Bioinformatic survey of CRISPR loci across 15 Serratia species

Maria Scrascia ${ }^{1}$ © | Roberta Roberto ${ }^{2}$ | Pietro D'Addabbo ${ }^{1}$ | Yosra Ahmed ${ }^{3}$ | Francesco Porcelli ${ }^{2}$ | Marta Oliva ${ }^{1}$ | Carla Calia ${ }^{1}$ | Angelo Marzella ${ }^{1}$ | Carlo Pazzani ${ }^{1}$

${ }^{1}$ Department of Biology, University of Bari Aldo Moro, Bari, Italy
${ }^{2}$ Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari Aldo Moro, Bari, Italy
${ }^{3}$ Plant Quarantine Pathogens Laboratory, Mycology Research \& Disease Survey, Plant Pathology Research Institute, ARC, Giza, Egypt

Correspondence

Maria Scrascia, Department of Biology, University of Bari, Aldo Moro, Via E. Orabona, 4-70124 Bari, Italy.
Email: maria.scrascia@uniba.it

Funding information

None

Abstract

The Clustered Regularly Interspaced Short Palindromic Repeats and CRISPRassociated proteins (CRISPR-Cas) system of prokaryotes is an adaptative immune defense mechanism to protect themselves from invading genetic elements (e.g., phages and plasmids). Studies that describe the genetic organization of these prokaryotic systems have mainly reported on the Enterobacteriaceae family (now reorganized within the order of Enterobacterales). For some genera, data on CRISPR-Cas systems remain poor, as in the case of Serratia (now part of the Yersiniaceae family) where data are limited to a few genomes of the species marcescens. This study describes the detection, in silico, of CRISPR loci in 146 Serratia complete genomes and 336 high-quality assemblies available for the species ficaria, fonticola, grimesii, inhibens, liquefaciens, marcescens, nematodiphila, odorifera, oryzae, plymuthica, proteomaculans, quinivorans, rubidaea, symbiotica, and ureilytica. Apart from subtypes I-E and I-F1 which had previously been identified in marcescens, we report that of I-C and the I-E unique locus 1, I-E*, and I-F1 unique locus 1. Analysis of the genomic contexts for CRISPR loci revealed mdtN-phnP as the region mostly shared (grimesii, inhibens, marcescens, nematodiphila, plymuthica, rubidaea, and Serratia sp.). Three new contexts detected in genomes of rubidaea and fonticola (puu genes-mnmA) and rubidaea (osmE-soxG and ampC-yebZ) were also found. The plasmid and/or phage origin of spacers was also established.

KEYWORDS

CRISPR system, Rhynchophorus ferrugineus, RPW, subtype I-C, subtype I-E, subtype I-F1

1 | INTRODUCTION

The prokaryotic system Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins (CRISPR-Cas) is a defense mechanism for bacteria and archaea against the invasion of bacteriophages and selfish genetic elements such as plasmids.

Since their discovery around 15 years ago (Bolotin et al., 2005; Makarova et al., 2006; Mojica et al., 2005), CRISPR-Cas systems have been the object of many studies and functions, other than adaptative immunity, as regulation of bacteria virulence and stress response have been reported (Faure et al., 2019; Louwen et al., 2014). Based on a census of complete genomes, it is now reckoned that

[^0]these systems are distributed mainly in archaea (~82.5\%) and, to a lesser extent, bacteria (~40\%) (Makarova et al., 2020). The CRISPR--Cas systems are composed of CRISPR arrays and adjacent CRISPR-associated (cas) genes. The former are composed of direct repeats interspaced by spacers; the latter encode proteins involved in the immune response and DNA repair. This ever-expanding knowledge of the composition and architecture of cas gene clusters has led to an updated classification of CRISPR-Cas systems where two classes, six types, and various subtypes (some of which are further divided into different variants) are now reported (Koonin \& Makarova, 2017; Makarova et al., 2020). Class 1 includes the types I (DNA targeting), III (DNA and/or RNA targeting), and IV (DNA targeting), which are divided into seven subtypes I (A-G), six subtypes III (A-F), and three subtypes IV (A-C), respectively. Class 2 includes the types II (DNA targeting), V (DNA or RNA targeting), and VI (RNA targeting); they are also divided into subtypes: three subtypes II (A-C), eleven subtypes $V(A-K$ and U), and four subtypes VI (A-D), respectively (Koonin \& Makarova, 2017; Makarova et al., 2020). While Class 2 is found mainly in Bacteria, Class 1 is present both in Bacteria and Archaea. Studies on CRISPR-Cas systems have been performed on genomes of different bacteria families, with that of the Enterobacteriaceae being one of the most investigated (Medina-Aparicio et al., 2018; Shariat \& Dudley, 2014; Xue \& Sashital, 2019). This family was unique in the Enterobacterales order until 2016 when Adeolu et al. (2016) reclassified the order by adding six new families (Budviciaceae, Erwiniaceae, Hafniaceae, Morganellaceae, Pectobacteriaceae, Yersiniaceae). Despite this reclassification, data on CRISPR-Cas systems remain mainly limited to genera of the Enterobacteriaceae family (Díez-Villaseñor et al., 2010; Shariat et al., 2015; Shen et al., 2017; Wang et al., 2016).

The genus Serratia, a Gram-negative rod, is now part of the family Yersiniaceae. Serratia species can be found in different environments (e.g., water, soil) and hosts (e.g., humans, insects, plants, vertebrates) where they may play different roles ranging from opportunistic pathogens to symbionts (Cristina et al., 2019; Gupta et al., 2021; Lo et al., 2016). Among Serratia species, marcescens is undoubtedly the most studied mainly for its role played as a symbiont associated with insects and nematodes (Chen et al., 2017) or as a human opportunistic pathogen (currently reported as one of the most important bacteria responsible for acquired hospital infections such as bacteremia, pneumonia, intravenous catheter-associated infections, and endocarditis) (Ferreira et al., 2020). Other Serratia species responsible (to a minor extent) for human bacteremia are liquefaciens and odorifera (Mahlen, 2011). A growing number of marcescens genomes have then been sequenced with a pangenome allele database available for different studies ranging from virulence and antibiotic resistance to the identification of CRISPR systems (Abreo \& Altier, 2019). A number of studies, in addition to marcescens, have also been reported for other Serratia species that play different roles in human and insect pathogenesis(Petersen \& Tisa, 2013). Although the characterization of CRISPR systems represents a valuable substrate for diagnostic, epidemiologic, and evolutionary analyses (Louwen et al., 2014), data on CRISPR-Cas systems in the genus are
scarce and limited to the detection of subtypes I-E and I-F1 in genomes of the species marcescens (Medina-Aparicio et al., 2018; Scrascia et al., 2019; Srinivasan \& Rajamohan, 2019; Vicente et al., 2016).

In this study, 146 Serratia complete genomes and 336 highquality assemblies are available for the species ficaria, fonticola, grimesii, inhibens, liquefaciens, marcescens, nematodiphila, odorifera, oryzae, plymuthica, proteomaculans, quinivorans, rubidaea, symbiotica, and ureilytica were explored for the presence and type of cas gene clusters and/or CRISPRs. Apart from subtypes I-E and I-F1, the study showed the presence (first detected in Serratia) of subtype I-C, the presence of unique loci, and detailed genomic contexts of CRISPR loci. The plasmid and/or phage origin of spacers was also assessed.

The discovery of CRISPR-Cas systems has allowed the development of new technology tools in the bioengineering field (Dong et al., 2021). A clear example is represented by gene editing strategies based on CRISPR/Cas9 technique successfully used in agriculture, nutrition, and human health (Nidhi et al., 2021). The development of new CRISPR-based applications also relies on the continuous update of CRISPR-Cas systems data and knowledge. Our study, in providing more comprehensive data on CRISPR loci in Serratia, has undoubtedly contributed to an expanded knowledge of these systems.

2 | MATERIALS AND METHODS

2.1 | Genomes analyzed

One hundred and forty-six Serratia complete genomes were considered in this study. The set of genomes encompasses the 15 S. marcescens complete genomes we previously analyzed (Scrascia et al., 2019) and those of the genus Serratia available at the CRISPR-Cas ${ }^{++}$database (https://crisprcas.i2bc.paris-saclay.fr/ MainDb/StrainList) up to December 12, 2020 (Couvin et al., 2018; Pourcel et al., 2020) (Supporting Information: Table S1). Among genome sequences available at the assembly level of scaffolds or contigs available at the National Center for Biotechnology Information database (NCBI) (https://www.ncbi.nlm.nih.gov/assembly) up to December 12, 2020, we selected the high-quality assemblies (N50 > 50 kb , i.e. 50% of the entire assembly is contained in contigs or scaffolds equal to or larger than the 50 kb) that have been included in the study.

Species attribution and strain details (name, place, date of isolation) were recovered (when available) from GenBank or related articles. Serratia strains AS12 (NC_015566.1), FGI94 (NC_020064), FS14 (NZ_CP005927), SCBI (NZ_CP003424), YD25 (NZ_CP016948), and DSM21420 (GCA_000738675) were reclassified as reported by Sandner-Miranda et al. (2018), Sandner-Miranda et al. (2018). In the study reported by Sandner-Miranda et al., the strain ATCC39006 was not assigned to the genus Serratia and we did not include it in this study.

We also included sequences with the accessions MK507743, MK507744, MK507745, and MK507746 referring to contigs (N50
ranging from 228817 to 291462) harboring CRISPR loci in genome assemblies (unpublished) of four S. marcescens strains reported as secondary symbionts in the Red Palm Weevil (RPW) Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae) (Scrascia et al., 2016, 2019) (Supporting Information: Table S1), an alien invasive pest now threatening South America (Dalbon et al., 2021).

2.2 | Detection of CRISPR-Cas loci

Details about the detection of a cas gene cluster with associated arrays (CRISPR-Cas system) and CRISPR arrays only for complete genomes were retrieved from the CRISPR-Cas ${ }^{++}$database. CRISPR arrays recorded by CRISPR-Cas ${ }^{++}$were assigned to Levels $1-4$ based on the criteria required to select the minimal structure of putative CRISPR as reported by Pourcel et al. (2020). Level 1 is the lowest level of confidence. Levels 2-4 were assigned based on the conservation of repeats (which must be high in a real CRISPR) and on the similarity of spacers (it must be low). Level 4 CRISPRs were defined as the most reliable ones. Levels 1-3 may correspond to false CRISPRs. In our study, only CRISPRs recorded with Level 4, were considered. CRISPRs without a set of cas genes in the host genome were defined as "orphans." Genomes harboring cas gene clusters were then submitted to the CRISPRone analysis suite (http://omics. informatics.indiana.edu/CRISPRone/) (Zhang \& Ye, 2017) to graphically visualize the architecture of each cluster. The same suite was used to search and visualize cas gene clusters in the high-quality assemblies. A subtype of cas gene clusters was assigned according to the recent classification update for CRISPR-Cas systems (Makarova et al., 2020).

2.3 | In silico analyses of consensus of direct repeats

A consensus of direct repeats from CRISPRs was clustered by BLAST similarity. Some consensus DRs were manually trimmed when just a few terminal nucleotides were the only difference from the other members of the same cluster. The consensus DRs were used as input for CRISPRBank (http://crispr.otago.ac.nz/CRISPRBank/index.html) and CRISPR-Cas ${ }^{++}$to assign, based on identity with known
consensus DRs (Biswas et al., 2016; Couvin et al., 2018; Pourcel et al., 2020), a specific CDR type to CRISPR. The CRISPRs whose CDR type was consistent with the subtype of the cas gene set harbored in the same genome were defined as "canonical." While those not consistent with the subtype of the cas gene set harbored in the same genome were defined as "alien." A schematic diagram of alien, canonical and orphan arrays is shown in Figure 1. consensus DRs and the number of repeats of the CRISPRs in the high-quality assemblies of Serratia sp. strains DD3, Ag1, and Ag2 were recovered from the CRISPRone output. Spacers' analysis for duplications (spacers of $\mathrm{Ag} 1, \mathrm{Ag} 2$, and DD3 included) was performed through the CRISPRCasdb spacer database at the CRISPRCas ${ }^{++}$site (https:// crisprcas.i2bc.paris-saclay.fr/MainDbQry/Index). Phagic and/or plasmidic origin of matching protospacers were searched at the CRISPRTarget site (http://crispr.otago.ac.nz/CRISPRTarget/crispr_ analysis.html) (Biswas et al., 2016).

2.4 | Genomic contexts of CRISPR-positive genomes

Analysis of CRISPR-positive complete genomes and high-quality assemblies was performed to better characterize the genomic context surrounding the cas gene sets and/or CRISPR arrays. Highquality assemblies with at least 4 kb flanking the cas gene sets were considered. These regions were annotated by Prokka (https://github. com/tseemann/prokka) (Seemann, 2014). Synteny was established by either the Mauve algorithm (http://darlinglab.org/mauve/mauve. html) (Darling et al., 2010) or visual inspection of annotated proteins.

2.5 | Phylogenetic analyses

The evolutionary relationship of Serratia strains found positive for cas genes sets was established and graphically depicted by the Cas3 sequence tree. All the protein sequences were aligned by the MUSCLE algorithm (https://www.ebi.ac.uk/Tools/msa/muscle/) (Edgar, 2004a, 2004b). The 16 S rRNA gene tree was also drawn for comparison. Dendrograms were generated by the Neighbor-Joining clustering method and average distance trees with JalView (https:// www.jalview.org/) (Waterhouse et al., 2009). For the 16S rRNA gene

FIGURE 1 Schematic diagram of the three categories of arrays described in the study. DRs and spacers are depicted with diamonds and rectangles respectively. cas genes are shown as arrows pointing in the direction of transcription. The yellow color highlights the consistency between the DR type and the cas subtype; while the blue color indicates inconsistency.
tree, the multiple sequence alignment was obtained by retrieving from one to seven full gene sequences (complete genomes) or truncated 16S rRNA gene sequences (high-quality assemblies). A phylogenetic tree was obtained by multiple alignment of all retrieved 16 S rRNA genes; an abbreviated tree was constructed by using one sequence from each genome.

3 | RESULTS

3.1 | CRISPR-positive genomes

A collection of 146 Serratia complete genomes was explored for the presence of cas gene clusters and/or CRISPR arrays. Most of the genomes (134) were reported as known species: ficaria (1), fonticola (7), grimesii (1), inhibens (1), liquefaciens (7), marcescens (87), nematodiphila (1), plymuthica (11), proteomaculans (2), quinivorans (2), rubidaea (8), symbiotica (4), ureilytica (2). The remaining 12 genomes were of unidentified species and, from here on, they will be referred to as Serratia sp. (Supporting Information: Table S1). The CRISPR-Cas systems or only CRISPR arrays (orphan array) were detected in 35 complete genomes (24\%) of which 17 harbored a CRISPR-Cas system, while 18 harbored orphan arrays. Some complete genomes characterized by the same cas gene set subtype and identical numbers of both CRISPRs and spacers were assumed as multiple records of the same genome (Table 1). All detected cas gene clusters were of Class 1. Nine were identical to those already published (Makarova et al., 2020) and distributed as follows: two subtypes I-C (rubidaea) (Figure 2a), one I-E (plymuthica) and six I-F1 (1 fonticola, 3 marcescens, 1 inhibens, and 1 rubidaea) (Figure 2b,c). The remaining eight clusters were found atypical and assigned, in this study, to I-E unique locus 1 (3 marcescens and 1 plymuthica) and I-F1 unique locus 1 (1 marcescens, 2 rubidaea, and 1 Serratia sp.).

The I-E unique locus 1 had the cas3-cas8e genes spaced by $\sim 600 \mathrm{nt}$ while the I-F1 unique locus 1 had the cas3-cas8f1 genes separated from each other by ~ 400 nt (Figure 2b,c). Since the I-E unique locus 1 and the I-F1 unique locus 1 cas gene clusters have never been reported in Serratia, their presence was further explored among 336 Serratia high-quality assemblies. The assemblies were distributed as follows: ficaria (1), fonticola (6), grimesii (2), liquefaciens (3), marcescens (295), nematodiphila (2), odorifera (2), oryzae (1), plymuthica (4), proteomaculas (1), rubidaea (2), symbiotica (1), ureilytica (1), and Serratia sp. (15) (Supporting Information: Table S1). Of the 336 analyzed genomes, 46 (13.7%) were positive for the presence of cas gene clusters. Twenty-six were subtype I-F1 (21 marcescens, one fonticola, and 4 Serratia sp.) (Figure 2c), two subtype I-C (rubidaea) (Figure 2a), and three subtype I-E (marcescens) (Figure 2b; Table A1). The I-E unique locus 1 was detected in two genomes of marcescens, the I-F1 unique locus 1 in eight genomes of marcescens, and one of grimesii. In three genomes of Serratia sp. (strains $\mathrm{Ag} 1, \mathrm{Ag} 2$, and DD3) an additional unique locus of the subtype I-E, identical to I-E* previously reported by Shen et al. (2017), was detected (Figure 2b). The locus I-E* identified in this study was characterized by the
translocation of cas6e between cas7 and cas11, and the presence (upstream of cas3) of a gene harboring the WYL domain which encodes for a potential functional partner of the CARF (CRISPR-Cas Associated Rossmann Fold) superfamily proteins (Makarova et al., 2020). Proteins containing the WYL domain (name standing for the three conserved amino acids tryptophan, tyrosine, and leucine, respectively) have only been reported for subtypes I-D and VI-D (Makarova et al., 2014, 2019). The distribution of CRISPRpositive genomes, over the total analyzed, among Serratia species is shown in Figure 3. Coexistence in the same genome of different sets of cas genes was also detected: subtypes I-E and I-F1 were found in the single HQA of oryzae, while I-E* and I-F1were detected in two high-quality assemblies of Serratia sp. (strains Ag 1 and Ag 2) (Table A1).

3.2 | Consensus DRs and spacers

The 35 CRISPR-positive complete genomes harbored 78 CRISPRs of which 48 were canonical. The latter were distributed as follows: fonticola (4), inhibens (1), marcescens (19), plymuthica (5), rubidaea (15), and Serratia sp. (4). Twenty-three arrays were orphans and detected in genomes of marcescens (8), plymuthica (4), symbiotica (1), nematodiphila (1), rubidaea (5), and Serratia sp. (4) (Table 1; Figure 1). Alien arrays (8) were only detected in the species rubidaea. For a comprehensive analysis, arrays in the three high-quality assemblies Ag1, Ag2, and DD3 were included (Table A1). All disclosed CRISPRs were assigned, by comparative sequence analyses, to consensus DR types I-C, I-E, or I-F (Table 1). The association between consensus DR types and cas gene sets (canonical and unique loci) is reported in Table 2. Based on their nucleotide identity, the consensus DRs identified for subtype I-E and its unique loci (I-E* and unique locus 1) could be arranged into two clusters named consensus DR-I and consensus DR-II. consensus DR-I was composed of 6 consensus DRs (identity from 83% to 96%) and linked to the cas gene sets I-E and I-E unique locus 1. consensus DR-II was composed of 2 consensus DRs (identity of about 96\%) and linked to the cas gene set I-E*. When the consensus DRs of the two clusters were compared to each other, the nucleotide identity dropped to $55 \%-62 \%$.

The architecture of the cas gene set I-E* has previously been reported for Klebsiella and Vibrio cholerae (I-E variant) (McDonald et al., 2019; Shen et al., 2017). We then compared the consensus DRs sequences I-E* and I-E variant with those of consensus DR-II and the identity was found between 82% and 96%. This association has further been confirmed by results obtained from the analysis of the cas gene clusters identified in 99 genomes retrieved from CRISPRBank and by searching for the presence of consensus DRs I-E*. Results showed that 95 of these genomes had a cas gene architecture identical to that of I-E*. The remaining four genomes harbored a truncated set of cas genes. Overall these data linked specifically consensus DR-II to the cas gene set I-E*.

A total of 1391 spacers were identified. Identical arrays were shared by rubidaea strains FDAARGOS_926 and NCTC12971. Likewise, different sets of identical arrays were shared by plymuthica strains AS9, AS12, and
TABLE 1 Cas genes clusters and CRISPRs in complete genomes

Subtype of cas cluster	CRISPRs			Serratia species	Strain	Source	Place of isolation	Year of isolation	Accession/Assembly
	CDR type	Category	\#Arrays (\#spacers)						
I-C	I-C	Canonical	1 (14)	rubidaea	FDAARGOS_926 ${ }^{\text {a }}$	N/A	N/A	N/A	NZ_CP065640.1
	I-E	Alien	1 (7)						
	I-F	Alien	$2(2,5)$						
I-C	I-C	Canonical	1 (14)	rubidaea	NCTC12971 ${ }^{\text {a }}$	N/A	N/A	N/A	LR590463.1
	I-E	Alien	1 (7)						
	I-F	Alien	$2(2,5)$						
I-E	I-E	Canonical	$2(43,30)$	plymuthica	NCTC8900	N/A	N/A	N/A	LR134151.1
I-E unique locus 1	I-E	Canonical	$4(6,8,27,44)$	marcescens	E28	Hospital Ensuite	Australia	2012	CP042512.1
"	I-E	Canonical	$3(7,10,22)$	marcescens	SER00094	Clinical	United States	2017	CP050447.1
"	I-E	Canonical	$3(11,39,69)$	marcescens	MSB1_9C-sc-2280320	N/A	N/A	N/A	LR890657.1
"	I-E	Canonical	$2(35,47)$	plymuthica	NCTC8015	Canal water	N/A	N/A	LR134478.1
I-F1	I-F	Canonical	$2(25,27)$	marcescens	12TM	Pharyngeal secretions	Romania	2014	CM008894.1
I-F1	I-F	Canonical	$2(8,17)$	marcescens	N4-5	Soil	United States	1995	CP031316.1
I-F1	I-F	Canonical	$2(6,45)$	marcescens	PWN146	Bursaphelenchus xylophilus	Portugal	2010	LT575490.1
I-F1	I-F	Canonical	$3(11,13,42)$	fonticola	DSM 4576	Water	N/A	1979	NZ_CP011254.1
I-F1	I-F	Canonical	$2(15,24)$	inhibens	PRI-2c	Maize rhizosphere soil	The Netherlands	2004	NZ_CP015613.1
I-F1	I-F	Canonical	$\begin{gathered} 6(1,3,7,7 \\ 14,14) \end{gathered}$	rubidaea	FDAARGOS_880	N/A	N/A	N/A	CP065717.1
I-F1 unique locus 1	I-F	Canonical	$3(5,10,29)$	marcescens	FZSFO2	soil	China	2014	CP053286
"	I-E	Alien	1 (9)	rubidaea	FGI94	Atta colombica	Panama	2009	NC_020064.1;
	I-F	Canonical	$3(6,15,16)$						CP003942
"	I-F	Canonical	$4(3,6,7,8)$	rubidaea	NCTC10036	Finger	N/A	N/A	LR134493.1
	I-E	Alien	1 (3)						
"	I-F	Canonical	$4(2,2,7,7,10)$	Serratia sp.	JUb9	Compost	France	2019	CP060416.1
N/A	I-F	Orphan	1 (21)	marcescens	SCQ1	Blood from silkworm	China	2009	CP063354.1

TABLE 1 (Continued)

Source	Place of isolation	Year of isolation	Accession/Assembly
N/A	N/A	N/A	CP028947.1
Plant	Sweden	N/A	$\begin{array}{r} \text { NC_015567.1; } \\ \text { CP002773.1 } \end{array}$
Plant	Sweden	1998	NC_015566.1; CP002774
Plant	Sweden	N/A	NC_017573.1; CP002775
Zea mays	China	2011	NZ_CP013046.2
Compost	Germany	N/A	CP023268.1
N/A	United States	2015	CP026383.1
N/A	N/A	N/A	CP038662.1
N/A	N/A	N/A	LR134155.1
N/A	N/A	N/A	LS483492.1
Marine	United States	2006	CP027798.1
Marine	United States	2002	CP027796.1
Peri-rectal	Virginia	2014	CP029449.1
Clinical	United States	2011-2012	NZ_CP011642.1
Rhizospheric soil	South Korea	2017	CP041764.1
Milk processing plant	Portugal	2006	CP007439.1
Aphis fabae (type strain of S . symbiotica)	Belgium	2009	CP050855.1

Abbreviations: CDR, consensus DR; CRISPR- Cas, Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins.

FIGURE 2 Architectures of canonical and unique cas gene sets. Genes are shown as arrows pointing in the direction of transcription. Gray shadows highlight the distinguishing features of the I-E unique locus 1, I-E*, and I-F1 unique locus 1 . Species in which the architectures were detected are reported on the right side and the number of genomes is reported in brackets. Truncated cas gene sets (due to the end of contigs) were not shown. (a) Genetic organization of the canonical cas gene set I-C. (b) Genetic organization of cas gene sets for the canonical I-E, the IE^{*}, and I-E unique locus 1. The WYL domain is highlighted as a red arrow. (c) Genetic organization of cas gene sets for the canonical I-F1 and the I-F1 unique locus 1.

AS13; marcescens strains KS10 and EL1; marcescens strains CAV1761 and CAV1492 (Supporting Information: Table S2). These findings confirmed multiple records of the same genome for each group of strains and the total number of spacers was estimated at 1290 of which 1219 were unique and 330 matched protospacers with the following origin: 131 phages, 132 plasmids, and 67 phage/plasmid (Supporting Information: Table S2).

3.3 | Phylogenetic trees

The phylogenetic tree generated by multiple alignment of the amino acid sequences of Cas3 showed a clusterization of the subtypes I-C, IE, and I-F1 into three distinct branches (Figure 4). The I-E unique locus 1 and I-F1 unique locus 1 were randomly distributed among the I-E and I-F1, respectively, while the I-E* appears in a group within a sub-lineage of I-E. Within the I-C, I-E, and I-F1 branches, strains from the same species are grouped together. The phylogenetic tree based
on multiple alignment of the 16 S rRNA gene sequences was generated for comparison (Figure 5 and Supporting Information: Figure S1). The 16 S rRNA gene trees showed, as expected, a nesting of the strains from the same species. The phylogenetic distribution of Serratia species in the Cas3 tree may suggest a possible independent intra-species evolutionary pathway. However, because the number of available CRISPR-positive genomes is too low for most Serratia species such a hypothesis needs to be validated by future studies. The position of strains TEL in the cluster marcescens and JUb9 in the cluster rubidaea shown in the Cas3 phylogenetic tree was confirmed by the 16 S rRNA gene tree, which might suggest a species assignment for these strains.

3.4 | CRISPR genomic contexts

The 35 CRISPR-positive complete genomes and 28 of the 46 CRISPR-positive high-quality assemblies were analyzed to identify

FIG URE 3 Distribution of CRISPR-positive genomes. Solid boxes represent the total number (top of boxes) of genomes analyzed per species. Dashed boxes show the number (top of boxes) of genomes for which CRISPR-Cas systems or CRISPRs were detected.

TABLE 2 Association between consensus DRs and cas gene sets

Sequence ($5^{\prime}-3{ }^{\prime}$)	\# nt	Record in CRISPRBank and CRISPR-Cas ${ }^{++}$	CDR ${ }^{\text {a }}$ type	Associated cas genes set(s)
GTCGTGCCTCATGCAGGCACGTGGATTGAAAC	32	I-C	I-C	I-C
GTCGTGCCTCACGTAGGCACGTGGATTGAAA	31	I-C	I-C	I-C
CGGTTCATCCCCGCTGGCGCGGGGAATAG ${ }^{\text {a,d }}$	29	I-E	I-E	I-E
CGGTTTATCCCCGCTCTCGCGGGGAACAC ${ }^{\text {a }}$	29	I-E	I-E	I-E; I-E unique locus 1
CGGTTTATCCCCGCTGACGCGGGGAACAC ${ }^{\text {a }}$	29	I-E	I-E	I-E unique locus 1
CGGTTTATCCCCGCTGGCGCGGGGAACAC ${ }^{\text {a }}$	29	I-E	I-E	I-E; I-E unique locus 1
CGGTTTATCCCCGCTCGCGCGGGGAACAC ${ }^{\text {a }}$	29	I-E	I-E	I-E
CGGTTTATCCCCGCTAGCGCGGGGAACAC ${ }^{\text {a }}$	29	I-E	I-E	I-E
GAAACACCCCCACGTGCGTGGGGAAGAC ${ }^{\text {b,c }}$	28	I-E	I-E*	I-E*
GAAACACCCCCACGTGCGTGGGGAAGGC ${ }^{\text {d,c }}$	28	I-E	I-E*	I-E*
GTGCACTGCCGTACAGGCAGCTTAGAAA	28	I-F	I-F	I-F1; I-F1 unique locus 1
GTTCACTGCCGCATAGGCAGCTTAGAAA	28	I-F	I-F	I-F1
GTTCACTGCCGTGCAGGCAGCTTAGAAA	28	I-F	I-F	I-F1
GTTCACTGCCGTATAGGCAGCTTAGAAA	28	I-F	I-F	I-F1
GTTCGCTGCCGTGCAGGCAGCTTAGAAA	28	I-F	I-F	I-F1
GTTCACTGCCGTACAGGCAGCTTAGAAA	28	I-F	I-F	I-F1

[^1]

FIGURE 4 Cas3 phylogenetic tree. Species are shown with different colors. In brackets, the accession number of the cas3 nucleotide sequence is reported.
possible shared genomic contexts. Eight different genomic contexts, named from A to H, were identified. Contexts A to D (Figure 6) were shared by different genomes, while those from E to H were identified in single genomes. The genomic context A (mdtN-phnP) has previously been described in S. marcescens strains isolated as a secondary symbiont of RPW and in other marcescens complete genomes available in the NCBI database (Scrascia et al., 2019)
becoming the most commonly shared in this study being identified in 55 genomes distributed as follows: 35 marcescens, one grimesii, one inhibens, one nematodiphila, six plymuthica, six rubidaea, and five Serratia sp. Contexts B (puu genes-mnmA), C (osmE-soxG), and D (ampC-yebZ) were shared by 11, four, and six genomes, respectively; context B by genomes of species fonticola (2), rubidaea (7), and Serratia sp. (2); C and D only by rubidaea genomes. For context D,

FIGURE 5 (See caption on next page)

FIGURE 6 Schematic diagram of the shared genomic contexts A to D. Letters on the left (a-d) indicate the type of genomic context. The pink dashed box represents the genomic region harboring cas set and/or CRISPR arrays. Black thick lines depict flanking regions. Genes are shown as arrow boxes pointing in the direction of transcription.
assignment to rubidaea was assumed for the strain JUb9 (see above). The contexts E (nrdG-bgIH) and F (sucD-vasK) were both identified in the single genome of S. oryzae strain J11-6; while G (gntR-cda) and H (gutQ-queA) in genomes of the Serratia sp. Ag1 and S. symbiotica CWBI-2.3, respectively (Table 3). Distribution of the genomic contexts by subtypes of cas gene sets and/or consensus DR types is reported in Table A2. Genomes of species rubidaea were characterized by the presence of multiple CRISPR contexts (A, B, C, D) with the context C associated with the cas gene set of subtype I-C

4 | DISCUSSION

Bacteria of the genus Serratia are ubiquitous and have been isolated from soil, water, plant roots, insects, and the gastrointestinal tract of animals (Cristina et al., 2019; Gupta et al., 2021; Lo et al., 2016). This broad range of environments exposes Serratia strains to exogenous genetic elements such as plasmids, phages, and chromosomal fragments of other bacteria. Some of them may represent a life threat (e.g., phages) or a metabolic burden (e.g., plasmids) to which

FIGURE 516 rRNA gene phylogenetic tree. Species are shown with different colors. In brackets, the accession number of the 16 S rRNA gene nucleotide sequence is reported.

TABLE 3 Genomic contexts

Genomic context	Chromosomal region	Species (\#genomes)	Strains
A	mdtN-phnP	marcescens (35)	E28; S5; S8; B3R3; PWN146; CAV1492; 12TM; 2880STDY5682818; 2880STDY5682863; AH0650_Sm1; AR_0130; CAV1761; EGD-HP20; EL1; FZSF02; KS10; MC459; 2880STDY5682911; 2880STDY5683032; 2880STDY5682819; 2880STDY5682934; 2880STDY5682957; 2880STDY5682995; 454_SMAR; 420_SMAR; 395_SMAR; 370_SMAR; 1145_SMAR; MSB1_9C-sc-2280320; N4-5; SER00094; SCQ1; SM03; MGH136; at10508;
		grimesii (1)	NBRC 13537
		inhibens (1)	PRI-2c
		nematodiphila (1)	DH-S01
		plymuthica (6)	AS9; AS12; AS13; NCTC8015; NCTC8900; V4
		Unknown (5)	TEL; SSNIH1; KUDC3025; MYb239; JUb9
		rubidaea (6)	FGI94; NCTC10848; FDAARGOS_880; NCTC10036; NCTC12971; FDAARGOS_926
B	puu genes-mnmA	fonticola (2)	DSM 4576; 51
		rubidaea (7)	NCTC10848; FDAARGOS_880; NCTC9419; NCTC10036; NCTC12971; FDAARGOS_926; FGI94
		Unknown (2)	JUb9; MYb239
C	osmE-soxG	rubidaea (4)	NBRC 103169; CFSAN059619; NCTC12971; FDAARGOS_926
D	ampC-yebZ	rubidaea (5)	FDAARGOS_926; NCTC12971; NCTC10036; NCTC9419; FDAARGOS_880;
		Unknown (1)	JUb9
E	$n r d G-b g l H$	oryzae (1)	J11-6
F	sucD-vasK		
G	gntR-cda	Unknown (1)	Ag1
H	gutQ-queA	symbiotica (1)	CWBI-2.3

CRISPR-Cas systems represent a unique adaptative immunity defense mechanism. Studying the presence/absence of CRISPR-Cas systems and their features in different genera of families is a relatively new scientific approach to investigation to gain data on the evolution of these systems and their role played during the bacterial lifetime (Butiuc-Keul et al., 2022). The average percentage of CRISPR distribution among Bacteria is the outcome of processes and/or factors that play different ecological roles within a genus/species. Among these processes/factors are noteworthy the balance between protection provided by CRISPR systems and their possible deleterious effects (e.g., self-targeting spacers), the role played by exogenous genetic elements (e.g., plasmids, phages, etc.) in bacteria evolution and the horizontal transfer of CRISPR systems.

Data on CRISPR loci in Serratia are limited to complete genomes of S. marcescens strains (Medina-Aparicio et al., 2018; Scrascia et al., 2019; Srinivasan \& Rajamohan, 2019; Vicente et al., 2016). In the present study, along with the species marcescens, we extended data on CRISPR loci to 14 additional Serratia species. Note, CRISPRs were detected in 24% of the complete genomes and about 14% of the high-quality assemblies analyzed. The percentage of detection is
lower than that reported for Bacteria (about 40\%) (Makarova et al., 2020). However, whether the lower percentage of detection in Serratia reflects a distinguishing feature of the genus (particularly for the most representative analyzed marcescens species where the percentage was 12.6%) or a misrepresentative distribution of the available genomes in databases, remains to be established.

Most of the loci identified in this study were located within the genomic context mdtN-phnP previously reported in the species marcescens and now further extended to those of grimesii, inhibens, nematodiphila, plymuthica, and rubidaea. Three new possible contexts were also identified: one (puu genes-mnmA) shared by genomes of rubidaea and fonticola; and two (osmE-soxG and ampC-yebZ) detected in those of rubidaea. The context osmE-soxG might be closely linked to the cas gene set of subtype I-C (Table A2). Due to the low number of CRISPR-positive genomes of rubidaea and fonticola and genomes positive for the cas gene set I-C, further analyses are required to confirm this hypothesis.

A previous comprehensive study on the distribution of CRISPR-Cas systems in genomes of the Enterobacteriaceae family (now reorganized within the Enterobacterales order) showed the
predominant presence of subtype I-E and the rare coexistence of subtypes I-E and I-F1 in the same genome (Medina-Aparicio et al., 2018). Our data show the prevalence of subtype I-F1 (39.5\%), followed by subtypes I-E (about 5\%), and I-C (about 5\%). Detection of subtype I-C is the first report in Serratia. The prevalence of the subtype I-F1 in our subset of CRISPR-positive genomes is consistent with both the new reorganized Enterobacterales order (Adeolu et al., 2016) and data produced by Medina-Aparicio et al. (2018). Indeed, in the aforementioned study subtype I-F1 was found prevalent in genera Yersinia, Rahnella, and Serratia which are now part of the new Yersiniaceae family. On the other hand, the subtype I-E remains predominant within the Enterobacteriaceae family. Moreover, the finding of two distinct cas-gene sets (I-E/I-F1 or I-E*/I-F1) in only three Serratia genomes, confirms that the coexistence of these subtypes is not frequent. It is also important to note that the only Serratia strain harboring a type III system reported by MedinaAparicio et al. (2018) is ATCC 39006. This strain was not included in our study due to recommendations stated by Sandner-Miranda et al. (2018) which highlighted the need to revise the assignment of the above-mentioned strain to the Serratia genus. In this respect, it is noteworthy that in any complete genomes and high-quality assemblies considered in our study, the type III system was not detected.

Six different cas-gene set architectures were identified of which those reported as I-E unique locus 1 (characterized by a 0.6 kb cas3/ cas8e intergenic sequence), I-E* (characterized by the casbe translocation between cas7 and cas11) and I-F1 unique locus 1 (characterized by 0.4 kb cas3/cas8f1 intergenic sequence) are, to the best of our knowledge, the first ever detected in Serratia. Similar or identical architectures of I-E unique locus $1, I-E^{*}$, and I-F1 unique locus 1 have been reported for other bacteria genera: a similar architecture to I-E unique locus 1 has been described in Escherichia coli (IGLB fragment) where the cas3/cas8e intergenic sequence was $\sim 0.4 \mathrm{~kb}$ (Pul et al., 2010; Westra et al., 2010); an architecture identical to I-E* has already been detected in Klebsiella and Vibrio (I-E variant) strains (McDonald et al., 2019; Shen et al., 2017); a similar architecture to I-F1 unique locus 1 was reported in V. cholerae (IFV1), where the cas3/cas8f1 intergenic sequence was $\sim 0.1 \mathrm{~kb}$ (McDonald et al., 2019).

This study also supplies data on the presence/number of CRISPRs and their consensus DRs sequences in Serratia. Apart from canonical arrays (61.5\% of the total disclosed arrays), orphans (29.4\%) and aliens (10.2\%) arrays were also detected (Table 1; Figure 1). Orphan arrays might represent remnants of previous complete CRISPR-Cas systems (Zhang \& Ye, 2017). The presence of alien arrays found only in rubidaea complete genomes is, as far as we know, the first report in bacteria CRISPR-positive genomes. Its detection might be explained as traces of ancient complete CRISPR-Cas systems I-E/I-F1 or I-C/I-E/I-F1 coexistent within the same genome (Table 1). Alternatively, the aliens might result from single horizontal gene transfer events. Further analyses could unveil their genetic origin and the entity of their distribution among CRISPR-positive bacteria genomes. Detection of more alien arrays might unveil that the presence of multiple subtypes in a genome is
more frequent than it has been reported so far. Furthermore, consensus DRs specifically associated with the cas gene set I-E* were also first described (Table 2).

Finally, the phylogenetic tree generated by multiple alignment of the Cas3 sequences showed a potential sub-lineage (I-E*) within the I-E branch and thus might represent and/or anticipate a distinct clonal expansion of an I-E sub-population (Figure 4).

Knowledge of CRISPR-Cas systems is constantly expanding due to studies on newly available genomic sequences or genomic sequences not yet explored. The CRISPR-Cas systems classification is thus continuously updating also in light of their possible applications. Indeed, the CRISPR-Cas technology has undoubtedly revolutionized systems of genome editing with a wide range of potential industrial and biomedical applications. Other, more recent genome-editing tools are based on methods that make use of the Cas9 protein (Arroyo-Olarte et al., 2021). However, expression of foreign proteins with DNA-binding and editing activity appears toxic for many bacteria. Harness of endogenous CRISPR systems is a recent and promising new line of approach for bacteria genome editing (Klompe et al., 2019; Strecker et al., 2019).

Our study has contributed to expanding knowledge of the variability and distribution of CRISPR systems in the Serratia genus. Data here presented might be exploitable for native CRISPR effectors of this genus that includes species (e.g., marcescens) relevant in environmental and clinical fields. Moreover, the detection of the same subtype of cas-gene sets in different Serratia species and other genera highlights the open question of the molecular mechanisms yet to be identified that have allowed intra- and inter-species spread.

AUTHOR CONTRIBUTIONS

Maria Scrascia: Conceptualization (equal); investigation (equal); methodology (equal); writing - original draft (equal); writing - review and editing (equal). Roberta Roberto: Formal analysis (equal); investigation (equal). Pietro Daddabbo: Formal analysis (equal). Yosra Ahmed: Data curation (equal). Francesco Porcelli: Conceptualization (equal). Marta Oliva: Investigation (equal). Carla Calia: Investigation (equal). Angelo Marzella: Investigation (equal). Carlo Pazzani: Methodology (equal); supervision (equal); writing - original draft (equal); writing - review and editing (equal).

ACKNOWLEDGMENTS

We would like to thank Karen Laxton and Julian Laurence for their writing assistance. There are no funding agencies to report for this article.

CONFLICT OF INTEREST

None declared.

DATA AVAILABILITY STATEMENT

All data supporting the findings of this study are available within the article (Appendix) and its Supporting Information files (Supporting Information: Table S1: List of Serratia genome assemblies; Supporting Information: Table S2: Spacer analyses; Supporting Information: Figure S1:

Phylogenetic tree of 16S rRNA gene). Sequences used to generate the $16 S$ tree are available via the reported accession numbers of all analyzed strains; cas gene sequences are available via the CRISPR-Cas ${ }^{++}$database at https://crisprcas.i2bc.paris-saclay.fr/MainDb/StrainList.

ETHICS STATEMENT

None required

ORCID

Maria Scrascia (D) http://orcid.org/0000-0003-3351-5273

REFERENCES

Abreo, E., \& Altier, N. (2019). Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Scientific Reports, 9(1), 46. https://doi.org/10.1038/s41598-018-37118-0

Adeolu, M., Alnajar, S., Naushad, S., \& S Gupta, R. (2016). Genome-based phylogeny and taxonomy of the "enterobacteriales": Proposal for enterobacterales ord. nov. divided into the families enterobacteriaceae, erwiniaceae fam. nov., pectobacteriaceae fam. nov., yersinia ceae fam. nov., hafniaceae fam. nov., morganellaceae fam. nov., and budviciaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 66(12), 5575-5599. https://doi.org/10. 1099/ijsem.0.001485
Arroyo-Olarte, R. D., Bravo Rodríguez, R., \& Morales-Ríos, E. (2021). Genome editing in bacteria: CRISPR-Cas and beyond. Microorganisms, 9(4), 844 https://doi.org/10.3390/microorganisms9040844
Biswas, A., Staals, R. H. J., Morales, S. E., Fineran, P. C., \& Brown, C. M. (2016). CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genomics, 17, 356. https://doi.org/10.1186/s12864-016-2627-0
Bolotin, A., Quinquis, B., Sorokin, A., \& Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(Pt 8), 2551-2561. https://doi.org/10.1099/mic.0.28048-0
Butiuc-Keul, A., Farkas, A., Carpa, R., \& lordache, D. (2022). CRISPR-Cas system: The powerful modulator of accessory genomes in prokaryotes. Microbial Physiology, 32(1-2), 2-17. https://doi.org/10.1159/ 000516643
Chen, S., Blom, J., \& Walker, E. D. (2017). Genomic, physiologic, and symbiotic characterization of Serratia marcescens strains isolated from the mosquito Anopheles stephensi. Frontiers in Microbiology, 8, 1483. https://doi.org/10.3389/fmicb.2017.01483

Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B., Rocha, E. P. C., Vergnaud, G., Gautheret, D., \& Pourcel, C. (2018). CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for cas proteins. Nucleic Acids Research, 46(W1), W246-W251. https:// doi.org/10.1093/nar/gky425
Cristina, M., Sartini, M., \& Spagnolo, A. (2019). Serratia marcescens infections in neonatal intensive care units (NICUs). International Journal of Environmental Research and Public Health, 16(4), 610 https://doi.org/10.3390/ijerph16040610
Dalbon, V. A., Acevedo, J. P. M., Ribeiro Junior, K. A. L., Ribeiro, T. F. L., da Silva, J. M., Fonseca, H. G., Santana, A. E. G., \& Porcelli, F. (2021) Perspectives for synergic blends of attractive sources in south American palm weevil mass trapping: Waiting for the red palm weevil Brazil invasion. Insects, 12(9), 828. https://doi.org/10.3390/ insects12090828
Darling, A. E., Mau, B., \& Perna, N. T. (2010). Progressivemauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS One, 5(6), e11147. https://doi.org/10.1371/ journal.pone. 0011147

Díez-Villaseñor, C., Almendros, C., García-Martínez, J., \& Mojica, F. J. M. (2010). Diversity of CRISPR loci in Escherichia coli. Microbiology, 156(5), 1351-1361. https://doi.org/10.1099/mic.0.036046-0
Dong, H., Cui, Y., \& Zhang, D. (2021). CRISPR/Cas technologies and their applications in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 9, 762676. https://doi.org/10.3389/fbioe.2021.762676
Edgar, R. C. (2004a). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113. https://doi.org/10.1186/1471-2105-5-113
Edgar, R. C. (2004b). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. https://doi.org/10.1093/nar/gkh340
Faure, G., Makarova, K. S., \& Koonin, E. V. (2019). CRISPR-Cas: Complex functional networks and multiple roles beyond adaptive immunity. Journal of Molecular Biology, 431(1), 3-20. https://doi.org/10.1016/j. jmb.2018.08.030
Ferreira, R. L., Rezende, G. S., Damas, M. S. F., Oliveira-Silva, M., PitondoSilva, A., Brito, M. C. A., Leonardecz, E., Góes, F. R., Campanini, E. B., Malavazi, I., da Cunha, A. F., \& Pranchevicius, M. C. S. (2020). Characterization of KPC-producing Serratia marcescens in an intensive care unit of a Brazilian tertiary hospital. Frontiers in Microbiology, 11, 956. https://doi.org/10.3389/fmicb.2020.00956
Gupta, V., Sharma, S., Pal, K., Goyal, P., Agarwal, D., \& Chander, J. (2021). Serratia, no longer an uncommon opportunistic pathogen-case series \& review of literature. Infectious Disorders Drug Targets, 21, 300821191666. https://doi.org/10.2174/1871526521666210222 125215
Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S., \& Sternberg, S. H. (2019). Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature, 571(7764), 219-225. https://doi.org/10.1038/ s41586-019-1323-z
Koonin, E. V., \& Makarova, K. S. (2017). Mobile genetic elements and evolution of CRISPR-Cas systems: All the way there and back. Genome Biology and Evolution, 9(10), 2812-2825. https://doi.org/10. 1093/gbe/evx192
Lo, W. S., Huang, Y. Y., \& Kuo, C. H. (2016). Winding paths to simplicity: Genome evolution in facultative insect symbionts. FEMS Microbiology Reviews, 40(6), 855-874. https://doi.org/10.1093/femsre/fuw028
Louwen, R., Staals, R. H. J., Endtz, H. P., van Baarlen, P., \& van der Oost, J. (2014). The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiology and Molecular Biology Reviews, 78(1), 74-88. https://doi.org/10.1128/MMBR.00039-13
Mahlen, S. D. (2011). Serratia infections: From military experiments to current practice. Clinical Microbiology Reviews, 24(4), 755-791. https://doi.org/10.1128/CMR.00017-11
Makarova, K. S., Anantharaman, V., Grishin, N. V., Koonin, E. V., \& Aravind, L. (2014). CARF and WYL domains: Ligand-binding regulators of prokaryotic defense systems. Frontiers in Genetics, 5, 102. https://doi.org/10.3389/fgene.2014.00102

Makarova, K. S., Gao, L., Zhang, F., \& Koonin, E. V. (2019). Unexpected connections between type VI-B CRISPR-Cas systems, bacterial natural competence, ubiquitin signaling network and DNA modification through a distinct family of membrane proteins. FEMS Microbiology Letters, 366(8), fnz088. https://doi.org/10.1093/ femsle/fnz088
Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I., \& Koonin, E. V. (2006). A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 1, 7. https://doi.org/ 10.1186/1745-6150-1-7

Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J. J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Scott, D., Shah, S. A., Siksnys, V., Terns, M. P., Venclovas, Č., White, M. F., Yakunin, A. F., ...

Koonin, E. V. (2020). Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nature Reviews Microbiology, 18(2), 67-83. https://doi.org/10.1038/s41579-019-0299-x
McDonald, N. D., Regmi, A., Morreale, D. P., Borowski, J. D., \& Boyd, E. F. (2019). CRISPR-Cas systems are present predominantly on mobile genetic elements in vibrio species. BMC Genomics, 20(1), 105. https://doi.org/10.1186/s12864-019-5439-1
Medina-Aparicio, L., Dávila, S., Rebollar-Flores, J. E., Calva, E., \& Hernández-Lucas, I. (2018). The CRISPR-Cas system in enterobacteriaceae. Pathogens and Disease, 76(1), 1-15. https://doi.org/10. 1093/femspd/fty002
Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J., \& Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2), 174-182. https://doi.org/10.1007/s00239-004-0046-3
Nidhi, S., Anand, U., Oleksak, P., Tripathi, P., Lal, J. A., Thomas, G., Kuca, K., \& Tripathi, V. (2021). Novel CRISPR-Cas systems: An updated review of the current achievements, applications, and future research perspectives. International Journal of Molecular Sciences, 22(7), 3327. https://doi.org/10.3390/ijms22073327
Petersen, L. M., \& Tisa, L. S. (2013). Friend or foe? A review of the mechanisms that drive Serratia towards diverse lifestyles. Canadian Journal of Microbiology, 59(9), 627-640. https://doi.org/10.1139/ cjm-2013-0343
Pourcel, C., Touchon, M., Villeriot, N., Vernadet, J. P., Couvin, D., ToffanoNioche, C., \& Vergnaud, G. (2020). CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Research, 48(D1), D535-D544. https:// doi.org/10.1093/nar/gkz915
Pul, Ü., Wurm, R., Arslan, Z., Geißen, R., Hofmann, N., \& Wagner, R. (2010). Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Molecular Microbiology, 75(6), 1495-1512. https://doi.org/10.1111/j.1365-2958.2010.07073.x
Sandner-Miranda, L., Vinuesa, P., Cravioto, A., \& Morales-Espinosa, R. (2018). The genomic basis of intrinsic and acquired antibiotic resistance in the genus Serratia. Frontiers in Microbiology, 9, 828. https://doi.org/10.3389/fmicb.2018.00828
Scrascia, M., D'Addabbo, P., Roberto, R., Porcelli, F., Oliva, M., Calia, C., Dionisi, A. M., \& Pazzani, C. (2019). Characterization of CRISPR-Cas systems in Serratia marcescens isolated from Rhynchophorus ferrugineus (olivier, 1790) (coleoptera: Curculionidae. Microorganisms, 7(9), 368. https://doi.org/10.3390/microorganisms7090368

Scrascia, M., Pazzani, C., Valentini, F., Oliva, M., Russo, V., D'Addabbo, P., \& Porcelli, F. (2016). Identification of pigmented Serratia marcescens symbiotically associated with Rhynchophorus ferrugineus olivier (coleoptera: Curculionidae). MicrobiologyOpen, 5(5), 883-890. https://doi.org/10.1002/mbo3.377
Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. https://doi.org/10.1093/ bioinformatics/btu153
Shariat, N., \& Dudley, E. G. (2014). CRISPRs: Molecular signatures used for pathogen subtyping. Applied and Environmental Microbiology, 80(2), 430-439. https://doi.org/10.1128/AEM.02790-13
Shariat, N., Timme, R. E., Pettengill, J. B., Barrangou, R., \& Dudley, E. G. (2015). Characterization and evolution of salmonella CRISPR-Cas systems. Microbiology, 161(2), 374-386. https://doi.org/10.1099/ mic.0.000005

Shen, J., Lv, L., Wang, X., Xiu, Z., \& Chen, G. (2017). Comparative analysis of CRISPR-Cas systems in klebsiella genomes. Journal of Basic Microbiology, 57(4), 325-336. https://doi.org/10.1002/jobm. 201600589
Srinivasan, V. B., \& Rajamohan, G. (2019). Genome analysis of urease positive Serratia marcescens, co-producing SRT-2 and AAC(6')-Ic with multidrug efflux pumps for antimicrobial resistance. Genomics, 111(4), 653-660. https://doi.org/10.1016/j.ygeno.2018.04.001
Strecker, J., Ladha, A., Gardner, Z., Schmid-Burgk, J. L., Makarova, K. S., Koonin, E. V., \& Zhang, F. (2019). RNA-guided DNA insertion with CRISPR-associated transposases. Science, 365(6448), 48-53. https://doi.org/10.1126/science.aax9181
Vicente, C. S. L., Nascimento, F. X., Barbosa, P., Ke, H. M., Tsai, I. J., Hirao, T., Cock, P. J. A., Kikuchi, T., Hasegawa, K., \& Mota, M. (2016). Evidence for an opportunistic and endophytic lifestyle of the Bursaphelenchus xylophilus-associated bacteria Serratia marcescens PWN146 isolated from wilting Pinus pinaster. Microbial Ecology, 72(3), 669-681. https://doi.org/10.1007/s00248-016-0820-y
Wang, P., Zhang, B., Duan, G., Wang, Y., Hong, L., Wang, L., Guo, X., Xi, Y., \& Yang, H. (2016). Bioinformatics analyses of shigella CRISPR structure and spacer classification. World Journal of Microbiology \& Biotechnology, 32(3), 38. https://doi.org/10.1007/s11274-015-2002-3
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., \& Barton, G. J. (2009). Jalview version 2-A multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189-1191. https://doi.org/10.1093/bioinformatics/btp033
Westra, E. R., Pul, Ü., Heidrich, N., Jore, M. M., Lundgren, M., Stratmann, T., Wurm, R., Raine, A., Mescher, M., Van Heereveld, L., Mastop, M., Wagner, E. G. H., Schnetz, K., Van Der Oost, J., Wagner, R., \& Brouns, S. J. J. (2010). H-NSmediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Molecular Microbiology, 77(6), 1380-1393. https://doi.org/10.1111/j.13652958.2010.07315.x

Xue, C., \& Sashital, D. G. (2019). Mechanisms of type I-E and I-F CRISPRCas systems in enterobacteriaceae. EcoSal Plus, 8(2), 1-38. https:// doi.org/10.1128/ecosalplus.ESP-0008-2018
Zhang, Q., \& Ye, Y. (2017). Not all predicted CRISPR-Cas systems are equal: Isolated cas genes and classes of CRISPR like elements. BMC Bioinformatics, 18(1), 92. https://doi.org/10.1186/s12859-017-1512-4

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

[^2]| Subtype of cas gene cluster | Species | Strain | Source | Place of isolation | Year of isolation | Assembly level | Accession/Assembly |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I-C | rubidaea | NBRC 103169 | N/A | N/A | N/A | Contig | GCA_001598675.1 |
| I-C | rubidaea | CFSAN059619 | Throat | Pakistan | 1998 | Contig | NZ_JACYQC010000002 |
| I-E | marcescens | S8 | Rhynchophorus ferrugineus | Italy | 2013 | Contig | MK507744 |
| I-E | marcescens | AH0650_Sm1 | clinical | Australia | 2014 | Contig | GCA_001051865.1 |
| I-E | marcescens | EGD-HP20 | tannery waste | India | 2005 | Contig | GCA_000465615.2 |
| I-E unique locus 1 | marcescens | 2880STDY5683025 | clinical | United Kingdom | 2011 | Scaffold | GCA_001538785.1 |
| I-E unique locus 1 | marcescens | ML2637 | clinical | South Africa | 2016 | Scaffold | GCA_002118055.1 |
| I-E* | Serratia sp. | DD3 ${ }^{\text {c }}$ | Daphnia magna | Germany | 2008 | Contig | GCA_000496755.2 |
| I-F1 | marcescens | 2880STDY5682818 | blood | United Kingdom | 2002 | Scaffold | GCA_001539025.1 |
| I-F1 | marcescens | 2880STDY5682863 | blood | United Kingdom | 2004 | Scaffold | GCA_001539585.1 |
| I-F1 | marcescens | MC620 | clinical | United States | N/A | Scaffold | GCA_000418815.1 |
| I-F1 | marcescens | MC6001 | clinical | United States | N/A | Scaffold | GCA_000418835.1 |
| I-F1 | marcescens | MC6000 | clinical | United States | N/A | Scaffold | GCA_000418855.2 |
| I-F1 | marcescens | MC460 | clinical | United States | N/A | Scaffold | GCA_000418875.1 |
| I-F1 | marcescens | MC459 | clinical | United States | N/A | Scaffold | GCA_000418895.1 |
| I-F1 | marcescens | MC458 | clinical | United States | N/A | Scaffold | GCA_000418915.1 |
| I-F1 | marcescens | AB42556419-isolate1 | clinical | United States | N/A | Scaffold | GCA_000418935.1 |
| I-F1 | marcescens | 2880STDY5682911 | clinical | United Kingdom | 2006 | Scaffold | GCA_001537545.1 |
| I-F1 | marcescens | 2880STDY5683032 | clinical | United Kingdom | 2006 | Scaffold | GCA_001538705.1 |
| I-F1 | marcescens | 2880STDY5682819 | clinical | United Kingdom | 2006 | Scaffold | GCA_001537145.1 |
| I-F1 | marcescens | 2880STDY5682934 | clinical | United Kingdom | 2007 | Scaffold | GCA_001538745.1 |
| I-F1 | marcescens | 2880STDY5682957 | clinical | United Kingdom | 2008 | Scaffold | GCA_001540825.1 |
| I-F1 | marcescens | 2880STDY5682995 | clinical | United Kingdom | 2010 | Scaffold | GCA_001537925.1 |
| I-F1 | marcescens | 684_SMAR | clinical | United States | 2012-2013 | Scaffold | GCA_001065935.1 |

TABLEA1 (Continued)

Subtype of cas gene cluster	Species	Strain	Source	Place of isolation	Year of isolation	Assembly level	Accession/Assembly
I-F1	marcescens	SM03	clinical	India	2012	Scaffold	GCA_001909165.1
I-F1	marcescens	MGH136	clinical	United States	2015	Scaffold	GCA_002153355.1
I-F1	marcescens	at10508	clinical	Australia	2017	Scaffold	GCA_002250685.1
I-F1	marcescens	907_SMAR	clinical	United States	2012-2013	Contig	GCA_001068085.1
I-F1	marcescens	1145_SMAR	clinical	United States	2012-2013	Scaffold	GCA_001060335.1
I-F1 ${ }^{\text {a }}$	fonticola	51	Alces alces from permafrost	Russia	2010	Contig	GCA_001908045.1
I-F1	Serratia sp.	HMSC15F11	clinical	N/A	N/A	Scaffold	GCA_001808215.1
I-F1	Serratia sp.	TEL	soil	South Africa	2014	Contig	GCA_001011075.1
I-F1 ${ }^{\text {b }}$	Serratia sp.	H1w	Phytotelma	Malaysia	N/A	Contig	GCA_000633355.1
I-F1 ${ }^{\text {b }}$	Serratia sp.	H1n	Phytotelma	Malaysia	N/A	Contig	GCA_000633315.1
I-F1 unique locus 1	marcescens	410_SMAR	clinical	United States	2012-2013	Scaffold	GCA_001063325.1
I-F1 unique locus 1	marcescens	374_SMAR	clinical	United States	2012-2013	Scaffold	GCA_001064725.1
I-F1 unique locus 1	marcescens	454_SMAR	clinical	United States	2012-2013	Scaffold	GCA_001064975.1
I-F1 unique locus 1	marcescens	420_SMAR	clinical	United States	2012-2013	Scaffold	GCA_001063375.1
I-F1 unique locus 1	marcescens	398_SMAR	clinical	United States	2012-2013	Scaffold	GCA_001064855.1
I-F1 unique locus 1	marcescens	395_SMAR	clinical	United States	2012-2013	Scaffold	GCA_001064835.1
I-F1 unique locus 1	marcescens	370_SMAR	clinical	United States	2012-2013	Scaffold	GCA_001064715.1
I-F1 unique locus 1	marcescens	S5	Rhynchophorus ferrugineus	Italy	2014	Contig	MK507745
I-F1 unique locus 1	grimesii	NBRC 13537	N/A	N/A	N/A	Contig	GCA_001590905.1
I-E; I-F1	oryzae	J11-6	rice	China	2015	Scaffold	GCA_001976145.1
I-E*; I-F1	Serratia sp.	Ag1 ${ }^{\text {d }}$	Anopheles gambiae	France	2014	Contig	GCA_000743355.1
I-E*; I-F1	Serratia sp.	Ag2 ${ }^{\text {e }}$	Anopheles gambiae	United States	2014	Contig	GCA_000743365.1

Abbreviation: N/A, not applicable.
${ }^{a}$ Stop codon detected in the gene cas8f.
${ }^{\mathrm{b}}$ Truncated sequence: flanking regions of the identified set of cas genes were not completely available.
${ }^{\mathrm{c}}$ Two arrays (26 DRs and 45 DRs) were detected.
${ }^{\text {d }}$ Four arrays (5 DRs, 16 DRs, 20 DRs, and 27 DRs) were detected.
${ }^{\text {e}}$ Four arrays (3 DRs, 5 DRs, 16 DRs, and 27 DRs) were detected.
TABLE A2 Distribution of genomic contexts

Subtype of cas gene cluster	CRISPRs		Species	Strain	Source	Place of isolation	Year of isolation	Assembly level	Accession/Assembly	Genomic contexts
	ConsensusDR type	\#Arrays (\#repeats)								
I-C	I-C	1 (15)	rubidaea	FDAARGOS_926 ${ }^{\text {a }}$	N/A	N/A	N/A	Complete genome	NZ_CP065640.1	C
	I-E	1 (8)								A
	I-F	1 (6)								B
	I-F	1 (3)								D
I-C	I-C	1 (15)	rubidaea	NCTC12971 ${ }^{\text {a }}$	N/A	N/A	N/A	Complete genome	LR590463.1	C
	I-E	1 (8)								A
	I-F	1 (6)								B
	I-F	1 (3)								D
I-C	N/A	N/A	rubidaea	CFSAN059619	Throat	Pakistan	1998	Contig	NZ_JACYQC010000002	C
I-C	N/A	N/A	rubidaea	NBRC 103169	N/A	N/A	N/A	Contig	BCZJ01000003	C
I-E	I-E	$2(44,31)$	plymuthica	NCTC8900	N/A	N/A	N/A	Complete genome	LR134151.1	A
I-E	I-E	3 (11, 30, 31)	marcescens	S8	Rhynchophorus ferrugineus	Italy	2013	Contig	MK507744	A
I-E	N/A	N/A	marcescens	AH0650_Sm1	Clinical	Australia	2014	Contig	LFJS01000001.1	A
I-E	N/A	N/A	marcescens	EGD-HP20	Tannery waste	India	2005	Contig	AVSR01000005.1	A
I-E unique locus 1	I-E	$4(7,9,28,45)$	marcescens	E28	Hospital Ensuite	Australia	2012	Complete genome	CP042512.1	A
I-E unique locus 1	I-E	3 (8, 11, 23)	marcescens	SER00094	Clinical	United States	2017	Complete genome	CP050447.1	A
I-E unique locus 1	I-E	$3(12,40,70)$	marcescens	MSB1_9C-sc-2280320	N/A	N/A	N/A	Complete genome	LR890657.1	A
I-E unique locus 1	I-E	$2(36,48)$	plymuthica	NCTC8015	Canal water	N/A	N/A	Complete genome	LR134478.1	A
I-F1	I-F	$2(7,47)$	marcescens	PWN146	Bursaphelenchus xylophilus	Portugal	2010	Complete genome	LT575490.1	A
I-F1	I-F	$2(26,28)$	marcescens	12TM	Pharyngeal secretions	Romania	2014	Complete genome	CM008894.1	A

TABLEA2（Continued）

FCGU01000002．1
FCHP01000003．1
ATOK01000005．1 FCFC01000002．1

FCFQ01000002．1
FCGD01000002．1
FCJR01000002．1

FCLS01000002．1

 －
O
O
0
\vdots
\vdots
\vdots
\vdots JVJT01000036．1 LZOB01000021．1〔＇t00000T0ヨnפN

 Year of
isolation
 તi No No 2004
N／A
2006 2006
$\stackrel{\circ}{\circ}$人े
©
2010
 N $\underset{\sim}{c}$
$\underset{\sim}{c}$
$\underset{\sim}{1}$
$\underset{\sim}{1}$ N
N
Nे
Nे
Nे N $\stackrel{n}{i}$ Place of
isolation United States
 United
Kingdom United United States United States
United Kingdom United
Kingdom United United
Kingdom United
Kingdom Kingdom United
Kingd United States

 Australia ynchophorus
ferrugineus
 Clinical Clinical

Clinical
Clinical Clinical
Clinical 드․ ㄷㅡㅡㅡㅡㅡㅡㅡ․⿹ㅡㅡㅡㅡㅡㄹ 듣
 Clinical 2880STDY5682818 2880STDY5682863 C459 MC459 2880STDY5682911 2880STDY5683032 2880STDY5682819 M
on
0
0
0
0
0
0
0
0
\sim

 ～
\sum_{4}^{4}
N
N

 SM03
MGH136

 marcescens marcescens marcescens marcescens marcescens cens
cens
cens marcescens marcescens
marcescens
marcescens
marcescens
marcescens
marcescens
marcescens

marcescens | CRISPRs | |
| :--- | :--- |
| ConsensusDR | $\begin{array}{l}\text { \＃Arrays } \\ \text { type }\end{array}$ |
| （\＃repeats） | | 꾹 in Subtype of cas gene $\stackrel{-1}{1}$ I－F1 $\stackrel{-1}{\underline{1}}$ $\stackrel{-1}{\stackrel{1}{4}}$ $\stackrel{-1}{\underline{4}}$ $\stackrel{-1}{1}$ 분 픈 $\stackrel{\rightharpoonup}{4}$ $\stackrel{-1}{\underline{-}}$ I－F1

I－F1
I－F1
I－F1
I－F1
I－F1
I－F1
I－F1
TABLEA2 (Continued)

Subtype of cas gene cluster	CRISPRs		Species	Strain	Source	Place of isolation	Year of isolation	Assembly level	Accession/Assembly	Genomic contexts
	ConsensusDR type	\#Arrays (\#repeats)								
I-F1	N/A	N/A	marcescens	1145_SMAR	Clinical	United States	2012-2013	Scaffold	JWBLO1000004.1	A
I-F1	I-F	$2(8,18)$	fonticola	51	Alces alces from permafrost	Russia	2010	Contig	MQRH01000015.1	B
I-F1	I-F	$\begin{gathered} 4(12,16, \\ 23,72) \end{gathered}$	fonticola	DSM 4576	Water	N/A	1979	Complete genome	NZ_CP011254.1	B
I-F1	I-F	$2(16,25)$	inhibens	PRI-2c	Maize rhizosphere soil	The Netherlands	2004	Complete genome	NZ_CP015613.1	A
I-F1	I-F	$6(2,8,8,15)$	rubidaea	FDAARGOS_880	N/A	N/A	N/A	Complete genome	CP065717.1	A
	I-F	1 (15)								B
	I-F	1 (4)								D
I-F1	N/A	N/A	Serratia sp.	TEL	Soil	South Africa	2014	Contig	LDEG01000006.1	A
I-F1 unique locus 1	I-F	$3(6,11,30)$	marcescens	FZSFO2	Soil	China	2014	Complete genome	CP053286	A
I-F1 unique locus 1	I-F	$3(4,7,8)$	rubidaea	NCTC10036	Finger	N/A	N/A	Complete genome	LR134493.1	A
	I-F	1 (9)								B
	I-E	1 (4)								D
I-F1 unique locus 1	I-F	1 (11)	Serratia sp.	JUb9	Compost	France	2019	Complete genome	CP060416.1	B
	I-F	$3(3,8,8)$								A
	I-F	1 (3)								D
I-F1 unique locus 1	I-F	$2(16,17)$	rubidaea	FGI94	Atta colombica	Panama	2009	Complete genome	NC_020064.1/CP003942.1	A
	I-E	1 (10)								A
	I-F	1 (7)								B
I-F1 unique locus 1	N/A	N/A	grimesii	NBRC 13537	N/A	N/A	N/A	Contig	ВСТT01000008.1	A
I-E	N/A	N/A	oryzae	J11-6	Rice	China	2015	Scaffold	MOXD01000003.1	F

TABLEA2 (Continued)

Subtype of cas gene cluster	CRISPRs		Species	Strain	Source	Place of isolation	Year of isolation	Assembly level	Accession/Assembly	Genomic contexts
	ConsensusDR type	\#Arrays (\#repeats)								
I-F1								Scaffold	MOXD01000008.1	E
I-E*	I-E*	$2(5,20)$	Serratia sp.	Ag1	Anopheles gambiae	France	2014	Contigs	JQEIO1000052.1; JQEIO1000046.1	N/A
I-F1	I-F	$2(16,27)$						Contig	JQEI01000002.1	G
N/A	I-C	1 (10)	symbiotica	CWBI-2.3	Aphis fabae	Belgium	2009	Complete genome	GCA_000821185.1	H
N/A	I-E	1 (27)	marcescens	KS10 ${ }^{\text {b }}$	Marine	United States	2006	Complete genome	CP027798.1	A
N/A	I-E	1 (27)	marcescens	EL1 ${ }^{\text {b }}$	Marine	United States	2002	Complete genome	CP027796.1	A
N/A	I-E	1(39)	marcescens	CAV1492	Clinical	United States	2011-2012	Complete genome	NZ_CP011642.1	A
N/A	I-E	$2(4,34)$	marcescens	CAV1761	Peri-rectal	Virginia	2014	Complete genome	CP029449.1	A
N/A	I-E	1 (3)	Serratia sp.	KUDC3025	Rhizospheric soil	South Korea	2017	Complete genome	CP041764.1	A
N/A	I-F	1 (22)	marcescens	SCQ1	Blood from silkworm	China	2009	Complete genome	CP063354.1	A
N/A	I-F	1 (4)	marcescens	AR_0130	N/A	N/A	N/A	Complete genome	CP028947.1	A
N/A	I-F	1 (4)	marcescens	B3R3	Zea mays	China	2011	Complete genome	NZ_CP013046.2	A
N/A	I-F	1 (4)	nematodiphila	DH-S01	N/A	N/A	N/A	Complete genome	CP038662.1	A
N/A	I-F	1 (7)	plymuthica	AS9 ${ }^{\text {c }}$	Plant	Sweden	N/A	Complete genome	NC_015567.1	A
N/A	I-F	1 (7)	plymuthica	AS12 ${ }^{\text {c }}$	Plant	Sweden	1998	Complete genome	NC_015566.1	A
N/A	I-F	1 (7)	plymuthica	AS13 ${ }^{\text {c }}$	Plant	Sweden	N/A	Complete genome	NC_017573.1	A

TABLEA2 (Continued)

Subtype of cas gene cluster	CRISPRs		Species	Strain	Source	Place of isolation	Year of isolation	Assembly level	Accession/Assembly	Genomic contexts
	ConsensusDR type	\#Arrays (\#repeats)								
N/A	I-F	1 (3)	plymuthica	V4	Milk processing plant	Portugal	2006	Complete genome	CP007439.1	A
N/A	I-F	1 (2)	Serratia sp.	MYb239	Compost	Germany	N/A	Complete genome	CP023268.1	A
	I-F	1 (3)								B
N/A	I-F	1 (4)	Serratia sp.	SSNIH1	N/A	United States	2015	Complete genome	CP026383.1	A
N/A	I-F	1 (5)	rubidaea	NCTC9419	N/A	N/A	N/A	Complete genome	LR134155.1	B
	I-F	1 (7)								D
N/A	I-F	1 (3)	rubidaea	NCTC10848	N/A	N/A	N/A	Complete genome	LS483492.1	A
	I-E	1 (4)								A
	I-F	1 (7)								B

[^3]${ }^{\text {a,b,c }}$ Possible multiple records of the same genome. Spacers' sequences were identical.

[^0]: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
 © 2022 The Authors. MicrobiologyOpen published by John Wiley \& Sons Ltd.

[^1]: Note: Palindrome identified in each consensus DR is underlined.
 Abbreviation: CDR, consensus DR.
 ${ }^{\text {a }}$ Consensus DR-I group.
 ${ }^{\text {b }}$ Consensus DR associated with the 20DRs array in Ag1 strain, the 3DRs array in Ag 2 strain and the DD3 arrays (Table A1).
 ${ }^{\text {c }}$ Consensus DR-II group.
 ${ }^{\text {d }}$ Consensus DR associated with the 5DRs arrays in Ag1 and Ag2 strains (Table A1).

[^2]: How to cite this article: Scrascia, M., Roberto, R., D'Addabbo, P., Ahmed, Y., Porcelli, F., Oliva, M., Calia, C., Marzella, A., \& Pazzani, C. (2022). Bioinformatic survey of CRISPR loci across 15 Serratia species. MicrobiologyOpen, 12, e1339. https://doi.org/10.1002/mbo3.1339

[^3]: Abbreviation: N/A: not applicable.

