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consuming and requires the use of a large amount of toxic solvents. Thus, 

the aim of this work was the application of FT-IR spectroscopy for the 

development of classification models (i.e. Linear Discriminant Analysis, 

LDA; Soft Independent Modelling of Class Analogy, SIMCA) able to 

discriminate EVOO from non-EVOO based on FAEE content. To the aim, 113 

EVOO and 46 non-EVOO samples were analysed. Since the Principal Component 

Analysis revealed that the whole FT-IR spectral range (both raw or pre-

treated) was not promising in EVOO and non-EVOO distinction, a variable 

selection strategy was applied (i.e. SELECT algorithm). All the 

classification models were validated both by cross validation and with 

three different external test sets. The best and more robust LDA model 

was obtained with the raw FT-IR selected variables, reaching 96-100% of 

correct classification in prediction. SIMCA models resulted less 

reliable. In particular, the low specificity values (40-67%) revealed 

that there is a high probability of assignment of non-EVOO to the EVOO 

class. In conclusion, FT-IR spectroscopy coupled with a discriminant 

classification approach is a useful tool for a rapid and fast 

discrimination of EVOO and non-EVOO based on FAEE content. Since the 

variable selection strategy was effective, the development of simplified 

and cheap instruments can boost the FT-IR spectroscopy application also 

in small enterprises, giving the opportunity to acquire many important 

information about olive oils. 
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We are pleased to submit an original research article entitled “FT-IR extra virgin 

olive oil classification based on ethyl ester content” for consideration for publication in 

Food Control.   

We believe that this manuscript is appropriate for publication by Food Control since 

our findings give an original contribute to the topic of food quality assurance with a particular 

regard to the case of Extra Virgin Olive Oil (EVOO) one of the most appreciate food of the 

Mediterranean diet. Due to its great value, EVOO is often subjected to commercial fraud 

aimed at deal non-EVOO for EVOO. To assure that only best quality oils became EVOO 

several analytical parameters must be checked, some of them by tedious and not sustainable 

analysis as it is the case of fatty acid ethyl esters. Our aim has been the development of a 

rapid classification method based on FT-IR spectroscopy. It is our opinion that the 

development of such models is relevant not only for contributing to the production of 

scientific knowledge about that topic, but also matches the worldwide needs of more 

sustainable approaches. Although some papers have been published on related topic, as far as 

we know, they were related to not up-to-date parameters and did not use the same 

chemometric approach. 

This manuscript has not been published and is not under consideration for publication 

elsewhere.  

The authors certify that there is no conflict of interest with any 

financial/research/academic organization, with regards to the content/research work discussed 

in the manuscript. 

Thank you for your consideration. 
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Manuscript Number: FOODCONT-D-19-00134 

Title: FT-IR extra virgin olive oil classification based on ethyl ester content 

To the Editorial Board of Food Control, 

I am submitting the revised version of Ms. Ref. No.: FOODCONT-D-19-00134 entitled “FT-IR 

extra virgin olive oil classification based on ethyl ester content” by G. Squeo, S. Grassi, V.M. 

Paradiso, C. Alamprese and F. Caponio. 

Following the Reviewers’ comments the manuscript has been improved and all the changes 

introduced have been highlighted in red. 

Sincerely,  

Giacomo Squeo 

Reviewers' comments: 

Reviewer #1: In my opinion the subject of the manuscript has the scientific interest and the 

originality necessary for its publication.  

The authors wish to thank the Reviewer for her/his positive evaluation and for the usefulness 

suggestions. 

1. However, unfortunately the authors have considered a wrong legal limit for FAEE. The 

FAEE limit for seasons after 2015 is 30 mg kg-1, according to the current regulation EU No 

1348/2013 of 16 December. This must be considered and corrected through the entire document. 

Consequently, it seems logical to say the tests should be remade. 

To the best of our knowledge and as reported in lines 60-63 of the manuscript, the current 

regulation about FAEE limit is the Commission Delegated Regulation (EU) 2016/2095, which were 

released after the Reg. EU No 1348/2013 and fixes the ethyl esters limit at 35 mg kg
-1

 for the 

EVOO class. In the light of this, the authors think that the experimental approach of the manuscript 

is valid and no corrections are needed. 

2. One important idea I think is, if the question is the commercial class to which the product 

matches according to its content in alkyl esters... this, in my opinion, does not match the concept 

'authentication'. This concept refers to guarantee the nature of the product (olive), its geographical 

origin, varietal, etc. Therefore, in this context the word authentication, does not fairly match and 

disorients. 

*Detailed Response to Reviewers



The authors refer to the word authentication as the compliance with the food label description, as 

reported by a number of reviews covering food authentication issues. For instance, Danezis et al. 

(2016) stated that “Food authentication is the process that verifies that a food is in compliance with 

its label description. This may include, among others, the origin (species, geographical or genetic), 

production method (conventional, organic, traditional procedures, free range), or processing 

technologies (irradiation, freezing, microwave heating). The declaration of specific quality 

attributes in high-value products is of particular interest since these products are often target of 

fraudulent labelling”. In order to clarify this point, the reported definition has been added in lines 

118-119. 

(Danezis, G. P., Tsagkaris, A. S., Camin, F., Brusic, V., & Georgiou, C. A. (2016). Food 

authentication: Techniques, trends & emerging approaches. TrAC Trends in Analytical Chemistry, 

85, 123-132.) 

3. The end of the Introduction lacks the presentation of the objectives.  

The objectives of the work are reported at lines 111-115 and have been specified better.  

4. A detailed description of the analysis method of FAEE is required.  

Thank you for the suggestion. The description of the analytical method for FAEE determination has 

been added (lines 141-156). 

5. The Conclusions should wrap more on the results, before to declare opinions. SIMCA, 

LDA...? 

As suggested by the referee, some more details about the obtained results have been added in 

Conclusions (lines 364-368). 

6. Comments in the attached manuscript pdf notes: 

a. The FAEE limit for seasons after 2015 is 30 mg kg
-1

. This must be considered and corrected 

trough the entire document. European Commission Implementing Regulation. (2013). EU No 

1348/2013 of 16 December 2013 amending Regulation No 2568/91/EEC on the characteristics of 

olive oil and olive-residue oil and on the relevant methods of analysis. Official Journal of the 

European Community, L338, 1e37. Attachment 1 (p 36) 

Please, look at the answer to the point 1.  

b. The details shown in L77-80 are little significant (everyone who has a minimum lab. experience 

using hexane, knows the other mentioned solvents are worse to health). 

As suggested by the Reviewer, the details about the risk statements have been removed and the 

sentence arranged accordingly (lines 75-76). 



c. Approachs for olive oil classification as referred in L118-119 have been reported. The studies 

following deals similar approach in olive oils regarding other quality parameters. It could be 

logical reference them:  

Cayuela, J.A., García, J.F. 2017 - Sorting olive oil based on alpha-tocopherol and total tocopherol 

content using Near-Infra-Red Spectroscopy (NIRS) analysis. J. Food Engineering. 202, 79-88.  

Cayuela, J.A., García, J.F. 2018. Nondestructive measurement of squalene in olive oil by near 

infrared spectroscopy. LWT - Food Science and Technology 88, 103-108. 

As suggested by the Reviewer, the references have been added (lines 119-122). 

d. If the question is the commercial class to which the product matches according to its content in 

alkyl esters... This, in my opinion, does not match the concept 'authentication'. This concept refers 

to guarantee the nature of the product (olive), its geographical origin, varietal, etc. Therefore, in 

this context the word authentication, disorients.     

Please, look at the answer to the point 2. 

e. The meaning's nuance of 'authentication' does not fairly match with the manuscript's issue. 

Please, look at the answer to the point 2. 

f. The end of the Introduction lacks the presentation of the objectives. 

Please, look at the answer to the point 3. 

g. Collected...where? Some more details are required. Were the samples obtained in industries or 

was their origin commercial? Please, clarify their respective origin and detail. 

As requested, further details have been added (lines 133-137). 

h. A detailed description of the analysis method is required. (Fatty acid ethyl esters determination) 

Please, look at the answer to the point 4. 

i. L158-159: Please reference Fisher classification weight. 

As suggested by the Reviewer, Fisher classification weight has been defined (lines 179-182) and a 

reference has been added (line 182). 

(Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of 

eugenics, 7(2), 179-188.) 

l. The Conclusions should wrap more on the results, before to declare opinions. SIMCA, LDA...? 

Please, look at the answer to the point 5. 

 

Reviewer #3: The paper presents interesting and innovative result on classification of extra virgin 



olive oil according to the ethyl ester content using FTIR and chemometrics. Paper is generally well 

written, however several issues should be clarify before publication. 

The Authors wish to thank the Reviewer for her/his positive evaluation and for the useful 

suggestions.  

1. Lines 151-159. Why only these, limited pre-processing procedures were tested? Did authors test 

other methods for example, MSC, second derivative, and others and their combination. 

The authors have tested different pre-processing strategies and they have decided to show the most 

relevant ones in term of robustness of the results. Concerning the methods mentioned by the 

Reviewer, it should be considered that standard normal variate (SNV) and multiplicative scatter 

correction (MSC) often give very similar results and are widely regarded as exchangeable. Only the 

first derivative was tested as we do believe that softer pre-processing strategies should be preferred 

when they give good results.  

2. Line 157. More detailed description should be provide for SELECT algorithm 

Thank you for the suggestion. Additional information have been added in the text (lines 178-183). 

3. Line 209-222. It would be interesting to see results and discussion of PCA analysis for variables 

selected by SELECT algorithm.  

As suggested by the Reviewer, we prepared two Figures for the results of PCA made with the 

selected variables of the raw and the smooth-SNV-d1 datasets. However, we think that these results 

do not improve the manuscript, being the score plots very similar to the one obtained with all the 

variables and reported in Fig. 2. On the contrary, we thank the Reviewer for the suggestion at point 

4: the comments about the selected variables do improve the result discussion. 

In any case, the Figures about the requested PCA are reported here below. If the Reviewer still 

think that they are useful, we will be glad to add them in the manuscript. 

 

Principal Component Analysis results of variables selected from raw FT-IR spectra of extra virgin (EVOO) 

and non-extra virgin (nonEVOO) olive oil samples: a) PC1 vs PC2 score plot and b) loading plot for PC1 

and PC2. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Principal Component Analysis results of variables selected from FT-IR spectra of extra virgin (EVOO) and 

non-extra virgin (nonEVOO) olive oil samples, after pre-treatment with smoothing, standard normal variate 

and first derivative: a) PC1 vs PC2 score plot and b) loading plot for PC1 and PC2. 

 

 

 

 

 

 

 

 

 

4. Line 225-227. There is lack of important information, which 30 variables were selected for 

classification analysis. These variables should be described and interpreted in the terms of 

chemical composition of oils, especially in regard to the signals from ethyl ester. 

Thank you for the valuable suggestion. Details about the selected variables have been added in the 

text (lines 254-283). Moreover, a new Figure (now Fig. 3) has been added to better show the 

selected variables for the raw and the smooth-SNV-d1 datasets, i.e. the ones giving better results in 

both LDA and SIMCA approaches. 

a b 

a b 



Highlights 

 FT-IR spectroscopy discrimination of olive oils based on fatty acid ethyl esters 

 FT-IR variable selection improved olive oil discrimination 

 Linear Discriminant Analysis models reached up to 100% of correct prediction 

 Class modelling had high sensitivity but scarce specificity (<50%) in prediction 
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ABSTRACT 17 

According to the Regulation (EU) 2016/2095, extra virgin olive oils (EVOO) must contain a 18 

maximum of 35 mg kg
-1

 of fatty acid ethyl esters (FAEE). The official method for FAEE 19 

quantification is time-consuming and requires the use of a large amount of toxic solvents. 20 

Thus, the aim of this work was the application of FT-IR spectroscopy for the development of 21 

classification models (i.e. Linear Discriminant Analysis, LDA; Soft Independent Modelling of 22 

Class Analogy, SIMCA) able to discriminate EVOO from non-EVOO based on FAEE 23 

content. To the aim, 113 EVOO and 46 non-EVOO samples were analysed. Since the 24 

Principal Component Analysis revealed that the whole FT-IR spectral range (both raw or pre-25 

treated) was not promising in EVOO and non-EVOO distinction, a variable selection strategy 26 

was applied (i.e. SELECT algorithm). All the classification models were validated both by 27 

cross validation and with three different external test sets. The best and more robust LDA 28 

model was obtained with the raw FT-IR selected variables, reaching 96-100% of correct 29 

classification in prediction. SIMCA models resulted less reliable. In particular, the low 30 

specificity values (40-67%) revealed that there is a high probability of assignment of non-31 

EVOO to the EVOO class. In conclusion, FT-IR spectroscopy coupled with a discriminant 32 

classification approach is a useful tool for a rapid and fast discrimination of EVOO and non-33 

EVOO based on FAEE content. Since the variable selection strategy was effective, the 34 

development of simplified and cheap instruments can boost the FT-IR spectroscopy 35 

application also in small enterprises, giving the opportunity to acquire many important 36 

information about olive oils. 37 

 38 

KEYWORDS: FT-IR; LDA; SIMCA; Fatty acid ethyl esters; Extra virgin olive oil; 39 

Authentication.  40 
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1. Introduction 41 

Extra-virgin olive oil (EVOO) is a premium vegetable oil obtained from fresh fruits only by 42 

means of physical and mechanical processes (Council Regulation (EC) No 1513/2001). It has 43 

a great market value due to its appreciated features. Over the years, several European 44 

Regulations have modified the quality and purity characteristics of virgin olive oils (VOO) for 45 

their commercial classification and labelling. In 2011, the European Commission introduced a 46 

limit to the content of fatty acid alkyl esters (FAAE) in extra virgin olive oils (Commission 47 

Regulation (EU) No 61/2011). According to the mentioned Regulation, a virgin olive oil 48 

labelled as EVOO must contain a maximum of 75 mg kg
-1

 for the sum of ethyl esters (FAEE) 49 

and fatty acid methyl esters (FAME) or their sum could be between 75
 
and 150 mg kg

-1 
in 50 

case their ratio (FAEE/FAME) is guaranteed to be ≤ 1.5. 51 

FAAE are neutral lipids originating from the esterification of free low-weight alcohols with 52 

free fatty acids. Among involved alcohols, the most important are methanol and ethanol, 53 

yielding to FAME and FAEE, respectively. Among fatty acids, palmitic and oleic acids are 54 

the most common. Methanol and ethanol rise respectively from the progressive degradation of 55 

drupe cell walls and from fermentation processes mainly occurring during olive and/or oil 56 

storage in improper conditions. Fatty acids, instead, are commonly found in VOO to some 57 

extent, depending on the maturation stage of olives but, mainly, on their quality and integrity. 58 

FAAE content could be also affected by the extraction process (Alcalá et al., 2017; Caponio 59 

et al., 2018; Squeo, Silletti, Summo, Paradiso, Pasqualone, & Caponio, 2017). The 60 

Commission Regulation (EU) No 61/2011 has been finally modified by the Commission 61 

Delegated Regulation (EU) 2016/2095 focusing only on the FAEE content and setting the 62 

maximum value for EVOO at 35 mg kg
-1

 of oil. 63 

According to the official method (Commission Regulation (EU) No 61/2011), FAAE 64 

determination requires their separation from triacylglycerols and other oil constituents by 65 
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chromatography on a hydrated silica gel column using Sudan 1 (1-phenylazo-2-naphthol) as 66 

indicator for the elution. Then, the FAAE fraction is collected, dried and re-suspended in n-67 

heptane or iso-octane. Alkyl esters are finally separated by capillary gas-chromatography. 68 

Quantification is achieved by the addition of a proper internal standard. Overall, around 5 69 

hours are needed to complete the analysis, without considering the preparation steps such as 70 

silica conditioning. Besides, a large amount of organic solvents is used for the determination, 71 

mainly n-hexane. Indeed, approximately 250 mL are required for one determination. 72 

Considering that the analysis should be performed at least in duplicate in order to obtain 73 

reliable results, around 1 L of solvent is required for the analysis of only two oil samples. 74 

Hexane is toxic for humans as well as for the environment as extensively reported in hexane 75 

safety data sheet, according to the Regulation (EC) No 1272/2008. Thus, the possibility to 76 

significantly reduce the use of this solvent, together with the other organic solvents required 77 

for the analysis (diethyl ether, isoctane), matches the sustainability goals desired from 78 

Institutions all over the world (United Nations, 2016). The possibility of overcoming these 79 

issues (time-consuming analysis, health and environment hazards) lies in green approaches 80 

like the use of spectroscopic techniques that is one of the most promising. 81 

Spectroscopic techniques are non-destructive, green, fast and easy to use. Among them, mid-82 

infrared (MIR) spectroscopy is one of the most used, having an illustrious history in lipid 83 

chemistry, and it has experienced growing interest and applications thanks to the introduction 84 

of the Fourier transform instruments (FT-IR) (Dobson, 2001). The MIR range goes from 85 

around 2.5 to 25 m or, as most commonly reported, from 4000 to 400 cm
-1

. Absorption of a 86 

MIR photon typically excites one of the fundamental vibrations, associated with a change of 87 

the dipole moment of an oscillating molecule (Sikorska, Khmelinskii, & Sikorski, 2014). 88 

Despite the complexity of spectra collected along the food systems, the association of MIR 89 

spectroscopy with chemometrics allows the extraction of the significant and valuable 90 
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information (Gómez-Caravaca, Maggio, & Cerretani, 2016). Indeed, when spectra are 91 

recorded from real food samples, they contain information about different components of the 92 

sample matrix together with their interactions, and multivariate methods are successfully used 93 

in interpreting the spectra signals for analytical purposes (Bro, 2003; Kjeldahl & Bro, 2010, 94 

Sikorska, Khmelinskii, & Sikorski, 2014). Several chemometric approaches might be used, 95 

falling in two main classes: qualitative and quantitative methods. As regard to alkyl esters, in 96 

a previous study by Valli et al. (2013), Partial Least Square (PLS) regression models were 97 

tentatively developed for the quantification of FAAE based on VOO FT-IR spectra. However, 98 

they were aimed at the quantification of the sum of ethyl and methyl esters as well as their 99 

ratio, parameters that are no longer considered for the EVOO classification.  100 

After the introduction of the Commission Delegated Regulation (EU) 2016/2095, few authors 101 

have taken interest in FAAE determination by green methods. Indeed, near infrared (NIR) and 102 

Vis-NIR spectroscopy has been used to develop regression models for measuring total FAAE 103 

content, as well as FAEE and FAME content separately (Cayuela, 2017; Garrido-Varo, 104 

Sánchez, De la Haba, Torres, & Pérez-Marín, 2017). However, even though chemometric 105 

approaches can overcome the overlapping NIR signals resulting from first and second 106 

overtones and combinations of the fundamental vibrations, more accurate assignments of 107 

absorption bands can be reached by MIR spectroscopy. This is particularly relevant when 108 

assessing differences among molecules having similar bonds that scatter in a complex matrix 109 

such as oil. As far as we know, despite the importance of FAEE, no other attempts have been 110 

carried out by IR spectroscopy to develop a rapid procedure for their analysis. Starting from 111 

these considerations, the aim of this work was the application of IR spectroscopy to the 112 

development of classification models (based on Linear Discriminant Analysis and Soft 113 

Independent Modelling of Class Analogy) able to discriminate between EVOO and non-114 

EVOO based on FAEE content. Though FAEE is a continuous variable, a classification 115 
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approach was chosen instead of quantification since, by a practical point of view, the 116 

proposed method should address a discrimination issue regarding the authentication of 117 

EVOO, where authentication is intended as the compliance of a food with its label description 118 

(Danezis, Tsagkaris, Camin, Brusic, & Georgiou, 2016). A similar approach based on 119 

discriminant classification techniques has already been applied in the literature in order to 120 

develop fast sorting tests for olive oils, based on the content of -tocopherol or squalene 121 

(Cayuela & Garcia, 2018; Cayuela & Garcia, 2017). Supervised classification techniques use 122 

the information about the known class membership of training samples in order to create 123 

classification rules able to assign new unknown samples to one of the defined classes, based 124 

on their fingerprint measurement (Berrueta, Alonso-Salces, & Héberger, 2007). Thus, these 125 

chemometric techniques perfectly fit in authentication issues where the goal is to verify if a 126 

sample belongs to a predefined class, such in the case of EVOO and non-EVOO differentiated 127 

by the FAEE content.  128 

 129 

2. Materials and methods 130 

2.1. Sampling 131 

A set of 159 VOO (113 extra virgin and 46 virgin) from Apulia region (southeast Italy) were 132 

collected during 2016/17 and 2017/18 production seasons directly from olive mills located in 133 

different provinces (i.e., 100 samples from Bari province; 15 from Brindisi province; 13 from 134 

Barletta-Andria-Trani province; 11 from Foggia province; 11 from Lecce province; 9 from 135 

Taranto province). All samples were bulk oils, blends of the principal Apulian olive cultivars, 136 

all extracted by continuous plants equipped with decanter centrifuge. 137 

 138 

2.2. Fatty acid ethyl esters determination 139 
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The analysis of FAEE was carried out according to the official method (Commission 140 

Regulation (EU) No 61/2011). Briefly, for each determination, 15 g of pre-conditioned silica 141 

gel was suspended in n-hexane and introduced in a glass column for liquid chromatography. 142 

Samples were prepared by adding to 500 mg of oil 250 L of internal standard (methyl 143 

heptadecanoate 0.02% w/v in iso-octane) and 50 L of Sudan I solution (1% w/v). In order to 144 

remove impurities, 30 mL of n-hexane were percolated through the column before loading the 145 

sample. About 230 mL of n-hexane/ethyl ether mixture (99:1) was percolated through the 146 

column, with an elution flow of about 15 drops every 10 s, till the Sudan dye reached the 147 

bottom of the column. After the elution, solvents were evaporated and the remaining fraction 148 

containing the methyl and ethyl esters was diluted with 2 mL of iso-octane. The iso-octane 149 

solution (1 μL) was then injected directly on-column in the GC-FID system composed by an 150 

Agilent gas chromatograph (7890B, Agilent Technologies, Santa Clara, CA, USA) equipped 151 

with a FID detector (set at 350 °C) and a DB-5HT (15 m × 0.32 mm, 0.1 μm film thickness) 152 

nonpolar capillary column (Agilent Technologies, Santa Clara, CA, USA). The temperature 153 

gradient was programmed as follows: 80 °C for 1 min; from 80 to 140 °C at 20 °C min
-1

; from 154 

140 to 335 °C at 5 °C min
-1

; 335 °C for 20 min. Helium was the carrier gas at a flow rate of 2 155 

mL min
-1

. 156 

 157 

2.3. FT-IR spectra acquisition 158 

FT-IR spectra were collected by means of an ATR module on a Nicolet iS50 spectrometer 159 

(Thermo Fisher Scientific Inc., Waltham, MA, USA) under the following conditions: 4000-160 

600 cm
-1

 spectral range, 4 cm
-1

 resolution, 32 scans for both sample and background. The 161 

equipment was controlled by OMNIC software (Thermo Fisher Scientific Inc., Waltham, MA, 162 

USA). Six (6) spectra per each sample were collected at room temperature (around 25 °C), 163 

recording a new background every 3 spectra. Before each measurement, the ATR crystal was 164 
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cleaned with alcohol by a cotton wipe. Spectral acquisition was concomitant with the alkyl 165 

esters determination. 166 

 167 

2.4. Data analysis 168 

Dataset descriptive statistics were calculated by means of Minitab 17 software (Minitab Inc., 169 

State College, PA, USA). The replicates of FT-IR spectra collected from each sample were 170 

averaged before data elaboration. Spectral range was reduced in order to eliminate the noisiest 171 

and the least informative regions (600-650 cm
-1

; 1890-2600 cm
-1

). The resulting dataset (159 172 

samples x 5478 spectral variables) was pre-treated with smoothing (moving average, 15 173 

wavenumbers window size; SMOOTH), eventually followed by standard normal variate 174 

(SNV) or SNV coupled with first derivative (second polynomial order, 15 wavenumbers 175 

window size; d1), and explored by Principal Component Analysis (PCA). Then, a thirty-176 

variable selection was performed by SELECT algorithm (Forina, Lanteri, Casale, & Cerrato 177 

Oliveros, 2007; Kowalski, & Bender, 1976) that searches for the variable with the largest 178 

Fisher classification weight (FW), defined for the variable v and the two categories 1 and 2 as:  179 

   
              

 

 
               

  
  

               

  
 

  
    

  
   

 

where      is the mean of variable v in category c;    is the number of objects in category c 180 

(Fisher, 1936). The variable is selected and decorrelated from the remaining predictors and 181 

then the process continues to iterate until all the given variables are selected. 182 

The discrimination of EVOO (class 1; FAEE  35 mg kg
-1

) from non-EVOO (class 2; FAEE 183 

> 35 mg kg
-1

) samples was performed by applying two classification techniques on the 184 

reduced spectral datasets, i.e. Linear Discriminant Analysis (LDA), a supervised pattern 185 

recognition technique based on discriminant canonicals, and Soft Independent Modelling of 186 

Class Analogy (SIMCA), a supervised class-modelling technique. Classification models were 187 

https://www.sciencedirect.com/science/article/pii/S0023643815001619#bib11
https://www.sciencedirect.com/science/article/pii/S0023643815001619#bib11
https://www.sciencedirect.com/science/article/pii/S0023643815001619#bib12
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validated both in cross-validation by 5 cancellation groups (CV) and in prediction using three 188 

different external test sets, randomly created, each containing about 30% samples of the 189 

whole dataset. 190 

Since LDA maximises the separation among classes by the construction of an optimal a-191 

posteriori classification rule that assigns every object to one unique class, the LDA models’ 192 

performance was evaluated by correct classification percentage, i.e. by the percentage of 193 

samples correctly assigned by the a-posteriori rule to the a-priori defined class. In the case of 194 

SIMCA, sensitivity (true positive rate) and specificity (false positive rate) were also 195 

calculated to evaluate the effectiveness of the classification models. Indeed, in a class-196 

modelling technique, such as SIMCA, a sample can be assigned: (1) correctly and exclusively 197 

to the actual class; (2) exclusively to one class which differs from the actual class; (3) to no 198 

classes; or (4) to more than one class. Thus, while evaluating a SIMCA model, it comes the 199 

need to consider the latter three cases, sources of classification errors, through the calculation 200 

of the above-mentioned figures of merit (sensitivity and specificity). 201 

Data elaboration was performed by The Unscrambler X software (v. 10.2, Camo Software 202 

AS, Oslo, Norway) and the V-Parvus package (Forina, Lanteri, Armanino, Casolino, Casale, 203 

& Oliveri, 2008). 204 

 205 

3. Results and discussion 206 

3.1. Fatty acid ethyl ester content of olive oil samples 207 

Table 1 reports the descriptive statistics of the olive oil samples, divided by classes: EVOO 208 

(class 1), non-EVOO (class 2). The number of objects was quite different between the two 209 

classes since no previous information about the amount of FAEE in the collected samples 210 

were provided by producers. In any case, this situation is representative of a real scenario, 211 

because during the authentication of EVOO a low number of non-EVOO should be expected. 212 

https://www.sciencedirect.com/science/article/pii/S0023643815001619#bib10
https://www.sciencedirect.com/science/article/pii/S0023643815001619#bib10
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Class 2 (non-EVOO), although made up of a lower number of samples, was characterised by 213 

a higher variability, covering a wide range of FAEE content, from 37.7 to 298 mg kg
-1

. On the 214 

contrary, the variability of class 1 (EVOO samples) was quite low, as most samples had a 215 

FAEE content in the range 1-10 mg kg
-1

.  216 

 217 

3.2. FT-IR spectra and data exploration 218 

Fig. 1 depicts the average FT-IR spectra for the two olive oil classes (i.e. EVOO and non-219 

EVOO). Overall, spectra were similar to those reported for edible oils and olive oils (Dobson, 220 

2001; Sikorska et al., 2014). Although the spectra were almost overlapping, EVOO (class 1) 221 

presented slightly higher band intensities roughly along the whole spectral range. More 222 

evident differences in intensity were observed for particular bands, namely in the regions 223 

from around 3030 to 2800 cm
-1

, corresponding to different stretching vibrations, around 1238 224 

and 1160 cm
-1

, corresponding to -C-O, -CH2- stretching and bending, and around 1118, 1097 225 

and 1030 cm
-1

, corresponding to -C-O stretching (Sikorska et al., 2014). No considerable 226 

differences were observable for those bands reported as typical of the ester linkage (2730, 227 

2677 cm
-1

), with the exception of the peak around 1746 cm
-1

 (highlighted in Fig. 1), which 228 

might be potentially influenced by the amount of alkyl esters. The little differences observed 229 

between the spectra of the two oil classes confirm the necessity of chemometric tools to 230 

extract useful information. 231 

As a first step, an exploratory analysis was performed by PCA on both the raw and the 232 

different pre-treated data. Fig. 2a reports the score plot resulting from the raw data analysis. 233 

Few samples belonging to EVOO class resulted isolated from the sample cloud. However, no 234 

sample subsets were identified; EVOO and non-EVOO classes appeared confused. Sample 235 

distribution in the space of the first two principal components (PC) was very similar for any 236 

of the pre-treated dataset explored (data not shown). 237 
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The PC1 loadings plot (Fig. 2b) showed that the most informative variables affecting the 238 

sample distribution, i.e. the ones farer from zero, corresponded to the most evident differences 239 

in the absorbance observed in the raw spectra. PC2 loadings trend (Fig. 2b) remarked a strong 240 

negative influence in sample separation of the band from 3770 to 3070 cm
-1

, likely due to -241 

OH group of oxidation products (Sikorska et al., 2014), and a strong positive influence of 242 

variables around 3030 - 2800 cm
-1 

and 1743 cm
-1

. Those regions were highlighted also in the 243 

VOO spectra recorded by Valli et al. (2013) and pre-treated by multiplicative scatter 244 

correction and mean centering. 245 

 246 

3.3. Classification models 247 

As the whole spectral range did not look promising in EVOO and non-EVOO discrimination, 248 

a variable selection strategy was investigated. The SELECT algorithm allowed to identify the 249 

30 most informative variables, among the original 5478, to be used in the following 250 

classification procedures. Variable selection and classification model development were 251 

performed on both raw and pre-treated data (SMOOTH, SMOOTH-SNV, and SMOOTH-252 

SNV-d1). 253 

The 30 variables selected from the raw dataset are reported in Fig. 3a. Half of the selected 254 

variables belongs to the high informative fingerprint region, i.e. between 1500 and 650 cm
-1

. 255 

The signals from 750 to 679 cm
-1

 can be linked to the CH2 rocking vibrations occurring at 723 256 

cm
-1

 (Guillen & Cabo, 1997; Lerma-García, Simó-Alfonso, Ramis-Ramos, & Herrero-257 

Martínez, 2011). The variables selected between 1000 and 900 cm
-1

 could be linked to C-H 258 

out of plane deformation occurring at 968 cm
-1

 due to isolated trans double bonds presence 259 

(Guillen & Cabo, 1997). The 1119 cm
-1

 variable could originate from signal due to the C-O 260 

stretching vibration (Guillen & Cabo, 1997) as well as the variables selected in the range 261 

1300-1270 cm
-1

, where also the C-H bending vibration is expected to occur. The fourth range 262 
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of selected variables includes wavenumbers 1474-1472 cm
-1 

that are related to CH2 and CH3 263 

scissoring vibrations (Guillen & Cabo, 1997). The other selected variables lay outside the IR 264 

fingerprint region. Between 1626 cm
-1

 and 1580 cm
-1 

the selected signals can be related to C-265 

C vibration in aromatic structures. The absorption of carbonyl aldehydes and ketones are in 266 

the selected range 1730-1645 cm
-1 

(Van de Voort, Sedman, & Russin, 2001). The C=O 267 

stretching vibration characterises the variables selected between 1775 and 1713 cm
-1

; indeed, 268 

these are related to an intense peak that is normally observed at 1746 cm
-1

 and known to be 269 

related to carbonyl group vibration in ester linkage between fatty acid and glycerol (Sikorska 270 

et al., 2014). Other four variables were selected in the range 4000-3600 cm
-1

; normally, the 271 

vibration of C=O stretching belonging to triacylglycerol ester bonds occurs also in this range 272 

(Sikorska et al., 2014). 273 

In Fig. 3b the 30 variables selected for the SMOOTH-SNV-d1 dataset are reported. Apart 274 

from the variables selected in the regions already discussed above, relevant variables appear 275 

between 3500 and 2600 cm
-1

. In the region 3000-2800 cm
-1

, C-H stretching vibrations are 276 

present, such as the stretching of CH3 in the range 2962-2873 cm
-1 

(Vlachos, Skopelitis, 277 

Psaroudaki, Konstantinidou, Chatzilazarou, & Tegou, 2006) and two intense bands at 2924 278 

and 2853 cm
-1 

linked to CH2 stretching of the fatty acid chains in triacylglycerols (Guillèn & 279 

Cabo, 1997). Also C=O Fermi resonance of ester groups occurs at 2677 and 2730 cm
-1

 280 

(Guillèn & Cabo, 1997; Lerma-García et al., 2011). The last variables selected from the 281 

transformed dataset belong to the 4000-3500 cm
-1

 range, where the relevant bands are related 282 

to C=O overtone and stretching vibrations (Vlachos et al., 2006).  283 

Concerning LDA, good classification performances were obtained using both raw and 284 

SMOOTH-SNV-d1 pre-treated data, while less promising results were achieved with 285 

SMOOTH or SMOOTH-SNV data (Table 2). In details, for both raw and SMOOTH-SNV-d1 286 

datasets the correct classification rate in calibration was 100% no matter the external test set 287 
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used, whereas the SMOOTH-SNV model resulted affected by the data excluded from the 288 

calibration sets, ranging the correct classification from 98.9 to 99.1% depending on the 289 

considered test set. Smoothed data also provided very good classification rate in calibration 290 

even though less accurate than those of raw and SMOOTH-SNV-d1 datasets. With internal 291 

validation (cross-validation), the correct classification rates remained high for the SMOOTH-292 

SNV-d1 dataset (97.3-100%), while decreased for raw data (96.4-97.3%) as well as for 293 

SMOOTH-SNV data (90.1-94.6%). Data smoothing gave the best results just after those of 294 

SMOOTH-SNV-d1 dataset (95.8-99.1%). The prediction step confirmed the reliability of the 295 

models developed with raw and SMOOTH-SNV-d1 datasets; indeed the correct classification 296 

rates resulted between 95.8 and 100%, whereas the SMOOTH and SMOOTH-SNV data 297 

reached as high as 97.9 and 93.7% of correct classification, respectively. 298 

Considering that the dearth or soft mathematical pre-treatment should be preferred (Grassi, 299 

Casiraghi, & Alamprese, 2018), LDA results based on the selected variables of raw spectra 300 

looked the more promising among the developed models. In addition, the cross-validation 301 

results of raw data, being more stable when changing the external test set, revealed a more 302 

robust model. These results look much more promising than those obtained by Cayuela 303 

(2017) using NIR (100-2300 nm) spectra collected on a huge set of virgin (extra, virgin and 304 

lampante) olive oils. The author’s main purpose was to perform PLS regression models to 305 

quantify FAAE, FAEE, and FAME. Furthermore, an oil classification based on each 306 

parameter was performed, but no information about the classification algorithm was reported. 307 

Moreover, the performance evaluation was based on the correspondence between the 308 

regression predicted values and the defined classes of the samples from reference 309 

measurements. In any case, correct classification rates of the models based on FAAE (two 310 

classes with 75 mg kg
-1 

threshold), FAEE (two classes with 35 mg kg
-1 

threshold), and FAME 311 

(two classes with 35 mg kg
-1 

threshold) were 78.65-94.8%, 70.0-88.7%, and 95.2%, 312 
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respectively. Thus, it is difficult to deeply compare results by Cayuela (2017) with the LDA 313 

models obtained in this work.  314 

Class-modelling techniques are often more appropriate in food authentication than 315 

discriminant methods, because they aim at answering to the essential question in food 316 

authenticity problems: if a product is sold with a specific label, it is important to verify if it is 317 

really consistent with the claimed characteristics (Oliveri, Di Egidio, Woodcock, & Downey, 318 

2011). Moreover, this approach does not force a sample to belong to one specific class, 319 

resulting in a more severe but realistic scenario in real-life applications when a large number 320 

of non-target classes is possibly present. Thus, SIMCA models for olive oil discrimination 321 

based on FAEE classes were developed and the related results are provided in Table 3. 322 

Differently from what observed with LDA, the best classification performances were obtained 323 

on pre-treated data instead of raw ones. In details, models obtained with SMOOTH-SNV-d1 324 

treated spectra gave higher percentages of classification ability than those developed with 325 

SMOOTH or SMOOTH-SNV data, ranging from around 91 to slightly less than 96%. 326 

Looking at the prediction performances of the models, the correct classification ability was, 327 

on average, higher when smoothing was applied to spectral data although the absolute best 328 

performance was observed applying first derivative in combination with smoothing and SNV 329 

(up to 81.25%). Sensitivity of all the models was promising, showing a percentage of true 330 

positive assignments ranging from 75 to about 92%, being again, on average, SMOOTH 331 

model the best. Indeed, when comparing the Cooman’s plot (Fig. 4) of the best performing 332 

SIMCA models, it can be noticed that a similar and low number of samples is distributed 333 

outside the 95% model thresholds for SMOOTH and SMOOTH-SNV-d1 datasets (Fig. 4a and 334 

4c). It means that those samples were not accepted by any of the class models (false 335 

negatives). However, the most important issue concerned the low specificity affecting models. 336 

The average specificity was around 50% (Table 3) considering the different pre-treatments, 337 
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meaning that around the half of the test samples belonging to one of the class was not rejected 338 

from the assignment to the other class. Referring to the Cooman’s plots (Fig. 4), these 339 

samples are located in the small square on the bottom resulting from the intersection of 95% 340 

threshold lines of class 1 and class 2 models. Those samples were accepted by both the model 341 

of EVOO and non-EVOO samples. In particular, the lower specificity values of class 2 (non-342 

EVOO), which were on average between 40 and 50% for the three considered external sets 343 

(data not shown), implicates a high probability of assignment of non-EVOO to the EVOO 344 

class. Thus, it is clear that the application of SIMCA class-modelling could be hazardous for 345 

EVOO labelling based on FAEE content, and the discriminant strategy (LDA) should be 346 

preferred. Actually, when only two well-defined classes are considered, i.e. FAEE  35 mg 347 

kg
-1

 (EVOO class) and FAEE > 35 mg kg
-1

 (non-EVOO class), a discriminant-based strategy 348 

as LDA is a reliable option. Indeed, a discriminant classification method divides the sample 349 

domain into a number of sub-areas corresponding to the spaces of the considered classes. A 350 

sample is always assigned to one of the considered classes, even if it is located very far from 351 

all the classes. However, when only two well-defined classes are considered, such in this 352 

study, the classification-discriminant method can give reliable results thanks to the low 353 

complexity of the dataset (Di Egidio, Oliveri, Woodcock, & Downey, 2011). 354 

Future perspectives can consider the possibility to enlarge the VOO dataset by collecting 355 

samples from different Italian regions and covering different cultivars and storage strategies. 356 

Moreover, the non-EVOO class could be extended accordingly. From an instrumental point of 357 

view, a multichannel IR-instrument based on 30 or fewer wavenumbers could be developed 358 

from commercial prototypes and its reliability compared with the presented models.  359 

 360 

4. Conclusions 361 
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The potential of FT-IR spectroscopy coupled with chemometrics as a tool for a rapid and fast 362 

discrimination of extra virgin olive oils and virgin olive oils based on fatty acid ethyl ester 363 

content has been assessed. The legal limit for FAEE content enables to highlight two well-364 

defined classes of products, thus a discriminant classification approach can be considered as 365 

the most suitable in this context, to be preferred over the SIMCA class-modelling algorithm. 366 

LDA models based on selected features of the raw spectra datasets gave good and robust 367 

results, with percentages of correct classification in prediction higher than 95%. Being the 368 

discriminant classification results so promising, the application of FT-IR spectroscopy should 369 

be encouraged in the olive oil sector. Moreover, since the variable selection strategy was 370 

effective, the development of simplified and cheap instruments can boost their use also in 371 

small enterprises. Such instruments can be calibrated in order to give also results about oil 372 

composition, thus providing producers and control bodies with many important information 373 

about olive oil samples. 374 
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Figure captions 483 

Fig. 1. Average FT-IR spectra for extra virgin olive oils (Class 1-EVOO; black straight line) 484 

and non-extra virgin olive oils (Class 2-nonEVOO; grey dashed-line). In detail the peak 485 

around 1746 cm
-1

. 486 

 487 

Fig. 2. Principal Component Analysis results of raw FT-IR spectra collected on extra virgin 488 

(EVOO) and non-extra virgin (nonEVOO) olive oil samples: a) PC1 vs PC2 score plot and b) 489 

loading plot for PC1 and PC2. 490 

 491 

Fig. 3. FT-IR variables (cm
-1

) selected by SELECT algorithm before to perform classification 492 

of extra virgin and non-extra virgin olive oil samples: a) 30 variables selected from the raw 493 

dataset, b) 30 variables selected from the data pre-treated with smoothing, standard normal 494 

variate and first derivative. 495 

 496 

Fig. 4. Soft Independent Modelling of Class Analogy results for extra virgin (EVOO) and 497 

non-extra virgin (nonEVOO) olive oil samples. Cooman's plots obtained with the 30 FT-IR 498 

selected features and the external test set no. 3: a) smoothed data (SMOOTH; b) data pre-499 

treated with smoothing and standard normal variate (SMOOTH-SNV); c) data pre-treated 500 

with smoothing, standard normal variate and first derivative (SMOOTH-SNV-d1). 501 



 

 

Table 1. Descriptive statistics about the fatty acid ethyl ester content (mg kg
-1

) of the olive oil samples 

under study divided by classes: extra virgin olive oils (class 1), non-extra virgin olive oils (class 2). 

Class N Mean SD* CV* Min Median Max Range IQR 

1 113 6.68 4.95 74.21 1.81 5.34 31.36 29.54 3.93 

2 46 106.90 77.20 72.25 37.70 72.50 298.80 261.10 114.60 
N, number of samples; SD, standard deviation; CV, percent coefficient of variation; IQR, interquartile range. 

*Standard deviation and coefficient of variation are referred to the class distribution. 
 

 

 

 

 

 

 

  

Table



 

Table 2. Results of Linear Discriminant Analysis for olive oil discrimination based on fatty acid ethyl 

ester content: average correct classification percentages of models based on the 30 most informative 

variables of FT-IR spectra. 

  
Correct classification (%) 

Pre-treatment 
External test 

set 
Calibration Cross-validation Prediction 

 
1 100 97.30 95.83 

Raw 2 100 96.40 95.83 

 
3 100 96.61 100 

 
1 100 97.30 97.92 

SMOOTH 2 99.28 99.10 91.67 

 
3 99.49 95.76 97.56 

 
1 98.92 90.10 93.75 

SMOOTH-SNV 2 99.10 94.60 87.50 

 
3 99.15 91.53 90.24 

 
1 100 97.30 100 

SMOOTH-SNV-d1 2 100 100 95.83 

  3 100 99.15 100 

SMOOTH, moving average smoothing; SNV, standard normal variate; d1, first derivative. 

 

 

 

  



 

Table 3. Results of Soft Independent Modeling of Class Analogy for olive oil discrimination based on fatty acid ethyl ester content: average classification, 

prediction ability, and sensitivity and specificity values in prediction of models based on the 30 most informative variables of FT-IR spectra after different 

mathematical pre-treatments. 

      Calibration 
  
  

Prediction 

Pre-treatment External test set   
Classification ability 

(%) 
Prediction ability 

(%) 
Sensitivity 

(%) 
Specificity 

(%) 

Raw 
 

1 
 

83.78 
 

77.08 87.50 39.58 

2 
 

88.29 
 

75.00 91.67 45.83 

3   87.29   73.17 87.81 41.46 

SMOOTH 

1 
 

72.07 
 

79.17 91.67 45.83 

2 
 

85.59 
 

75.00 89.58 50.00 

3 
 

88.98 
 

80.49 90.24 53.66 

SMOOTH-SNV 
 

1 
 

83.78 
 

77.08 75.00 54.17 

2 
 

88.29 
 

75.00 79.17 66.67 

3 
 

89.83 
 

70.73 80.49 48.78 

SMOOTH-SNV-d1 
 

1 
 

95.50 
 

75.00 75.00 52.08 

2 
 

90.99 
 

81.25 70.83 62.50 

3 
 

95.76 
 

73.17 80.49 43.90 

SMOOTH, moving average smoothing; SNV, standard normal variate; d1, first derivative. 
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Figure 4. 

 

 


