
Citation: Popolizio, S.; Barca, E.;

Castellini, M.; Montesano, F.F.;

Stellacci, A.M. Investigating the

Spatial Structure of Soil Hydraulic

Properties in a Long-Term Field

Experiment Using the BEST

Methodology. Agronomy 2022, 12,

2873. https://doi.org/

10.3390/agronomy12112873

Academic Editors: Jinman Wang

and Long Guo

Received: 29 September 2022

Accepted: 15 November 2022

Published: 16 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Investigating the Spatial Structure of Soil Hydraulic Properties
in a Long-Term Field Experiment Using the BEST Methodology
Stefano Popolizio 1 , Emanuele Barca 2,* , Mirko Castellini 3 , Francesco F. Montesano 1

and Anna Maria Stellacci 1

1 Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A,
70126 Bari, Italy

2 Water Research Institute (IRSA)—National Research Council (CNR), Viale Francesco de Blasio 5,
70132 Bari, Italy

3 Council for Agricultural Research and Economics—Research Center for Agriculture
and Environment (CREA-AA), Via C. Ulpiani 5, 70125 Bari, Italy

* Correspondence: emanuele.barca@irsa.cnr.it

Abstract: Understanding the spatial structure of soil properties at field scale and introducing this
information into appropriate data analysis methods can help in detecting the effects of different soil
management practices and in supporting precision agriculture applications. The objectives of this
study were: (i) assessing the spatial structure of soil physical and hydraulic properties in a long-term
field experiment; (ii) defining a set of spatial indicators for gaining an integrated view of the studied
system. In seventy-two georeferenced locations, soil bulk density (BD), initial volumetric soil water
content (θi) and cumulative infiltration curve as function of the time (I(t)) were measured. The soil
water retention curve (θ(h)) and the hydraulic conductivity function (K(h)) were then estimated using
the Beerkan Estimation of Soil Transfer parameters (BEST) methodology. The volumetric soil water
contents at soil matrix (h = −10 cm), field capacity (h = −100 cm) and wilting point (h = −15,300 cm)
were considered. In addition, a set of capacitive indicators—plant available water capacity (PAWCe),
soil macroporosity (PMACe), air capacity (ACe) and relative field capacity (RFCe)—were computed.
The data were first analyzed for overall spatial dependence and then processed through variography
for structural analysis and subsequent spatial interpolation. Cross-correlation analysis allowed for
assessing the spatial relationships between selected physical and hydraulic properties. On average,
optimal soil physical quality conditions were recorded; only PMACe values were indicative of non-
optimal conditions, whereas mean values of all the other indicators (BD, Ks, PAWCe, ACe, RFCe) fell
within optimal ranges. The exponential model was found to be the best function to describe the
spatial variability of all the considered variables, except ACe. A good spatial dependence was found
for most of the investigated variables and only BD, ACe and Ks showed a moderate autocorrelation. Ks
was confirmed to be characterized by a relatively high spatial variability, and thus, to require a more
intensive spatial sampling. An inverse spatial cross-correlation was observed between BD and Ks
up to a distance of 10 m; significant cross-correlations were also recorded between Ks and PMACe
and ACe. This result seems to suggest the possibility to use these soil physical quality indicators as
covariates in predictive multivariate approaches.

Keywords: beerkan estimation of soil transfer parameters (BEST) methodology; saturated hydraulic
conductivity; soil physical quality; capacitive indicators; spatial autocorrelation; nugget-to-sill ratio;
exponential model; cross-correlation

1. Introduction

A clear understanding of the impact of agronomic techniques on soil quality and crop
productivity is of foremost importance for the sustainable management of cropping systems
and for providing proper answers to challenges posed by climate change. Soil tillage
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practices are known to greatly affect soil status and quality [1,2] and its ability to capture
and store precipitation or irrigation water [3]. The direct action of tillage management on
soil physical properties modifies air-water capacity relationships. This in turn affects soil
organic matter dynamics and turnover, carbon storage and CO2 emissions, nutrient cycling
and water resources conservation [1,2,4,5].

Modifications induced by tillage practices on soil physical and hydraulic properties
are not always easy to detect, and field studies have often provided contrasting results [3].
The presence of unstable conditions, when investigations are carried out in the short- and
medium-term period, and also the spatial variability of the soil properties over the field
experimental area may cause difficulty in discerning the effects. Spatial heterogeneity is
suggested as a primary source of error [6]. When spatial variability occurs at a scale smaller
than the block (and plot) size, the effect of experimental treatments on the response of
primary variables may be confounded [7–9]. Several studies have reported that neglecting
the spatial dependence can cause misinterpretation errors, and consequently, improper
management decisions [10,11].

In order to assess the spatial structure of the investigated variables, specific approaches
for data sampling and analysis have to be undertaken. At first instance, a more intensive
sampling is required in comparison to traditional approaches. A number of samples ranging
from 50 to 100 is appropriate for accurate spatial analysis [12–14]. Sample sizes below
50 units do not meet the basic assumption for the application of spatial analysis [15,16].

In addition, multiple, or repeated, measurements performed over the same experi-
mental unit/plot may give rise to correlations among observations and/or residuals that
need to be appropriately considered in statistical analysis [7]. In this specific case, not
properly accounting for residual autocorrelation over space may cause erroneous conclu-
sions about treatment significance [10]. Modeling the variance-covariance matrix of the
residuals and incorporating this information into linear mixed effects models (LMMs) may
represent a rigorous approach alternative to classical analysis of variance and standard
linear models. The information about the spatial structure of a variable of interest can sup-
port farmers in delineating homogeneous areas for promoting the application of precision
agriculture strategies.

The need for denser sampling in spatial studies is, however, hindered by the character-
istics of conventional methods for determination of soil physical and hydraulic properties,
since these methods are expensive and time consuming, and often require high technical
skills. Simple, quick and accurate methodologies are envisaged and desirable [17]. A sim-
ple and rapid field method, initially developed by Haverkamp et al. [18], allowed for the
simultaneous characterization of both hydraulic conductivity function and water retention
curve. Lassabatère et al. [19] developed the “Beerkan Estimation of Soil Transfer parameters
(BEST)” procedure in order to simplify soil hydraulic characterization [20]. The method
can be conveniently applied for performing intensive samplings with a less demanding
experimental effort [21], thus dealing with the requirements of spatial analysis.

Another open issue in the field of spatial analysis is that of selecting a suitable number
of effective indicators, and above all, to learn how to interpret them in an integrated way. In
the past, several efforts have been directed toward reaching this aim, and not always with
satisfying results [22,23]. Today, it is possible to collect a large amount of literature regarding
a number of old and newly introduced indicators without any attempt at presenting an
integrated reading of the results provided. More specifically, the Moran index has a long-
dated history, during which the method by which to use it and the related interpretation
of the results have significantly improved [24]. In addition to the Moran index, even the
nugget-to-sill ratio [25–27] has evolved to include the range and the model itself within
the computation [27]. The cross-correlogram is a very powerful tool to quantitatively
compare different spatial maps, thus reducing the subjectivity of visual inspection [28,29].
However, this index is often neglected in spatial analysis studies due to the difficulty in
computing and interpreting the results. After the refinements of the concepts underlying
those indicators, the revision of the definitions and the overcoming of misconceptions, the



Agronomy 2022, 12, 2873 3 of 15

issue of misinterpretation or contradiction among results provided by different indicators
has become much rarer. Therefore, an integrated reading of the outcomes of many indices
together is not only possible, but desirable. In the present study, a set of indicators were
applied to a group of variables with different degrees of spatial correlation in order to
provide a systematic and integrated approach and “read between the lines” of the specific
spatial features of different variables.

The general objective of this study was to assess the spatial structure of soil physical
and hydraulic properties at a long-term field experimental site. Secondly, a set of spa-
tial indicators for gaining an integrated view of the studied system were suggested and
used. The BEST-procedure was adopted for the soil hydraulic characterization. The data,
collected in georeferenced locations, were first analyzed for overall spatial dependence
and then processed through variography for structural analysis and subsequent spatial
interpolation. The quantitative assessment of the spatial relationships between selected
physical and hydraulic properties was finally achieved using cross-correlation analysis.
This study will also represent a preliminary step toward the inclusion of the informa-
tion on the spatial structure of the investigated variables into linear mixed effects models
considering residual autocorrelation. Moreover, information about spatial structure can
support farmers in delineating management zones for fostering the application of precision
agriculture strategies.

2. Materials and Methods
2.1. Study Area and Experimental Trial

The field experiment was performed in the autumn of 2021 at the Council for Agricul-
tural Research and Economics (CREA-AA) in Southern Italy (41◦27′03′′ N, 15◦30′06′′ E).
The climate is classified as accentuated thermomediterranean [30]. Long-term annual average
rainfall is 550 mm and it is mainly concentrated in the winter period [9]. The soil is clay of
alluvial origin classified as fine, mesic, Typic Chromoxerert [31].

Data were collected within a long-term field experiment, started in 2002, aimed at
investigating the effects of two soil management strategies (minimum tillage, MT, and
no-tillage, NT) on durum wheat (Triticum turgidum subsp. durum Desf.). The experimental
design was a randomized complete block design (RCBD) with three replicates and unit
plot sizes of 500 m2. Further details on the experimental trial and plot management are
reported in Castellini et al. [32] and Stellacci et al. [5].

Measurements of soil physical and hydraulic properties were carried out in seventy-two
geo-referenced locations. The number of observations was defined to gain a minimum
number of pairs for each distance class in order to assess spatial structures underlying the
physical process taking place in the study area [14].

2.2. Laboratory and Field Measurements

The Beerkan Estimation of Soil Transfer Parameter (BEST) methodology by Lass-
abatère et al. [19] was applied for each of the selected seventy-two sampling locations. In
particular, at each sampling point, the soil bulk density (BD), the initial volumetric soil
water content (θi) and the cumulative infiltration curve as function of the time (I(t)) were
determined. Then, the soil water retention curve and the hydraulic conductivity function
(θ(h) and K(h) relationships, respectively) were estimated using the BEST methodology. The
values of the volumetric soil water content corresponding to specific reference values of the
matrix potential, i.e., at soil matrix, θ10 (h = −10 cm), at field capacity, θ100 (h = −100 cm)
and at wilting point, θ15300 (h = −15,300 cm), were taken into account and analyzed to
investigate the spatial variation of soil physical properties. In addition, starting from the
estimated soil water retention curve, a set of four capacitive indicators accounting for the
proportion between water and air into the soil was computed. These indicators were: plant
available water capacity (PAWCe), soil macroporosity index (PMACe), air capacity (ACe)
and relative field capacity (RFCe) [33]. More information on these indicators is reported in
the following sections.
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In detail, an infiltration experiment was carried out at each sampling point using
a metal ring (15 cm inner diameter) and the cumulative infiltration as a function of the
time (I(t)) was measured. Fifteen water volumes of 200 mL each were poured from a height
of about 3 cm and the BEST-steady algorithm [34] was applied to estimate the soil water
retention curve and the hydraulic conductivity function (θ(h) and K(h)). Undisturbed soil
cores (0.10 m in height by 0.05 m in diameter) were collected in each sampling point at
a 0 to 0.10 m depth close to the ring to quantify the soil water content at the beginning
of infiltration experiments, θi, and the soil dry bulk density (BD). Saturated soil water
content, θs, was estimated from BD assuming a particle density of 2.65 g cm−3. Disturbed
soil samples were also collected at each sampling point to assess the mean particle size
distribution (PSD) at 0–0.10 m depth. After checking that quasi-steady flow conditions were
always reached, BD, θi, PSD and I(t) were used to run BEST-steady. Therefore, although the
average values of the input variables are usually used for running BEST, in this investigation,
only the mean PSD was used, while the single geo-referenced observations of BD, θi and I(t)
were considered.

2.3. Soil Physical Indicators

The soil saturated hydraulic conductivity (Ks) indicates the soil water infiltration capac-
ity and is a key property affecting soil water storage, and the transport of water and solutes
in the soil [35,36]. Optimal Ks values for agriculture soils, ranging within 0.005–0.05 mm s−1,
favor a rapid infiltration and redistribution of plant available water [35,36]. Dry bulk den-
sity (BD) is an indicator of soil quality, correlated with soil compaction, related to soil
porosity and moisture content. It is also related to thermal properties (soil volumetric heat
capacity, thermal conductivity), in this way affecting chemical and biological variables. Op-
timal BD values range in an interval between 0.9–1.2 g cm−3. BD and Ks have been widely
used to explore the impact of soil management from the point of view of environmental
sustainability (among others, Cavalcante et al. [37]), and have been recently included in
specific protocols for the assessment of sustainable soil management [38].

Plant available water capacity (PAWC) (cm3 cm−3) is computed as the difference
between the water contents at field capacity (at h = −100 cm) and at permanent wilt-
ing point (at h = −15,300 cm) [32], and thus, represents the water available for crop
growth. For the present investigation, the following PAWC limits were considered [36]:
PAWC ≥ 0.20 ideal; 0.15 < PAWC < 0.20 good; 0.10 < PAWC < 0.15 limited; PAWC < 0.10 poor.
Air capacity (AC) (cm3 cm−3) is computed as the difference between the water contents at
saturation and at field capacity; providing information about the soil ability to store and
transmit air [36]. Optimal AC values for clay soil fall in the interval 0.10–0.26 cm3 cm−3,
while higher or lower values indicate poor soil aeration conditions [32,33]. The relative field
capacity (RFC) was computed as the ratio between the water contents at field capacity and
at water saturation [36]. Optimal values for RFC range within the interval 0.6–0.7; lower or
higher values indicate “water limited” or “aeration limited” conditions, respectively [36].
Macroporosity (PMAC) (cm3 cm−3) gives the volume of large (macro) pores (i.e., >0.3 mm
equivalent pore diameter), which indirectly indicates the soil’s ability to quickly drain ex-
cess water and facilitate root proliferation. PMAC ≥ 0.05–0.10 cm3 cm−3 indicates optimal
conditions, while PMAC ≤ 0.04 cm3 cm−3 indicates soil compaction [39–41].

The subscript e (i.e., PAWCe, ACe, RFCe, PMACe) is used for indicating variables
estimated by BEST. Since indicators of soil quality were both estimated by BEST and
directly measured (BD and Ks), they assume a different meaning. Consequently, capacitive
indicators (i.e., PAWCe, ACe, etc.) could provide evidence of better or worse relative soil
quality, according to the different soil use or to the relative distance within the plot.
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2.4. Statistical Methods
2.4.1. Exploratory and Correlation Data Analysis

Basic statistics were computed for the investigated variables: BD, ACe, PMACe, PAWCe,
RFCe, Ks, θi, θ10, θ100 and θ15300. Finally, the hypothesis of normality was checked using
Shapiro-Wilk test.

Pearson correlation coefficients were computed in order to investigate the relationships
among studied variables. Moreover, the assessment of the overall spatial correlation of the
considered variables was performed by means of Moran statistics [42,43]. Details regarding
the Moran I index can be found in the following papers [32,42,43].

2.4.2. Geostatistical Analysis

The spatial variability of a variable can be assessed by means of the geostatistical
analysis with the aim of predicting variable values at unvisited locations and producing
maps. The main stages of geostatistical analysis concern structural analysis (variography),
weight assessment and, finally, interpolation (kriging).

Variography

The experimental variogram and the variogram model are two different functions
used to describe the features of geo-referenced data. The experimental variogram is a
discrete function and represents the half of the average squared difference between points
separated by the distance h (lag). The variogram model is a mathematical model parametric,
a continuous and conditionally negative definite [22] (Figure 1). The variogram model is
derived from the experimental variogram by means of a procedure called model fitting.
In Figure 1, some examples of theoretical variogram models are reported.
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Figure 1. Examples of parametric families of theoretical models for experimental variograms fit-
ting (a); comparison of spherical (upper function), Gaussian (intermediate function) and exponential
(lower function) models (b). Modified from Mälicke et al. [44].

The parameters of the variogram model are the partial sill (σ2), indicating the struc-
tured component of the variance, the nugget, indicating the random uncorrelated com-
ponent, and the range (α). The range is defined as the distance beyond which the spatial
correlation becomes negligible (Figure 1). For asymptotic models, such as Gaussian and
exponential, the true range is replaced by the effective (or practical) range that is defined as
the distance at which the semivariance value achieves 95% of the sill [45,46].

In this study, variogram models were used to model the experimental variograms
of the investigated physical and hydraulic variables. The goodness-of-fit was evaluated
through the leave-one-out cross-validation and Pearson correlation coefficients (r) between
predicted and observed data were computed [22].
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Spatial Interpolation

Ordinary kriging (OK) was selected as well suited to interpolate the investigated
variables. OK is a univariate predictor in which the unknown value z(x0) of a given
realization of Z(x0) is predicted from the known values z(xi) i = 1, 2, . . . , N, at the support
points xi. The OK predictor is expressed as described in the following papers [26,29,47].

2.4.3. Cross-Correlation

Cross-correlations were computed for comparing the maps of the interpolated values
of the studied variables. The cross-correlation is effective in highlighting the strength and
the extent of the spatial correlation between a couple of variables [28,29,48]. The analytical
formulation is the following:

ρA, B(h) =
E
[
zi,jA, zi′ ,j′B

]
−mA·mB

sA·sB
(1)

where zi,jA and zi′ ,j′B represent the values at locations (i− i′) and (j− j′) of the two maps

separated by the h distance, respectively; h =
√
(i− i′)2 + (j− j′)2 represents the distance

between the two locations, E denotes the mathematical expectation, mA and mB represent
the populations means and sA and sB represent the populations standard deviations. If
patterns are completely similar, apart from a constant, ρA, B(1) should be equal to 1. To
estimate ρA, B(h) from the available data the following equation can be used:

rA, B(h) =
∑

N(h)
i,j=1 zi,jA, zi′ ,j′B − m̂A·m̂B

ŝA·ŝB
(2)

To compute rA, B(h), the procedure is as follows: from both maps, all the couples
whose locations are separated by the distance h are collected. Indices m̂A and m̂B and ŝA and
ŝB represent the mean and the standard deviation of mapped zi,jA and zi′ ,j′B, respectively.
N(h) is the total number of these pairs.

The cross-correlation coefficients obtained at specified lag distances (0 m, 5 m, 10 m,
15 m, 20 m) were reported in order to provide quantitative information on the spatial
relationships of soil physical and hydrological variables under study.

3. Results
3.1. Exploratory Data Analysis

The basic statistics highlighted a departure from the normal distribution of all the
variables under study, excluding bulk density (BD), according to the Shapiro-Wilk test.
Nonetheless, as shown in Table 1, skewness was almost always smaller than 1, indicating
that distributions of considered variables were nearly symmetrical; therefore, values were
not transformed into Gaussian.

Table 1. Summary statistics for the variables under study.

Variable Unit Mean St.Dev Median Min Max Skewness Kurtosis

Ks mm s−1 0.043 0.055 0.016 0.001 0.270 1.864 3.630
θi cm3 cm−3 0.347 0.029 0.351 0.247 0.399 −1.548 2.989

θ10 cm3 cm−3 0.599 0.028 0.606 0.526 0.65 −0.586 −0.357
θ100 cm3 cm−3 0.426 0.041 0.434 0.33 0.487 −0.621 −0.655

θ15300 cm3 cm−3 0.147 0.016 0.151 0.112 0.174 −0.440 −0.745
BD g cm−3 1.008 0.051 1.002 0.904 1.129 0.286 −0.681

PMACe cm3 cm−3 0.020 0.017 0.012 0.005 0.092 1.811 3.211
ACe cm3 cm−3 0.193 0.034 0.183 0.141 0.291 0.817 −0.277

PAWCe cm3 cm−3 0.279 0.025 0.285 0.218 0.315 −0.706 −0.593
RFCe - 0.687 0.057 0.699 0.537 0.761 −0.823 −0.463
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3.2. Soil Physical Indicators

Measured values of physical and hydraulic variables were compared with the optimal
ranges reported in the literature, as summarized in Section 2.3. Overall, observed values
showed good average results as only PMACe values were indicative of non-optimal con-
ditions, whereas mean values of all the other indicators (BD, Ks, PAWCe, ACe, RFCe) fell
within optimal ranges (Table 1).

In more detail, BD showed optimal soil density with the entire range of variation of the
measurements (0.904–1.129 g cm−3) falling in the interval 0.9–1.2 g cm−3 (Table 1). These
results were also in agreement with those provided by ACe that always showed values in
the interval 0.10–0.26 cm3 cm−3, except for two observations (0.2718 and 0.2917 cm3 cm−3).
Regarding RFCe, although the values recorded at some locations were outside the optimal
range (0.6–0.7), these observations were very close to the critical limits with average values
of 0.73 and 0.58, respectively; in addition, only two values were lower than 0.55 and only
four values were greater than 0.75. Optimal conditions were also recorded for PAWCe at
all the sampling locations with observed values always greater than 0.20 cm3 cm−3; in
particular, about 80% of the observations showed PAWCe values greater than 0.25 cm3 cm−3.
In these locations, as expected, the lowest values of PMACe were also recorded with values
lower than 0.04 cm3 cm−3. Finally, good hydrodynamic soil properties were observed.
The average value of Ks (0.043 mm s−1) fell within the limits defined in the literature [35]
and the observed values lower than the critical limit (<0.005 mm s−1) were quite close to
this critical threshold, with only three locations showing values of saturated hydraulic
conductivity smaller than 0.002 mm s−1.

3.3. Correlation and Preliminary Spatial Analysis

Interesting relationships were observed among the soil variables (Table 2). Significant
correlations were observed between Ks and PMACe and ACe (r = 0.81 and 0.80, p < 0.0001).
A negative correlation was instead observed between Ks and the two capacitive indicators
RFCe and PAWCe (−0.816, −0.764). Strong positive correlations were found between RFCe
with PAWCe, θ100 and θ15300 (r = 0.937, 0.908, 0.855, p < 0.0001), while negative correlations
were found with Ks, PMACe and ACe (r = −0.81, −0.99, −0.97, p < 0.0001). PAWCe was
strongly negatively related to PMACe and ACe (r = −0.896, −0.85, p < 0.0001), while there
was a high positive correlation with θ10, θ100, θ15300 and RFCe (r = 0.87, 0.99, 0.976, 0.937,
p < 0.0001). Finally, BD showed significant inverse correlations with values of volumetric
soil water content at −10 cm, −100 cm and −15,300 cm, namely −0.84, −0.6, −0.68, and at
the beginning of the experiment (θi), of −0.52.

Table 2. Pearson’s correlation matrix for the variables under study.

Variable Ks θi θ10 θ100 θ15300 BD PMACe ACe PAWCe RFCe

Ks 1
θi 0.015 1

θ10 −0.545 0.522 1
θ100 −0.752 0.447 0.902 1

θ15300 −0.698 0.478 0.945 0.990 1
BD 0.187 −0.523 −0.839 −0.603 −0.683 1

PMACe 0.812 −0.273 −0.592 −0.860 −0.798 0.168 1
ACe 0.804 −0.235 −0.523 −0.810 −0.743 0.083 0.992 1

PAWCe −0.764 0.447 0.869 0.995 0.976 −0.551 −0.895 −0.850 1
RFCe −0.816 0.317 0.669 0.909 0.855 −0.270 −0.990 −0.972 0.937 1

Moran index, indicating the overall spatial dependence, ranged from values of
0.16 (p = 0.04) and 0.196 (p = 0.023) for BD and Ks, indicating a poor spatial correlation, to
values of 0.4063, 0.4329, 0.4360, 0.4364 and 0.480 (with p values < 0.001), for θ10, PAWCe,
θ100, θ15300, θi, respectively, indicating a good spatial dependence.
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3.4. Variography and Spatial Interpolation

Theoretical nested models, consisting of a nugget effect and a spatial covariance
function, were used to model the experimental variograms of the investigated variables.
The test for the anisotropy was performed and it was found not significant; then, isotropic
models were selected for all the studied variables. Results, reported in Table 3, showed
that the exponential model was found to be the best theoretical function according to
the considered error metrics, being chosen for all the variables except air capacity (ACe).
The nugget-to-sill ratio was computed to assess the spatial structure of the variables [25],
with ratios lower than 25% indicating strong spatial dependence, ratios between 25 and
75% indicating moderate spatial dependence and ratios greater than 75% indicating weak
spatial dependence. The analysis of the observed values of nugget-to-sill ratio indicated a
significant spatial structure for most of the variables investigated with values lower or close
to 25% (Table 3). Greater values were recorded for BD (0.46) and Ks (0.4725), confirming the
results of the Moran I index that showed a poor overall spatial structure for these variables,
and for ACe (0.45). The lowest values were recorded for volumetric soil water content at
the beginning of the experiment (θi) and of the soil matrix (θ10).

Table 3. Model selected, variogram parameters, nugget-to-sill ratio and cross-validation outcomes.

Ks θi θ10 θ100 θ15300 BD PMACe ACe PAWCe RFCe

Nugget 0.00228 0 5.24 × 10−05 0.00039 3.7 × 10−05 0.0013 0.00021 0.00080 0.00018 0.0016
Partial sill 0.00254 0.0014 0.0009 0.0018 2.8 × 10−04 0.0015 0.00056 0.00096 0.00074 0.009

Nugget-to-sill ratio 0.4725 0 0.055 0.17 0.1156 0.46 0.27 0.45 0.20 0.15
Range 107.547 18 11.83 19.01 14.34 7.73 9.77 34.74 23.29 113.97
Model Exp Exp Exp Exp Exp Exp Exp Gau Exp Exp

Pred. vs. obs. (r) 0.3841 0.7 0.58 0.62 0.62 0.23 0.54 0.54 0.62 0.57

Cross-validation outcomes showed that the correlation between predicted and ob-
served values (pred. vs. obs.) was lower than 0.6 for Ks, BD, PMACe and ACe. All the other
variables showed a pred. vs. obs. correlation larger than or closer to (RFCe and θ10) 0.6 and
were then sufficient. The best variable was θi, with a correlation between predicted and
observed values equal to 0.7 (Table 3).

From the visual inspection of the resulting maps (Figures 2 and 3), a significant spatial
structure emerged for all investigated variables. Initial volumetric soil water content
(θi) showed a single zone with lower values in the southern part of the map and the
larger values mainly located in the upper left portion. The BD map showed a specular
behavior with respect to the previous variable, and thus, with the larger values located in
the southern right zone. The maps of estimated volumetric soil water contents (θ10, θ100
and θ15300) displayed similar characteristics each other and with θi, with lower values on
the southern right part and higher values on the top of the maps; in addition, another zone
with lower values was observed on the middle left part of the three maps.

As expected, maps of PAWCe and RFCe shared some characteristics with θ100 and θ15300,
being derived from these variables (Figure 3). PMACe and ACe were similar to each other
and mirrored PAWCe and RFCe, confirming the results of the correlation analysis. In the
middle longitudinal region, Ks map recalled the behavior observed for PMACe and Ace,
and, consequently, of the estimated volumetric soil water content maps. Furthermore, there
was also observed a similarity with the values located in the right southern and the middle
left portions of the maps.
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Figure 2. Maps of the interpolated values of BD (a), θi (b), θ10 (c), θ100 (d), θ15,300 (e), Ks (f).
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To enhance these results, some variables were selected to check direct or inverse spatial
behavior through cross-correlation procedures (BD, Ks, PMACe and ACe). Table 4 highlights
an inverse cross-correlation between BD and Ks up to a distance of 10 m; this result was
coherent with the spatial structure of BD, for which the range was lower than 10 m (7.7 m;
Table 3). For this reason, all values related to distances larger than that length should be
considered unreliable. The sign of the relationship between the two variables derives from
the Pearson linear correlation reported in Table 2. Significant spatial cross-correlations were
also recorded between Ks and the two capacitive indicators PMACe and ACe. Even for
these last variables, the range of correlation was around 10 m, confirming once more the
results displayed in Table 3. The strong cross-correlations observed were expected after
visual inspection of the reported maps (Figures 2 and 3). Finally, as anticipated, a strong
cross-correlation in the same spatial range was found for the two capacitive indicators,
PMACe and ACe (Table 4).
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Table 4. Cross-correlation coefficients computed at different lags (0, 5, 10, 15, 20 m) between BD, Ks
and the two capacitive indicators PMACe and ACe.

0 m 5 m 10 m 15 m 20 m

BD vs. Ks −0.2800 −0.1774 −0.1066 −0.0482 0.0263
PMACe vs. Ks 0.6578 0.3649 0.1952 0.1033 0.0379

ACe vs. Ks 0.6311 0.3504 0.1881 0.0995 0.0322
PMACe vs. ACe 0.7190 0.4041 0.2216 0.1276 0.0544

4. Discussion

The presence of spatial autocorrelation of soil variables in the experimental field can
represent a major factor to be considered for revealing the impact of agronomic management
on soil physical and hydraulic properties. This study provided a practical methodology for
the assessment of the existence of a spatial structure of the variables investigated. These
results will also represent a preliminary step for the inclusion of information regarding
linear mixed effects models considering residual autocorrelation.

The assessment of soil physical and hydraulic status carried out with reference to the
scientific literature showed that near optimal conditions were recorded in the experimental
site; only PMACe average values were indicative of non-optimal conditions, whereas
mean values of all the other indicators (BD, Ks, PAWCe, ACe, RFCe) fell within optimal
ranges. However, we would like to point out that soil physical quality evaluation must be
considered as indicative for the variables estimated from BEST (i.e., plant available water,
air capacity) and closer to physical reality for the variables directly measured (i.e., bulk
density and saturated hydraulic conductivity). In this sense, the literature references
were used as benchmarks by which to discriminate soil spatial variability, or to establish
comparisons between soil management strategies.

Soil physical variables and capacitive indicators showed strong and significant cor-
relations. Interesting relationships were observed for Ks with PMACe, ACe and RFCe.
Remarkably, there were also strong inverse correlations between RFCe vs. PMACe and
ACe. Similar to our findings, high negative correlations between relative field capacity
and air capacity were observed in a previous study under different crop residue manage-
ment (r within −0.949 and −0.956) and soil management strategies (r within −0.91 and
−0.97) [32]. Strong positive correlations were also observed between macroporosity and air
capacity. These outcomes confirm the strong correlation between RFC and AC and PMAC
and AC. Decreasing RFC values at increasing AC were expected because both indicators
depend on soil water content at saturation and at field capacity [32]. For the accuracy of
the information brought by these indicators, in a previous study, RFC was considered as
a reference indicator for soil quality assessment, and its optimal and critical ranges were
used to define AC limits for agricultural soils [33].

Moran I spatial autocorrelation statistics provides useful information about the predis-
position of the variables to be spatialized. In the present study, since the sample size was
not excessively large, this could highly affect Moran outcomes. Therefore, values equal to,
or larger than, 0.4 can be considered optimal. Generally, lower values of computed Moran
statistics can be indicative of the incapability of catching the underlying spatial structure of
the data and, in parallel, of the need for a more intensive sampling.

The experimental variograms calculated in this study can be considered reliable since a
number of pairs for each distance class larger than the minimum required for an effective
spatial analysis was ensured. Myers [14] suggested 25 pairs. In particular, the actual number
of observed pairs ranged between 105 and 338.

From Table 3 it emerges that the spatial variability of all the considered variables,
excluding ACe, are described by the exponential model; thus, this model was the best suited
theoretical function to describe the spatial structure of the physical processes associated
with the observed data. This result can be explained by two different perspectives. The first
one is that of pure modeling, and the second is that of physical modeling. According to the
first perspective, an exponential model represents the simplest case of the Matèrn model;
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the latter is considered a part of what geostatisticians refer to as “the model” and the
so-called model-based geostatistics [49] is based on the assumption that the Matèrn model
can effectively mimic all the other models. By the second perspective, it should be recalled
that the models reported in Figure 1 represent the average squared difference between
couples of the observed values at given distances. Analyzing the functional form of the
exponential model, it can be determined that values at the shortest distances are similar to
each other (that is, for lag values (h) close to the origin), but very soon differences increase
fast (Figure 1b). This is the usual empirical behavior of the considered variables; in fact,
they are rather spatially heterogeneous due to their own physical nature, as highlighted
in previous works [16,50]. The generalized attribution of the exponential model to Ks
is confirmed by a large proportion of the scientific literature [51–54]. It should be noted
that the range parameter assessed in each cited work always has a comparable order
of magnitude.

As reported by several authors [25], the nugget-to-sill ratio has been computed as the
ratio between the nugget semivariance and the total semivariance. This index, also called
the Spatial Dependence Index (SDI), is largely employed to check the strength of the spatial
structure [15,27], enabling the comparison of the relative size of the nugget effect of studied
variables. In our study, a good overall spatial dependence was found for most of the
investigated variables, except BD, ACe and Ks, which showed a moderate autocorrelation.
These results resemble those found by Castellini et al. [32], for a different fine-textured soil
in the same experimental area, where Ks had the weakest spatial dependence among the
soil variables considered. Comparing the performances of Ks spatial modeling between
the two studies, the poorest spatial structure observed in [32], with a nugget-to-sill ratio of
0.91, can be connected to the sample size (52 observations). In the present study, the larger
sample size (72 observations) was able to grasp the underlying spatial processes, and this
was reflected by the nugget-to-sill ratio (0.47). After the above comparison, we suggest a
sample size larger than 70 observations for Ks, and overall to consider with caution the
conclusions of the literature drawn from too small sample sizes. In recent studies, more
intensive samplings (a number of observations larger than 90 and 200) have allowed for a
significant improvement in the mapping accuracy of Ks [16,50].

Putting together the indications provided by the different indices computed, namely
Moran I index, nugget-to-sill ratio, cross-validations outcomes and cross-correlation, it
emerged that the sample size was probably nearly sufficient and needed to be increased
for some of the variables, with particular regard to the hydrodynamic properties since,
notoriously, Ks is characterized by a relatively high spatial variability [16,50]. The joint
analysis of the abovementioned indices can help scholars and practitioners in setting an
appropriate sample size for specific variables.

We want to highlight the positive role of cross-correlation statistics in the conducted
analysis. The index is often neglected due to its complex formulation (Equation (2)).
However, it enables a quantitative assessment of the behaviors emerging from the visual
inspection of the prediction maps, thus making more objective their comparison [15,28].
Cross-correlations computed at lag (h) zero confirmed the expected strong relationship
between the two capacitive indicators, air capacity and macroporosity, but also enabled
us to highlight their spatial association with Ks. The range of spatial dependence was also
coherent with the results of the variography. In addition, cross-correlation analysis disclosed
the inverse spatial association between Ks and BD with the same range of spatial correlation.

As previously mentioned, repeated measurements performed over the same exper-
imental unit may give rise to correlations that need to be considered in the statistical
analysis [7]. However, classical analysis of variance and standard linear models assume
independent errors [7,10]. Linear mixed effect models (LMMs), which quantify spatial corre-
lation components and filter them from the total residual term of the model, may represent
an appropriate strategy to be employed to improve the protection of statistical tests [9,55].
Previous studies have also shown that these models can enhance the understanding of fac-
tors affecting plant response, and are crucial in agronomic and environmental studies [55].
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For these reasons, results obtained in this study also represent a first step towards the
incorporation of information on the spatial structure of the investigated variables into more
complex models (LMMs), with the aim of discerning the effects of compared treatments.

5. Conclusions

This study aimed to provide a set of suitable indicators, both estimated and directly
measured in the field, which were useful in assessing the soil physical and hydraulic
conditions. In addition, a set of statistical indicators, for gaining an integrated view of the
spatial structure of the studied system, was proposed and applied. The results obtained
represent a preliminary step for the inclusion of information on the spatial structure of soil
hydraulic properties into linear mixed effects models considering residual autocorrelation.

A good overall spatial dependence was found for most of the investigated variables,
except BD, ACe and Ks, which showed a moderate autocorrelation. In particular, Ks was
confirmed to be characterized by a relatively high spatial variability, and thus, to require a
more intensive spatial sampling. In this respect, machine leaning could provide a toolbox
of methods advantageously applicable to predict this variable. In addition, the good cross-
correlation observed in this study with some capacitive indicators seems to suggest the
possibility to use these variables as covariates in predictive multivariate approaches.

The integrated use of spatial statistics demonstrated actual effectiveness in the in-
terpretation of the spatial features of the single variables, as well as for couples. From a
practical point of view, obtaining a large and spatially distributed set of data accounting
for the physical and hydraulic properties of the soil can have positive implications for the
rational management of water resources. However, although the applied methodology
appears suitable to adequately investigate the spatial variability of soil physical and hy-
draulic properties at the plot/field scale, further development of this topic is necessary to
consider more robust data sets, obtained, for example, from experimental measurements
rather than modeling estimations or from coupling information derived from measured
and estimated data.
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