
Citation: Vandoni, G.; D’Amico, F.;

Fabbrini, M.; Mariani, L.; Sieri, S.;

Casirati, A.; Di Guardo, L.; Del

Vecchio, M.; Anichini, A.; Mortarini,

R.; et al. Gut Microbiota,

Metabolome, and Body Composition

Signatures of Response to Therapy in

Patients with Advanced Melanoma.

Int. J. Mol. Sci. 2023, 24, 11611.

https://doi.org/10.3390/

ijms241411611

Academic Editor: Karel Smetana, Jr.

Received: 23 May 2023

Revised: 11 July 2023

Accepted: 14 July 2023

Published: 18 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Gut Microbiota, Metabolome, and Body Composition
Signatures of Response to Therapy in Patients with
Advanced Melanoma
Giulia Vandoni 1,†, Federica D’Amico 2,3,† , Marco Fabbrini 2,3 , Luigi Mariani 4 , Sabina Sieri 5 ,
Amanda Casirati 6 , Lorenza Di Guardo 7, Michele Del Vecchio 7, Andrea Anichini 8 , Roberta Mortarini 8,
Francesco Sgambelluri 8, Giuseppe Celano 9 , Nadia Serale 9 , Maria De Angelis 9 , Patrizia Brigidi 2,
Cecilia Gavazzi 1 and Silvia Turroni 3,*

1 Clinical Nutrition Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
2 Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
3 Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology,

University of Bologna, 40126 Bologna, Italy
4 Data Science Unit, Fondazione IRCCS Istituito Nazionale dei Tumori, 20133 Milan, Italy
5 Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
6 Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
7 Melanoma Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
8 Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale

dei Tumori, 20133 Milan, Italy; roberta.mortarini@istitutotumori.mi.it (R.M.)
9 Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, 70126 Bari, Italy
* Correspondence: silvia.turroni@unibo.it; Tel.: +39-051-209-9727
† These authors contributed equally to the work.

Abstract: Despite the recent breakthroughs in targeted and immunotherapy for melanoma, the overall
survival rate remains low. In recent years, considerable attention has been paid to the gut microbiota
and other modifiable patient factors (e.g., diet and body composition), though their role in influencing
therapeutic responses has yet to be defined. Here, we characterized a cohort of 31 patients with unre-
sectable IIIC-IV-stage cutaneous melanoma prior to initiation of targeted or first-line immunotherapy
via the following methods: (i) fecal microbiome and metabolome via 16S rRNA amplicon sequencing
and gas chromatography/mass spectrometry, respectively, and (ii) anthropometry, body composition,
nutritional status, physical activity, biochemical parameters, and immunoprofiling. According to
our data, patients subsequently classified as responders were obese (i.e., with high body mass index
and high levels of total, visceral, subcutaneous, and intramuscular adipose tissue), non-sarcopenic,
and enriched in certain fecal taxa (e.g., Phascolarctobacterium) and metabolites (e.g., anethole), which
were potentially endowed with immunostimulatory and oncoprotective activities. On the other hand,
non-response was associated with increased proportions of Streptococcus, Actinomyces, Veillonella,
Dorea, Fusobacterium, higher neutrophil levels (and a higher neutrophil-to-lymphocyte ratio), and
higher fecal levels of butyric acid and its esters, which also correlated with decreased survival. This
exploratory study provides an integrated list of potential early prognostic biomarkers that could
improve the clinical management of patients with advanced melanoma, in particular by guiding
the design of adjuvant therapeutic strategies to improve treatment response and support long-term
health improvement.

Keywords: gut microbiota; metabolome; body composition; advanced melanoma; response to therapy

1. Introduction

The incidence of melanoma is increasing worldwide, and several studies suggest that
that the number of cases has even doubled in the last 10 years (https://www.epicentro.iss.it/
melanoma, accessed on 1 September 2022). Fortunately, the advent of targeted therapy and
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immunotherapy has significantly improved the prognosis, and advanced (unresectable–IIIC
and metastatic-IV) melanoma has shifted from being a deadly disease to a disease with
effective treatments. However, only a limited subset of patients actually benefit from these
treatments, with an overall 3-year survival rate of approximately 50% [1,2].

Based on the recent literature, several modifiable patient-level factors, such as diet,
exercise, body composition, and gut microbiota (GM), may influence melanoma progression
and therapeutic response [3]. In particular, GM has shown great promise as a biomarker
of clinical benefit and a therapeutic target. Indeed, both experimental and human studies
have demonstrated the importance of GM in modulating the efficacy of anticancer therapy
and patients’ susceptibility to side effects [4]. With particular reference to melanoma, GM is
known to play a leading role in the therapeutic response, especially to immune checkpoint
inhibitors, by promoting local and systemic inflammation or inducing immunosuppressive
phenotypes, thereby enhancing or counteracting the anti-tumor immune response [5–9].
This awareness has paved the way for several clinical trials aimed at manipulating GM
(e.g., through diet, bacterial consortia, or even fecal microbiota transplantation) toward
a more favorable profile associated with better prognosis and overall survival [10–13].
However, reliable and consistent GM signatures of response to therapy have yet to be
identified [14]. No less important is the fact that insights into the functional contribution
of GM (such as those provided via metagenomics, metatranscriptomics, or metabolomics)
are still very scarce, although they may provide new and interesting opportunities for
adjuvant treatment [13]. Regarding body composition, obesity is an established risk factor
for several malignancies, though it was unexpectedly associated with better outcomes in
patients with metastatic melanoma who received targeted therapy or immunotherapy [3],
thus suggesting a stage- and treatment-dependent relationship. Similarly, sarcopenia has
been identified as a poor prognostic factor [15], though the strength of its association with
clinical outcomes in advanced melanoma remains controversial [16].

In an attempt to further investigate the impact of the above-mentioned modifiable
factors on therapeutic responses in melanoma patients, we profiled the GM and fecal
metabolome, and we thoroughly characterized the nutritional status (including anthropom-
etry, body composition, and biochemical parameters) of patients with advanced melanoma
prior to receiving targeted therapy or immunotherapy. To our knowledge, although ex-
ploratory, this paper represents the first study to consider such factors together in order to
identify potential early integrated signatures of response to therapy in these patients.

2. Results
2.1. Demographic, Anthropometric, Body Composition, Physical Activity, Dietary, and Clinical
Characteristics of the Study Population

Thirty-one patients with advanced melanoma who were candidates for first-line anti-
PD-1 immunotherapy or targeted therapy were enrolled. Patients were stratified into
the following groups according to their therapeutic response: (i) responders, i.e., those
with a complete or partial response to therapy or with stable disease (≥6 months); and
(ii) non-responders, i.e., those with progressive disease. Baseline characteristics for the
entire cohort and for comparison between responders and non-responders are shown in
Table 1 (demographic and clinical) and Table 2 (anthropometry, body composition, physical
activity, and diet). Interestingly, all patients who were subsequently classified as responders
were characterized by higher weight, body mass index (BMI), and total (TAT), visceral
(VAT), subcutaneous (SAT), and intramuscular (IMAT) adipose tissue (p ≤ 0.05). They
also had a lower neutrophil-to-lymphocyte ratio (NLR) than non-responders and were
predominantly non-sarcopenic (p ≤ 0.02). Regarding the occurrence of adverse events
during therapy, none of the patients experienced mucositis or other grade 3–4 adverse
events, suggesting that there was a lack of correlation with therapeutic response.
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Table 1. Demographic and clinical characteristics of patients with advanced melanoma. Data are
presented for the entire cohort and for responders and non-responders. Differences between groups
were evaluated via Fisher’s test, Wilcoxon test, and Student’s t-test, as appropriate. p values ≤ 0.05
are shown in bold.

Characteristic Overall (n = 31) Responders (n = 18) Non-Responders (n = 13) p Value

Age (years), mean (SD) 62 (11) 62 (11) 61 (12) 0.5748
Sex, n (%) 0.4120

Male 23 (74) 12 (52) 11(48)
Female 8 (26) 6 (75) 2 (25)

Stage, n (%)
0.6207IIIC 4 (13) 3 (75) 1 (25)

IV 27 (87) 15(56) 12 (44)

ECOG performance status, n (%)
0.13370 26 (84) 17 (65) 9 (35)

1–2 5 (16) 1 (20) 4 (80)

Planned anti-PD-1 treatment, n (%)
0.7777Nivolumab 19 (61) 12 (63) 7 (37)

Pembrolizumab 5 (16) 3 (60) 2 (40)

Targeted therapy, n (%)
0.4130Dabrafenib and trametinib 7 (23) 3 (43) 4 (57)

NLR a, mean (SD) 5.5 (7.5) 2.8 (1.6) 9.0 (10.4) 0.0034
NLR a 0.0196

<4, n (%) 21 (70) 15 (71) 6 (29)
≥4, n (%) 9 (30) 2 (22) 7 (78)

Medication use b, n (%)
Antibiotics a 10 (33) 5 (50) 5 (50) 0.4611

Probiotics a 6 (20) 3 (50) 3 (50) 0.6599
Proton-pump inhibitors 7 (23) 2 (29) 5 (71) 0.0994

Corticosteroids 6 (19) 2 (33) 4 (66) 0.2076

ECOG, Eastern Cooperative Oncology Group; NLR, neutrophil-to-lymphocyte ratio; SD, standard deviation.
a Data are missing for one patient. b During the past six months.

Table 2. Anthropometry, body composition, physical activity, and dietary characteristics of patients
with advanced melanoma. Data are presented for the entire cohort and both responders and non-
responders. Differences between groups were evaluated via either Fisher’s test, Wilcoxon test, or
Student’s t-test, as appropriate. p values of ≤0.05 are shown in bold.

Characteristic Overall
(n = 31)

Responders
(n = 18)

Non-Responders
(n = 13) p Value

Anthropometry
Height (m), mean (SD) 1.71 (0.1) 1.72 (0.1) 1.71 (0.1) 0.6591
Weight (kg), mean (SD) 77.9 (17.4) 84 (18.1) 69.5 (12.5) 0.0291

BMI (kg/m2), mean (SD)
BMI, n (%)

26.5 (4.8) 28.5 (4.9) 23.8 (3.2) 0.0073
0.0275

<30 kg/m2 25 (81) 12 (48) 13 (52)
≥30 kg/m2 6 (19) 6 (100) 0 (0)

CT a

Sarcopenic 14 (56) 6 (43) 8 (57)
0.0029Non-sarcopenic 11 (44) 11 (100) 0 (0)

SM (cm2/m2), mean (SD) 135.2 (29.4) 139.5 (32.5) 126.0 (20.0) 0.3983
TAT (cm2/m2), mean (SD) 125.21 (118.63) 149.18 (131.2) 74.28 (62.1) 0.0018
VAT (cm2/m2), mean (SD) 172.2 (123.4) 207.8 (131.1) 96.7 (57.7) 0.0113
SAT (cm2/m2), mean (SD) 191.0 (89.4) 225.3 (86.2) 118.1 (38.7) 0.0010

IMAT (cm2/m2), mean (SD) 12.4 (10.1) 14.5 (10.7) 8.0 (7.7) 0.0510
VATSAT, mean (SD) 0.88 (0.45) 0.93 (0.47) 0.77 (0.41) 0.3983
FFM (kg), mean (SD) 46.6 (8.8) 47.9 (9.8) 43.0 (5.9) 0.4025
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Table 2. Cont.

Characteristic Overall
(n = 31)

Responders
(n = 18)

Non-Responders
(n = 13) p Value

Physical activity, n (%) b 0.1516

Low 14 (45) 6 (43) 8 (57)
Moderate 11 (36) 9 (82) 2 (18)

High 6 (19) 3 (50) 3 (50)

Fiber: EPIC FFQ c 1.000

<25 g/die 17 (65) 12 (71) 5 (29)
≥25 g/die 9 (35) 6 (67) 3 (33)

Italian Mediterranean Index c 0.0838

0–3 11 (42) 10 (91) 1 (9)
4–11 15 (58) 8 (53) 7 (47)

BMI, body mass index; CT, computed tomography; FFM, fat-free mass; FFQ, food frequency questionnaire; IMAT,
intramuscular adipose tissue; SAT, subcutaneous adipose tissue; SD, standard deviation; SM, skeletal muscle; TAT,
total adipose tissue; VAT, visceral adipose tissue; VATSAT, the ratio of visceral to subcutaneous adipose tissue.
a Data are missing for six patients. b Assessed using the International Physical Activity Questionnaire. c Data are
missing for five patients.

Flow cytometric analysis of absolute cell counts for innate and adaptive immune
subsets was performed in 10 responders and 4 non-responders. Despite the small sample
size, responders had significantly lower counts of neutrophils (3641 vs. 5258) and monocytic
myeloid-derived suppressor cells (MDSCs) (118 vs. 272) than non-responders (p = 0.04,
Student’s t test).

2.2. Gut Microbiota Profiling

To establish associations between treatment response and baseline GM profile, we
compared alpha (i.e., intra-individual) and beta (i.e., inter-individual) diversity, as well as
the compositional structure of GM between responders and non-responders. The pCoA
plot of beta diversity based on the Jaccard similarity index revealed significant segregation
between responders and non-responders (p = 0.034, Adonis) (Figure 1A). In contrast, no
differences between groups were observed for alpha diversity (p ≥ 0.37, Wilcoxon test) From
a taxonomic standpoint, responders were discriminated through an under-representation
of Actinomyces, Streptococcus, Clostridium, Veillonella, Fusobacterium, and Dorea (p < 0.05)
(Figure 1B). On the other hand, they tended to be enriched in Phascolarctobacterium (p = 0.06).
Please review the Supplementary Figure S1 for phylum-level composition and differential
representation of families between responders and non-responders.

2.3. Fecal Metabolomic Profile

In parallel, responders and non-responders were compared in terms of their base-
line fecal metabolomic profiles. Similar to the GM data, PCoA of beta diversity based
on Euclidean distances revealed significant segregation based on therapeutic response
(p = 0.05, Adonis) (Figure 2A), with non-responders also showing significantly higher
within-group variance (p < 0.001, Wilcoxon test) (Figure 2B). The discriminating metabolites
between groups are reported in Table 3 (p ≤ 0.05). Notably, butyric acid and its derivatives
(i.e., methyl and propyl esters) were significantly over-represented in the non-responders
(p ≤ 0.02).
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Figure 1. Baseline gut microbiota in advanced melanoma patients in relation to therapeutic responses.
(A) PCoA based on the Jaccard similarity index between the gut microbiota profiles of responders and
non-responders. Ellipses include a 95% confidence area based on the standard error of the weighted
average of sample coordinates. Significant separation between groups was found (p = 0.034, Adonis).
(B) Boxplots showing the relative abundance distribution of genera differentially represented between
groups. Wilcoxon test, * for p < 0.05, ** for p < 0.01. For Phascolarctobacterium, only a non-significant
trend of p = 0.06 was found.

Table 3. Fecal metabolites differentially represented at baseline in advanced melanoma patients
in relation to therapeutic response. For each metabolite, the mean concentration (µg/g of internal
standard) values (±the standard error of the mean) in responders and non-responders, as well as the
p value of the comparison (determined via Wilcoxon test), are reported.

Metabolite Non-Responders Responders p Value

Butanoic acid, methyl ester 0.47 ± 0.1 0.013 ± 0.0063 0.002
1-Hexanol, 2-ethyl- 0.034 ± 0.01 0.15 ± 0.015 0.003

2-Heptanone, 6-methyl- 0.031 ± 0.0045 0.0069 ± 0.0025 0.006
Cyclohexanecarboxylic acid, ethyl ester 0.41 ± 0.12 0.0082 ± 0.0029 0.007

Butanoic acid 25 ± 4.3 5.7 ± 0.63 0.02
Butanoic acid, propyl ester 1.3 ± 0.36 0.1 ± 0.035 0.02

2H-Indol-2-one, 1,3-dihydro- 0.11 ± 0.037 0.12 ± 0.011 0.02
2-Hexanone 0.076 ± 0.022 0.18 ± 0.021 0.04

5,9-Undecadien-2-one, 6,10-dimethyl- 0.13 ± 0.024 0.34 ± 0.047 0.04
Anethole 0.14 ± 0.05 0.86 ± 0.26 0.05

Propanoic acid, ethyl ester 0.12 ± 0.037 0.007 ± 0.0035 0.05
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Figure 2. Fecal metabolome diversity at baseline in advanced melanoma patients in relation to
therapeutic response. (A) PCoA based on the Euclidean distances between the fecal metabolomic
profiles of responders and non-responders. Ellipses include 95% confidence areas based on the
standard error of the weighted average of the sample coordinates. Significant separation between
groups was found (p = 0.05, Adonis). (B) Boxplots showing the within-group variance in Euclidean
distances. Wilcoxon test, *** for p < 0.001.

2.4. Integration of Omics (Microbiomics and Metabolomics) Data and Patient Metadata

Next, we aimed to find multivariate associations among GM profiles, metabolomic
data, and clinical (i.e., NLR) and body composition datasets in relation to therapeutic
response. To this end, we implemented an N-integration framework using multiblock
sPLS-DA (see Materials and Methods for further details). By confirming the above re-
sults, we found that all datasets had discriminative features for classifying samples into
non-responder and responder groups (Supplementary Figure S2). The magnitude of the as-
sociations between these parameters and therapeutic responses was then investigated using
DIABLO, which largely confirmed and partially extended the previous results (Figure 3A).
In particular, body composition parameters, such as BMI, TAT, the visceral-to-subcutaneous
adipose tissue (VATSAT) ratio, skeletal muscle (SM), skeletal muscle index (SMI), and
fat-free mass (FFM), were strongly associated with the responder group. On the other hand,
non-responders showed strong associations with neutrophil count and NLR. In terms of
microbial taxa, the therapeutic response was associated with Oscillospira and Phascolarctobac-
terium, while non-response was confirmed to be associated with Fusobacterium, Veillonella,
Streptococcus, Dorea, Clostridium, and Actinomyces. From a metabolomic standpoint, higher
levels of butyric acid and derivatives (i.e., butyl and propyl esters), along with higher levels
of cyclohexanecarboxylic acid ethyl ester and 2-heptanone 6-methyl-, were strongly associ-
ated with non-responders. Finally, the therapeutic response was confirmed to be associated
with 1-hexanol 2-ethyl-, 2H-indol-2-one 1,3-dihydro-, 2-hexanone, 5,9-undecadien-2-one
6,10-dimethyl-, and anethole. When reconstructing the network of associations derived
via the integration analysis (Figure 3B), we identified the following distinct modules: (i) a
response-associated module that linked the above-mentioned body composition parameters
to Phascolarctobacterium and Oscillospira, as well as to the metabolites 2-hexanone, anethole,
2H-indol-2-one 1,3-dihydro-, and 1-hexanol 2-ethyl-; and (ii) a non-response-associated
module that linked Streptococcus, Actinomyces, Veillonella, Dorea, and Fusobacterium to butyric
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acid (and derivatives) and cyclohexanecarboxylic acid ethyl ester, as well as higher levels
of neutrophils (and NLR). Interestingly, higher basal fecal levels of butyric acid were also
associated with decreased survival (Cox proportional hazards model, p ≤ 0.05) (Figure 4).

Figure 3. Integration of omics (microbiomics and metabolomics) data and host metadata in responder
and non-responder patients with advanced melanoma. (A) Heatmap that shows associations between
therapeutic response and bacterial genera, metabolites, body composition, and complete blood
count parameters in advanced melanoma patients at baseline (i.e., before initiation of therapy). The
plotted association values, which result from DIABLO, were scaled and trimmed to three standard
deviation ranges. The contributions of all components generated via sPLS-DA were taken into
account. (B) Association network between bacterial genera, metabolites, and host metadata. In
brief, a pairwise similarity matrix was obtained from the latent components of sPLS by calculating
the sum of the correlations between the original variables and each of the latent components of
the model. Pairwise similarity values represent both positive and negative connections between
all parameters in the different model blocks. Similarity connections are considered as edges that
connect nodes in the network graph. Solid gray lines represent positive associations, while dashed
red lines represent negative associations. The thickness of the line indicates the strength of the
association. Two modules—shown as separate circles—were identified, and they contained features
that were strongly associated with each other. BMI, body mass index; FFM, fat-free mass; NLR,
neutrophil-to-lymphocyte ratio; SM, skeletal muscle; SMI, skeletal muscle index; TAT, total adipose
tissue; VATSAT, visceral-to-subcutaneous adipose tissue ratio.
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Figure 4. Elevated fecal levels of butyric acid at baseline are associated with a decreased survival
rate in advanced melanoma patients. Kaplan–Meier curves for overall survival in the entire cohort.
Patients were stratified based on basal fecal butyrate levels above or below the whole cohort median.
Measurements were available through day 405 (vertical dashed red line), after which point a linear
model trained on known data was used to predict future survival trends (through day 840). Cox
proportional hazards model for days 0 to 405, p = 0.05; days 0 to 840, p = 0.00018.

Finally, given that therapeutic response was inversely associated with the presence of
sarcopenia, we specifically examined the differences in gut microbiota and metabolome
between sarcopenic and non-sarcopenic patients (Figure 5). The gut microbiota of sar-
copenic patients were enriched in Streptococcaceae, Enterobacteriaceae, Veillonella, Ruminococ-
cus, Streptococcus, Butyricimonas, and Lactobacillus, while they were depleted in Ruminococ-
caceae, Oscillospira, and Akkermansia (p ≤ 0.05, Wilcoxon test). In addition, sarcopenic and
non-sarcopenic patients differed in many metabolites, including 2-heptanone, 6-methyl-,
and nonanal, which were overabundant in the former patient type, and 1-pentadecene,
2-butanone, dichloroacetic acid 4-pentadecenyl ester, 1-hexanol 2-ethyl-, 2-hexanone,
2-pentanone, acetone, 1-butanol 3-methyl-, 2-pentadecanone, and butanal 3-methyl-, which
were overabundant in the latter patient type.
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Figure 5. Gut microbiota and metabolome differences at baseline in advanced melanoma patients in
relation to the presence of sarcopenia. Boxplots showing the distribution of the relative abundance
of taxa (A) and the relative concentration (µg/g of internal standard) of metabolites (B) differentially
represented between sarcopenic and non-sarcopenic patients. Wilcoxon test, * for p ≤ 0.05, ** for p < 0.01.

3. Discussion

In this study, we identified an integrated set of GM, metabolomic and body composi-
tion features associated with therapeutic response in patients with advanced melanoma
(Figure 6). Interestingly, these signatures were independent of the immunotherapy or
targeted therapy received, and they likely represented common prognostic biomarkers. In
particular, all patients subsequently classified as responders were obese, non-sarcopenic,
and enriched in certain fecal taxa and metabolites prior to initiation of therapy. They
also had higher levels of adipose tissue compared to non-responders and, as expected,
lower levels of NLR, which is an inflammatory biomarker of poor prognosis [17], as well
as lower counts of neutrophils and MDSCs, which are immune cell subsets associated
with melanoma progression [18,19]. In particular, both MDSCs and tumor-infiltrating neu-
trophils are thought to exert immunosuppressive activity, as well as promote angiogenesis
and tumor growth, thus contributing to immunotherapy resistance [20,21].
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Figure 6. Summary of the study’s key findings. Thirty-one patients with unresectable IIIC-IV-stage
cutaneous melanoma were characterized prior to initiation of targeted or first-line immunother-
apy, anthropometry, body composition, nutritional status, physical activity, biochemical parameters,
immunoprofiling, and fecal microbiome and metabolome. Patients subsequently classified as re-
sponders were found to be obese (with high body mass index (BMI) and high levels of total adipose
tissue (TAT), visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and intramuscular
adipose tissue (IMAT)), non-sarcopenic, and enriched in certain fecal taxa (e.g., Phascolarctobacterium)
and metabolites (e.g., anethole), which were potentially endowed with immunostimulatory and
oncoprotective activities. They also had a lower neutrophil-to-lymphocyte ratio, which is an inflam-
matory biomarker of poor prognosis. On the other hand, non-response was associated with increased
proportions of Streptococcus, Actinomyces, Veillonella, Dorea, Fusobacterium, higher neutrophil levels
(and neutrophil-to-lymphocyte ratios), and higher fecal levels of butyric acid and its derivatives,
which also correlated with decreased survival.

Although seemingly paradoxical, as discussed above, the relationship with obesity is
not entirely surprising, as BMI has recently been found to be associated with better out-
comes (namely, progression-free survival and overall survival) in patients with metastatic
melanoma treated with targeted therapy or immunotherapy, which typically do not induce
weight loss. The survival advantage in obese patients may be explained based on reverse
causality, wherein patients with more aggressive disease have previous weight loss and
BMI reduction, as well as enhanced “metabolic reserve” to withstand the wasting effects
of cancer or its associated treatments [22]. Our study confirms, but also extends, this
evidence by showing that therapeutic response is also associated with body composition
parameters, such as TAT and VATSAT. Other authors have highlighted the potential link
between SAT and sensitivity to PD-1/PD-L1 inhibition [23,24]. Furthermore, it should
be remembered that SAT is the compartment responsible for leptin production [25]. As
discussed by Wang et al. [26], obese patients would have an overexpression of PD-1, which
is mainly expressed by T cells, due to the high leptin levels typical of obesity. Excess PD-1
would make T cells highly responsive to PD-1 inhibitors, paradoxically enhancing cancer
responsiveness after anti-PD-1 therapy. However, it remains unclear why the association
with obesity is not found in the chemotherapy setting, as well as how obesity-induced
low-grade inflammation and immunosuppression could be an advantage [26,27]. Even the
data on sarcopenia, although recently debated [16], are partly expected, as loss of skeletal
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muscle mass and function is strongly associated with poor outcomes and adverse events
in several oncological contexts [28]. However, the mechanisms underlying the association
between sarcopenia and poor response to anticancer therapy remain to be elucidated. In a
clinical trial of advanced melanoma patients treated with anti-PD1 checkpoint inhibitors,
Heidelberger et al. [29] observed that sarcopenic female patients had 6.5-fold higher anti-
PD-1-related early acute limiting toxicity and no improvement in anti-tumor response. The
authors hypothesized that this outcome may be related to weight-based dosing, which
indicates high-dose drug administration, as it is assumed that pharmacokinetic parameters
are altered in patients with high BMI, while drug distribution may be impaired due to
loss of lean mass in sarcopenic patients. As for GM, responders were discriminated based
on the presence of high proportions of Phascolarctobacterium and Oscillospira, as well as
low proportions of Actinomyces, Streptococcus, Fusobacterium, Clostridium, Veillonella, and
Dorea. Interestingly, Phascolarctobacterium was recently listed among the consistent taxo-
nomic biomarkers associated with responsiveness to melanoma immunotherapy [30]. It
should be mentioned that Phascolarctobacterium was also part of the 11-strain commensal
consortium that was shown to robustly elicit interferon gamma-producing CD8 T cells in
the intestine and improve the therapeutic efficacy of immunotherapy in tumor models [31].
The association between the opportunistic pathogens Fusobacterium and Streptococcus and
poor prognosis (i.e., failure to respond to therapy) also confirms the validity of the available
literature [9,14,32]. On the other hand, conflicting data are reported in the literature for Veil-
lonella. Indeed, increased relative abundance of the family Veillonellaceae has been suggested
to be an immunotherapy-favorable feature, though non-responder melanoma patients
have been found to be enriched in Veillonella atypica [10]. These observations suggest the
importance of high-resolution taxonomic profiling (down to the species level) in drawing
reliable conclusions. With respect to metabolites, the most intriguing finding is arguably
the over-representation of the short-chain fatty acid butyric acid and its derivatives (i.e.,
methyl and propyl esters) in the feces of non-responders. In addition to being present
in some foods, particularly those containing bovine milk fat [33], butyrate is universally
recognized as a microbiota metabolite (resulting from fiber fermentation) that is crucial for
whole-body health [34]. Similarly, its derivatives are typically produced during polysac-
charide fermentation processes and are generally recognized to have anti-inflammatory
effects [35,36]. However, butyrate (and propionate) has recently been shown to limit the
efficacy of immunotherapy (anti-CTLA-4). The mechanism behind this phenomenon is
probably related to its immunomodulatory activity, i.e., induction of Treg cells, reduced
accumulation of memory T cells, and lower inducible T cell co-stimulator induction in T
cells [37]. Consistently, in our study, higher basal fecal levels of butyric acid were associated
with decreased survival. Regarding the biochemical basis of high butyrate (and derivatives)
levels in non-responders, it should be noted that no significant differences in fiber intake
were found between responders and non-responders, suggesting a limited contribution
of diet. On the other hand, butyrate is also produced via amino acid metabolic pathways
by some pathobionts, including Fusobacterium [38], which was found to be enriched in
non-responders. Finally, it was recently found that increasing butyric acid concentrations
were associated with the relative abundance of several taxa, such as Actinomyces, Strep-
tococcus, and Veillonella [39], which were also enriched in non-responders. On the other
hand, responders showed elevated fecal levels of 2-hexanone, anethole, 2H-indol-2-one,
1,3-dihydro-, and 1-hexanol 2-ethyl. It should be noted that it is practically impossible to
determine the origin of these metabolites, as they could originate from the diet or other
environmental exposures, the host, the GM, or the metabolism (even combined) of the latter
subject. For example, the presence of methyl ketone 2-hexanone in feces could be the result
of ingestion of contaminated food/water, a waste product of industrial activities [40,41],
or produced by gut microbes [42,43]. It should also be noted that the few studies that
measured this metabolite in body fluids estimated low recovery in stool [40,41], which
could lead us to speculate about impaired intestinal absorption in responders. Similarly,
1-hexanol 2-ethyl is a primary alcohol that occurs naturally in plants, though it is also
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contributed by micro-organisms [44,45]. Regarding anethole, although we were unable
to distinguish its isoforms, it is worth noting that trans-anethole (from Foeniculum vulgare
extracts) inhibited UV-induced melanogenesis in melanoma cells [46], thus suggesting an
overall protective role. Anethole has also been shown to trigger apoptosis, autophagy,
and oxidative stress in several cancer cells [47,48], further supporting its association with
better prognosis.

The following main limitations of the study should be mentioned: (i) the small sample
size, mainly due to the COVID-19 pandemic, and, related to this issue, the impossibility of
collecting whole blood samples and performing the expected analyses in all subjects, thus
limiting the relevance of our findings, especially those related to the immunological profile;
(ii) the age range of the whole cohort, including older adults, whose GM, for example, may
have already changed [49]; (iii) sarcopenia was defined based on the values of SMI, rather
than by the recently updated algorithm published by the European Working Group on
Sarcopenia in Older People [50]; (iv) the single-timepoint analysis, which did not allow us
to evaluate the changes over time in the measured variables; and (v) the associative nature
of the study.

4. Materials and Methods
4.1. Patient Enrollment and Sample Collection

Consecutive patients with unresectable IIIC-IV-stage cutaneous melanoma were prospec-
tively evaluated at the Fondazione IRCCS Istituto Nazionale dei Tumori in Milan, Italy,
before they started first-line anti-PD-1 immunotherapy (nivolumab or pembrolizumab) or
targeted therapy (dabrafenib and trametinib), between September 2019 and December 2020.
Inclusion criteria were as follows: (i) age ≥ 18 years and ≤85 years; (ii) 0, 1, or 2 Perfor-
mance Status assessment using the ECOG (Eastern Cooperative Oncology Group) Score,
which assesses each patient’s level of functional status and ability to perform self-care; and
(iii) at least one measurable lesion, as assessed via computed tomography (CT) or magnetic
resonance imaging (MRI) per Response Evaluation Criteria in Solid Tumors version 1.1
(RECIST v1.1). Subjects with treated brain metastases without MRI evidence of progres-
sion with untreated brain metastases, who were neurologically asymptomatic without
systemic corticosteroids for at least two weeks prior to cancer therapy, were also included.
Exclusion criteria included a history of ocular/uveal melanoma; the presence of active
brain metastases, leptomeningeal disease, autoimmune disease, type I diabetes mellitus,
hypothyroidism requiring only hormone replacement, inflammatory bowel disease, celiac
disease, or documented food allergy; and prior active cancer in the past three years, except
for localized cancers that had been cured and did not recur.

All enrolled patients were characterized based on their nutritional status, physical
activity, and biochemical and inflammatory measures, as described below. Blood and fecal
samples were collected from each patient prior to the initiation of therapy. Blood samples
were used for complete blood count, including the NLR and immune profile. NLR is an
inflammatory biomarker of clinical interest in the prognosis of solid tumors, especially
melanoma [17], with values ≥ 4 being associated with decreased overall survival [51]. Fecal
samples were immediately stored at −80 ◦C and shipped on dry ice to the Department
of Pharmacy and Biotechnology (University of Bologna, Bologna, Italy), where they were
stored at −80 ◦C until being processed for microbiome and metabolome profiling.

At the end of treatment, efficacy was assessed, with the RECIST v1.1 criteria used as
the reference standard. Based on their radiographic response, patients were classified as
responders (for complete response, partial response, or stable disease for ≥6 months) or
non-responders (for progressive disease).

The study protocol was approved by the Ethics Committee of the Fondazione IRCCS
Istituto Nazionale dei Tumori in Milan (registration number 126/18, 19 July 2018). It was
conducted according to the guidelines of the Declaration of Helsinki. Written informed
consent was obtained from all patients who participated in the study.
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4.2. Nutritional Status Assessment

The assessment of nutritional status included the collection of anthropometric data
(weight and height) for the calculation of the BMI in kg/m2, as well as the detection of
sarcopenia based on the body composition assessment. BMI values were stratified according
to the World Health Organization’s cut-off points [52]. Body composition was assessed
via CT. CT scans performed for diagnostic purposes (≤30 days before the first day of
cancer therapy) were used to measure muscle mass, and the third lumbar vertebra (L3) was
selected as the standard landmark. Extrapolated L3 images were segmented using Slice-O-
Matic v4.3 software (Tomovision, Montreal, QC, Canada) to measure areas (cm2) of SM and
TAT, which were defined as the sum of SAT, IMAT, and VAT. The skeletal muscle index (SMI)
was calculated by dividing SM (kg) by the square of height (m2). Sarcopenia was defined
using published sex-specific cut-offs; these cut-offs were SMI < 38.5 and 52.4 cm2/m2 for
females and males, respectively [53]. The regression equation of Mourtzakis et al. [54]
(0.30 × SM + 6.06) was used to calculate whole-body fat-free mass (FFM) in kg.

4.3. Physical Activity and Dietary Questionnaires

Patients were administered the following questionnaires: (i) the International Physical
Activity Questionnaire Short Form (IPAQ-SF) [55], which was used to estimate physical
activity levels based on activity performed during the past 7 days; and (ii) the EPIC Food
Frequency Questionnaire (FFQ), which is a validated semi-qualitative questionnaire used
to assess dietary habits over the past year [56].

Based on the IPAQ, patients were categorized as inactive [<700 Metabolic Equivalent
of Task-min/week (MET)], sufficiently active (700-2519 MET), or very active (>2520 MET).
For the EPIC FFQ, patients were asked to answer 188 questions regarding the amount and
frequency of food consumption using standard reference units and a photographic food
atlas with portion sizes. For fiber intake, the cut-off value of 25 g/day was chosen because
it is the amount recommended by the Dietary Reference Values for Italian (LARN) [57] and
European (EFSA) [58] populations. Furthermore, adherence to the Mediterranean diet was
determined using the Italian Mediterranean Index (IMI) [59], which defined the following
4 categories: minimal adherence (0–1), discreet adherence (2–3), good adherence (4–5), and
maximal adherence (6–11).

4.4. Immune Profile

The immune profile was evaluated using a 10-color Gallios cytometer (Beckman
Coulter, Brea, CA, USA). Due to the COVID-19 pandemic, whole blood was collected from
only 14 of the 31 patients. In fact, during the pandemic, all hospitals in Italy decided to
stop collecting fresh whole blood samples unless absolutely necessary to avoid the possible
risk of infection of healthcare workers. All samples were collected in BD Vacutainer®

K2E (EDTA) (BD 367525) and stored at room temperature for less than 2 h to enable the
counting of populations with short half-lives, such as neutrophils and eosinophils [60].
To determine absolute leukocyte counts from fresh peripheral whole blood samples, we
used Trucount™ Absolute Counting Tubes (Becton Dickinson, Franklin Lakes, NJ, USA,
663028). In total, 100 µL of freshly isolated blood was stained using the recommended
volume of the following specific antibody reagents: CD15-FITC (BD-555401), CD19-PE
(BioLegend-302208), HLA-DR-PE-CF594 (BD-562208), CD16-PE-Cy7 (BD-557744), CD33-
APC (BD-551378), CD45-APC-AI700 (Coulter-A79390), CD14-APC-Fire750 (BioLegend-
367120), CD56-BV421 (BD-562751), and CD3-BV510 (BD-563109), as well as FcR Blocking
Reagent (Miltenyi) to avoid non-specific signals, and incubated at 4 ◦C in the dark for
30 min. NH4Cl (ACK) was added to eliminate red blood cells and incubated for 10 min
at room temperature, being kept in darkness throughout this stage. Finally, cells were
acquired via flow cytometry, in which the optical alignment and fluidics of the instrument
were routinely checked using Flow-Check Fluorospheres (Beckman Coulter, A63493), while
Flow-Set Fluorospheres (Beckman Coulter, A63492) were used to control light scatter and
fluorescence intensity. Data were analyzed using FlowJo software (v.10.8.0, FlowJo, Franklin
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Lakes, NJ, USA). The panel used allowed simultaneous quantification of 31 immune subsets,
as previously described [61], including neutrophils (CD16+ CD15+), eosinophils (CD16−
CD15+), T cells (CD3+) and their activation states (CD3+ HLA-DR+), B cells (CD19+ HLA-
DR+), NK cells (CD3− CD56+) and their subsets (based on differential expression of
CD16 and CD56), NKT-like cells (CD3+ CD56+), three monocyte subsets (differentiated
by CD14 and CD16), and myeloid-derived suppressor cells (MDSCs) (via expression of
HLA-DR-/low CD33+ and differential expression of CD14 and CD15).

4.5. Microbial DNA Extraction and 16S rRNA Amplicon Sequencing

Microbial DNA was extracted from a 0.25-gram aliquot of fecal sample from each of
31 patients, and this stage was carried out using the repeated bead-beating protocol [62]
with only minor modifications [63]. In brief, stool samples were resuspended in 1 mL of
lysis buffer in the presence of four 3-millimeter glass beads and 0.5 g of 0.1-millmeter zirco-
nia beads (BioSpec Products, Bartlesville, OK, USA), before being bead-beaten three times
at 5.5 movements/s for 1 min in a FastPrep homogenizer (MP Biomedicals, Irvine, CA,
USA). After 15 min of incubation at 95 ◦C, supernatants were separated via centrifugation
at 13,000 rpm for 5 min and incubated with 260 µL of 10-molarity ammonium acetate and
one volume of isopropanol for 30 min. Nucleic acid pellets were washed with 70% ethanol
and resuspended in 100 µL of TE buffer. RNA was removed via incubation using 2 µL of
dNase-free rNase (10 mg/mL) at 37 ◦C for 15 min. The DNeasy Blood and Tissue Kit (QIA-
GEN, Hilden, Germany) was used to perform subsequent DNA purification steps. DNA
concentration and quality were assessed using the NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA).

The V3–V4 hypervariable regions of the 16S rRNA gene were amplified using the 341F
and 785R primers with Illumina adapter overhang sequences, as previously described [63].
PCR products were purified using a magnetic bead-based system (Agencourt AMPure
XP; Beckman Coulter), followed by sample indexing via limited-cycle PCR using Nextera
technology. Indexed libraries were purified via a further clean-up step, as described above,
and pooled at an equimolar concentration of 4 nM. Sequencing was performed by loading
denatured and 5-picometer-diluted libraries onto an Illumina MiSeq platform using the
2 × 250 bp paired-end protocol based on the manufacturer’s instructions (Illumina, San
Diego, CA, USA).

4.6. Fecal Metabolomics

A portion of the fecal samples (approximately 10 g) for each of the 31 patients was
shipped on dry ice to the Department of Soil, Plant, and Food Science, the University of
Bari Aldo Moro, Bari, Italy, for metabolomic analysis. The samples, which were placed
in 10-millilter glass vials, were sealed with polytetrafluoroethylene-coated silicone rubber
septa and equilibrated for 10 min at 40 ◦C. Upon completion of sample equilibration, a
conditioned 50/30-µm DVB/CAR/PDMS fiber (Supelco, Bellefonte, PA, USA) was exposed
to headspace for 40 min to extract volatile compounds using the CombiPAL system injector
autosampler (CTC Analytics, Zwingen, Switzerland). Volatile organic compounds (VOCs)
were thermally desorbed by immediately transferring the fiber into the heated injection
port (220 ◦C) of a Clarus 680 (Perkin Elmer, Beaconsfield, UK) gas chromatograph equipped
with a Rtx-WAX column (30-m × 0.25-mm i.d., 0.25-µm film thickness) (Restek, Cernusco
sul Naviglio, Milan, Italy), which was coupled to a Clarus SQ8MS (Perkin Elmer) with
source and transfer line temperatures maintained at 250 and 210 ◦C, respectively. Injection
was performed in splitless mode using helium as the carrier gas at a flow rate of 1 mL/min.
The oven temperature was initially set at 35 ◦C for 8 min, and it was then increased to
60 ◦C at 4 ◦C/min, to 160 ◦C at 6 ◦C/min, and, finally, to 200 ◦C at 20 ◦C/min and held
for 15 min. Electron ionization masses were recorded at 70 eV in the 34–350 mass-to-
charge ratio interval. Each chromatogram was analyzed for peak identification using the
National Institute of Standard and Technology 2008 (NIST) library. A peak area threshold
of >1,000,000 and a match probability of 85% or greater were used for VOC identification,
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followed by manual visual inspection of the fragment patterns when necessary. 4-Methyl-
2-pentanol (final concentration, 33 mg/L) was used as the internal standard (IS) in all
analyses to quantify the compounds via interpolation of the relative areas in comparison to
the IS area (expressed as µg/g of IS).

4.7. Bioinformatic and Statistical Analysis

Raw sequences were processed using a pipeline that combined PANDAseq [64] and
QIIME 2 [65]. Specifically, paired-end sequences were first assembled into a single-end
amplicon using PANDAseq, retaining only assembled reads in the range of 350 to 500 nu-
cleotides. An error correction step was then performed using the USEARCH11 ‘fastq_filter’
module [66], which set a maximum error rate of 0.03 to discard low-quality sequences.
Sequences were then binned into amplicon sequence variants (ASVs) using the DADA2
pipeline [67], with chimeras being removed at the same time. Taxonomic assignment was
performed using the VSEARCH algorithm [68] to align ASVs with the Greengenes database
v13.8. Alpha diversity was computed using the ‘diversity core-metrics-phylogenetic’ plugin
from QIIME 2, as well as multiple metrics, including the number of observed ASVs, the
Shannon index, and Faith’s Phylogenetic Diversity. Beta diversity was estimated via the
same plugin using both quantitative and qualitative metrics, such as weighted/unweighted
UniFrac, Jaccard, and Euclidean measures, which were used for principal coordinates anal-
ysis (pCoA).

All statistical analyses were performed using R/rStudio 4.2.2 software. The pwr
R package (https://CRAN.R-project.org/package=pwr, accessed on 2 June 2022) was
implemented to perform a post hoc power analysis. For this procedure, the alpha value
was set at 0.05, and the effect size was estimated based on the response rate. The resulting
power was 0.88, which could be considered sufficiently robust given the exploratory
nature of this study. pCoA plots were generated using the vegan R package v2.6-4 (http:
//www.cran.r-project.org/package=vegan/, accessed on 2 June 2022), and data separation
was tested via permutational analysis of variance with pseudo-F ratios (Adonis tests). The
variance in beta diversity of a given group, i.e., the distance in beta diversity between
samples within the same group, was calculated as the average squared distance to the
mean. The Wilcoxon test with continuity correction was used to compare alpha diversity,
compositional structure, and metabolite levels between groups. To find multivariate
associations among GM profiles, metabolomic data, and patient metadata, we employed
multi-block sparse partial least square discriminant analysis (sPLS-DA), as implemented
in the DIABLO/mixOmics packages in R [69]. The model developed for this approach
was tuned according to the developer’s guidelines (http://mixomics.org, accessed on
30 June 2022), with repeated cross-validation performed with 10 folds and 100 repeats. The
approach allowed us to pick the best number of components for sPLS-DA computation,
reducing the overall bit error rate. A similar tuning approach was then implemented, based
on the developer’s guidance, to select the appropriate features retained from the different
layers of information for the DIABLO model. Results were first visualized via plotting
the individual values for each data layer (plotIndiv function of the mixOmics package),
which represented the contribution of each layer to patient stratification. Next, clustered
image maps were generated using cimDiablo to highlight the relationships between the
multi-omics panel and the outcome variable. Finally, the network function of mixOmics
was used to construct a relevance network that consisted of a set of features linked via a
DIABLO association value, which we considered to be a network edge list and plotted as
a network plot using Cytoscape [70]. In brief, a pairwise similarity matrix was obtained
from the latent components of sPLS by calculating the sum of the correlations between
the original variables and each of the latent components of the model. Pairwise similarity
values represented both positive and negative connections between all parameters in
the different model blocks (i.e., GM genera, metabolites, and host metadata). Similarity
connections were considered to be edges that connected nodes in a network graph, thus
enabling the detection of network modules (using the cluster_spinglass algorithm from the
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igraph package). Patients were stratified based on basal fecal butyrate levels above or below
the whole cohort median, and survival predictions were made using a linear model trained
using survival information collected from the start of therapy until 405 days later, inferring
the likelihood of survival for at least 840 days. For both known survival and overall survival,
including predicted values, we tested the significance of the separation between groups
with a Cox proportional hazard model, which employed the “Surv” and “coxph” functions
of the survival R package v3.5-0 (https://www.cran.r-project.org/package=survival/,
accessed on 30 June 2022). For demographic, anthropometric, body composition, physical
activity, dietary, and clinical characteristics of the patients, data were summarized as either
means and standard deviations (SD) or absolute frequencies and percentages (%). Statistical
comparisons for categorical and numerical variables were performed using Fisher’s test,
Wilcoxon test, or Student’s t-test, as appropriate. A p value ≤ 0.05 was considered to be
statistically significant; a p value ≤ 0.1 was considered to represent a trend.

5. Conclusions

By integrating omics (microbiomics and metabolomics) data and host metadata (in
particular body composition), our study, while exploratory, provided a list of potential
early biomarkers of response to therapy in patients with advanced melanoma. In particu-
lar, our findings highlight the relevance of obesity, lack of sarcopenia, and enrichment of
microbial taxa endowed with immunostimulatory activities and oncoprotective metabo-
lites as favorable prognostic signatures. Further studies in larger cohorts, possibly using
longitudinal sampling, are needed not only to validate and deepen the GM findings, but
also to further investigate the seemingly paradoxical relationship between obesity and
therapeutic response in patients with melanoma (as well as other types of cancer). To
this end, animal models should be used to move beyond the associations and unravel the
underlying mechanisms. Once acquired, this body of knowledge will improve the clinical
management of patients with advanced melanoma, especially the design of appropriate
adjuvant therapeutic strategies to improve treatment response and support long-term
health improvements. In the future, mathematical models that take into account a variety
of host variables will be required to identify effective personalized treatment protocols.
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Profile and In Vitro Antioxidative Properties of Taxus baccata L. Red Arils. Molecules 2021, 26, 4474. [CrossRef]

46. Nam, J.H.; Lee, D.U. Foeniculum vulgare extract and its constituent, trans-anethole, inhibit UV-induced melanogenesis via ORAI1
channel inhibition. J. Dermatol. Sci. 2016, 84, 305–313. [CrossRef]

47. Elkady, A.I. Anethole Inhibits the Proliferation of Human Prostate Cancer Cells via Induction of Cell Cycle Arrest and Apoptosis.
Anticancer Agents Med. Chem. 2018, 18, 216–236. [CrossRef]

48. Contant, C.; Rouabhia, M.; Loubaki, L.; Chandad, F.; Semlali, A. Anethole induces anti-oral cancer activity by triggering apoptosis,
autophagy and oxidative stress and by modulation of multiple signaling pathways. Sci. Rep. 2021, 11, 13087. [CrossRef]

49. Barone, M.; D’Amico, F.; Rampelli, S.; Brigidi, P.; Turroni, S. Age-related diseases, therapies and gut microbiome: A new frontier
for healthy aging. Mech. Ageing Dev. 2022, 206, 111711. [CrossRef]

https://doi.org/10.1002/cncr.32576
https://www.ncbi.nlm.nih.gov/pubmed/31648379
https://doi.org/10.1055/s-2007-979879
https://www.ncbi.nlm.nih.gov/pubmed/9013743
https://doi.org/10.1038/s41591-018-0221-5
https://doi.org/10.1016/S1470-2045(18)30266-3
https://doi.org/10.3389/fonc.2021.726257
https://doi.org/10.1007/s10637-017-0464-x
https://doi.org/10.1128/msystems.01023-22
https://doi.org/10.1038/s41586-019-0878-z
https://doi.org/10.20517/cdr.2021.144
https://doi.org/10.1111/obr.13498
https://doi.org/10.1016/j.cell.2016.05.041
https://doi.org/10.1016/j.fochx.2021.100129
https://doi.org/10.1007/s11357-019-00143-6
https://doi.org/10.1038/s41467-020-16079-x
https://doi.org/10.3389/fmicb.2016.01945
https://doi.org/10.1128/msphere.00490-22
https://www.ncbi.nlm.nih.gov/books/NBK591912/
https://www.ncbi.nlm.nih.gov/books/NBK591916/
https://doi.org/10.3389/fmicb.2018.03113
https://doi.org/10.1088/1752-7163/aa8f7f
https://doi.org/10.3390/microorganisms9030580
https://www.ncbi.nlm.nih.gov/pubmed/33808993
https://doi.org/10.3390/molecules26154474
https://doi.org/10.1016/j.jdermsci.2016.09.017
https://doi.org/10.2174/1871520617666170725165717
https://doi.org/10.1038/s41598-021-92456-w
https://doi.org/10.1016/j.mad.2022.111711


Int. J. Mol. Sci. 2023, 24, 11611 19 of 19

50. Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al.
Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for
EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [CrossRef]

51. Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.;
Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl.
Cancer Inst. 2014, 106, dju124. [CrossRef]

52. Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech. Rep.
Ser. 1995, 854, 1–452.

53. Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications
of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study.
Lancet Oncol. 2008, 9, 629–635. [CrossRef] [PubMed]

54. Mourtzakis, M.; Prado, C.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to
quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl.
Physiol. Nutr. Metab. 2008, 33, 997–1006. [CrossRef] [PubMed]

55. Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the international physical activity questionnaire short form
(IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [CrossRef]

56. Pisani, P.; Faggiano, F.; Krogh, V.; Palli, D.; Vineis, P.; Berrino, F. Relative validity and reproducibility of a food frequency dietary
questionnaire for use in the Italian EPIC centres. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S152. [CrossRef]

57. Società Italiana di Nutrizione Umana (SINU). Livelli di Assunzione di Riferimento di Nutrienti ed energia per la popolazione
italiana. IV Revisione. Milano, Coordinamento editoriale SINU-INRAN. IV Revis. 2014.

58. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific opinion on dietary reference values for carbohydrates
and dietary fibre. EFSA J. 2010, 8, 1462. [CrossRef]

59. Agnoli, C.; Grioni, S.; Sieri, S.; Palli, D.; Masala, G.; Sacerdote, C.; Vineis, P.; Tumino, R.; Giurdanella, M.C.; Pala, V.; et al. Italian
Mediterranean Index and risk of colorectal cancer in the Italian section of the EPIC cohort. Int. J. Cancer 2013, 132, 1404–1411.
[CrossRef]

60. Diks, A.M.; Bonroy, C.; Teodosio, C.; Groenland, R.J.; de Mooij, B.; de Maertelaere, E.; Neirynck, J.; Philippé, J.; Orfao, A.; van
Dongen, J.J.M.; et al. Impact of blood storage and sample handling on quality of high dimensional flow cytometric data in
multicenter clinical research. J. Immunol. Methods 2019, 475, 112616. [CrossRef] [PubMed]

61. Lo Russo, G.; Sgambelluri, F.; Prelaj, A.; Galli, F.; Manglaviti, S.; Bottiglieri, A.; Di Mauro, R.M.; Ferrara, R.; Galli, G.; Signorelli, D.;
et al. PEOPLE (NCT03447678), a first-line phase II pembrolizumab trial, in negative and low PD-L1 advanced NSCLC: Clinical
outcomes and association with circulating immune biomarkers. ESMO Open 2022, 7, 100645. [CrossRef]

62. Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812.
[CrossRef]

63. D’Amico, F.; Perrone, A.M.; Rampelli, S.; Coluccelli, S.; Barone, M.; Ravegnini, G.; Fabbrini, M.; Brigidi, P.; De Iaco, P.; Turroni, S.
Gut Microbiota Dynamics during Chemotherapy in Epithelial Ovarian Cancer Patients Are Related to Therapeutic Outcome.
Cancers 2021, 13, 3999. [CrossRef]

64. Masella, A.P.; Bartram, A.K.; Truszkowski, J.M.; Brown, D.G.; Neufeld, J.D. PANDAseq: Paired-end assembler for illumina
sequences. BMC Bioinform. 2012, 13, 31. [CrossRef] [PubMed]

65. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;
Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019,
37, 852–857. [CrossRef] [PubMed]

66. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [CrossRef]
67. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference

from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef] [PubMed]
68. Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 18, e2584.

[CrossRef]
69. Le Cao, K.A.; Rohart, F.; Gonzalez, I.; Dejean, S.; Gautier, B.; Bartolo, F.; Monget, P.; Coquery, J.; Yao, F.Z.; Liquet, B. mixOmics:

Omics Data Integration Project. R Package Version 6.1.1. 2016. Available online: https://CRAN.R-project.org/package=mixOmics
(accessed on 30 June 2022).

70. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape:
A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/ageing/afy169
https://doi.org/10.1093/jnci/dju124
https://doi.org/10.1016/S1470-2045(08)70153-0
https://www.ncbi.nlm.nih.gov/pubmed/18539529
https://doi.org/10.1139/H08-075
https://www.ncbi.nlm.nih.gov/pubmed/18923576
https://doi.org/10.1186/1479-5868-8-115
https://doi.org/10.1093/ije/26.suppl_1.S152
https://doi.org/10.2903/j.efsa.2010.1462
https://doi.org/10.1002/ijc.27740
https://doi.org/10.1016/j.jim.2019.06.007
https://www.ncbi.nlm.nih.gov/pubmed/31181213
https://doi.org/10.1016/j.esmoop.2022.100645
https://doi.org/10.2144/04365ST04
https://doi.org/10.3390/cancers13163999
https://doi.org/10.1186/1471-2105-13-31
https://www.ncbi.nlm.nih.gov/pubmed/22333067
https://doi.org/10.1038/s41587-019-0209-9
https://www.ncbi.nlm.nih.gov/pubmed/31341288
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1038/nmeth.3869
https://www.ncbi.nlm.nih.gov/pubmed/27214047
https://doi.org/10.7717/peerj.2584
https://CRAN.R-project.org/package=mixOmics
https://doi.org/10.1101/gr.1239303

	Introduction 
	Results 
	Demographic, Anthropometric, Body Composition, Physical Activity, Dietary, and Clinical Characteristics of the Study Population 
	Gut Microbiota Profiling 
	Fecal Metabolomic Profile 
	Integration of Omics (Microbiomics and Metabolomics) Data and Patient Metadata 

	Discussion 
	Materials and Methods 
	Patient Enrollment and Sample Collection 
	Nutritional Status Assessment 
	Physical Activity and Dietary Questionnaires 
	Immune Profile 
	Microbial DNA Extraction and 16S rRNA Amplicon Sequencing 
	Fecal Metabolomics 
	Bioinformatic and Statistical Analysis 

	Conclusions 
	References

