by other libraries and imported in

14https://pypi.org/project/distex/

17

https://pypi.org/project/distex/

the framework, are provided to the Evaluator along with the ground truth.
ClayRS provides different evaluation metrics, partitioned in different families,
even though new metrics can be added:

• Error, containing Mean Absoulte Error (MAE), Mean Square Error (MSE)
and Root Mean Square Error (RMSE)

• Classification, containing Precision, Recall, F-measure, R-precision

• Ranking, containing normalized Discounted Cumulative Gain (nDCG),
Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR), and
correlation coefficients, i.e. Pearson, Kendall Tau and Spearman

• Fairness, containing Gini index (unbalancement in terms of frequency of
the distribution of the recommendations to all the users), catalogue cov-
erage (amount of items in the catalogue which are recommended to at
least one user) and ∆GAP (which shows how the popularity of the rec-
ommended items differs from the expected popularity of the items in the
user profiles)

• Plot, reporting plots showing the long tail distribution, the profile vs rec-
ommendations popularity, and the correlation between popular or niche
items and how many times are being recommended.

Metrics such as Precision, Recall, and F-measure can be computed using mi-
cro or macro-average and, similarly to nDCG, they can be computed at different
cutoff values. Their values can vary according to the candidate item filtering
strategy. Two statistical hypothesis tests can be computed, i.e. Wilcoxon and
Paired t-test.

3.4. Ensuring Replicability with ClayRS

According to the guidelines described in [15], the stages in recommender
systems evaluation should be properly documented for an accountable recom-
mender system evaluation. All the parameters and alternatives in all the steps
of the recommendation pipeline must be explicitly specified.

To this purpose ClayRS automatically generates a set of YAML files, one for
each module of the architecture, which contain all the parameters adopted to
represent users and items, to configure the recommendation algorithm and com-
pute the metrics. Figure 2 shows the YAML file generated by the Content Ana-
lyzer, which reports the representation for the items, having two fields, i.e. de-
scription and tags, represented using the pre-trained word2vec-google-news-300

model available in GenSim, and the Natural Language Processing pipeline per-
formed on the text, using the NLTK library.

Figure 3 reports the YAML file generated by the Recommender System,
which includes the dataset statistics, the partitioning strategy to obtain training
and test set, and the parameters to configure the recommendation algorithm. In
the example, a holdout partitioning strategy is used with 80% of ratings in the

18

training set and the rest in the test set. In order to reproduce exactly the same
split, the random seed is reported. The recommendation algorithm adopted
in the experiment is the Support Vector Classifier (SVC) of the ScikitLearn

library, trained using the Word2Vec representations of description and tags.
The experiment is configured to report the top-20 recommendations using the
TestRatings candidate item filtering methodology.

Figure 2: YAML file for the Content Analyzer.

Finally, figure 4 contains all the data produced by the Evaluator. The file
reports the list of metrics computed at a specific cutoff, and depending on
the metrics, also some parameters, such as the threshold to deem an item as
relevant, the way of computing the average, i.e. micro or macro-average, the
configurations of the groups for the ∆GAP metric. The YAML file also contains
the list of items in the catalogue, the computed metrics for each fold, and the
overall system results.

Starting from those files, ClayRS also builds a report of the experiment, both
in LaTeX and PDF, to help researchers to write the experimental section of their
papers more rapidly. They can run the whole experimental pipeline, produce
results, and have the draft of the experimental evaluation with the description
of the dataset, metrics, algorithms and results to work on.

19

Figure 3: YAML file for the Recommender System.

Such a report fulfils all the requirements for ensuring the accountability of
recommender systems indicated in [15], and also helps the researchers to describe
in a standard way the experimental protocol and results of their evaluation. An
excerpt of the report is depicted in Figure 5.

4. ClayRS in Practice: Experimental Scenarios

In this section we illustrate how to use ClayRS to configure a complete recom-
mendation pipeline for performing experiments. We performed experiments on
three different datasets and using different techniques for representing content,
in order to show how the framework easily supports the creation of knowledge-
aware representations.

4.1. Datasets

We perform evaluation on three datasets frequently used in the recent liter-
ature, namely MovieLens-1M (ML-1M), GoodBooks and MovieLens-100k (ML-
100k). Statistics are reported in Table 2.

20

Figure 4: YAML file for the Evaluator.

Users Items Ratings Sparsity Avg. rating
ML-1M 6,040 3,706 1,000.209 95.53% 3.58

GoodBooks 53,424 10,000 5,976,479 98.88% 3.92
ML-100k 943 1,682 100,000 93.69% 3.52

Table 2: Statistics of the datasets

DBpedia was used as Knowledge Graph (KG) to map items of ML-100k
and perform recommendations using the Personalized PageRank algorithm. We
populate the KG using users and items along with DBpedia properties for items
and gender and occupation extracted from the dataset for users. In total the
KG contains 11, 343 nodes, 120,469 edges (links) and 10.62 average links per
node.

4.2. Data Splitting and Evaluation Protocol

Datasets are split using the HoldOut methodology, holding 80% of ratings
for training and 20% for testing, and we considered as positive only the ratings
greater than 3. The predictive accuracy of the algorithms was evaluated on
top-10 and top-20 recommendation lists, calculated by following the TestRatings
candidate item filtering strategy [17].

21

Figure 5: PDF report generated by ClayRS.

For ML-1M and GoodBooks datasets we used Tags (T) and Description
(D) fields, and their combination (T+D), using the following representation
techniques:

1. TF-IDF: we used the representation provided by Scikit-learn, where the
specific configuration for the sake of replicability is contained in the YAML
file produced by the Content Analyzer. The file gives the details about
the use of IDF, the use of a classical term frequency instead of the sub-
linear scaling, the pre-processing pipeline consisting of punctuation and
stopwords removal and lemmatization, performed using the NLTK library

2. Word2Vec: we used the pre-trained model word2vec-google-news-300
from GenSim, with the same pre-processing pipeline described for TF-IDF

3. LSA: we used the Latent Semantic Analysis algorithm from GenSim with
the same processing pipeline as before

4. GloVe: we used the pre-trained model glove-twitter-50 from GenSim
with the same processing pipeline as before

22

5. FastText: we used the pre-trained model fasttext-wiki-news-subwords-300
from GenSim with the same processing pipeline as before

6. Doc2Vec: we used the Doc2Vec algorithm from GenSim with the same
processing pipeline as before and we used a combiner based on the cen-
troid.

4.3. Recommendation Algorithms

As recommendation algorithms we exploited:

1. CentroidVector, which computes the centroid of the items liked by the
user, i.e. user profile, and returns the most similar items to the user profile
using the cosine similarity computed on the specific tested representations

2. Support Vector Classifier available in Scikit-learn, trained with the specific
tested representations

3. Personalized PageRank, configured using a damping factor equal to 0.85,
a maximum number of iterations equal to 100 for the power method eigen-
value solver, and 1.0e− 06 as error tolerance used to check convergence in
power method solver.

4.4. Evaluation Metrics and Statistical Testing

Metrics were calculated on the top-10 and top-20 recommendation lists re-
turned by each algorithm for each user, and finally averaged over all the users
(macro-average). As evaluation metrics, we adopted standard methods used to
evaluate the accuracy and fairness of the algorithms. In particular, we adopted:

1. F1 - harmonic mean of precision and recall, nDCG - normalized dis-
counted cumulated gain and MRR - mean reciprocal rank, to assess the
quality of the ranking

2. Gini Index to measure how unbalanced (in terms of frequency) is the
distribution of the recommendations to all the users. This metric assumes
values in the range [0,1], where 0 indicates a balanced (and more fair)
distribution of the recommendations, while 1 represents the worst value
(not balanced recommendations), i.e. recommendations concentrated on
a single item

3. Catalogue Coverage measures the amount of items in the catalogue which
are recommended to at least one user, and it is obtained by merging all
the recommendation lists produced for all the users by an algorithm and
by counting the amount of different items contained in the merged list. Of
course, the higher the coverage, the higher the fairness of the algorithm.,
since a larger number of the items available in the catalogue are included
in the recommendation lists

4. The Group Average Popularity (GAP) measures the average popularity
of the items in a certain group. In our case, we define GAP (g)p, which
measures the average popularity of the items in the user profiles p of a
specific group g and GAP (g)r, which measures the average popularity of
the items in the recommendation list r of a specific group g. Popularity is

23

calculated as the amount of ratings expressed by the users on a particular
item. Based on the protocol presented in [73], three different groups of
users are defined: blockbuster (whether they majority of the items liked
by the user are in the top-20% most rated items), niche users (majority
of liked items in the less-20% most rated items) and diverse users (the
remaining).
For each algorithm and user group, we are interested in the change in
GAP (i.e., ∆GAP), which shows how the popularity of the recommended
items differs from the expected popularity of the items in the user profiles.
Formally:

∆GAP (g) =
GAP (g)r −GAP (g)p

GAP (g)p
(1)

The interpretation of such metric is straightforward. ∆GAP = 0 would
indicate fair recommendations in terms of item popularity, where fair
means that the average popularity of the recommendations a user receives
matches the average popularity in the user’s profile. Conversely, if ∆GAP
is higher than 0, the algorithm overestimates the popularity required by
the user, based on her previous likes. Conversely, if ∆GAP is lower than
0 an underestimation occurs.

4.5. Replicability of the experiments

For the sake of replicability the reader can access the notebooks of three
experiments at the following URLs:

1. Experiment 1 on MovieLens-1M dataset:
https://colab.research.google.com/drive/1j_wNb947jmPW1EK7tbsrkoRWA3CdQ5oL?

usp=sharing

2. Experiment 2 on GoodBooks dataset:
https://colab.research.google.com/drive/1_HpRg_CURN-2_92ROxPSjZtQzI0baZ0l?

usp=sharing

3. Experiment 3 on MovieLens-100k dataset:
https://colab.research.google.com/drive/1idIxvhjs_LONryt90BGgSNxaeUA9CgY5?

usp=sharing

For each experiment, the notebook allows to access:

• the dataset used in terms of ratings and side information

• the knowledge-aware representations computed by the Content Analyzer,
along with all the pre-processing steps performed on the content

• the complete configuration of the recommendation algorithms

• the evaluation of the models in terms of specific evaluation metrics at
different cutoff values

24

https://colab.research.google.com/drive/1j_wNb947jmPW1EK7tbsrkoRWA3CdQ5oL?usp=sharing
https://colab.research.google.com/drive/1j_wNb947jmPW1EK7tbsrkoRWA3CdQ5oL?usp=sharing
https://colab.research.google.com/drive/1_HpRg_CURN-2_92ROxPSjZtQzI0baZ0l?usp=sharing
https://colab.research.google.com/drive/1_HpRg_CURN-2_92ROxPSjZtQzI0baZ0l?usp=sharing
https://colab.research.google.com/drive/1idIxvhjs_LONryt90BGgSNxaeUA9CgY5?usp=sharing
https://colab.research.google.com/drive/1idIxvhjs_LONryt90BGgSNxaeUA9CgY5?usp=sharing

• the comparison of the metrics computed by ClayRS with those computed
by RecMetrics15, a Python library of evalulation metrics and diagnostic
tools for recommender systems, in order to identify possible discrepancies
between the metric values

• the statistical tests performed using ClayRS to compare metric results for
each user, and the same tests performed using the SciPy library, in order
to identify possible discrepancies

• the YAML files produced by the Content Analyzer, the Recommender
and the Evaluator modules, containing all the necessary parameters to
replicate the experiments.

4.6. Results

The results for ML-1M dataset for top-10 and top-20 recommendation lists
are shown in Table 3. We mark the best-performing configuration for each
algorithm and metric in bold font, while the second best result is underlined.
The following main observations can be made:

• Accuracy: content-based recommendations based on tags have the best
performance with respect to those using descriptions or a combination of
tags and descriptions, regardless the recommendation algorithm and the
representation technique adopted. This is valid for recommendation lists
of 10 or 20 items, with only few exceptions for the TF-IDF representation.
The value of F1 is penalized by the low recall, while high values for nDCG
and MRR show the ability of the recommender to rank items. Hence,
the system is able to recommend and well rank good movies. Using only
descriptions leads to a worsening of accuracy, and this is probably due to
the fact that tags allow to more clearly define user profiles, differently from
descriptions which could introduce some noise in the user profiling process.
As regards the representation techniques, the best results are obtained
using TF-IDF representation with the centroid vector recommendation
algorithm. This means that more complex semantic representations do
not allow improving accuracy. Using the SVC classifier, the best results
are obtained using the Latent Semantics Analysis representation strategy.

• Fairness: content-based recommendations based only on descriptions have
always better performance in terms of coverage, concentration of recom-
mendation measured through the Gini index and also in terms of ∆GAP
with respect to using tags or tags combined with descriptions. This means
that descriptions are a valuable source of information for recommending
more items from the catalogue, even though less than half of the cata-
logue is recommended to users. The results of the Gini index highlight a
concentration of recommendations and not properly an even distribution

15https://github.com/statisticianinstilettos/recmetrics

25

https://github.com/statisticianinstilettos/recmetrics

of the items. Combining tags with descriptions hurts the performance
for fairness metrics with performance which becomes similar to using only
tags. The best Gini index is always obtained by the Doc2Vec strategy.

The results for GoodBooks dataset are shown in Table 4, and the following
observations can be made:

• Accuracy: similarly to the results obtained for ML-1M, content-based rec-
ommendations based on tags have the best performance with respect to
those using descriptions or a combination of tags and descriptions, regard-
less the recommendation algorithm, the representation technique adopted,
and the size of recommendation lists. It is worth to notice that the dif-
ference in performance is not so high as in the ML-1M dataset. Similarly
to the ML-1M dataset, the F1 score is penalized by the low recall, while
high values for nDCG and MRR show the ability of the recommender to
rank books. As regards the representation techniques, the best results are
obtained using TF-IDF representation regardless of the recommendation
algorithm, showing the ability of a very simple representation strategy to
provide accurate recommendations.

• Fairness: the coverage for this dataset is very high and over 90% for all
the configurations and most of the times content-based recommendations
based only on descriptions have the best performance in terms of concen-
tration of recommendations measured through the Gini index and also in
terms of ∆GAP. Similarly to the results obtained for ML-1M, the Doc2Vec
strategy performs very well in terms of Gini index, with results which are
better than those obtained for ML-1M.

In order to also test ClayRS with graph-based recommendation algorithms,
we performed experiments using ML-100k dataset and the Personalized PageR-
ank recommendation algorithm. Results are shown in Table 5. We can observe
that the algorithm is able to recommend less than half of the items in the
catalogue, with a concentration of recommendations towards popular items, as
highlighted by the high Gini index and by the ∆GAP values.

26

A
lg
.

R
e
p
r.

C
o
n
te
n
t

T
o
p
-1
0

T
o
p
-2
0

F
1

n
D
C
G

M
R
R

G
in
i

∆
G
a
p

(b
b
/
d
iv
e
rs
e
/
n
ic
h
e
)

C
o
v
.

F
1

n
D
C
G

M
R
R

G
in
i

∆
G
a
p

(b
b
/
d
iv
e
rs
e
/
n
ic
h
e
)

C
o
v
.

C
en

tr
oi

d

T
F

-I
D

F
T

0
.5

6
67

0
.9
0
4
5

0
.8
8
4
4

0
.8

4
4
0

0
.1

28
0

0
.4

23
0

0.
76

95
38

.3
2
%

0
.6

4
72

0
.9
5
0
8

0
.8
8
4
4

0
.8

3
03

0.
02

98
0.

2
52

0
0.

56
41

44
.0

9
%

D
0
.5

0
72

0
.8

59
5

0
.7

7
2
8

0
.8

0
3
8

0
.0

01
3

0
.0

64
1

0.
12

19
4
2
.6
9
%

0
.6

0
31

0
.9

2
66

0.
7
72

9
0
.7

9
61

0.
00

16
0.

0
69

1
0.

11
93

4
7
.1
4
%

T
+

D
0
.5
6
7
0

0
.9

04
2

0
.8

8
4
1

0
.8

4
3
4

0
.1

27
7

0
.4

15
5

0.
75

19
38

.3
4
%

0
.6
4
7
3

0.
9
50

6
0
.8

84
1

0
.8

3
05

0.
02

98
0.

2
49

6
0.

55
57

44
.2

3
%

W
o
rd

2
V

ec
T

0
.5

6
12

0
.9

00
9

0
.8

6
7
7

0
.8

4
6
2

0
.1

28
9

0
.4

03
1

0.
70

18
38

.0
7
%

0
.6

4
49

0
.9

4
93

0.
8
67

7
0
.8

3
08

0.
03

12
0.

2
49

5
0.

54
67

43
.9

3
%

D
0
.4

9
84

0
.8

57
0

0
.7

5
8
3

0
.8

0
8
3

-0
.0

14
2

0
.0

3
87

0.
1
43

6
41

.2
3
%

0
.5

9
87

0
.9

2
55

0.
7
58

3
0
.7

9
76

-0
.0

00
6

0.
0
61

4
0.

13
12

46
.1

7
%

T
+

D
0
.5

5
06

0
.8

93
5

0
.8

4
4
2

0
.8

4
0
0

0
.0

95
9

0
.2

98
1

0.
51

03
38

.0
5
%

0
.6

3
68

0
.9

4
54

0.
8
44

2
0
.8

2
78

0.
02

69
0.

2
08

2
0.

43
54

43
.8

2
%

L
S

A
T

0
.5

5
36

0
.8

93
7

0
.8

6
1
6

0
.8

1
6
9

0
.0

94
4

0
.2

72
5

0.
36

10
40

.8
5
%

0
.6

3
91

0
.9

4
53

0.
8
61

6
0
.8

1
17

0.
02

45
0.

1
88

7
0.

32
99

45
.6

0
%

D
0
.5

0
54

0
.8

60
1

0
.7

6
1
5

0
.7

9
9
1

-0
.0

1
45

0
.0

61
5

0.
15

41
42

.1
5
%

0
.6

0
38

0
.9

2
70

0.
7
61

6
0
.7

9
43

-0
.0

02
5

0
.0

6
51

0
.1

4
60

46
.7

1
%

T
+

D
0
.5

4
68

0
.8

88
5

0
.8

3
8
8

0
.8

0
8
4

0
.0

76
0

0
.2

10
1

0.
24

86
41

.1
2
%

0
.6

3
44

0
.9

4
25

0.
8
38

8
0
.8

0
67

0.
02

20
0.

1
62

6
0.

25
01

45
.7

6
%

G
lo

V
E

T
0
.5

5
44

0
.8

95
4

0
.8

6
3
5

0
.8

4
9
7

0
.1

27
9

0
.4

32
0

0.
79

79
38

.3
7
%

0
.6

3
73

0
.9

4
61

0.
8
63

5
0
.8

3
29

0.
02

85
0.

2
52

9
0.

57
64

43
.9

3
%

D
0
.5

0
37

0
.8

58
3

0
.7

5
6
2

0
.8

1
1
3

0
.0

09
2

0
.0

95
3

0.
19

56
41

.3
1
%

0
.6

0
09

0
.9

2
59

0.
7
56

2
0
.8

0
06

-0
.0

00
8

0.
0
88

6
0.

17
45

46
.4

4
%

T
+

D
0
.5

3
84

0
.8

85
0

0
.8

3
5
1

0
.8

4
0
3

0
.0

72
4

0
.3

24
9

0.
65

27
38

.0
2
%

0
.6

2
71

0
.9

4
02

0.
8
35

1
0
.8

2
64

0.
01

43
0.

1
98

7
0.

48
02

43
.9

3
%

F
as

tT
ex

t
T

0
.5

5
98

0
.9

00
0

0
.8

6
9
3

0
.8

5
1
8

0
.1

35
1

0
.4

44
0

0.
81

75
37

.6
4
%

0
.6

4
33

0
.9

4
87

0.
8
69

3
0
.8

3
52

0.
03

18
0.

2
64

2
0.

60
07

43
.6

3
%

D
0
.4

9
53

0
.8

53
7

0
.7

5
0
1

0
.8

0
9
1

-0
.0

37
8

0
.0

1
96

0.
1
48

6
41

.1
5
%

0
.5

9
62

0
.9

2
31

0.
7
50

2
0
.7

9
89

-0
.0

11
2

0.
0
43

1
0.

13
49

46
.1

4
%

T
+

D
0
.5

4
08

0
.8

87
7

0
.8

3
7
6

0
.8

3
8
4

0
.0

48
0

0
.2

51
5

0.
50

58
37

.9
1
%

0
.6

2
98

0
.9

4
15

0.
8
37

6
0
.8

2
66

0.
01

48
0.

1
74

3
0.

41
32

43
.8

5
%

D
o
c2

V
ec

T
0
.5

6
37

0
.9

02
1

0
.8

7
6
6

0
.8

2
6
8

0
.0

96
4

0
.3

36
1

0.
61

52
39

.5
8
%

0
.6

4
56

0
.9

4
99

0.
8
76

6
0
.8

1
67

0.
02

32
0.

2
03

0
0.

44
16

45
.0

6
%

D
0
.4

9
56

0
.8

52
5

0
.7

3
6
2

0
.7
9
8
9

-0
.0

1
67

0.
0
12

5
0
.0

4
50

42
.1

2
%

0
.5

9
69

0
.9

2
31

0.
7
36

3
0
.7
9
2
2

-0
.0

0
01

0.
05

08
0.

08
7
3

46
.5

2
%

T
+

D
0
.5

6
22

0
.9

00
5

0
.8

7
2
3

0
.8

2
7
3

0
.0

93
6

0
.3

25
6

0.
58

76
39

.5
0
%

0
.6

4
50

0
.9

4
92

0.
8
72

3
0
.8

1
71

0.
02

23
0.

1
98

9
0.

42
87

45
.0

6
%

S
V

C

T
F

-I
D

F
T

0
.5

6
81

0
.8

98
5

0
.8

4
4
9

0
.8

1
1
6

0
.0

65
1

0
.2

78
2

0.
50

06
41

.3
1
%

0
.6

5
47

0
.9

4
42

0.
8
44

9
0
.8

0
89

0.
01

89
0.

1
83

9
0.

39
36

45
.8

2
%

D
0
.4

9
35

0
.8

51
8

0
.7

2
1
8

0
.7

6
3
4

-0
.0

01
0

0
.0

9
15

0.
1
95

0
44

.9
5
%

0
.5

9
86

0
.9

2
21

0.
7
22

0
0
.7

7
41

-0
.0

02
2

0.
0
79

6
0.

17
08

48
.2

7
%

T
+

D
0
.5

6
41

0
.8

93
0

0
.8

1
6
1

0
.8

1
2
3

0
.0

65
2

0
.2

72
3

0.
50

44
41

.4
7
%

0
.6

5
49

0
.9

4
02

0.
8
16

2
0
.8

1
09

0.
01

85
0.

1
85

8
0.

40
16

45
.7

4
%

W
o
rd

2
V

ec
T

0
.5

6
05

0
.8

94
4

0
.8

3
2
0

0
.8

0
3
8

0
.0

57
2

0
.2

18
7

0.
35

43
41

.5
0
%

0
.6

5
09

0
.9

4
32

0.
8
32

1
0
.8

0
73

0.
01

96
0.

1
67

4
0.

32
20

45
.7

6
%

D
0
.5

0
62

0
.8

58
5

0
.7

4
6
0

0
.7

6
1
5

0
.0

01
7

0
.0

82
9

0.
15

73
44

.9
5
%

0
.6

0
77

0
.9

2
55

0.
7
46

1
0
.7

7
34

0.
00

01
0.

0
80

3
0.

15
23

48
.1

1
%

T
+

D
0
.5

5
25

0
.8

88
5

0
.8

1
2
5

0
.7

9
5
6

0
.0

40
7

0
.1

93
9

0.
32

70
41

.9
3
%

0
.6

4
64

0
.9

3
96

0.
8
12

5
0
.8

0
09

0.
01

47
0.

1
51

7
0.

29
71

45
.7

1
%

L
S

A
T

0
.5
7
3
1

0
.9
0
3
4

0
.8
5
9
3

0
.8

2
0
4

0
.0

87
8

0
.2

97
1

0.
46

49
40

.3
4
%

0
.6
5
8
0

0
.9
4
7
9

0
.8
5
9
3

0
.8

1
74

0.
02

47
0.

2
02

4
0.

39
80

45
.2

8
%

D
0
.5

0
16

0
.8

55
8

0
.7

3
9
8

0
.7

6
2
5

0
.0

03
8

0
.0

80
9

0.
16

77
44

.9
8
%

0
.6

0
29

0
.9

2
42

0.
7
39

8
0
.7

7
36

0.
00

13
0.

0
76

8
0.

16
05

48
.0

3
%

T
+

D
0
.5

7
04

0
.9

00
3

0
.8

4
5
8

0
.8

1
7
9

0
.0

90
1

0
.2

93
2

0.
46

88
40

.1
5
%

0
.6

5
66

0.
9
45

7
0
.8

45
8

0
.8

1
68

0.
02

49
0.

2
01

9
0.

39
40

45
.2

5
%

G
lo

V
e

T
0
.5

46
9

0.
8
8
49

0
.7

9
1
8

0
.7

8
9
9

0
.0

33
0

0
.1

63
3

0.
25

69
42

.6
3
%

0
.6

4
29

0
.9

3
81

0.
7
91

9
0
.7

9
80

0.
01

52
0.

1
40

8
0.

25
98

46
.0

1
%

D
0
.4

99
8

0
.8

5
41

0
.7

3
2
8

0
.7

6
2
3

0
.0

00
2

0
.0

72
2

0.
14

77
4
5
.6
3
%

0
.6

0
00

0
.9

2
33

0.
7
32

9
0
.7

7
23

2.
90

e-
06

0.
0
72

2
0.

14
32

48
.4

3
%

T
+

D
0
.5

32
7

0.
8
7
51

0
.7

7
1
0

0
.7

7
9
2

0
.0

16
2

0
.1

22
5

0.
21

13
43

.6
6
%

0
.6

3
31

0
.9

3
34

0.
7
71

0
0
.7

8
99

0.
00

78
0.

1
17

5
0.

21
95

46
.7

1
%

F
as

tT
ex

t
T

0
.5

5
24

0
.8

88
5

0
.7

9
9
9

0
.7

9
1
2

0
.0

39
8

0
.1

80
6

0.
29

22
42

.0
1
%

0
.6

4
63

0
.9

4
00

0.
8
00

0
0
.7

9
98

0.
01

61
0.

1
46

6
0.

28
44

45
.9

8
%

D
0
.5

03
1

0.
8
5
63

0
.7

4
6
3

0
.7

6
0
5

-0
.0

0
15

0
.0

83
1

0.
16

68
45

.2
5
%

0
.6

0
31

0
.9

2
43

0.
7
46

4
0
.7

7
32

-0
.0

01
6

0.
0
76

3
0.

15
23

4
8
.6
0
%

T
+

D
0
.5

38
0

0.
8
7
84

0
.7

7
8
2

0
.7

8
0
4

0
.0

21
3

0
.1

40
0

0.
23

94
43

.0
4
%

0
.6

3
96

0
.9

3
48

0.
7
78

3
0
.7

9
11

0.
00

96
0.

1
24

9
0.

24
20

46
.3

3
%

D
o
c2

V
ec

T
0
.5

5
96

0
.8

94
2

0
.8

2
2
1

0
.8

0
1
0

0
.0

46
1

0
.2

19
3

0.
39

54
42

.0
4
%

0
.6

5
00

0
.9

4
34

0.
8
22

1
0
.8

0
35

0.
01

54
0.

1
61

9
0.

34
26

45
.9

5
%

D
0
.4

97
9

0.
8
5
42

0
.7

3
7
6

0
.7
6
0
2

-0
.0

0
15

0.
0
73

5
0
.1

4
75

44
.9

8
%

0
.5

9
81

0
.9

2
37

0.
7
37

7
0
.7
7
1
8

-0
.0

0
02

0.
07

57
0.

14
2
1

48
.4

9
%

T
+

D
0
.5

58
3

0
.8

9
35

0
.8

1
7
0

0
.7

9
9
4

0
.0

44
2

0
.2

08
8

0.
38

29
42

.2
6
%

0
.6

4
93

0
.9

4
29

0.
8
17

0
0
.8

0
35

0.
01

58
0.

1
58

4
0.

33
09

46
.2

2
%

T
a
b
le

3
:
A
cc
u
ra
cy

a
n
d
fa
ir
n
es
s
fo
r
M
L
-1
M

d
a
ta
se
t.

27

A
lg
.

R
e
p
r.

C
o
n
te
n
t

T
o
p
-1
0

T
o
p
-2
0

F
1

n
D
C
G

M
R
R

G
in
i

∆
G
a
p

(b
b
/
d
iv
e
rs
e
/
n
ic
h
e
)

C
o
v
.

F
1

n
D
C
G

M
R
R

G
in
i

∆
G
a
p

(b
b
/
d
iv
e
rs
e
/
n
ic
h
e
)

C
o
v
.

C
en

tr
o
id

T
F

-I
D

F
T

0.
52

0
2

0
.8

67
3

0
.7

84
3

0.
70

0
8

-0
.2

74
6

-0
.1

27
5

0
.0

1
2
3

96
.5

0
%

0
.6

72
9

0
.9

43
9

0
.7

8
47

0.
5
93

1
-0

.4
0
25

-0
.2

56
5

0.
00

35
9
9.

9
8%

D
0.

50
9
1

0.
8
61

6
0.

77
22

0.
64

7
9

-0
.4

48
9

-0
.3

03
1

-0
.0

66
4

93
.6

8
%

0
.6

70
1

0
.9

4
15

0
.7

7
25

0.
5
71

7
-0

.4
5
45

-0
.3

02
1

-0
.0

12
0

1
0
0%

T
+

D
0
.5
2
1
0

0
.8
6
7
6

0
.7
8
6
6

0.
69

5
9

-0
.2

85
5

-0
.1

41
8

-0
.0

03
3

97
.1

1
%

0
.6
7
3
4

0
.9
4
4
0

0
.7
8
7
0

0.
5
91

2
-0

.4
0
53

-0
.2

58
8

-0
.0

01
5

9
9.

9
9%

W
or

d
2
V

ec
T

0.
50

5
3

0.
8
60

9
0.

75
87

0.
68

4
9

-0
.3

37
3

-0
.1

86
8

0
.0

0
8
4

96
.6

7
%

0
.6

67
4

0
.9

4
11

0
.7

5
91

0.
5
81

3
-0

.4
1
65

-0
.2

69
0

0.
00

03
9
9.

9
9%

D
0.

49
3
9

0.
8
55

1
0.

74
34

0.
67

1
7

-.
0.

4
4
31

-0
.2

8
60

-0
.0

3
55

88
.7

2
%

0
.6

64
9

0
.9

3
87

0
.7

4
37

0.
5
80

8
-0

.4
4
42

-0
.2

90
9

-0
.0

01
6

1
0
0%

T
+

D
0.

49
8
4

0.
8
57

3
0.

75
03

0.
68

5
0

-0
.3

78
1

-0
.2

23
9

-0
.0

06
2

90
.1

8
%

0
.6

65
8

0
.9

3
95

0
.7

5
06

0.
5
86

2
-0

.4
2
40

-0
.2

74
6

0.
00

29
9
9.

9
9%

L
S

A
T

0.
51

5
4

0.
8
65

5
0.

77
73

0.
68

2
4

-0
.3

32
7

-0
.2

00
6

-0
.0

74
1

97
.6

0
%

0
.6

70
9

0
.9

4
30

0
.7

7
77

0.
5
82

3
-0

.4
1
93

-0
.2

76
0

-0
.0

17
3

9
9.

9
9%

D
0.

49
7
5

0.
8
56

6
0.

74
32

0.
65

3
9

-0
.4

62
3

-0
.3

16
8

-0
.0

68
9

92
.3

1
%

0
.6

66
9

0
.9

3
93

0
.7

4
35

0.
5
74

5
-0

.4
5
11

-0
.2

96
5

-0
.0

07
0

1
0
0%

T
+

D
0.

51
0
9

0.
8
63

2
0.

77
40

0.
68

7
0

-0
.3

45
1

-0
.2

08
8

-0
.0

56
0

94
.8

8
%

0
.6

70
0

0
.9

4
21

0
.7

7
43

0.
5
82

2
-0

.4
2
51

-0
.2

78
9

-0
.0

12
8

9
9.

9
8%

G
lo

V
E

T
0.

50
5
1

0.
8
60

4
0.

75
65

0.
67

7
5

-0
.3

69
2

-0
.2

11
1

-0
.0

05
5

96
.0

6
%

0
.6

69
1

0
.9

4
10

0
.7

5
68

0.
5
78

7
-0

.4
3
01

-0
.2

77
6

-0
.0

02
7

9
9.

9
8%

D
0.

49
5
4

0.
8
56

1
0.

74
25

0.
66

7
1

-0
.4

39
5

-0
.2

90
5

-0
.0

54
2

89
.1

5
%

0
.6

65
9

0
.9

3
91

0
.7

4
28

0.
5
77

9
-0

.4
4
66

-0
.2

95
4

-0
.0

08
5

1
0
0%

T
+

D
0.

50
0
4

0.
8
58

3
0.

75
23

0.
67

6
8

-0
.4

01
6

-0
.2

48
4

-0
.0

25
5

90
.4

4
%

0
.6

67
8

0
.9

4
00

0
.7

5
25

0.
5
82

6
-0

.4
3
53

-0
.2

84
5

-0
.0

02
8

9
9.

9
9%

F
a
st

T
ex

t
T

0.
50

2
3

0.
8
59

1
0.

75
65

0.
67

3
6

-0
.3

87
7

-0
.2

33
8

-0
.0

25
4

95
.6

7
%

0
.6

67
9

0
.9

4
04

0
.7

5
68

0.
5
77

9
-0

.4
3
75

-0
.2

84
6

-0
.0

03
4

9
9.

9
9%

D
0.

49
4
3

0.
8
55

4
0.

73
77

0.
68

1
3

-0
.4

27
4

-0
.2

63
2

0
.0

2
0
9

86
.7

5
%

0
.6

66
4

0
.9

3
88

0
.7

3
80

0.
5
78

5
-0

.4
4
45

-0
.2

88
3

0.
00

65
1
0
0%

T
+

D
0.

49
9
2

0.
8
57

8
0.

75
04

0.
68

3
9

-0
.4

09
0

-0
.2

42
1

0
.0

1
2
9

88
.6

2
%

0
.6

67
4

0
.9

3
98

0
.7

5
07

0.
5
81

8
-0

.4
3
81

-0
.2

82
5

0.
00

74
1
0
0%

D
o
c2

V
ec

T
0.

50
6
2

0.
8
61

8
0.

75
91

0
.6
3
2
6

-0
.4

0
78

-0
.2

8
2
2

-0
.1

1
9
5

9
9
.1
5
%

0
.6

68
5

0
.9

4
15

0
.7

5
95

0
.5
6
6
0

-0
.4

42
0

-0
.2

97
8

-0
.0

2
72

1
0
0%

D
0.

49
9
5

0.
8
57

3
0.

74
64

0.
64

5
9

-0
.4

55
1

-0
.3

05
3

-0
.0

54
0

92
.7

8
%

0
.6

67
0

0
.9

3
96

0
.7

4
67

0.
5
71

6
-0

.4
5
65

-0
.3

04
3

-0
.0

12
1

1
0
0%

T
+

D
0.

50
4
7

0.
8
60

6
0.

75
67

0.
63

8
8

-0
.4

1
87

-0
.2

9
0
3

-0
.1

1
5
4

96
.3

9
%

0
.6

68
5

0
.9

4
10

0
.7

5
70

0.
5
71

5
-0

.4
42

6
-0

.2
96

5
-0

.0
2
43

1
0
0%

S
V

C

T
F

-I
D

F
T

0
.5
4
8
4

0
.8
7
7
5

0
.8
1
3
7

0.
57

7
3

-0
.4

07
9

-0
.2

62
0

0
.0

0
0
4

99
.9

9
%

0
.6
8
5
5

0
.9
4
8
2

0
.8
1
3
9

0.
5
51

7
-0

.4
57

3
-0

.3
02

1
-0

.0
0
31

1
0
0%

D
0.

50
2
8

0.
8
57

7
0.

74
88

0.
55

1
9

-0
.4

53
6

-0
.3

04
0

-0
.0

14
0

10
0%

0
.6

68
4

0
.9

3
97

0
.7

4
92

0.
5
52

9
-0

.4
6
02

-0
.3

02
2

-7
.9

97
8e

-0
5

1
0
0%

T
+

D
0.

54
2
4

0.
8
74

6
0.

80
29

0.
56

9
5

-0
.4

20
9

-0
.2

71
5

-0
.0

05
8

10
0%

0
.6

83
8

0
.9

46
9

0.
8
03

2
0.

5
52

3
-0

.4
5
82

-0
.3

00
8

-0
.0

02
2

1
0
0%

W
or

d
2
V

ec
T

0.
52

3
9

0.
8
67

4
0.

76
79

0.
55

5
4

-0
.4

45
4

-0
.2

92
7

-0
.0

11
6

99
.9

9
%

0
.6

77
4

0
.9

4
39

0
.7

6
83

0.
5
53

5
-0

.4
5
33

-0
.2

98
6

-0
.0

04
8

1
0
0%

D
0.

50
1
5

0.
8
58

0
0.

74
61

0.
55

0
3

-0
.4

60
1

-0
.3

05
9

-0
.0

09
4

10
0%

0
.6

68
1

0
.9

3
99

0
.7

4
64

0.
5
52

8
-0

.4
5
77

-0
.3

01
9

-0
.0

03
8

1
0
0%

T
+

D
0.

51
7
3

0.
8
64

8
0.

76
50

0.
55

1
7

-0
.4

58
4

-0
.3

01
1

-0
.0

16
0

10
0%

0
.6

74
6

0
.9

4
28

0
.7

6
54

0.
5
52

9
-0

.4
5
68

-0
.3

00
3

-0
.0

05
4

1
0
0%

L
S

A
T

0.
54

6
6

0
.8

76
8

0
.8

07
1

0.
57

4
1

-0
.4

15
3

-0
.2

56
9

0
.0

1
1
5

10
0%

0
.6
8
5
5

0
.9

47
9

0
.8

0
73

0.
5
54

5
-0

.4
5
19

-0
.2

95
4

-0
.0

02
8

1
0
0%

D
0.

49
6
6

0.
8
55

9
0.

74
28

0.
54

9
6

-0
.4

60
7

-0
.3

02
4

-0
.0

10
7

10
0%

0
.6

66
1

0
.9

3
90

0
.7

4
31

0.
5
51

9
-0

.4
5
69

-0
.3

02
0

-0
.0

02
6

1
0
0%

T
+

D
0.

53
7
5

0.
8
72

7
0.

79
78

0.
56

7
0

-0
.4

25
5

-0
.2

69
3

0
.0

0
3
3

99
.9

9
%

0
.6

82
0

0
.9

4
62

0
.7

9
80

0.
5
53

7
-0

.4
5
32

-0
.2

97
6

-0
.0

02
7

1
0
0%

G
lo

V
e

T
0
.5

07
3

0
.8

6
05

0
.7

43
3

0.
54

9
8

-0
.4

59
7

-0
.3

05
0

-0
.0

09
1

10
0%

0
.6

72
0

0
.9

4
09

0
.7

4
37

0.
5
53

9
-0

.4
5
48

-0
.2

99
2

-0
.0

03
5

1
0
0%

D
0
.4

91
9

0
.8

5
41

0
.7

29
9

0.
54

9
8

-0
.4

56
4

-0
.3

03
8

-0
.0

11
0

10
0%

0
.6

64
8

0
.9

3
82

0
.7

3
02

0.
5
52

9
-0

.4
5
63

-0
.3

03
0

-0
.0

05
6

1
0
0%

T
+

D
0
.5

00
0

0
.8

5
76

0
.7

37
3

0.
54

9
2

-0
.4

57
7

-0
.3

03
9

-0
.0

09
3

10
0%

0
.6

68
5

0
.9

3
97

0
.7

3
77

0.
5
53

7
-0

.4
5
76

-0
.3

01
4

-0
.0

05
3

1
0
0%

F
a
st

T
ex

t
T

0.
51

3
7

0.
8
63

1
0.

75
30

0.
55

4
6

-0
.4

46
5

-0
.2

90
7

-0
.0

06
8

10
0%

0
.6

74
5

0
.9

4
20

0
.7

5
34

0.
5
53

9
-0

.4
5
40

-0
.2

99
4

-0
.0

03
7

1
0
0%

D
0
.4

94
3

0
.8

5
49

0
.7

34
5

0
.5
4
8
5

-0
.4

6
31

-0
.3

0
4
9

-0
.0

1
0
1

10
0%

0
.6

65
1

0
.9

3
85

0
.7

3
48

0.
5
52

8
-0

.4
5
73

-0
.3

01
6

-0
.0

00
6

1
0
0%

T
+

D
0
.5

06
5

0
.8

6
01

0
.7

47
3

0.
55

0
5

-0
.4

57
0

-0
.2

98
0

-0
.0

16
8

10
0%

0
.6

70
4

0
.9

4
08

0
.7

4
77

0.
5
53

2
-0

.4
5
65

-0
.3

00
8

-0
.0

02
9

1
0
0%

D
o
c2

V
ec

T
0.

52
5
5

0.
8
68

2
0.

77
06

0.
55

9
8

-0
.4

40
3

-0
.2

90
8

-0
.0

02
5

10
0%

0
.6

78
3

0
.9

4
42

0
.7

7
09

0.
5
52

6
-0

.4
5
74

-0
.3

01
6

-0
.0

08
8

1
0
0%

D
0
.4

99
2

0
.8

5
70

0
.7

40
0

0.
54

9
0

-0
.4

6
22

-0
.3

0
8
4

-0
.0

0
7
0

10
0%

0
.6

67
5

0
.9

3
95

0
.7

4
03

0
.5
5
1
1

-0
.4

59
6

-0
.3

05
0

-0
.0

0
59

1
0
0%

T
+

D
0
.5

22
5

0
.8

6
68

0
.7

69
3

0.
55

6
4

-0
.4

45
8

-0
.2

94
8

-0
.0

14
9

99
.9

8
%

0
.6

76
8

0
.9

4
36

0
.7

6
96

0.
5
52

1
-0

.4
5
89

-0
.3

02
7

-0
.0

08
2

1
0
0%

T
a
b
le

4
:
A
cc
u
ra
cy

a
n
d
fa
ir
n
es
s
fo
r
G
o
o
d
B
o
o
k
s
d
a
ta
se
t.

28

Alg. Top-10 Top-20

Personalized
PageRank

F1 nDCG MRR Gini
∆GAP

(bb/diverse/niche)
Cov. F1 nDCG MRR Gini

∆GAP
(bb/diverse/niche)

Cov.

0.5894 0.8831 0.7922 0.6948 0.0495 0.3501 0.7532 41.50% 0.6649 0.9326 0.7922 0.6577 -0.0201 0.1467 0.4465 56.54%

Table 5: Accuracy and fairness for MovieLens100k dataset.

5. Open Challenges

In the last decade, recommendation pipelines have become increasingly com-
plex due to the use of sophisticated algorithms based on neural networks or to
the ever increasing adoption of side information involving not only text, but im-
ages, audio, or video as well. This makes the replicability of experiments more
and more challenging. For these reasons, the use of recommendation libraries
may help to promote a fair evaluation of new algorithms and approaches with
state-of-the-art baselines and allow other researchers to correctly reproduce the
results presented in scientific papers.

As good practice, libraries should be designed and implemented in a way that
they can provide support to all the stages for a full accountability. ClayRS deals
with this open challenge by mandatorily requiring the implementation of the
replicability issues for the whole recommendation pipeline. This is a distinctive
aspect of ClayRS with respect to other frameworks.

Indeed, each new technique implemented by the Content Analyzer must
provide all the details to ensure the replicability. This means that each pre-
processing operation along with its parameters must be properly listed and
documented in the YAML file: this would allow to obtain exactly the same rep-
resentation since, it has been shown that, even very simple preprocessing opera-
tions have an impact on the overall performance of recommendations [72]. Sim-
ilarly, each new recommendation algorithm implemented by the Recommender
module or each new evaluation metrics implemented by the Evaluator requires
the proper documentation to be included in the YAML files for the sake of
accountability.

The second open challenge that could be tackled using ClayRS is the support
to the creation and hybridization of different types of knowledge representations,
which currently represent the state of the art for several recommendation sce-
narios [74, 75]. Differently from other recommendation frameworks, ClayRS

provides methods for generating and combining complex representations using
a variety of techniques, in order to feed internal recommendation algorithms
implemented in the framework, or external systems, e.g. implementing complex
neural architectures. The possibility of managing different representations inside
the same system allows to have more control on the entire process and to foster
the replicability through the support provided by the framework. ClayRS allows
to represent items in a complex way using different fields, and each field may
be processed in a different way and represented using different knowledge-aware
techniques. Those complex representations may be used singularly or combined
through specific methods, such as the concatenation, sum or other pre-fusion
strategies that could be implemented. With the new version of ClayRS which

29

also supports the use of visual features extracted from images [72], more powerful
hybridization techniques could be implemented inside the framework, combining
both text and images, without losing the advantage of a process which results
completely replicable. This is one of the most important distinctive aspects of
ClayRS with respect to other state of the art recommendation libraries: the
recommendation pipeline makes available not only the recommendation algo-
rithms and the evaluation module, but it provides a shared interface to use a
very wide set of knowledge-aware representations for side information, imple-
mented in a myriad of specific libraries, without the burden of dealing with the
specific implementations of each library.

To sum up, the design choices behind the development of the ClayRS frame-
work might drive the development of other specific libraries, by following our
inspiring principles: (i) full support to replicability for each functionality im-
plemented by the library; (ii) shared interface towards different methods to
deal with content. This would allow to foster replicability, making fairer the
comparisons among results coming from different systems.

6. Conclusions and Future Work

In this paper, we have introduced ClayRS, an end-to-end Python framework
that allows to build replicable recommendation pipelines based on knowledge-
aware algorithms. The framework fills in a significant gap in the current research
in the area, since it provides researchers and practitioners with an easy-to-use
and extensible tool to build state-of-the-art implementations of a knowledge-
aware recommender system. In this first implementation, the framework covers
the most important content representations currently presented in literature and
allows the construction of very sophisticated recommendation pipelines based on
the combination of different and heterogeneous data representations and data
sources. The validity of the framework is also demonstrated by providing a
complete and replicable example of a different recommendation pipeline based
on three popular state-of-the-art datasets.

As future work, we plan to extend the representation mechanisms for content.
In particular we plan to integrate knowledge graph embedding techniques [76],
whose aim is to represent entities and relations in a knowledge graph as dense
vectors by projecting them in a vector space. The task is challenging since
each technique aims to preserve the original structure of the graph (i.e., nodes
having similar neighborhood or nodes playing a similar role in the network
have a similar representation, too) [76]. Such techniques obtained very good
performance in a broad range of scenarios where data can be modeled as a
graph, such as biology and social networks [77], and recommender systems are
no exception [78, 79, 80].

We also plan to integrate algorithms for explaining recommendations. In-
deed, recommender systems need to progressively evolve from simple black boxes
to systems having the ability to properly explain or justify their own behavior.
We are currently integrating ExpLOD [81], an algorithm-agnostic framework
able to generate natural language explanations for recommendations provided

30

by a generic algorithm. ExpLOD leverages the information available in the
Linked Open Data cloud, a huge set of interconnected semantic datasets which
encode in RDF format the information covering many topical domains.

Acknowledgments

This research is partially funded by PNRR project FAIR - Future AI Re-
search (PE00000013), Spoke 6 - Symbiotic AI (CUP H97G22000210007) under
the NRRP MUR program funded by the NextGenerationEU.

References

[1] D. Jannach, M. Zanker, A. Felfernig, G. Friedrich, Recommender systems:
an introduction, Cambridge University Press, 2010.

[2] J. Grau, Personalized product recommendations: Predicting shoppers’
needs (2009).

[3] S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning based recommender sys-
tem: A survey and new perspectives, ACM Computing Surveys (CSUR)
52 (1) (2019) 1–38.

[4] M. de Gemmis, P. Lops, C. Musto, F. Narducci, G. Semeraro, Semantics-
aware content-based recommender systems, in: F. Ricci, L. Rokach,
B. Shapira (Eds.), Recommender Systems Handbook, Springer, 2015, pp.
119–159.

[5] C. Musto, M. de Gemmis, P. Lops, F. Narducci, G. Semeraro, Semantics
and content-based recommendations, in: F. Ricci, L. Rokach, B. Shapira
(Eds.), Recommender Systems Handbook, Springer, 2022, pp. 251–2987.

[6] M. Baker, 1,500 scientists lift the lid on reproducibility, Nature 533 (7604)
(2016) 452–454, http://dx.doi.org/10.10138/533452a.

[7] H. E. Plesser, Reproducibility vs. replicability: A brief history of a con-
fused terminology, Frontiers Neuroinformatics 11 (2017) 76. doi:10.3389/
fninf.2017.00076.
URL https://doi.org/10.3389/fninf.2017.00076

[8] C. S. Collberg, T. A. Proebsting, Repeatability in computer systems re-
search, Commun. ACM 59 (3) (2016) 62–69. doi:10.1145/2812803.

[9] O. E. Gundersen, S. Kjensmo, State of the art: Reproducibility in artifi-
cial intelligence, in: S. A. McIlraith, K. Q. Weinberger (Eds.), Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
AAAI Press, 2018, pp. 1644–1651.

31

https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.3389/fninf.2017.00076
http://dx.doi.org/10.3389/fninf.2017.00076
http://dx.doi.org/10.3389/fninf.2017.00076
https://doi.org/10.3389/fninf.2017.00076
http://dx.doi.org/10.1145/2812803

[10] O. E. Gundersen, S. Shamsaliei, R. Isdahl, Do machine learning platforms
provide out-of-the-box reproducibility?, Future Gener. Comput. Syst. 126
(2022) 34–47.
URL https://doi.org/10.1016/j.future.2021.06.014

[11] M. F. Dacrema, S. Boglio, P. Cremonesi, D. Jannach, A troubling analysis
of reproducibility and progress in recommender systems research, ACM
Trans. Inf. Syst. 39 (2) (2021) 20:1–20:49.

[12] S. Rendle, L. Zhang, Y. Koren, On the difficulty of evaluating baselines:
A study on recommender systems, CoRR abs/1905.01395. arXiv:1905.

01395.
URL http://arxiv.org/abs/1905.01395

[13] M. D. Ekstrand, M. Ludwig, J. A. Konstan, J. Riedl, Rethinking the
recommender research ecosystem: reproducibility, openness, and lenskit,
in: B. Mobasher, R. D. Burke, D. Jannach, G. Adomavicius (Eds.), Pro-
ceedings of the 2011 ACM Conference on Recommender Systems, RecSys
2011, Chicago, IL, USA, October 23-27, 2011, ACM, 2011, pp. 133–140.
doi:10.1145/2043932.2043958.
URL https://doi.org/10.1145/2043932.2043958

[14] J. A. Konstan, G. Adomavicius, Toward identification and adoption of
best practices in algorithmic recommender systems research, in: A. Bel-
loǵın, P. Castells, A. Said, D. Tikk (Eds.), Proceedings of the International
Workshop on Reproducibility and Replication in Recommender Systems
Evaluation, RepSys 2013, Hong Kong, China, October 12, 2013, ACM,
2013, pp. 23–28. doi:10.1145/2532508.2532513.
URL https://doi.org/10.1145/2532508.2532513

[15] A. Belloǵın, A. Said, Improving accountability in recommender systems
research through reproducibility, User Model. User Adapt. Interact. 31 (5)
(2021) 941–977. doi:10.1007/s11257-021-09302-x.
URL https://doi.org/10.1007/s11257-021-09302-x

[16] N. Polatidis, E. Pimenidis, A. Fish, S. Kapetanakis, A guideline-based ap-
proach for assisting with the reproducibility of experiments in recommender
systems evaluation, Int. J. Artif. Intell. Tools 28 (8) (2019) 1960011:1–
1960011:16. doi:10.1142/S021821301960011X.
URL https://doi.org/10.1142/S021821301960011X

[17] A. Belloǵın, P. Castells, I. Cantador, Precision-oriented evaluation of rec-
ommender systems: an algorithmic comparison, in: B. Mobasher, R. D.
Burke, D. Jannach, G. Adomavicius (Eds.), Proceedings of the 2011 ACM
Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA,
October 23-27, 2011, ACM, 2011, pp. 333–336. doi:10.1145/2043932.

2043996.
URL https://doi.org/10.1145/2043932.2043996

32

https://doi.org/10.1016/j.future.2021.06.014
https://doi.org/10.1016/j.future.2021.06.014
https://doi.org/10.1016/j.future.2021.06.014
http://arxiv.org/abs/1905.01395
http://arxiv.org/abs/1905.01395
http://arxiv.org/abs/1905.01395
http://arxiv.org/abs/1905.01395
http://arxiv.org/abs/1905.01395
https://doi.org/10.1145/2043932.2043958
https://doi.org/10.1145/2043932.2043958
http://dx.doi.org/10.1145/2043932.2043958
https://doi.org/10.1145/2043932.2043958
https://doi.org/10.1145/2532508.2532513
https://doi.org/10.1145/2532508.2532513
http://dx.doi.org/10.1145/2532508.2532513
https://doi.org/10.1145/2532508.2532513
https://doi.org/10.1007/s11257-021-09302-x
https://doi.org/10.1007/s11257-021-09302-x
http://dx.doi.org/10.1007/s11257-021-09302-x
https://doi.org/10.1007/s11257-021-09302-x
https://doi.org/10.1142/S021821301960011X
https://doi.org/10.1142/S021821301960011X
https://doi.org/10.1142/S021821301960011X
http://dx.doi.org/10.1142/S021821301960011X
https://doi.org/10.1142/S021821301960011X
https://doi.org/10.1145/2043932.2043996
https://doi.org/10.1145/2043932.2043996
http://dx.doi.org/10.1145/2043932.2043996
http://dx.doi.org/10.1145/2043932.2043996
https://doi.org/10.1145/2043932.2043996

[18] N. Ihemelandu, M. D. Ekstrand, Statistical inference: The missing piece of
recsys experiment reliability discourse, in: E. Zangerle, C. Bauer, A. Said
(Eds.), Proceedings of the Perspectives on the Evaluation of Recommender
Systems Workshop 2021 co-located with the 15th ACM Conference on Rec-
ommender Systems (RecSys 2021), Amsterdam, The Netherlands, Septem-
ber 25, 2021, Vol. 2955 of CEUR Workshop Proceedings, CEUR-WS.org,
2021.
URL http://ceur-ws.org/Vol-2955/paper9.pdf

[19] P. Lops, C. Musto, F. Narducci, G. Semeraro, Semantics in Adaptive and
Personalised Systems - Methods, Tools and Applications, Springer, 2019.
doi:10.1007/978-3-030-05618-6.
URL https://doi.org/10.1007/978-3-030-05618-6

[20] G. Miller, WordNet: An On-Line Lexical Database, International Journal
of Lexicography 3 (4), (Special Issue).

[21] R. Navigli, S. P. Ponzetto, Babelnet: The automatic construction, eval-
uation and application of a wide-coverage multilingual semantic network,
Artif. Intell. 193 (2012) 217–250. doi:10.1016/j.artint.2012.07.001.

[22] D. Vrandecic, M. Krötzsch, Wikidata: a free collaborative knowledgebase,
Commun. ACM 57 (10) (2014) 78–85. doi:10.1145/2629489.

[23] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed rep-
resentations of words and phrases and their compositionality, in: Advances
in neural information processing systems, 2013, pp. 3111–3119.

[24] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word
representation, in: Proceedings of the 2014 conference on empirical meth-
ods in natural language processing (EMNLP), 2014, pp. 1532–1543.

[25] J. D. M.-W. C. Kenton, L. K. Toutanova, BERT: Pre-training of deep
bidirectional transformers for language understanding, in: Proceedings of
NAACL-HLT, 2019, pp. 4171–4186.

[26] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models
are few-shot learners, Advances in neural information processing systems
33 (2020) 1877–1901.

[27] Z. S. Harris, Mathematical Structures of Language, Interscience, New
York,, 1968.

[28] P. Lops, C. Musto, M. Polignano, Semantics-aware content representations
for reproducible recommender systems (score), in: Proceedings of the 30th
ACM Conference on User Modeling, Adaptation and Personalization, 2022,
pp. 354–356.

33

http://ceur-ws.org/Vol-2955/paper9.pdf
http://ceur-ws.org/Vol-2955/paper9.pdf
http://ceur-ws.org/Vol-2955/paper9.pdf
https://doi.org/10.1007/978-3-030-05618-6
https://doi.org/10.1007/978-3-030-05618-6
http://dx.doi.org/10.1007/978-3-030-05618-6
https://doi.org/10.1007/978-3-030-05618-6
http://dx.doi.org/10.1016/j.artint.2012.07.001
http://dx.doi.org/10.1145/2629489

[29] T. K. Landauer, P. W. Foltz, D. Laham, An introduction to latent semantic
analysis, Discourse processes 25 (2-3) (1998) 259–284.

[30] M. Sahlgren, The Word-Space Model: Using Distributional Analysis
to Represent Syntagmatic and Paradigmatic Relations between Words
in High-dimensional Vector Spaces, Ph.D. thesis, Stockholm University
(2006).

[31] Q. Le, T. Mikolov, Distributed representations of sentences and documents,
in: International conference on machine learning, 2014, pp. 1188–1196.

[32] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman,
Indexing by Latent Semantic Analysis, Journal of the American Society for
Information Science 41 (6) (1990) 391–407.

[33] C. H. Papadimitriou, P. Raghavan, H. Tamaki, S. Vempala, Latent seman-
tic indexing: A probabilistic analysis, in: PODS, ACM Press, 1998, pp.
159–168.

[34] S. S. Vempala, The Random Projection Method, Vol. 65, American Math-
ematical Society, 2004.

[35] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word
representation, in: Empirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1532–1543.

[36] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee, L. Zettlemoyer, Deep contextualized word representations, CoRR
abs/1802.05365. arXiv:1802.05365.
URL http://arxiv.org/abs/1802.05365

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, I. Polosukhin, Attention is all you need, Advances in neural
information processing systems 30.

[38] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, S. Bowman, Glue: A multi-
task benchmark and analysis platform for natural language understanding,
in: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, 2018, pp. 353–355.

[39] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
S. Hellmann, DBpedia-a crystallization point for the Web of Data, Journal
of web semantics 7 (3) (2009) 154–165.

[40] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, DBpe-
dia: A nucleus for a web of open data, Springer, 2007.

[41] C. D. Manning, H. Schütze, Foundations of statistical natural language
processing, Vol. 999, MIT Press, 1999.

34

http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365

[42] D. Rao, P. McNamee, M. Dredze, Entity linking: Finding extracted entities
in a knowledge base, in: Multi-source, multilingual information extraction
and summarization, Springer, 2013, pp. 93–115.

[43] R. Navigli, S. P. Ponzetto, BabelRelate! a joint multilingual approach
to computing semantic relatedness, in: Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence (AAAI-12), Toronto, Canada,
2012.

[44] A. da Costa, E. Fressato, F. Neto, M. Manzato, R. Campello, Case rec-
ommender: A flexible and extensible python framework for recommender
systems, in: Proceedings of the 12th ACM Conference on Recommender
Systems, RecSys ’18, ACM, New York, NY, USA, 2018, pp. 494–495.
doi:10.1145/3240323.3241611.
URL http://doi.acm.org/10.1145/3240323.3241611

[45] M. D. Ekstrand, Lenskit for python: Next-generation software for rec-
ommender systems experiments, in: M. d’Aquin, S. Dietze, C. Hauff,
E. Curry, P. Cudré-Mauroux (Eds.), CIKM ’20: The 29th ACM Inter-
national Conference on Information and Knowledge Management, Vir-
tual Event, Ireland, October 19-23, 2020, ACM, 2020, pp. 2999–3006.
doi:10.1145/3340531.3412778.
URL https://doi.org/10.1145/3340531.3412778

[46] G. Guo, J. Zhang, Z. Sun, N. Yorke-Smith, Librec: A java library for
recommender systems, in: A. I. Cristea, J. Masthoff, A. Said, N. Tintarev
(Eds.), Posters, Demos, Late-breaking Results and Workshop Proceedings
of the 23rd Conference on User Modeling, Adaptation, and Personalization
(UMAP 2015), Dublin, Ireland, June 29 - July 3, 2015, Vol. 1388 of CEUR
Workshop Proceedings, CEUR-WS.org, 2015.
URL http://ceur-ws.org/Vol-1388/demo_paper1.pdf

[47] Z. Gantner, S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Mymedialite:
a free recommender system library, in: B. Mobasher, R. D. Burke, D. Jan-
nach, G. Adomavicius (Eds.), Proceedings of the 2011 ACM Conference on
Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23-27,
2011, ACM, 2011, pp. 305–308. doi:10.1145/2043932.2043989.
URL https://doi.org/10.1145/2043932.2043989

[48] S. Vargas, Novelty and diversity enhancement and evaluation in recom-
mender systems and information retrieval, in: S. Geva, A. Trotman,
P. Bruza, C. L. A. Clarke, K. Järvelin (Eds.), The 37th International ACM
SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’14, Gold Coast , QLD, Australia - July 06 - 11, 2014, ACM, 2014,
p. 1281. doi:10.1145/2600428.2610382.
URL https://doi.org/10.1145/2600428.2610382

35

http://doi.acm.org/10.1145/3240323.3241611
http://doi.acm.org/10.1145/3240323.3241611
http://doi.acm.org/10.1145/3240323.3241611
http://dx.doi.org/10.1145/3240323.3241611
http://doi.acm.org/10.1145/3240323.3241611
https://doi.org/10.1145/3340531.3412778
https://doi.org/10.1145/3340531.3412778
http://dx.doi.org/10.1145/3340531.3412778
https://doi.org/10.1145/3340531.3412778
http://ceur-ws.org/Vol-1388/demo_paper1.pdf
http://ceur-ws.org/Vol-1388/demo_paper1.pdf
http://ceur-ws.org/Vol-1388/demo_paper1.pdf
https://doi.org/10.1145/2043932.2043989
https://doi.org/10.1145/2043932.2043989
http://dx.doi.org/10.1145/2043932.2043989
https://doi.org/10.1145/2043932.2043989
https://doi.org/10.1145/2600428.2610382
https://doi.org/10.1145/2600428.2610382
http://dx.doi.org/10.1145/2600428.2610382
https://doi.org/10.1145/2600428.2610382

[49] N. Hug, Surprise: A python library for recommender systems, J. Open
Source Softw. 5 (52) (2020) 2174. doi:10.21105/joss.02174.
URL https://doi.org/10.21105/joss.02174

[50] Z. Sun, D. Yu, H. Fang, J. Yang, X. Qu, J. Zhang, C. Geng, Are we
evaluating rigorously? benchmarking recommendation for reproducible
evaluation and fair comparison, in: R. L. T. Santos, L. B. Marinho,
E. M. Daly, L. Chen, K. Falk, N. Koenigstein, E. S. de Moura (Eds.),
RecSys 2020: Fourteenth ACM Conference on Recommender Systems,
Virtual Event, Brazil, September 22-26, 2020, ACM, 2020, pp. 23–32.
doi:10.1145/3383313.3412489.
URL https://doi.org/10.1145/3383313.3412489

[51] N. Sonboli, M. Mansoury, Z. Guo, S. Kadekodi, W. Liu, Z. Liu, A. Schwartz,
R. Burke, librec-auto: A tool for recommender systems experimentation,
in: G. Demartini, G. Zuccon, J. S. Culpepper, Z. Huang, H. Tong (Eds.),
CIKM ’21: The 30th ACM International Conference on Information and
Knowledge Management, Virtual Event, Queensland, Australia, November
1 - 5, 2021, ACM, 2021, pp. 4584–4593. doi:10.1145/3459637.3482006.
URL https://doi.org/10.1145/3459637.3482006

[52] A. Said, A. Belloǵın, Rival: a toolkit to foster reproducibility in recom-
mender system evaluation, in: A. Kobsa, M. X. Zhou, M. Ester, Y. Koren
(Eds.), Eighth ACM Conference on Recommender Systems, RecSys ’14,
Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014, ACM, 2014,
pp. 371–372. doi:10.1145/2645710.2645712.
URL https://doi.org/10.1145/2645710.2645712

[53] V. W. Anelli, A. Belloǵın, A. Ferrara, D. Malitesta, F. A. Merra, C. Pomo,
F. M. Donini, T. D. Noia, Elliot: A comprehensive and rigorous framework
for reproducible recommender systems evaluation, in: F. Diaz, C. Shah,
T. Suel, P. Castells, R. Jones, T. Sakai (Eds.), SIGIR ’21: The 44th In-
ternational ACM SIGIR Conference on Research and Development in In-
formation Retrieval, Virtual Event, Canada, July 11-15, 2021, ACM, 2021,
pp. 2405–2414. doi:10.1145/3404835.3463245.
URL https://doi.org/10.1145/3404835.3463245

[54] A. Salah, Q. Truong, H. W. Lauw, Cornac: A comparative framework for
multimodal recommender systems, J. Mach. Learn. Res. 21 (2020) 95:1–
95:5.
URL http://jmlr.org/papers/v21/19-805.html

[55] W. X. Zhao, S. Mu, Y. Hou, Z. Lin, Y. Chen, X. Pan, K. Li, Y. Lu, H. Wang,
C. Tian, Y. Min, Z. Feng, X. Fan, X. Chen, P. Wang, W. Ji, Y. Li, X. Wang,
J. Wen, Recbole: Towards a unified, comprehensive and efficient framework
for recommendation algorithms, in: G. Demartini, G. Zuccon, J. S. Culpep-
per, Z. Huang, H. Tong (Eds.), CIKM ’21: The 30th ACM International
Conference on Information and Knowledge Management, Virtual Event,

36

https://doi.org/10.21105/joss.02174
http://dx.doi.org/10.21105/joss.02174
https://doi.org/10.21105/joss.02174
https://doi.org/10.1145/3383313.3412489
https://doi.org/10.1145/3383313.3412489
https://doi.org/10.1145/3383313.3412489
http://dx.doi.org/10.1145/3383313.3412489
https://doi.org/10.1145/3383313.3412489
https://doi.org/10.1145/3459637.3482006
http://dx.doi.org/10.1145/3459637.3482006
https://doi.org/10.1145/3459637.3482006
https://doi.org/10.1145/2645710.2645712
https://doi.org/10.1145/2645710.2645712
http://dx.doi.org/10.1145/2645710.2645712
https://doi.org/10.1145/2645710.2645712
https://doi.org/10.1145/3404835.3463245
https://doi.org/10.1145/3404835.3463245
http://dx.doi.org/10.1145/3404835.3463245
https://doi.org/10.1145/3404835.3463245
http://jmlr.org/papers/v21/19-805.html
http://jmlr.org/papers/v21/19-805.html
http://jmlr.org/papers/v21/19-805.html
https://doi.org/10.1145/3459637.3482016
https://doi.org/10.1145/3459637.3482016

Queensland, Australia, November 1 - 5, 2021, ACM, 2021, pp. 4653–4664.
doi:10.1145/3459637.3482016.
URL https://doi.org/10.1145/3459637.3482016

[56] L. Yang, E. Bagdasaryan, J. Gruenstein, C. Hsieh, D. Estrin, Openrec:
A modular framework for extensible and adaptable recommendation algo-
rithms, in: Y. Chang, C. Zhai, Y. Liu, Y. Maarek (Eds.), Proceedings of
the Eleventh ACM International Conference on Web Search and Data Min-
ing, WSDM 2018, Marina Del Rey, CA, USA, February 5-9, 2018, ACM,
2018, pp. 664–672. doi:10.1145/3159652.3159681.
URL https://doi.org/10.1145/3159652.3159681

[57] M. Kula, Metadata embeddings for user and item cold-start recommenda-
tions, in: T. Bogers, M. Koolen (Eds.), Proceedings of the 2nd Workshop
on New Trends on Content-Based Recommender Systems co-located with
9th ACM Conference on Recommender Systems (RecSys 2015), Vienna,
Austria, September 16-20, 2015., Vol. 1448 of CEUR Workshop Proceed-
ings, CEUR-WS.org, 2015, pp. 14–21.
URL http://ceur-ws.org/Vol-1448/paper4.pdf

[58] C. Ardito, T. Colafiglio, T. Di Noia, E. D. Sciascio, Brain computer in-
terface, visual tracker and artificial intelligence for a music polyphony
generation system, in: C. Ardito, R. Lanzilotti, A. Malizia, H. Petrie,
A. Piccinno, G. Desolda, K. Inkpen (Eds.), Human-Computer Interac-
tion - INTERACT 2021 - 18th IFIP TC 13 International Conference,
Bari, Italy, August 30 - September 3, 2021, Proceedings, Part V, Vol.
12936 of Lecture Notes in Computer Science, Springer, 2021, pp. 368–371.
doi:10.1007/978-3-030-85607-6_39.
URL https://doi.org/10.1007/978-3-030-85607-6_39

[59] E. Loper, S. Bird, Nltk: The natural language toolkit, in: Proceedings of
the ACL-02 Workshop on Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational Linguistics, 2002, pp.
63–70.

[60] Y. Vasiliev, Natural Language Processing with Python and SpaCy: A Prac-
tical Introduction, No Starch Press, 2020.

[61] C. Baziotis, N. Pelekis, C. Doulkeridis, Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and topic-based sentiment
analysis, in: Proceedings of the 11th International Workshop on Seman-
tic Evaluation (SemEval-2017), Association for Computational Linguistics,
Vancouver, Canada, 2017, pp. 747–754.

[62] R. Řeh̊uřek, P. Sojka, Software Framework for Topic Modelling with Large
Corpora, in: Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, ELRA, Valletta, Malta, 2010, pp. 45–50, http://
is.muni.cz/publication/884893/en.

37

http://dx.doi.org/10.1145/3459637.3482016
https://doi.org/10.1145/3459637.3482016
https://doi.org/10.1145/3159652.3159681
https://doi.org/10.1145/3159652.3159681
https://doi.org/10.1145/3159652.3159681
http://dx.doi.org/10.1145/3159652.3159681
https://doi.org/10.1145/3159652.3159681
http://ceur-ws.org/Vol-1448/paper4.pdf
http://ceur-ws.org/Vol-1448/paper4.pdf
http://ceur-ws.org/Vol-1448/paper4.pdf
https://doi.org/10.1007/978-3-030-85607-6_39
https://doi.org/10.1007/978-3-030-85607-6_39
https://doi.org/10.1007/978-3-030-85607-6_39
http://dx.doi.org/10.1007/978-3-030-85607-6_39
https://doi.org/10.1007/978-3-030-85607-6_39
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

[63] T. Mikolov, W.-t. Yih, G. Zweig, Linguistic regularities in continuous space
word representations, in: Proceedings of the 2013 conference of the north
american chapter of the association for computational linguistics: Human
language technologies, 2013, pp. 746–751.

[64] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors
with subword information, Transactions of the Association for Computa-
tional Linguistics 5 (2017) 135–146.

[65] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, J. Mach.
Learn. Res. 3 (2003) 993–1022.
URL http://jmlr.org/papers/v3/blei03a.html

[66] M. Sahlgren, An Introduction to Random Indexing, in: Proc. of the Meth-
ods and Applications of Semantic Indexing Workshop at the 7th Interna-
tional Conference on Terminology and Knowledge Engineering, TKE, 2005.

[67] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using
siamese bert-networks, in: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), 2019, pp.
3982–3992.

[68] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cis-
tac, T. Rault, R. Louf, M. Funtowicz, J. Brew, Huggingface’s transform-
ers: State-of-the-art natural language processing, CoRR abs/1910.03771.
arXiv:1910.03771.
URL http://arxiv.org/abs/1910.03771

[69] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn:
Machine learning in python, the Journal of machine Learning research 12
(2011) 2825–2830.

[70] A. Moro, A. Raganato, R. Navigli, Entity Linking meets Word Sense Dis-
ambiguation: a Unified Approach, Transactions of the Association for Com-
putational Linguistics 2 (2014) 231–244.

[71] C. Musto, P. Lops, M. de Gemmis, G. Semeraro, Context-aware graph-
based recommendations exploiting personalized pagerank, Knowl. Based
Syst. 216 (2021) 106806. doi:10.1016/j.knosys.2021.106806.
URL https://doi.org/10.1016/j.knosys.2021.106806

[72] P. Lops, E. Musacchio, C. Musto, M. Polignano, A. Silletti, G. Semeraro,
Reproducibility analysis of recommender systems relying on visual features:
traps, pitfalls, and countermeasures, in: Seventeenth ACM Conference on
Recommender Systems (RecSys ’23), September 18–22, 2023, Singapore,
ACM, 2023. doi:3604915.3609492.
URL https://doi.org/10.1145/3604915.3609492

38

http://jmlr.org/papers/v3/blei03a.html
http://jmlr.org/papers/v3/blei03a.html
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.1016/j.knosys.2021.106806
https://doi.org/10.1016/j.knosys.2021.106806
http://dx.doi.org/10.1016/j.knosys.2021.106806
https://doi.org/10.1016/j.knosys.2021.106806
https://doi.org/10.1145/3604915.3609492
https://doi.org/10.1145/3604915.3609492
http://dx.doi.org/3604915.3609492
https://doi.org/10.1145/3604915.3609492

[73] H. Abdollahpouri, M. Mansoury, R. Burke, B. Mobasher, The unfairness
of popularity bias in recommendation, arXiv preprint arXiv:1907.13286.

[74] G. Spillo, C. Musto, M. Polignano, P. Lops, M. de Gemmis, G. Semeraro,
Combining graph neural networks and sentence encoders for knowledge-
aware recommendations, in: Proceedings of the 31st ACM Conference on
User Modeling, Adaptation and Personalization, UMAP 2023, Limassol,
Cyprus, June 26-29, 2023, ACM, 2023, pp. 1–12. doi:10.1145/3565472.

3592965.
URL https://doi.org/10.1145/3565472.3592965

[75] M. Polignano, C. Musto, M. de Gemmis, P. Lops, G. Semeraro, Together is
better: Hybrid recommendations combining graph embeddings and contex-
tualized word representations, in: H. J. C. Pamṕın, M. A. Larson, M. C.
Willemsen, J. A. Konstan, J. J. McAuley, J. Garcia-Gathright, B. Hu-
urnink, E. Oldridge (Eds.), RecSys ’21: Fifteenth ACM Conference on Rec-
ommender Systems, Amsterdam, The Netherlands, 27 September 2021 - 1
October 2021, ACM, 2021, pp. 187–198. doi:10.1145/3460231.3474272.
URL https://doi.org/10.1145/3460231.3474272

[76] H. Cai, V. W. Zheng, K. C.-C. Chang, A comprehensive survey of graph
embedding: Problems, techniques, and applications, IEEE Transactions on
Knowledge and Data Engineering 30 (9) (2018) 1616–1637.

[77] P. Goyal, E. Ferrara, Graph embedding techniques, applications, and per-
formance: A survey, Knowledge-Based Systems 151 (2018) 78–94.

[78] E. Palumbo, G. Rizzo, R. Troncy, E. Baralis, M. Osella, E. Ferro, Trans-
lational models for item recommendation, in: European Semantic Web
Conference, Springer, 2018, pp. 478–490.

[79] Z. Sun, J. Yang, J. Zhang, A. Bozzon, L.-K. Huang, C. Xu, Recurrent
knowledge graph embedding for effective recommendation, in: Proceedings
of the 12th ACM Conference on Recommender Systems, 2018, pp. 297–305.

[80] W. Song, Z. Duan, Z. Yang, H. Zhu, M. Zhang, J. Tang, Explainable
knowledge graph-based recommendation via deep reinforcement learning,
arXiv preprint arXiv:1906.09506.

[81] C. Musto, F. Narducci, P. Lops, M. de Gemmis, G. Semeraro, Linked
open data-based explanations for transparent recommender systems, Int.
J. Hum. Comput. Stud. 121 (2019) 93–107. doi:10.1016/j.ijhcs.2018.
03.003.
URL https://doi.org/10.1016/j.ijhcs.2018.03.003

39

https://doi.org/10.1145/3565472.3592965
https://doi.org/10.1145/3565472.3592965
http://dx.doi.org/10.1145/3565472.3592965
http://dx.doi.org/10.1145/3565472.3592965
https://doi.org/10.1145/3565472.3592965
https://doi.org/10.1145/3460231.3474272
https://doi.org/10.1145/3460231.3474272
https://doi.org/10.1145/3460231.3474272
http://dx.doi.org/10.1145/3460231.3474272
https://doi.org/10.1145/3460231.3474272
https://doi.org/10.1016/j.ijhcs.2018.03.003
https://doi.org/10.1016/j.ijhcs.2018.03.003
http://dx.doi.org/10.1016/j.ijhcs.2018.03.003
http://dx.doi.org/10.1016/j.ijhcs.2018.03.003
https://doi.org/10.1016/j.ijhcs.2018.03.003

	Introduction
	Background and Related Work
	Accountability in Recommender Systems
	Knowledge-aware Content Representations
	Encoding endogenous semantics
	Encoding exogenous semantics

	Related Frameworks

	ClayRS
	Content Analyzer
	Pre-processing.
	Knowledge-aware Content Representations.

	Recommender
	Evaluator
	Ensuring Replicability with ClayRS

	ClayRS in Practice: Experimental Scenarios
	Datasets
	Data Splitting and Evaluation Protocol
	Recommendation Algorithms
	Evaluation Metrics and Statistical Testing
	Replicability of the experiments
	Results

	Open Challenges
	Conclusions and Future Work

