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Abstract

In this paper we study the semiclassical limit for the pseudo-relativistic Hartree
equation √

−ε2∆+m2u+ V u = (Iα ∗ |u|p) |u|p−2u, in RN ,

where m > 0, 2 ≤ p < 2N
N−1 , V : RN → R is an external scalar potential, Iα(x) =

cN,α

|x|N−α is a convolution kernel, cN,α is a positive constant and (N − 1)p−N <

α < N . For N = 3, α = p = 2, our equation becomes the pseudo-relativistic
Hartree equation with Coulomb kernel.
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1. Introduction

In this paper we study the semiclassical limit (ε → 0+) for the pseudo-
relativistic Hartree equation

iε
∂ψ

∂t
=
(√

−ε2∆+m2 −m
)
ψ + V ψ −

(
1

|x|
∗ |ψ|2

)
ψ, x ∈ R3 (1)

where ψ : R × R3 → C is the wave field, m > 0 is a physical constant, ε is the
semiclassical parameter 0 < ε ≪ 1, a dimensionless scaled Planck constant (all
other physical constant are rescaled to be 1), V is bounded external potential
in R3. Here the pseudo-differential operator

√
−ε2∆+m2 is simply defined in

Fourier variables by the symbol
√
ε2|ξ|2 +m2 (see [23]).

Equation (1) has interesting applications in the quantum theory for large
systems of self-interacting, relativistic bosons with mass m > 0. As recently
shown by Elgart and Schlein [16], equation (1) emerges as the correct evolution
equation for the mean-field dynamics of many-body quantum systems modelling
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pseudo-relativistic boson stars in astrophysics. The external potential, V =
V (x), accounts for gravitational fields from other stars. In what follows, we
will assume that V is a smooth, bounded function (see [24, 19, 17, 18, 21,
28]). The pseudo-relativistic Hartree equation can be also derived coupling
together a pseudo-relativistic Schrödinger equation with a Poisson equation (see
for instance [1, 32]), i.e.{

iε∂ψ∂t =
(√

−ε2∆+m2 −m
)
ψ + V ψ − Uψ,

−∆U = |ψ|2

See also [14, 20] for recent developments for models involving pseudo-relativistic
Bose gases.

Solitary wave solutions ψ(t, x) = eitλ/εu(x), λ > 0 to equation (1) lead to
solve the non local single equation√

−ε2∆+m2u+ V u =

(
1

|x|
∗ |u|2

)
u, in R3 (2)

where for simplicity we write V instead of V + (λ−m).
More generally, in this paper we will study the generalized pseudo-relativistic

Hartree equation√
−ε2∆+m2u+ V u = (Iα ∗ |u|p) |u|p−2u, in RN , (3)

where m > 0, 2 ≤ p < 2N
N−1 , V : RN → R is an external scalar potential,

Iα(x) =
cN,α

|x|N−α (x ̸= 0), α ∈ (0, N)

is a convolution kernel and cN,α is a positive constant; for our purposes we can
choose cN,α = 1. For N = 3, α = p = 2, equation (3) becomes the pseudo-
relativistic Hartree equation (2) with Coulomb kernel.

We refer to [34, 9, 6, 30] for the semiclassical analysis of the non-relativistic
Hartree equation. The study of the pseudo-relativistic Hartree equation (2)
without external potential V starts in the pioneering paper [24] where Lieb and
Yau, by minimization on the sphere {ϕ ∈ L2(R3) |

∫
R3 |ϕ|2 = M}, proved that

a radially symmetric ground state exists in H1/2(R3) whenever M < Mc, the
so-called Chandrasekhar mass. Later Lenzmann proved in [22] that this ground
state is unique (up to translations and phase change) provided that the massM
is sufficiently small; some results about the non-degeneracy of the ground state
solution are also given.

Successively, in [10] Coti-Zelati and Nolasco proved existence of a positive
radially symmetric ground state solution for a pseudo-relativistic Hartree equa-
tion without external potential V , involving a more general radially symmetric
convolution kernel. See the recent paper [11] dealing existence of ground states
with given fixed “mass-charge”.

In [27] Melgaard and Zongo established that (2) has a sequence of radially
symmetric solutions of higher and higher energy, assuming that V is radially
symmetric potential.

3



The requirement that V has radial symmetry was dropped in the recent pa-
per [8], where a positive ground state solution for the pseudo-relativistic Hartree
equation (3) is constructed under the assumption (N − 1)p−N < α < N .

To the best of our knowledge the study of the semiclassical limit for the
pseudo-relativistic Hartree equation has been considered by Aki, Markowich
and Sparber in [1]. Using Wigner trasformation techniques, they showed that
its semiclassical limit yields the well known relativistic Vlasov-Poisson system.

In the present paper we are interested to study the pseudo-relativistic Hartree
equation in the semiclassical limit regime (0 < ε ≪ 1), using variational meth-

ods. Replacing u(y) by ε
α

2(1−p)u(εy), equation (3) becomes equivalent to follow-
ing Hartree equation√

−∆+m2u+ Vε(y)u = (Iα ∗ |u|p) |u|p−2u, in RN . (4)

where Vε(y) = V (εy). In what follows we will assume that

(V) V : RN → R is a continuous and bounded function such that Vmin =
infRN V > −m and there exists a bounded open set O ⊂ RN with the
property that

V0 = inf
O
V < min

∂O
V.

Let us define
M = {y ∈ O | V (y) = V0} .

We will establish the existence of a single-spike solution concentrating around
a point close to M . Precisely, our main result is the following.

Theorem 1.1. Retain assumption (V) and assume that 2 ≤ p < 2N/(N − 1)
and (N−1)p−N < α < N . Then, for every sufficiently small ε > 0, there exists
a solution uε ∈ H1/2(RN ) of equation (4) such that uε has a local maximum
point yε satisfying

lim
ε→0

dist(εyε,M ) = 0,

and for which
uε(y) ≤ C1 exp (−C2|y − yε|)

for suitable constants C1 > 0 and C2 > 0. Moreover, for any sequence {εn}n
with εn → 0, there exists a subsequence, still denoted by the same symbol, such
that there exist a point y0 ∈ M with εnyεn → y0, and a positive least-energy
solution U ∈ H1/2(RN ) of the equation√

−∆+m2 U + V0U = (Iα ∗ Up)Up−1

for which we have
uεn(y) = U (y − yεn) + Rn(y) (5)

where limn→+∞ ∥Rn∥H1/2 = 0.
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To prove the main result, we replace the nonlocal problem (3) in RN with a
local Neumann problem in the half space RN+1

+ as in [10] (see [4]). We will find
critical points of the Euler functional associated to the local Neumann problem
by means of a variational approach introduced in [2, 3] (see also [7]) for nonlinear
Schrödinger equations and extended in [9] to deal with non-relativistic Hartree
equations.

In the present paper the presence of a pseudo-differential operator combined
with a nonlocal term requires new ideas. As a first step, we need to perform a
deep analysis of the local realization of the following limiting problem√

−∆+m2u+ au = (Iα ∗ |u|p) |u|p−2u (6)

with a > −m. This equation does not have a unique (up to translation) positive,
ground state solution, apart from the case p = 2, N = 3. Nevertheless we can
prove that the set of positive, ground state solutions to the local realization
of equation (6) satisfies some compactness properties. This is the crucial tool
for finding single-peak solutions which are close to a set of prescribed functions.
Even if we use a purely variational approach, we will take into account the shape
and the location of the expected solutions as in the reduction methods.

Recently the existence of a spike-pattern solution for fractional nonlinear
Schrödinger equation has been proved by Davila, del Pino and Wei in the
semiclassical limit regime (see [15]). The authors perform a refined Lyapunov-
Schmidt reduction, taking into advantage the fact that the limiting fractional
problem has an unique, positive, radial, ground state solution, which is nonde-
generate.

Notation

� We will use | · |q for the norm in Lq, and ∥ · ∥ for the norm in H1(RN+1
+ ).

� Generic positive constants will be denoted by the (same) letter C.

� The symbol RN+1
+ denotes the half-space {(x, y) | x > 0, y ∈ RN}. We

will identify the boundary ∂RN+1
+ with RN .

� The symbol ∗ will denote the convolution of two functions.

� For any subset A of RN and any ϱ > 0, we set Aϱ = {y | dist(y,A) ≤ ϱ}.

� For any subset A of RN and any ϱ > 0, we set Aϱ = {y | ϱy ∈ A}.

2. Preliminaries and variational setting

The realization of the operator
√
m2 − ε2∆ in Fourier variables seems not

convenient for our purposes. Therefore, we prefer to make use of a local real-
ization (see [10, 4]) by means of the Dirichlet-to-Neumann operator defined as
follows.
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For any ε > 0, given u ∈ S(RN ), the Schwartz space of rapidly decaying
smooth functions defined on RN , there exists one and only one function v ∈
S(RN+1

+ ) such that{
−ε2∆v +m2v = 0 in RN+1

+

v(0, y) = u(y) for y ∈ RN = ∂RN+1
+ .

Setting

Tεu(y) = −ε∂v
∂x

(0, y),

we easily see that the problem{
−ε2∆w +m2w = 0 in RN+1

+

w(0, y) = Tεu(y) for y ∈ ∂RN+1
+ = {0} × RN ≃ RN

is solved by w(x, y) = −ε ∂v∂x (x, y). From this we deduce that

Tε(Tεu)(y) = −ε∂w
∂x

(0, y) = ε2
∂2v

∂x2
(0, y) =

(
−ε2∆yv +m2v

)
(0, y),

and hence Tε◦Tε = (−ε2∆y+m
2), namely Tε is a square root of the Schrödinger

operator −ε2∆y +m2 on RN = ∂RN+1
+ .

From the previous construction, we can replace the nonlocal problem (3) in
RN with the local Neumann problem in the half space RN+1

+{
−ε2∆v(x, y) +m2v(x, y) = 0 in RN+1

+

−ε ∂v∂x (0, y) = −V (y)v(0, y) + (Iα ∗ |v(0, ·)|p) |v(0, y)|p−2v(0, y) for y ∈ RN .

Setting vε(x, y) = ε
α

2(1−p) v(εx, εy) and Vε(y) = V (εy), we are led to the local
boundary-value problem{

−∆vε +m2vε = 0 in RN+1
+

−∂vε
∂x (0, y) = −Vε(y)vε(0, y) + (Iα ∗ |vε(0, ·)|p) |vε(0, y)|p−2vε(0, y) for y ∈ RN .

We introduce the Sobolev space H = H1(RN+1
+ ), and recall that there is a con-

tinuous trace operator γ : H → H1/2(RN ). Moreover, this operator is surjective
and the inequality

|γ(v)|pp ≤ p|v|p−1
2(p−1)

∣∣∣∣∂v∂x
∣∣∣∣
2

holds for every v ∈ H1(RN+1
+ ): we refer to [33] for basic facts about the Sobolev

space H1/2(RN ) and the properties of the trace operator.
Reasoning as in [8, Page 5] and taking the Hardy-Littlewood-Sobolev in-

equality (see [25, Theorem 4.3]) into consideration, it follows easily that the
functional Eε : H → R defined by

Eε(v) =
1

2

∫
RN+1

+

|∇v|2 dx dy + m2

2

∫
RN+1

+

v2 dx dy

+
1

2

∫
RN

Vε(x)γ(v)
2 dy − 1

2p

∫
RN

(Iα ∗ |γ(v)|p) |γ(v)|p dy
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is of class C1, and its critical points are (weak) solutions to problem (4).

3. Compactness properties for the limiting problem

For a > −m, the equation√
−∆+m2u+ au = (Iα ∗ |u|p) |u|p−2u (7)

plays the rôle of a limiting problem for (4). Its Euler functional La : H → R is
defined (via the local realization of Section 2) by

La(v) =
1

2

∫
RN+1

+

(
|∇v|2 +m2|v|2

)
dx dy

+
a

2

∫
RN

|γ(v)|2 dy − 1

2p

∫
RN

(Iα ∗ |γ(v)|p) |γ(v)|p dy.

We define the ground-state level

ma = inf {La(v) | L′
a(v) = 0, v ∈ H \ {0}}

and the set Sa of elements v ∈ H \ {0} such that v > 0, La(v) = ma, and for
every x ≥ 0:

max
y∈RN

v(x, y) = v(x, 0). (8)

Proposition 3.1. The set Sa is non-empty for any a > −m.

Proof. The proof is indeed standard, and we will be sketchy. First of all, we
invoke [11, Lemma 2.1] to deduce that ground states of La correspond to ground
states of the functional La : H1/2(RN ) → R defined as

La(u) =
1

2

∫
RN

(∣∣∣∣√(m2 −∆)
1/2 −mu

∣∣∣∣2 + (a+m)|u|2
)

− 1

2p

∫
RN

(Iα ∗ |u|p) |u|p. (9)

We claim that La possesses a ground state. We fix a > −m and consider the
minimization problem associated to (9)

m̃a = inf
u∈H1/2(RN )\{0}

∫
RN |

√
(m2 −∆)1/2 −mu|2 + (a+m) |u|2(∫

RN (Iα ∗ |u|p) |u|p
) 1

p

. (10)

Since
√
m2 −∆ −m > 0 in the sense of functional calculus and a +m > 0, it

follows easily that m̃a > 0. As in [29, Proof of Proposition 2.2] we can show
that m̃a is attained. Since the quotient in (10) is homogeneous of degree zero,
as in the local case we see that any minimizer of m̃a is, up to a rescaling and
a translation, a ground state for (9). Therefore the claim is proved, and in
particular Sa ̸= ∅. It is easy to check that ground states are non-negative, and,
as in [10, Theorem 5.1], actually strictly positive.
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Remark 3.2. By [24, Formula (A.3)], the quotient to be minimized in (10)
decreases under polarization. This implies, reasoning as in [29, Section 5] (see
also [13]) that ground states are radially symmetric around a point of RN .

For U ∈ Sa, we write Ea = La(U). By an immediate extension of [31, Lemma
3.17], the map a 7→ Ea is strictly increasing and continuous. The following is
the main result of this section.

Proposition 3.3. The set Sa is compact in H, and for some C > 0 and any σ ∈
(−Vmin,m) ∩ [0,+∞) we have

v(x, y) ≤ Ce−(m−σ)
√
x2+|y|2e−σx (11)

for every v ∈ Sa.

Proof. If v ∈ Sa, it follows easily from [10, Theorem 5.1] or [8, Theorem 7.1]
that v decays exponentially fast at infinity and (11) holds. Moreover, since

ma = La(v) =

(
1

2
− 1

2p

)(
|∇v|22 +m2|v|22

)
,

Sa is bounded in H. We claim that Sa is also bounded in L∞(RN+1
+ ).

Indeed, by [10, Theorem 3.2] it follows that γ(v) ∈ Lq(RN ) for any q ∈ [2,∞],
then also g(·) = −aγ(v) + (Iα ∗ |γ(v)|p) |γ(v)|p−2γ(v) ∈ Lq(RN ) for q ∈ [2,∞].
Following [5], we let u(x, y) =

∫ x
0
v(t, y) dt. It follows that u ∈ H1((0, R)×RN )

for all R > 0. Arguing as in [10, Proposition 3.9], we can deduce that u is a
weak solution of the Dirichlet problem{

−∆u+m2u = g in RN+1
+

u = 0 for y ∈ RN . (12)

where g(x, y) = g(y) for every x > 0 and y ∈ RN . We sketch the proof for
the sake of completeness. Pick an arbitrary function η ∈ C∞

0 (RN+1
+ ) and write

ωt(x, y) = η(x+ t, y) for any t ≥ 0. Then∫ +∞

0

∫ +∞

0

∫
RN

∇v(x, y) · ∇η(x+ t, y) dy dx dt

=

∫ +∞

0

∫ +∞

x

∫
RN

∇v(x, y) · ∇η(s, y) dy ds dx

=

∫ +∞

0

∫ s

0

∫
RN

∇v(x, y) · ∇η(s, y) dy dx ds

=

∫ +∞

0

∫
RN

∇
(∫ s

0

v(x, y) dx

)
· ∇η(s, y) dy ds

and this readily implies that∫
RN+1

+

(
∇v · ∇wt +m2vwt

)
dx dy =

∫
RN

gwt dy.
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An integration with respect to t from 0 to +∞ gives∫
RN+1

+

(
∇u · ∇η +m2uη − gη

)
dx dy = 0,

and hence the validity of (12) is proved.
Moreover for any given R > 0 we can define uodd ∈ H1((−R,R)× RN ) and

godd ∈
⋂
q≥2 L

q((−R,R)× RN ) by

uodd =

{
u(x, y) if x ≥ 0
−u(−x, y) if x < 0,

godd(x, y) =

{
g(y) if x ≥ 0
−g(y) if x < 0.

It is easy to check as before that

−∆uodd +m2uodd = godd in RN+1.

Since godd ∈ Lq((−R,R) × RN ) for any q ∈ [2,+∞[, R > 0, we can invoke
standard regularity results to conclude that

uodd ∈W 2,q((−R,R)× RN )

for every q ≥ 2 and every R > 0, and hence uodd ∈ C1,β(RN+1), u ∈ C1,β(RN+1
+ )

and v = ∂u
∂x ∈ C0,β(RN+1

+ ) by Sobolev’s Embedding Theorem. Therefore g ∈
C0,β/(p−1)(RN ), and Schauder estimates yield u ∈ C2,β/(p−1)(RN+1

+ ) and v ∈
C1,β/(p−1)(RN+1

+ ). Moreover, the C1,β-norm of v can be estimated by the Lq-

norm of g, which immediately implies that Sa is a bounded subset of L∞(RN+1
+ ).

Next, we claim that lim|(x,y)|→+∞ v(x, y) = 0 uniformly with respect to
v ∈ Sa. We assume by contradiction that this is false: there exist a number
δ > 0, a sequence of points (xn, yn) ∈ RN+1

+ and a sequence of elements vn ∈ Sa
such that xn + |yn| → +∞ but vn(xn, yn) ≥ δ for every n. Let us write
zn = (xn, yn), and call ṽn(z) = vn(z + zn) for z = (x, y) ∈ RN+1

+ . By the

previous arguments, {ṽn}n is a bounded sequence in H∩L∞(RN+1
+ ). Moreover,

up to a subsequence, we can assume that vn ⇀ v, ṽn ⇀ ṽ in H and locally
uniformly in RN+1

+ . As in [9, pag. 989], both v and ṽ weakly solve (7). We now
show that they are non-trivial weak solutions. The conclusion is obvious for ṽ,
since ṽn(0) = vn(zn) ≥ δ, so that ṽ(0) ≥ δ. We consider instead v, and remark
that [10, Eq. (3.16)] implies

sup
y∈RN

|vn(x, y)| ≤ C|γ(vn)|2 e−mx

for some universal constant C > 0. Hence δ ≤ vn(zn) ≤ |γ(vn)|2 e−mxn , and
the boundedness of γ(vn) in L

2 yields the boundedness of {xn}n in R. Without
loss of generality, we can assume that xn → x̄ ∈ [0,+∞). Therefore, by (8),

vn(x̄, 0) ≥ vn(x̄, yn) ≥ vn(xn, yn) + o(1) ≥ δ

2

by locally uniform convergence, and we conclude that v is also nontrivial.
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Now, for every n ∈ N,

La(vn) =

(
1

2
− 1

2p

)(∫
RN+1

+

(
|∇vn|2 +m2v2n

)
dx dy + a

∫
RN

γ(vn)
2 dy

)
= ma,

and
La(v) ≥ ma, La(ṽ) ≥ ma.

If R > 0 satisfies 2R ≤ xn + |yn|, then

ma = La(vn)

≥
(
1

2
− 1

2p

)
lim inf
n→+∞

∫
B(0,R)

(
|∇vn|2 +m2v2n

)
dx dy

+a

∫
B(0,R)∩({0}×RN )

γ(vn)
2 dy

+

(
1

2
− 1

2p

)
lim inf
n→+∞

∫
B(0,R)

(
|∇ṽn|2 +m2ṽ2n

)
dx dy

+a

∫
B(0,R)∩({0}×RN )

γ(ṽn)
2 dy

≥
(
1

2
− 1

2p

)(∫
B(0,R)

(
|∇ṽ|2 +m2ṽ2

)
dx dy + a

∫
B(0,R)∩({0}×RN )

γ(ṽ)2 dy

)
= La(v) + La(ṽ) + o(1) = 2ma + o(1)

as R→ +∞. This contradiction proves that

lim
|(x,y)|→+∞

v(x, y) = 0 uniformly with respect to v ∈ Sa. (13)

From [10, page 70] it follows immediately that

lim
|y|→+∞

Iα ∗ |γ(v)|p(y) = 0, uniformly w.r.t. v ∈ Sa.

Pick Ra > 0, independent of v ∈ Sa, such that |y| ≥ Ra implies

|Iα ∗ |γ(v)|p(y)| |γ(v)(y)|p−2 ≤ a

2
.

As a consequence,{
−∆v +m2v = 0 in RN+1

+

− ∂v
∂x ≤ −a

2v in {0} × {|y| ≥ Ra}

As in [10, Theorem 5.1] or [8, Theorem 7.1], and recalling the uniform decay
at infinity of (13), it follows that v decays exponentially fast at infinity, with
constants that are uniform with respect to v ∈ Sa.
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We are ready to conclude: let {vn}n be a sequence from Sa. Our previous
arguments show that {vn}n converges — up to a subsequence — weakly to some
v ∈ H, and this limit v is also a solution to equation (7). Fix

r > max

{
1,

N

N(2− p) + p

}
and split Iα as I1α + I2α, where I

1
α ∈ Lr(RN ) and I2α ∈ L∞(RN ). This induces a

decomposition of the non-local term N (v) = N 1(v) + N 2(v) as

N (v) =
1

2p

∫
RN

(Iα ∗ |γ(v)|p) |γ(v)|p dy

N 1(v) =
1

2p

∫
RN

(
I1α ∗ |γ(v)|p

)
|γ(v)|p dy

N 2(v) =
1

2p

∫
RN

(
I2α ∗ |γ(v)|p

)
|γ(v)|p dy.

We obtain immediately that

0 = lim
n→+∞

(∫
RN+1

+

(
|∇vn|2 +m2v2n

)
dx dy − N (vn)

)

=

∫
RN+1

+

(
|∇v|2 +m2v2

)
dx dy − N (v). (14)

We complete the proof by showing that limn→+∞ N (vn) = N (v). Now, by
the Hardy-Littlewood-Sobolev inequality (see [25, Theorem 4.3])∣∣N 1(vn)− N 1(v)

∣∣
≤
∫
RN×RN

I1α(x− y) ||γ(vn)(x)|p|γ(vn)(y)|p − |γ(v)(x)|p|γ(v)(y)|p| dxdy

=

∫
RN×RN

I1α(x− y)
∣∣∣|γ(vn)(x)|p|γ(vn)(y)|p − |γ(vn)(x)|p|γ(v)(y)|p

+ |γ(vn)(x)|p|γ(v)(y)|p − |γ(v)(x)|p|γ(v)(y)|p
∣∣∣dx dy

≤
∫
RN×RN

I1α(x− y)|γ(vn)(x)|p ||γ(vn)(y)|p − |γ(v)(y)|p| dx dy

+

∫
RN×RN

I1α(x− y)|γ(v)(y)|p ||γ(vn)(x)|p − |γ(v)(x)|p| dx dy

= 2

∫
RN×RN

I1α(x− y)|γ(vn)(x)|p ||γ(vn)(y)|p − |γ(v)(y)|p| dxdy

≤ 2C|I1α|r |γ(vn)|
p
2rp

2r−1

||γ(vn)|p − |γ(v)|p| 2r
2r−1

= o(1),

since |γ(vn)|p − |γ(v)|p → 0 strongly in L
2r

2r−1

loc (RN ) by the choice of r. On the
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other hand,∣∣N 2(vn)− N 2(v)
∣∣

≤ ∥I2α∥∞
∫
RN×RN

||γ(vn)(x)|p|γ(vn)(y)|p − |γ(v)(x)|p|γ(v)(y)|p| dx dy

and the conclusion follows as before. Since limn→+∞ N (vn) = N (v), equa-
tion (14) yields limn→+∞ ∥vn∥2 = ∥v∥2, and the proof is complete.

4. The penalization scheme

For

δ =
1

10
dist(M ,RN \O) and β ∈ (0, δ)

we fix a cut-off φ ∈ C∞
0 (RN+1

+ ) such that 0 ≤ φ ≤ 1 everywhere, φ(x, y) = 1 if
x + |y| ≤ β, and φ(x, y) = 0 if x + |y| ≥ 2β. Setting φε(x, y) = φ(εx, εy), for
any U ∈ SV0

and any point y0 ∈ M β we define

Uy0ε (x, y) = φε

(
x, y − y0

ε

)
U
(
x, y − y0

ε

)
We also define, for all ε > 0,

χε(y) =

{
0 if y ∈ Oε
ε−6/µ if y /∈ Oε

and

Qε(v) =

(∫
RN

χεγ(v)
2 dy − 1

) 2p+1
2

+

for v ∈ H. Finally, let

Γε(v) = Eε(v) +Qε(v), v ∈ H.

We want to find a solution, for ε > 0 sufficiently small, near the set

Xε =
{
Uy0ε | y0 ∈ M β and U ∈ SV0

}
.

We define the (trivial) path ψε(s) = sUy0ε for every s ∈ [0, 1].

Lemma 4.1. There exists T > 0 such that Γε(ψε(T )) < −2 for all ε sufficiently
small. Moreover,

lim
ε→0

max
s∈[0,T ]

Γε(ψε(s)) = EV0

where we recall that EV0 = LV0(U) for U ∈ SV0 .

12



Proof. Indeed, by our definition of the penalization term Qε, by a simple
change of variables and by the exponential decay of U at infinity,

Γε(ψε(s)) = Eε(ψε(s))

=
s2

2

∫
RN+1

+

|∇ψε(s)|2 +
m2s2

2

∫
RN+1

+

ψε(s)
2 +

s2

2

∫
RN

Vεγ(ψε(s))
2

−s
2p

2p

∫
RN

(Iα ∗ |γ(ψε(s))|p) |γ(ψε(s))|p

=

(
1

2

∫
RN+1

+

|∇U |2 + m2

2

∫
RN+1

+

U2 +
1

2

∫
RN

V0γ(U)2 + o(1)

)
s2

−
(∫

RN

(Iα ∗ |U |p) |U |p + o(1)

)
s2p

2p

where o(1) → 0 as ε → 0 uniformly with respect to s. The conclusion follows
easily.

We are ready to introduce our mini-max scheme. For ε > 0 sufficiently small,
we define the set of paths

Φε = {ψ ∈ C([0, T ], H) | ψ(0) = 0, ψ(T ) = ψε(T ) = TUy0ε } ,

where T > 0 is the number we found in Lemma 4.1. To this set we associate
the min-max level

Cε = inf
ψ∈Φε

max
s∈[0,T ]

Γε(ψ(s)).

By well-known arguments (see for instance [7, Proposition 3.2] for a proof in a
local setting that extends smoothly to our case) it is possible to prove that

lim
ε→0

Cε = EV0
.

For α ∈ R define the sublevel

Γαε = {v ∈ H | Γε(v) ≤ α} .

Proposition 4.2. Let d > 0 be small enough, and let {εj}j be such that limj→+∞ εj =
0 and let {vεj} ⊂ Xd

εj be such that

lim
j→+∞

Γεj (vεj ) ≤ EV0 , lim
j→+∞

Γ′
εj (vεj ) = 0.

Then there exist — up to a subsequence — {ỹj}j ⊂ RN , a point ȳ ∈ M and
U ∈ SV0

such that

lim
j→+∞

|εj ỹj − ȳ| = 0

lim
j→+∞

∥∥vεj − φεj (·, · − ỹj)U(·, · − ỹj)
∥∥ = 0.

13



Proof. In the proof we will drop the index j and write ε instead of εj for
simplicity. By Proposition 3.3, there exist Z ∈ SV0 , {yε} ⊂ M β and ȳ ∈ M β

such that yε → ȳ as ε→ 0 and∥∥∥vε − φε

(
·, · − yε

ε

)
Z
(
·, · − yε

ε

)∥∥∥ ≤ 2d for every ε≪ 1. (15)

We set
v1,ε = φε

(
·, · − yε

ε

)
Z
(
·, · − yε

ε

)
, v2,ε = vε − v1,ε.

We claim that
Γε(vε) ≥ Γε(v1,ε) + Γε(v2,ε) +O(ε). (16)

Suppose that there exist R > 0 and points

ỹε ∈ B

(
yε
ε
,
2β

ε

)
\B

(
yε
ε
,
β

ε

)
such that

lim inf
ε→0

∫
B(ỹε,R)

γ(vε)
2 dy > 0.

Set ṽε(x, y) = vε(x, y + ỹε) so that

lim inf
ε→0

∫
B(0,R)

γ(ṽε)
2 dy > 0. (17)

Up to subsequences, we can assume that

lim
ε→0

εỹε = y0 ∈ B(ȳ, 2β) \B(ȳ, β).

The sequence {vε} is bounded in H and hence in every Lq(RN ) with q <
2N/(N − 1). As a consequence, ṽε → W weakly in H and strongly in Lqloc(RN )
for every q < 2N/(N − 1). By (17), W ≠ 0. Moreover,√

−∆+m2W + V (y0)W = (Iα ∗ |W|p) |W|p−2W.

Choosing R≫ 1,

lim inf
ε→0

∫
(0,+∞)×B(ỹε,R)

(
|∇vε|2 +m2v2ε

)
dx dy ≥ 1

2

∫
RN+1

+

(
|∇W|2 +m2W2

)
dx dy.

Since Ea > Eb whenever a > b, we have

LV (y0)(W) ≥ EV (y0) ≥ EV0
.

Hence, for some absolute constant c0 > 0,

lim inf
ε→0

∫
(0,+∞)×B(ỹε,R)

(
|∇vε|2 +m2v2ε

)
dx dy ≥ c0 · LV (y0)(W) ≥ c0 · EV0

> 0,

14



and this is a contradiction to the exponential decay at infinity of Z and the fact
that y0 ̸= ȳ.

Since such a sequence {ỹε} cannot exist, a Lemma of P.-L. Lions (see [26,
Lemma I.1]) implies that

lim sup
ε→0

∫
B( yε

ε ,
2β
ε )\B( yε

ε ,
β
ε )

|γ(vε)|
N+1
N−1 dy = 0.

This, the boundedness of {γ(vε)} in L2 and the Hardy-Littlewood-Sobolev in-
equality imply

lim
ε→0

(∫
RN

(Iα ∗ |γ(vε)|p)|γ(vε)|p dy

−
∫
RN

(Iα ∗ |γ(v1,ε)|p)|γ(v1,ε)|p dy −
∫
RN

(Iα ∗ |γ(v2,ε)|p)|γ(v2,ε)|p dy
)

= 0.

If we write

Γε(vε) = Γε(v1,ε) + Γε(v2,ε)

+

∫
(0,+∞)×(B( yε

ε ,
2β
ε )\B( yε

ε ,
β
ε ))

φε

(
x, y − yε

ε

)(
1− φε

(
x, y − yε

ε

))
|∇vε|2 dx dy

+

∫
B( yε

ε ,
2β
ε )\B( yε

ε ,
β
ε )

Vεγ
(
φε

(
x, y − yε

ε

))(
1− γ

(
φε

(
x, y − yε

ε

)))
γ(vε)

2 dy

− 1

2p

∫
RN

(Iα ∗ |γ(vε)|p)|γ(vε)|p dy

+
1

2p

∫
RN

(Iα ∗ |γ(v1,ε)|p)|γ(v1,ε)|p dy

+
1

2p

∫
RN

(Iα ∗ |γ(v2,ε)|p)|γ(v2,ε)|p dy + o(1)

as ε → 0, we deduce that (16) holds true. We now estimate Γε(v2,ε). There
results

Γε(v2,ε) ≥ Eε(v2,ε)

=
1

2

∫
RN+1

+

|∇v2,ε|2 dx dy +
1

2

∫
RN

Vεγ(v2,ε)
2 dy

− 1

2p

∫
RN

(Iα ∗ |γ(v2,ε)|p)|γ(v2,ε)|p dy. (18)

For some constant C > 0 and using again the boundedness of {γ(v2,ε)} in L2,∫
RN

(Iα ∗ |γ(v2,ε)|p)|γ(v2,ε)|p dy ≤ C∥v2,ε∥.

Now (15) implies that ∥v2,ε∥ ≤ 4d for small values of ε. Taking d > 0 sufficiently
small uniformly with respect to ε, we have

1

2
∥v2,ε∥2 −

1

2p

∫
RN

(Iα ∗ |γ(v2,ε)|p)|γ(v2,ε)|p dy ≥ 1

8
∥v2,ε∥2.
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Since the functional Eε is uniformly bounded in Xd
ε for small ε > 0, the pe-

nalization term Qε is uniformly bounded in Xd
ε for small ε > 0 as well. As a

consequence, for an absolute constant C > 0,∫
RN\Oε

γ(v2,ε)
2 dy ≤ Cε

6
µ , (19)

and (18–19) imply Γ(v2,ε) ≥ o(1) as ε→ 0.
Let us introduce

v11,ε(x, y) =

{
v1,ε(x, y) if y ∈ Oε
0 otherwise.

For Wε(x, y) = v11,ε(x, y + yε/ε), we can proceed as before and conclude that

Wε converges weakly in Lq(RN+1
+ ), q < 2N/(N − 1), to a solution W of√

−∆+m2W+ V (ȳ)W = (Iα ∗ |W|p)|W|p−2W.

We claim that Wε converges to W strongly in H. As before, assume the
existence of a radius R > 0 and of a sequence {zε} ⊂ RN such that zε ∈
B(yε/ε, 2β/ε),

lim inf
ε→0

∣∣zε − ε−1yε
∣∣ = 0 and lim inf

ε→0

∫
B(zε,R)

|γ(v11,ε)|2 dy > 0.

Without loss of generality, εzε → z ∈ O as ε → 0. Then W̃ε(x, y) = Wε(x, y +

zε) converges weakly in Lq(RN+1
+ ), q < 2N/(N −1), to some W̃ ∈ H that solves√

−∆+m2W̃+ V (z)W̃ = (Iα ∗ |W̃|p)|W̃|p−2W̃.

and we obtain a contradiction as before. Again,

lim
ε→0

∫
RN

(Iα ∗ |γ(Wε)|p)|γ(Wε)|p dy =

∫
RN

(Iα ∗ |γ(W)|p)|γ(W)|p dy. (20)

Hence

lim sup
ε→0

Γε(v
1
1,ε) ≥ lim inf

ε→0
Γε(v

1
1,ε)

≥ lim inf
ε→0

1

2

∫
(0,+∞)×B(0,R)

|∇Wε|2 dx dy

+
1

2

∫
B(0,R)

V (εy + yε)|γ(Wε)|2 dy

− 1

2p

∫
RN

(Iα ∗ |γ(Wε)|p)|γ(Wε)|p dy

≥ 1

2

∫
(0,+∞)×B(0,R)

|∇Wε|2 dx dy

+
1

2
V (ȳ)

∫
B(0,R)

|γ(Wε)|2 dy

− 1

2p

∫
RN

(Iα ∗ |γ(W)|p)|γ(W)|p dy.
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Since R > 0 is arbitrary,

lim sup
ε→0

Γε(v
1
1,ε) ≥ 1

2

∫
RN+1

+

|∇W|2 dx dy + 1

2
V (ȳ)

∫
RN

|γ(W)|2 dy

−
∫
RN

(Iα ∗ |γ(W)|p)|γ(W)|p dy

= LV (ȳ)(W)

≥ EV0 . (21)

Recalling (16), we find

lim sup
ε→0

(
Γε(v2,ε) + Γε(v

1
1,ε)
)
= lim sup

ε→0
(Γε(v2,ε) + Γε(v1,ε)) ≤ lim sup

ε→0
Γε(vε) ≤ EV0

.

Now Γε(u2,ε) ≥ o(1) yields

lim
ε→0

Γε(v
1
1,ε) = EV0

.

What we have just proved entails that LV (ȳ)(W) = EV0
, and then ȳ ∈ M . As

a consequence, W is, up to a translation in the y-variable, an element of SV0
,

namely W(x, y) = U(x, y − z) for some U ∈ SV0
and some z ∈ RN .

Recalling that V ≥ V (ȳ) on the subset O and using the identity LV (ȳ)(W) =
EV0 we get∫

RN+1
+

|∇W|2 dx dy + V0

∫
RN

|γ(W)|2 dy − 2p

∫
RN

(Iα ∗ |γ(W)|p)|γ(W)|p dy

≥ lim sup
ε→0

∫
RN+1

+

|∇Wε|2 dx dy +
∫
RN

V (εy + yε)|γ(Wε)|2 dy

− 2p

∫
RN

(Iα ∗ |γ(Wε)|p)|γ(Wε)|p dy

≥ lim sup
ε→0

∫
RN+1

+

|∇Wε|2 dx dy +
∫
RN

V (ȳ)|γ(Wε)|2 dy

− 2p

∫
RN

(Iα ∗ |γ(Wε)|p)|γ(Wε)|p dy

≥
∫
RN+1

+

|∇W|2 dx dy + V0

∫
RN

|γ(W)|2 dy − 2p

∫
RN

(Iα ∗ |γ(W)|p)|γ(W)|p dy,(22)

and therefore

lim
ε→0

∫
RN

V (εy + yε)|γ(Wε)|2 dy =

∫
RN

V (ȳ)|γ(W)|2 dy.

Using again the fact that V ≥ V (ȳ) on the subset O we conclude that γ(Wε) →
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γ(W) strongly in L2(RN ). Finally, from (20), (21) and (22) we see that∫
RN+1

+

|∇W|2 dx dy +
∫
RN

V (ȳ)|γ(W)|2 dy

≥ lim sup
ε→0

∫
RN+1

+

|∇Wε|2 dx dy +
∫
RN

V (ȳ)|γ(Wε)|2 dy.

The strong convergence of Wε to W in H is now proved. Thus

v11,ε(x, y) = U
(
x, y − yε

ε
− z
)
+ o(1),

and straightforward algebraic manipulations show that

v1,ε(x, y) = φε

(
x, y − yε

ε
− z
)
U
(
x, y − yε

ε
− z
)
+ o(1)

strongly in H. But EV0 ≥ limε→0 Γε(vε) and limε→0 Γε(v1,ε) = EV0 , so that
limε→0 Γε(v2,ε) = 0 by (16). Using (18) and (19) we discover that v2,ε → 0
strongly in H. This completes the proof.

5. Critical points of the penalized functional

We are now ready to show that the penalized functional Γε possesses a
critical point for every ε > 0 sufficiently small.

Lemma 5.1. For d > 0 sufficiently small, there exist positive constants ε0 and

ω such that |Γ′
ε(v)| ≥ ω for every v ∈ ΓDε

ε ∩
(
Xd
ε \Xd/2

ε

)
and ε ∈ (0, ε0).

Proof. If not, for d > 0 so small that Proposition 4.2 applies, there exist

sequences {εj}j with limj εj = 0 and {vεj}j with vεj ∈ Xd
εj \X

d/2
εj satisfying

lim
j→+∞

Γεj (vεj ) ≤ EV0
and lim

j→+∞
Γ′
εj (vεj ) = 0.

Hence Proposition 4.2 applies and provides points yεj ∈ RN , ȳ ∈ M and a
ground state U ∈ SV0

such that

lim
j→+∞

|εjyj − ȳ| = 0

lim
j→+∞

∥∥vεj − φεj (·, · − yj)U(·, · − yj)
∥∥ = 0. (23)

The definition of Xεj implies limj→+∞ dist (vεj , Xεj ) = 0, and this contradicts

the assumption vεj /∈ X
d/2
εj .

Let now d > 0 be chosen so that Lemma 5.1 applies.

Proposition 5.2. For ε > 0 sufficiently small, the functional Γε has a critical
point vε ∈ Xd

ε ∩ ΓDε .
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Proof. Pick R0 > 0 so large that O ⊂
(
{0} × RN

)
∩ B(0, R0) and ψε(s) ∈

H1
0 (B(0, R/ε)) for any s ∈ [0, T ], R > R0 and ε > 0 sufficiently small. We write

Dε = max0≤s≤T Γε(ψε(s)). By Lemma 4.1, there exists a ∈ (0, EV0
) such that,

for sufficiently small ε > 0,

Γε(ψε(s)) ≥ Dε − a implies ψε(s) ∈ Xd/2
ε ∩H1

0 (B(0, R/ε)).

We claim that, for sufficiently small ε > 0 and R > R0, there is a sequence

{vRn }n ⊂ X
d/2
ε ∩ ΓDε

ε ∩H1
0 (B(0, R/ε)) such that Γ′

ε(v
R
n ) → 0 is H1

0 (B(0, R/ε))
as n→ +∞.

Arguing by contradiction, we assume that for sufficiently small ε > 0 there
exists a number aR(ε) > 0 such that

|Γ′
ε(v)| ≥ aR(ε)

on X
d/2
ε ∩ΓDε

ε ∩H1
0 (B(0, R/ε)). With a slight abuse of notation, we will identify

any v ∈ H1
0 (B(0, R/ε)) with its extension to H as the null function outside

B(0, R/ε). Applying Lemma 5.1, we find a number ω > 0, independent of ε > 0,

such that |Γ′
ε(v)| ≥ ω for v ∈ ΓDε

ε ∩ (Xd
ε \ Xd/2

ε ). By a classical deformation
argument that starts from ψε, there exist some µ ∈ (0, a) and a path ψ ∈
C([0, T ], H) satisfying

ψ(s) = ψε(s) for ψε(s) ∈ ΓDε−a
ε , ψ(s) ∈ Xd

ε for ψε(s) /∈ ΓDε−a
ε

and
Γε(ψ(s)) < Dε − µ for every s ∈ [0, T ]. (24)

Let ζ ∈ C∞
0 (RN+1

+ ) be a cut-off function such that ζ(x, y) = 1 for 0 < x < δ
and y ∈ Oδ, ζ(x, y) = 0 for x ≥ 2δ and y /∈ O2δ, ζ(·, ·) ∈ [0, 1], and |∇ζ| ≤ 2/δ.
For ψ(s) ∈ Xd

ε we denote ψ1(s) = ζεψ(s) and ψ2(s) = (1 − ζε)ψ(s), where
ζε(x, y) = ζ(εx, εy). We remark that we understand the dependency on ε in the
notation of ψ1 and ψ2. Observe that

Γε(ψ(s)) = Γε(ψ1(s)) + Γε(ψ2(s)) +Qε(ψ(s))−Qε(ψ1(s))−Qε(ψ2(s))

− 1

2p

∫
RN

(Iα ∗ |γ(ψ(s))|p)|γ(ψ(s))|p

+
1

2p

∫
RN

(Iα ∗ |γ(ψ1(s))|p)|γ(ψ1(s))|p

+
1

2p

∫
RN

(Iα ∗ |γ(ψ2(s))|p)|γ(ψ2(s))|p.

The elementary inequality (h+ k − 1)+ ≥ (h− 1)+ + (k − 1)+ valid for h ≥ 0
and k ≥ 0 immediately implies that

Qε(ψ(s)) ≥ Qε(ψ1(s)) +Qε(ψ2(s))

and, similarly to (19), we find that∫
RN\Oε

|γ(ψ(s))|2 dy ≤ Cε6/µ. (25)
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On the other hand, writing κ = (Iα∗|γ(ψ(s))|p)|γ(ψ(s))|p−(Iα∗|γ(ψ1(s))|p)|γ(ψ1(s))|p−
(Iα ∗ |γ(ψ2(s))|p)|γ(ψ2(s))|p for simplicity,∫

RN

κ = 2

∫
O2δ

ε ×(RN\O2δ
ε )

(Iα ∗ |γ(ψ(s))|p)|γ(ψ(s))|p

− 2

∫
(O2δ

ε \Oδ
ε)×(RN\Oδ)

(Iα ∗ |γ(ψ(s))|p)|γ(ψ(s))|p

and from (25) via interpolation we deduce that

lim
ε→0

∫
O2δ

ε ×(RN\O2δ
ε )

(Iα ∗ |γ(ψ(s))|p)|γ(ψ(s))|p = 0 (26)

lim
ε→0

∫
(O2δ

ε \Oδ
ε)×(RN\Oδ

ε)

(Iα ∗ |γ(ψ(s))|p)|γ(ψ(s))|p = 0. (27)

Equations (26) and (27) yield

lim
ε→0

∫
RN

(Iα ∗ |γ(ψ(s))|p)|γ(ψ(s))|p −
∫
RN

(Iα ∗ |γ(ψ1(s))|p)|γ(ψ1(s))|p

−
∫
RN

(Iα ∗ |γ(ψ2(s))|p)|γ(ψ2(s))|p = 0,

and hence, as ε→ 0,

Γε(ψ(s)) ≥ Γε(ψ1(s)) + Γε(ψ2(s)) + o(1).

By similar arguments,

Γε(ψ2(s))

≥ − 1

2p

∫
(RN\Oε)×(RN\Oε)

Iα(x− y)|γ(ψ2(s)(x)|p|γ(ψ2(s)(y)|p dx dy ≥ o(1),

and we finally conclude that

Γε(ψ(s)) ≥ Γε(ψ1(s)) + o(1)

as ε→ 0. If we define

ψ1
1(s)(x, y) =

{
ψ1(s)(x, y) if x > 0 and y ∈ O2δ

0 if x > 0 and y /∈ O2δ,

we immediately see that Γε(ψ1(s)) ≥ Γε(ψ
1
1(s)), and ψ

1
1 ∈ Φε because 0 < a <

EV0
. Now [12, Proposition 3.4] implies that, as ε→ 0,

max
0≤s≤T

Γε(ψ(s)) ≥ EV0
+ o(1),

and this contradicts (24).
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For a fixed ε sufficiently small and for R ≫ 1, we consider a sequence

{vRn }n ⊂ X
d/2
ε ∩ ΓDε

ε ∩H1
0 (B(0, R/ε)) such that Γ′

ε(v
R
n ) → 0 is H1

0 (B(0, R/ε))
as n → +∞. The boundedness of {vRn }n in H1

0 (B(0, R/ε)) and the Sobolev
embedding theorem imply that vRn → vR strongly in Lq(B(0, R/ε)) for any
q < 2N/(N − 1). Since {vRn }n is a Palais-Smale sequence, a standard argument
shows that vRn → vR strongly in H1

0 (B(0, R/ε)). Hence the limit vR is a weak
solution to the problem

−∆vR +m2vR = 0 in B
(
0, Rε

)
with

−∂v
R

∂x
(0, y) = −Vε(y)vR(0, y) +

(
Iα ∗ |vR(0, ·)|p

)
|vR(0, y)|p−2vR(0, y) +

+ (2p+ 1)

(∫
RN

χεγ(v
R)2 dy − 1

) 2p−1
2

+

χεv
R(0, y)

for y ∈ RN with |y| = R/ε.
Since vR ∈ Xd

ε ∩ ΓDε
ε ∩ H1

0 (B(0, R/ε)), we deduce that both {∥vR∥}R and
{Γε(vR)}R are uniformly bounded for ε > 0 sufficiently small. Hence also
{Qε(vR)}R is uniformly bounded for ε > 0 sufficiently small. Now a Moser
iteration scheme like [10, Theorem 3.2] yields that {vR}R is bounded in L∞

uniformly for ε > 0 sufficiently small. Taking into account that {Qε(vR)}R is
uniformly bounded in L∞ and(

Iα ∗ |vR(0, ·)|p
)
|vR(0, y)|p−1 ≤ 1

2
(Vε +m)|vR(0, y)|

when |y| ≥ 2R/ε, we can perform a comparison argument as in [10, Theorem
5.1] and derive

|vR(x, y)| ≤ Ce−m(
√
x2+|y|2−2R0).

We assume, without loss of generality, that {vR}R weakly converges to some vε
in H as R→ +∞ that solves

−∆vε +m2vε = 0 in RN+1
+ (28)

with

−∂vε
∂x

(0, y) = −Vε(y)vε(0, y) + (Iα ∗ |vε(0, ·)|p) |vε(0, y)|p−2vε(0, y) +

+ (2p+ 1)

(∫
RN

χεγ(vε)
2 dy − 1

) 2p−1
2

+

χεvε(0, y) (29)

for y ∈ RN .
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6. Proof of the Theorem 1.1

We can now collect all the results of the previous section to prove our main
existence theorem. To begin with, Proposition 5.2 gives us a number ε0 > 0
such that, for 0 < ε < ε0, the penalized functional Γε possesses a critical point
vε ∈ Xd

ε ∩ΓDε
ε . As in the proof of Proposition 3.3, we have vε ∈

⋂
q>2 L

q(RN+1
+ ),

and {vε} is bounded L∞([0,+∞)× RN ). By the results of Proposition 4.2,

lim
ε→0

∫
RN+1

+ \([0,+∞)×(M2β)ε)

(
|∇vε|2 + Vε|vε|2

)
dx dy = 0.

It now follows that

lim
ε→0

sup
(x,y)∈RN+1

+ \([0,+∞)×(M2β)ε)

|vε(x, y)| = 0,

and as in the last step of the previous section we deduce an exponential decay
of the trace uε away from RN \ (M 2β)ε:

|uε(y)| ≤ C1 exp
(
−C2 dist

(
y, (M 2β)ε

))
.

Taking ε smaller, this estimate implies that Qε(vε) = 0, and (28)-(29) are the
local Neumann problem in the half space RN corresponding to the nonlocal
problem (4). The conclusion now follows by reversing the local realization of
the operator

√
−∆+m2. Recalling (23) and all the scalings, we immediately

deduce (5). This completes the proof.
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