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Cardiovascular (CV) disease prevention in type 2 diabetes (T2D)
demands multifactorial interventions including treatment of dyslipid-
emia, hypertension, hypercoagulability, and certainly hyperglycemia
[1]. However, randomized controlled trials specifically addressing the
impact of intensive glucose control (IGC) on CV outcomes yielded am-
biguous results [2], while real-life evidence from a Swedish nationwide
registry showed hyperglycemia as the strongest predictor ofmyocardial
infarction (MI) and stroke [3]. Although CV outcome trials (CVOT) with
GLP-1 receptor agonists (GLP-1RA) were designed to achieve glycemic
equipoise, all showed a greater HbA1c reduction in the intervention
arm [4–10], allowing to consider the potential effect of different degrees
of glucose-lowering on their results.

A recentmeta-regression analysis suggested a significant association
between mean HbA1c reduction at the end of the trial and MACE HR in
CVOT with DPP-4 inhibitors, SGLT-2 inhibitors and GLP-1RA [11]. This
association would seem to be restricted only to non-fatal stroke and to
CVOT with GLP-1RA [12]. We have confirmed this association with
MACE HR considering the between-arm HbA1c difference throughout
GLP-1RA CVOT (R2 = 0.69, p b 0.05) (Fig. 1, A). Similarly, a mediation
analysis of the LEADER trial suggested HbA1c reduction as the most sig-
nificant mediator of the liraglutide beneficial effects on MACE [13]. The
meta-analysis by Kristensen et al. indicated that GLP-1RA CV protection
was driven by reductions of stroke and CV death compared to MI [14],
while the benefit of IGC in the historical trials was mainly due to MI re-
duction with little effect on stroke [2]. Interestingly, though, we have
performed a univariate regression analysis of GLP-1RA CVOT showing
that the association of between-arm difference in HbA1c and MACE
HR appears to be driven by reduction of stroke (R2 = 0.89, p b 0.01;
Fig. 1, B) rather than CV mortality or MI HR (Fig. 1, C–D). Despite its
limitations due to a relatively low number of studies vs. high number
of variables tested, a step-wise multiple regression analysis reinforces
this association, which is maintained after adjustment for sample size,
mean diabetes duration, and CV risk of the population (expressed as
stroke events/100 patient-year in the control arm of each trial) (R2 =
0.99, p b 0.05). Accordingly, a mediation analysis of the REWIND trial
recently estimated that HbA1c reduction accounted for approximately
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50% of the known salutary effect of dulaglutide on stroke [15]. The ben-
eficial effect of dulaglutide might be limited to ischemic stroke, which
was also the most frequently reported type of cerebrovascular event
in REWIND [6,15], with negligible effects on hemorrhagic stroke (HR
0.75, 95% CI 0.59–0.94 vs. HR 1.05, 95% CI 0.55–1.99) [15]. Of note, the
risk of stroke in the REWIND population was one of the lowest among
GLP-1RA CVOT, albeit the number of patients experiencing this type of
event was one of the largest (Table 1).

The REWIND trial stood out from the other GLP-1RA CVOT as it
enrolled a lower-risk population with better baseline glycemic con-
trol (median HbA1c 7.2%) and had the longest follow-up [9]. Also,
patients in the intervention arm exhibited a 0.61% lower least square
mean (LSM) HbA1c, indicating that most of them achieved and
maintained glycemic targets throughout the trial [9], differently
than in the other CVOT [14]. Until REWIND, CV benefit from GLP-
1RA was demonstrated only in the presence of established CV dis-
ease [16]. The hypothesis that tighter glucose control might have
contributed to dulaglutide showing MACE reduction in a population
at lower CV risk (2.7 vs. 3.7–6.3 CV events/100 patient/year in pla-
cebo arm of REWIND vs. other GLP-1RA CVOT, respectively) [17] is
tempting. Indeed, IGC previously showed a benefit largely in patients
without a history of CV events [2].

Of note, the LSM HbA1c difference in REWIND echoed that seen in
ADVANCE [18], one of the three IGC trials:−0.61% vs. −0.67%, respec-
tively. These two trials also share similar participants' age (66 years),
median baseline HbA1c (7.2%), mean duration of diabetes (10 years
vs. 8 years), and history of CV disease (31.5% vs. 32.2%), as well as
median duration of follow-up (5.4 vs. 5.0 years) (Table 2) [9,18]. None-
theless, ADVANCE failed to show the superiority of IGC onMACE reduc-
tion both at the end of the trial (HR 0.94, 95% CI 0.84–1.06, p = 0.32)
[18] and after 6 years of follow-up (HR 1.00, 95% 0.92–1.08) [19], in con-
trast to REWIND [9]. The underwhelming results of ADVANCE and the
other IGC trials were explained on the basis of using “flawed” drugs,
frequently causing hypoglycemia and weight gain, in the “wrong”
patients, as a high proportion of them had established CV disease
(32–40%) [20]. Not only did dulaglutide lack such adverse events,
but evidence accrued so far also showed that GLP-1RA may exert di-
rect CV protection through mechanisms independent of their
glucose-lowering effect [17,21], likely explaining the remaining
50% of dulaglutide-mediated cerebrovascular protection [15]. GLP-
1RA are widely known to hamper the progression of atherosclerosis
modulating systemic inflammation, oxidative stress and endothelial
function [21–23]. Furthermore, in vivo animal studies showed that
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Fig. 1. Association ofmean between-armHbA1c difference andMACEHR. The association ofmean between-armHbA1c difference andMACE HR (A) (R2= 0.69, p b 0.05) is largely driven
by reduction of stroke (B) rather than CV mortality (C) or MI (D) HR. The between-arm HbA1c difference was diversely reported in each GLP-1RA CVOTs. To obtain a homogeneous
measure, the graphs in each GLP-1RA CVOT were considered, and mean between-arm HbA1c difference was calculated using an Excel Macro specifically developed to measure the
areas of irregular polygons, corresponding to the area between the lines describing the HbA1c change over time in the control and intervention arms, respectively. These polygons
were traced and measured with reference to the axis scales in each graph, their area representing the integral of %HbA1c over the trial period. Finally, the mean HbA1c difference
throughout each trial was calculated by dividing each value per the respective trial duration.
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GLP-1RA administration pre- and post-experimental stroke reduced
local inflammation, excitotoxicity, blood-brain barrier leakage, oxi-
dative stress and apoptosis [24]; finally, these drugs might even
play a beneficial role in neurodegenerative diseases [25,26].

All in all, while IGC alone could hinder the development of athero-
sclerosis at its early stages but is not as relevant in the presence
of overt vascular damage due to the legacy effect [27], the anti-
atherosclerotic properties of GLP-1RA might be exploitable in T2D
Table 1
Incidence rate of stroke and number of patients presenting a first event of stroke in the
GLP-1RA CVOT.

Incidence rate of stroke
(events/100 patient-year)

Patients with stroke (n.)

Control
arm

Intervention
arm

Control
arm

Intervention
arm

ELIXA 0.90 1.00 60 67
LEADER 1.10 1.00 199 173
SUSTAIN-6a 1.31 0.80 44 27
EXSCEL 0.90 0.80 218 187
HARMONY
Outcomes

1.45 1.25 108 94

REWIND 0.81 0.61 205 158
PIONEER 6a 0.80 0.60 16 12

a In SUSTAIN-6 and PIONEER 6, these figures refer only to non-fatal stroke.
patients with both subclinical and full-blown CV disease [8,9,17].
Hence, the comparison between ADVANCE and REWIND trials fuels
the hypothesis that it is the combination of the GLP-1RA safety, anti-
atherosclerotic effects and sustained glucose-lowering in the context
of a favorable baseline metabolic profile that may bring to light the CV
superiority of dulaglutide, especially as pertains to cerebrovascular pro-
tection. Interestingly, applying the novel BRAVO risk engine onto the
population of CVOT with SGLT-2 inhibitors confirmed the relevant role
of glycemic control in CV benefit, mainly on angina and MI, but inaccu-
rately predicted a decrease in stroke that actually did not happen in any
of these trials [28]. This suggests that achieving glycemic control per se,
while useful, may not be sufficient to confer a cerebrovascular benefit
unless it is being achieved with GLP-1RA.

Where IGC strategies [2] andmost antidiabetic medications failed to
reduce the incidence of stroke and pioglitazone exhibited cerebrovascu-
lar protection in patients with a history of stroke and either diabetes or
insulin resistance yet increasing risk of fractures, weight gain and heart
failure [29,30], GLP-1RA hold the promise of combining overall safety
and cerebrovascular efficacy. Indeed, GLP-1RA CVOT were heteroge-
neous due to baseline characteristics of the population, study design,
drugs added in the control arm, adherence and exposure time to GLP-
1RA, and changes occurred in CV risk factors, including the level of
glycemic control [17]; glycemic efficacy undoubtedly reflected the rela-
tive potency of each GLP-1RA, the dose to be used in clinical practice
identified following the phase II program, and adherence/exposure to



Table 2
Key features of the ADVANCE and REWIND trials.

ADVANCE REWIND

Mean age (years) 66 66 Population
Female sex (%) 42 46
Mean diabetes duration (years) 8 10
CV disease history (%) 32 31
Median baseline HbA1c (%) 7.2 7.2

Trial design Gliclazide MR + other drugs required to achieve HbA1c b6.5% vs. standard treatment Dulaglutide + SOC vs. placebo +SOC Methods
Median follow-up (years) 5 5.4

MACE HR 0.94 (95% CI, 0.84–1.06) 0.88 (95% CI, 0.79–0.99) Outcomes
MI HR 0.92 (95% CI, 0.79–1.07) 0.96 (95% CI, 0.79–1.15)
Stroke HR 0.97 (95% CI, 0.81–1.16) 0.76 (95% CI, 0.62–0.94)
CV death HR 0.88 (95% CI, 0.74–1.04) 0.91 (95% CI, 0.78–1.06)
Death from any cause HR 0.93 (95% CI, 0.83–1.06) 0.90 (95% CI, 0.80–1.01)
Renal outcomesa HR 0.79 (95% CI, 0.66–0.93) 0.85 (95% CI, 0.77–0.93)

CV, cardiovascular; HR, hazard ratio; MACE, major adverse cardiovascular events; MI, myocardial infarction; MR, modified release; SOC, standard of care.
a Defined as new or worsening nephropathy in the ADVANCE trial and as development of a urinary albumintocreatinine ratio N33.9 mg/mmol in those with a lower baseline concen-

tration, a sustained 30% or greater decline in eGFR or chronic renal replacement therapy in the REWIND trial.
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themedication – a key factor to the GLP-1RA CV benefit [17]. Moreover,
the GLP-1RA CVOT differed in regard to stroke incidence and number of
patients with such events (Table 1). Despite the limitations of this
analysis and acknowledging GLP-1RA CVOTwere not powered to inves-
tigate the individual components of the primary endpoint, it could be
hypothesized that achieving glucose control specifically with GLP-1RA
might convey a distinct cerebrovascular benefit.
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