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Abstract
Acute kidney injury (AKI) is a common consequence of sepsis 
with a mortality rate of up to 40%. The pathogenesis of sep-
tic AKI is complex and involves several mechanisms leading 
to exacerbated inflammatory response associated with renal 
injury. A large body of evidence suggests that inflammation 
is tightly linked to AKI through bidirectional interaction be-
tween renal and immune cells. Preclinical data from our and 
other laboratories have identified in complement system ac-
tivation a crucial mediator of AKI. Partial recovery following 
AKI could lead to long-term consequences that predispose 
to chronic dysfunction and may also accelerate the progres-
sion of preexisting chronic kidney disease. Recent findings 
have revealed striking morphological and functional chang-
es in renal parenchymal cells induced by mitochondrial dys-

function, cell cycle arrest via the activation of signaling path-
ways involved in aging process, microvascular rarefaction, 
and early fibrosis. Although major advances have been made 
in our understanding of the pathophysiology of AKI, there 
are no available preventive and therapeutic strategies in this 
field. The identification of ideal clinical biomarkers for AKI 
enables prompt and effective therapeutic strategy that 
could prevent the progression of renal injury and promote 
repair process. Therefore, the use of novel biomarkers associ-
ated with clinical and functional criteria could provide early 
interventions and better outcome. Several new drugs for AKI 
are currently being investigated; however, the complexity of 
this disease might explain the failure of pharmacological in-
tervention targeting just one of the many systems involved. 
The hypothesis that blood purification could improve the 
outcome of septic AKI has attracted much attention. New 
relevant findings on the role of polymethylmethacrylate-
based continuous veno-venous hemofiltration in septic AKI 
have been reported. Herein, we provide a comprehensive 
literature review on advances in the pathophysiology of sep-
tic AKI and potential therapeutic approaches in this field.
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Introduction

Sepsis-induced acute kidney injury (SI-AKI) is a com-
mon clinical complication of the critically ill patients and 
is associated with unacceptable high risk for mortality, 
and its impact extends into long-term outcomes, predis-
posing to the development of chronic kidney disease 
(CKD). SI-AKI has a complex and unique pathophysiol-
ogy principally characterized by an exacerbated immune 
response associated with systemic endothelial dysfunc-
tion and alterations of renal resident cells that may pro-
mote progression of kidney disease. The host immune re-
sponse is enhanced by several mediators including dam-
age- and pathogen-associated molecular patterns 
(DAMPs/PAMPs) that bind the pattern recognition re-
ceptors (PRR), such as toll-like receptors (TLR), ex-
pressed on the surface of immune cells [1–3], inducing 
their subsequent activation. Additionally, renal resident 
cells are able to directly interact with these factors, through 
TLR-2 and TLR-4, and actively participate in amplifying 
renal damage [1].

A crucial mediator of innate immune response in-
volved in sepsis is the complement system. The kidney is 
particularly susceptible to complement cascade, activated 
both by the pathogen itself and by damaged tissue. Ad-
ditionally, the end product of complement activation, the 
C5b-9 complex, is associated to the development of mul-
tiple organ failure (MOF) as well as other complement 
fragments with AKI severity after cardiac surgery [4]. 
Several preclinical and clinical studies have underlined 
the involvement of complement factors in the pathogen-
esis of AKI [5]. Unresolved recovery of renal function is 
associated with a great risk of physiological and struc-
tural changes that lead to the progression of chronic renal 
failure [6]. A broad range of potential pathophysiological 
mechanisms have been proposed to be involved in AKI-
to-CKD transition, including hypoxia and microvascular 
rarefaction, persistence of chronic inflammation and cell 
cycle arrest, development of interstitial fibrosis, cell and 
tissue senescence, and mitochondrial dysfunction [5, 7]. 
Although considerable advances have been made in our 
understanding of the pathophysiology of AKI and AKI-
to-CKD process, there are no effective and standardized 
therapeutic strategies in this field.

The introduction of highly sensitive and diagnostic-
specific biomarkers might enable the prompt detection 
and effective treatment of SI-AKI. This approach is criti-
cal for the development of new therapies that could take 
place in the earliest stages, before kidney damage occurs.

Several molecules have been tested in preclinical and 
clinical studies, to recover mitochondrial dysfunction, in-
flammation, and oxidative stress. Most of these interven-
tions have been proven ineffective since sepsis is a com-
plex disease that involves several mediators. Clinical 
studies showed that the use of adsorptive membrane he-
mofilter reduced systemic inflammation, improving 
blood pressure and urine output in critically ill patients 
[8]. In line with these findings, our group reported rele-
vant results on the role of polymethylmethacrylate 
(PMMA)-based continuous veno-venous hemofiltration 
(CVVH) in an animal model of SI-AKI. PMMA treat-
ment induced significant modulation of hemodynamic 
parameters, with preservation of renal function and 
avoidance of structural changes in the renal parenchyma 
of endotoxemic animals. This review deeply analyzes the 
potential mechanisms involved in the pathogenesis of 
septic AKI and the new advance in diagnosis and thera-
peutic strategies.

Pathophysiology of SI-AKI

As it is now largely recognized, SI-AKI pathophysiol-
ogy is complex and multifactorial. Over and above intra-
renal hemodynamic changes, a key role has emerged for 
several elements such as inflammation, vascular dysfunc-
tion, bioenergetics, and tubular cell adaptation to injury 
[1, 9, 10]. Consistently, Gomez et al. [11] proposed a “uni-
fied theory” of SI-AKI, consolidating the various mecha-
nisms into a coherent framework of synergic interactions.

Hyperinflammation is a pivotal hallmark in the patho-
physiology of SI-AKI, characterized by a humoral and a 
cellular mediator which exacerbate the renal injury. How-
ever, as the new sepsis definition implies, hyperinflam-
mation leads to neutrophil and macrophage/lymphocyte 
infiltration followed by MOF and poor outcomes [12]. 
Mounting evidence has shown that in AKI-induced sep-
sis, inflammatory mediators including DAMPs/PAMPs 
are released in the intravascular compartment. DAMP/
PAMP interaction with tubular injured cells via PRRs en-
hances the inflammatory damage by stimulating the pro-
duction of cytokines (i.e., TNF-α, IL-6, and IL-1β), che-
mokines (i.e., MCP-1), and adhesion molecules (i.e., 
VCAMs and ICAMs) (Fig. 1) [13]. Notably, among the 
PRR family, TLRs are the most extensively studied, fol-
lowing DAMP/PAMP interaction, leading to the recruit-
ment of innate immune system cells [14]. On the other 
hand, DAMP/PAMP interaction with tubular epithelial 
cells (TECs) stimulates the production of reactive oxygen 

D
ow

nloaded from
 http://karger.com

/bpu/article-pdf/52/Suppl. 1/71/4287485/000528685.pdf by guest on 07 January 2025



SI-AKI Pathogenesis and PMMA Impact 73Blood Purif 2023;52(suppl 1):71–84
DOI: 10.1159/000528685

species (ROS) resulting in exacerbating oxidative stress, 
mitochondrial injury, and apoptosis [15]. Thus, the pro-
inflammatory renal microenvironment milieu induced 
by sepsis plays a central role in causing tubular dysfunc-
tion. In this scenario, renal resident cells actively partici-
pate in amplifying this “cytokine storm” and perpetuat-
ing the renal damage [16].

The most relevant morphological change observed in 
the proximal and distal tubule is cellular shedding, char-
acterized by cellular desquamation with increased perme-
ability, resulting in the leakage of glomerular filtrate from 
the tubular lumen to the interstitium [17, 18]. According 
to these findings, in a recent study, a swine model of sep-
sis showed substantial histological changes compared to 
healthy animals. The observed differences included mor-
phological changes such as vacuolization, epithelial flat-
tening, and necrosis associated with the glomerular capil-
lary rarefaction with monocyte infiltration [19].

Besides the pro-inflammatory microenvironment, the 
vascular rarefaction after SI-AKI leads to hemodynamic 
derangement and tissue hypoxia. Regardless of hemody-
namic circulation, several clinical studies have observed 

a wide heterogeneity in blood flow distribution within tis-
sues [20]. The same microcirculatory derangement has 
been described in different models of SI-AKI [21].

In this regard, we should consider two important path-
ological processes. First, local hypoxia generated in hy-
perperfused areas worsens the inflammation and triggers 
an adaptive metabolic downregulation of the TECs. Of 
note, hypoxia per se exerts a central role in the pathogen-
esis of both vascular dysfunction and renal injury [22]. 
Second, the production of the pro-inflammatory cyto-
kines by endothelial cells increases the expression of ad-
hesion molecules, resulting in leukocyte adhesion, micro-
thrombi formation, and endothelial damage exacerba-
tion. In addition, endothelial decline is associated with 
nitric oxide (NO) reduction. Consequently, the loss of 
NO-mediated vasodilation further cooperates to worsen 
a preexisting hyperperfused environment [23, 24]. Final-
ly, the patchy pattern of NO distribution in renal paren-
chyma involves a heterogeneous distribution of renal 
blood flow caused by microcirculatory dysfunction in SI-
AKI [18, 25].

Fig. 1. Pathophysiology of SI-AKI. SI-AKI is recognized by a com-
plex mechanism characterized by the interplay between resident 
renal cells and immune system. Hyperinflammation is a physio-
logical stimulus triggered by sepsis injury and is characterized by 
a humoral and a cellular mediator which exacerbate the renal in-
jury. Hyperinflammation leads to neutrophil and macrophage/

lymphocyte infiltration followed by organ failure. PAMPs/DAMPs 
interaction with tubular injured cells via PRRs enhances the in-
flammatory damage by stimulating the production of cytokines 
and adhesion molecules. On the other hand, DAMP/PAMP inter-
action with proximal TECs results in ROS production, apoptosis, 
and cell cycle arrest.
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Alongside hypoxia, an increasing number of studies 
suggest that oxidative stress is an important hallmark of 
sepsis-induced tubular injury, as it seems spatially associ-
ated with renal areas of sluggish flow [26]. Interestingly, 
in vitro experiments revealed increased production of 
ROS in TECs and podocytes treated with bacteria-de-
rived toxins or plasma from septic patients [27, 28]. Nev-
ertheless, postmortem studies on septic patients have 
shown the heterogeneous distribution of tubular cellular 
injury with apical vacuolization but without extensive ap-
optosis or necrosis [22]. Accordingly, recent experimen-
tal studies provide essential insights into the central inter-
play between SI-AKI and apoptosis. The paucity of TECs 
apoptosis may be explained by the metabolic adaptations 
to a harmful renal environment favoring cell survival to 
the detriment of organ function.

In this scenario, mitochondrial dysfunction together 
with the oxidative outburst orchestrates the metabolic ad-
aptation of TEC resulting in energy optimization, repro-
gramming metabolism, and counteraction of proapop-
totic triggers [25, 29, 30]. Therefore, inflammation im-
plies an optimization and rearrangement of energy 
consumption, supporting vital functions. Interestingly, 
the downregulation of tubular transporters (i.e., ion 
channel and solute carriers) associated with apoptosis in-
hibition suggests an adaptive mechanism for survival 
[31]. Although it is still unclear how metabolic repro-
gramming occurs, experimental studies in septic AKI in-
dicate that the energy requirement may induce a switch 
from aerobic glycolysis to anaerobic glycolysis [32].

Hence, in SI-AKI physiopathology, the interplay of in-
flammation and microvascular dysfunction characterizes 
and amplifies renal injury. In addition, mitochondrial 
dysfunction may orchestrate a complete metabolic rear-
rangement, favoring cell survival processes (such as mi-
tophagy, autophagy, and cell cycle arrest), with signifi-
cant reduction in kidney function (i.e., tubular absorp-
tion and secretion of solutes).

Role of Immune Response and Complement System 
in SI-AKI

Recent evidence has observed that hyperinflammation 
in the renal environment after SI-AKI is associated with 
elevated innate and adaptive immune responses [33]. Ad-
ditionally, a broad range of mediators such as cytokines 
and chemokines together with complement system have 
been identified as pivotal factors in sepsis-related tissue 
injury. Notably, the complement system has been dem-

onstrated to have a significant function since its activa-
tion affects organ damage resulting in poor prognosis for 
septic patients [34].

In this point of view, Singbartl et al. [33] proposed a 
bidirectional interplay between the immune system and 
SI-AKI. Following the early host-microbial interactions, 
a widespread activation of the innate immune system co-
ordinates a defensive response followed by macrophage/
lymphocyte infiltration engaged by pro-inflammatory 
mediators released by injured cells.

First, both DAMPs and PAMPs participate in the de-
velopment of hyperinflammation since they activate 
macrophage via TLR [35]. The binding between DAMPs/
PAMPs and TLRs in both immune and non-immune 
cells triggers the assembly of inflammasome which medi-
ates the maturation and secretion of pro-inflammatory 
factors such as pro-IL-18 and pro-IL-1β [36]. As previ-
ously underlined, a wave of inflammatory cells including 
monocyte/macrophages and T- and B-cells infiltrate the 
renal interstitium. Many findings showed the importance 
of the TLRs in the development of sepsis, as the expres-
sion of TLR-2 and TLR-4 in monocytes of sepsis patients 
was upregulated when compared with healthy individu-
als [37].

Furthermore, a mechanistic role of lymphocytes in the 
pathogenesis of SI-AKI has been described. Especially an 
inflammatory subset of CD4+ T cells, the Th17, stimu-
lates neutrophil infiltration by IL-17 production. Re-
markably, hyperactivated CD4+Th17 cells were associ-
ated with poor outcomes in patients with septic shock 
[38]. IL-17 knockout mice exhibit a reduced neutrophil 
infiltration correlated with a reduced TECs apoptosis in 
SI-AKI. Additionally, IL-17 expression was associated 
with renal fibrosis in AKI-to-CKD transition [39].

Besides immune cell activation, cytokines and comple-
ment systems mediate a tight crosstalk between inflam-
matory and renal resident cells [40–42]. Cytokines such 
as are IL-6, IL-17, IL-8, and TNF-α have a wide range of 
action in endothelial dysfunction, immune cell activa-
tion, and exert an antiapoptotic and profibrotic activity 
[33].

Together with any other immune mediator, the com-
plement system plays a crucial function in SI-AKI [34]. 
Complement involves numerous factors which exert a 
broad number of physiological functions. Mainly, the 
complement system exerts a first-line defense against 
bacterial infection and mediates the cross-link between 
innate and adaptive immunity. Recent clinical and exper-
imental findings suggest that complement activation is 
associated with MOF and detrimental outcomes during 
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septic shock [43]. Additionally, anaphylatoxins C3a and 
C5a are mainly involved in vascular permeability, kidney 
fibrosis, and leukocyte extravasation [44, 45]. Similarly, 
anaphylatoxins C3a triggers a local inflammation and 
chemotaxis by binding with receptors on peripheral 
blood mononuclear cells (i.e., C3aR, C5aR1, and C5aR2) 
[5]. By this observation, severe septic patients showed el-
evated levels of C5a strongly associated with MOF and 
reduced survival rates [46].

Notably, a further player recently detected in the com-
plement activation is PTX3 [47]. Following SI-AKI, PTX3 
protein stimulates the classical pathway activation via 
C1q, resulting in the worsening of injury [48]. In our re-
cent study in a swine model of LPS-induced AKI, PTX3 
and C5b-9 deposits significantly increased in peritubular 
and glomerular capillaries after 24 h of LPS infusion [19]. 
Besides, increased activation of complement pathways 
was observed. These findings corroborate the essential 
role of PTX3 in complement activation and severity of 
sepsis disease. Finally, further evidence indicates a deep 

association between serum PTX3 levels and injury sever-
ity in several inflammatory and cardiovascular diseases 
[47].

Additionally, a tight association was found between 
C5b-9 and MOF development in SI-AKI [49]. C5b-9 is 
believed to play an important role in the pathogenesis of 
various kidney diseases by causing cellular injury togeth-
er with tissue fibrosis and inflammation [50]. Animal 
models of SI-AKI show a significant activation of C5b-9, 
especially in the tubulointerstitial compartment. Several 
in vitro experiments have suggested that C5b-9 exerts a 
profibrotic activity associated with the progression of re-
nal injury. In addition, human glomerular epithelial cells 
and TECs treated with C5b-9 significantly increased col-
lagen synthesis and cytokine production [51, 52]. Similar 
results were obtained in endothelial cells [53]. Collective-
ly, these findings support the crucial role of the immune 
response and complement in the pathophysiology of SI-
AKI and suggest a critical role of inflammation in the 
AKI-to-CKD transition.

Fig. 2. Pathophysiological mechanism involved in the AKI-to-
CKD transition. Several mechanisms contribute to maladaptive 
repair to AKI leading to CKD progression. Main mechanism in-
cludes inflammation, hypoxia, vascular rarefaction, and cellular 

dysfunction which ultimately lead to kidney fibrosis. HIF, hypox-
ia-inducible factor; EMT, epithelial/mesenchymal transition; End-
MT, endothelial/mesenchymal transition.
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AKI-to-CKD Transition
An adaptive response to AKI may lead to the complete 

recovery of the damage with the total repair of patholog-
ical changes [54]. On the other hand, depending on the 
severity and frequency of the lesion, a maladaptive repair 
may affect the renal tissue leading to the so-called “AKI-
to-CKD transition” which exacerbates the risk of devel-
oping CKD and end-stage renal disease. Regardless of the 
causes of AKI, CKD progression ensue a well-defined 
pathway leading to the detrimental effect of renal fibrosis 
and chronic damage [55]. So far, several pathophysiolog-
ical occurrences and actors have been investigated in the 
maladaptive response to AKI (Fig. 2).

Tubulointerstitial Fibrosis
Regardless of the different origins of the acute damage, 

tubulointerstitial fibrosis is one of the main driving forc-
es of AKI-to-CKD progression. Tubulointerstitial fibro-
sis occurs as a consequence of extracellular matrix (ECM) 
deposition via mesenchymal cells (fibroblasts or peri-
cytes) or both tubular and endothelial cells by tubular ep-
ithelial/mesenchymal transition (EMT) or endothelial/
mesenchymal transition, respectively. Of note, EMT aris-
es when TECs reach a mesenchymal phenotype and lose 
the ability to re-differentiate since they arrest the cell cycle 
in the G2/M phase [56]. Interestingly, a causal association 
between cell cycle arrest and fibrosis was supposed since, 
following AKI, the expression of both epithelial and mes-
enchymal markers (i.e., N-cadherin, vimentin, and 
αSMA) in tubular cells promote a partial EMT associated 
with a senescence-related secretory phenotype [57]. The 
consequent profibrotic factors production such as 
TGF-β1, PDGF-β, and CTGF/CCN2 together with stress-
induced factors expression (i.e., JNK and MCP-1) en-
hances an interstitial profibrotic milieu [58]. Other pro-
fibrotic growth factors produced by injured TEC are list-
ed in Table 1. Additionally, the production of PAMPs and 
DAMPs triggers a systemic inflammatory response 
marked by both humoral (cytokines and chemokines) 
and cellular (dendritic cells, macrophages, NK, and neu-
trophils) components boosting the renal inflammation 
[59]. At once, the Wnt/β-catenin signaling pathway seems 
to play a pivotal role in this process by supporting both 
the inflammatory response and ECM deposition [60, 61].

Increasing studies corroborate the role of capillary rar-
efaction in the development of renal fibrosis and chronic 
failure after AKI [62]. First, AKI-induced vascular injury 
leads to long-term implication since renal vascular endo-
thelial cells exhibit a poor regenerative capacity. Besides, 
experimental evidence in an animal model of endotox-

emia-induced AKI suggests that endothelial/mesenchy-
mal transition is one of the most important mechanisms 
in augmenting capillary rarefaction and chronic intersti-
tial fibrosis [63–65]. In addition, the detachment of the 
pericytes from the capillaries represents another mecha-
nism involved in AKI-induced CKD. Evidence demon-
strated that pericyte migration was followed by pericyte-
to-myofibroblast trans-differentiation during renal is-
chemia/reperfusion injury and endotoxemia, resulting in 
the loss of endothelial integrity and vascular rarefaction 
on one side and advancing collagen deposition on the 
other [59, 66–68]. Hence, the interplay between vascular 
dysfunction, inflammation, and ECM neogenesis are the 
three mainly detrimental outcomes causing the AKI-to-
CKD breakthrough.

Hypoxia and Mithocondrial Dysfunction
Hypoxia is one of the most pivotal triggers for the mal-

adaptive repair of acute damage. The counteracting play-
er of hypoxia is the hypoxia-inducible factor (HIF) acti-
vated during the hypoxic state which upregulates plenti-
ful target of downstream genes controlling hematopoiesis, 
angiogenesis, and metabolism [69]. Furthermore, plenty 
of evidence highlighted an HIF-dependent regulation ad-
dressed for several pro-fibrogenic genes including Col-I, 
PAI-1, ET-1, CTGF, MMP-2, and TIMP1 [70]. Addition-
ally, HIF activation can stimulate both the proliferation 
and recruitment of inflammatory cells to the injury site 
[69]. Consistent with these findings, the genetic ablation 
of HIF-1α in TECs improved the development of long-
term tubulointerstitial fibrosis and inflammation in a 
mouse model of AKI [71].

Mitochondrial dysfunction affects cellular function, 
leading to the loss of kidney function during acute injury. 
In this scenario, an abnormal mitophagy is associated 
with a failure of renal recovery after AKI by increasing the 
susceptibility to extended injury in tubular cells [7]. Sev-
eral studies on ischemia/reperfusion and sepsis models 
showed a weakened renal repair due to the persistent dis-
ruption of mitochondrial homeostasis resulting in severe 
tubular damage [72, 73]. Key elements in mitophagy, in-
cluding the PINK1-PARK2 pathway and BNIP3-mediat-
ed mitophagy pathway, seem to exert a protective role in 
preserving the renal tubular integrity and the normal re-
nal function following injury [74]. Interestingly, the 
PINK1-PARK2 downregulation in a model of LPS-in-
duced sepsis, correlated with TGF-β1 activation, mito-
chondrial ROS production, and inhibition of mitophagy 
[75].
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Cellular Senescence
Hypoxia, mitochondrial dysfunction, and epigenetic 

change affect cell cycle arrest and cellular senescence[76]. 
Cellular senescence is involved in the detrimental conse-
quences of long-term AKI damage and, consequently, in 
accelerating the maladaptive repair linking AKI to CKD. 
One of the well-known hallmarks of renal senescence is 
the downregulation of the antiaging molecule Klotho 
since the renal environment plays a central role in its reg-
ulation and homeostasis [77]. Cellular and animal models 
show an increase in downregulation of Klotho expression 
following AKI, outlining a thigh regulation by a few num-
bers of factors including HIF. For instance, inflammatory 
components together with the complement mediators 
such as C1 and C5a can reduce Klotho expression [60, 
78]. Finally, it has been suggested that several triggers, 
including the Notch signaling pathway, play an effective 
function in activating others pro-senescent molecules 
such as p21 [79].

Several epigenetic mechanisms orchestrate structural 
and functional changes in AKI, leading to extension of the 
tubular and vascular injury. During an acute lesion, the 
so-called “hypoxia memory” mediates important epigen-
etic changes in renal cellular chromatin thanks to histone 
acetylation and histone methylation processes [80–84]. 
Several endogenous mediators such as complement fac-
tors can affect the histone modification by various mech-
anisms. For instance, the complement C5a factor induces 

fibroblast-like phenotype and ECM deposition, via epi-
genetic modification in TECs [60].

Renal Replacement Therapy in SI-AKI

In course of sepsis, current therapeutic strategies are 
based on hemodynamic stability, support therapy, and 
early appropriate antibiotic administration to counteract 
infection. However, the use of inappropriate antibiotics is 
associated to overall increased risk of mortality [85] 
whereas every hour of delay in the administration in-
creases mortality by 8% [86]. Moreover, delayed and/or 
inappropriate antibiotic administration seems responsi-
ble for the developing of multidrug resistance gram-neg-
ative sepsis [87]. Indeed, gram-negative sepsis (Entero-
bacteriaceae, Pseudomonas aeruginosa, and Klebsiella 
pneumonia) has the highest incidence of multidrug resis-
tance sepsis [88]. The most common drugs associated 
with AKI are aminoglycosides, vancomycin, radiocon-
trast media, cisplatin, amphotericin B, foscarnet, and os-
motically active agents [89]. Thus, they should be used 
with caution to avoid renal damage, according to the 
KDIGO AKI guidelines.

Another important consideration is that there is no 
specific treatment to prevent or recover renal injury in 
septic patients, and the support by renal replacement 
therapy (RRT) becomes necessary when renal function is 

Table 1. Profibrotic growth factors involved in AKI-to-CKD transition

Factors Repored effect Study Authors

NGAL and KIM-1 Profibrotic and pro-inflammatory In vivo Ko et al. 2010 [66]
SerpinA3 Profibrotic and pro-inflammatory In vivo Navarro et al. 2019 [67]
CSF-1 M2 macrophage activation and polarization In vivo Wang et al. 2015 [68]
CTGF Profibrotic, fibroblast proliferation, and cytokine production In vivo and in vitro Geng et al. 2012 [69]
Notch pathway Profibrotic and pro-inflammatory In vivo and in vitro Kobayashi et al. 2008 [70]
WNT/β catenin 
pathway

Fibroblast to myofibroblast differentiation and regulation of Klotho In vivo and in vitro Maarouf et al. 2016 [71]
Kuang et al. 2021 [72]
Xiao et al. 2016 [73]

VEGF Macrophage recruitment; VEGF promoter gene hypermethylation  
at HIF-1α binding site promote fibrosis

In vivo Leonard et al. 2008 [74]

HIF HIF-1α promotes fibrogenesis via EMT and profibrotic gene 
activation

In vivo and in vitro Rosenberger et al. 2002 [75]
Higgins et al. 2007 [76]

YAP YAP activation promote renal fibrosis via KLF4 and MCP-1 In vivo Xu et al. 2021 [77]
Zheng et al. 2021 [78]

NFAT Increased expression of NFAT2 contributes to renal fibrosis In vivo and in vitro Xie et al. 2021 [79]
SIK1 Profibrotic effect via EMT process In vivo and in vitro Hu et al. 2021 [80]
Ang II Profibrotic, vascular rarefaction, and stimulation of cytokine 

production
In vitro and in vivo Chou et al. 2018 [81]

Snail1 Induction of partial EMT In vivo and in vitro Grande et al. 2015 [82]
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compromised [90]. In most critically ill patients, the in-
dication for RRT is unquestionable, and the procedure 
should be initiated without delay. Indeed, the 2012 KDI-
GO AKI guidelines [91] suggested early initiating RRT in 
patients with urgent indications such as severe acidosis, 
severe hyperkalemia, and acute lung edema.

However, the initiation of RRT might find several ob-
stacles related to unstable hemodynamic phase of septic 
patients. In addition, delays in RRT could compromise 
acid-base, electrolyte, and fluid balance, causing more se-
vere complications of AKI. Since 2012, several studies 
have attempted to provide an answer to this issue. Recent 
randomized clinical trials have evaluated the optimal tim-
ing to start RRT in critically ill AKI patients. A meta-anal-
ysis, mostly derived from observational studies, suggested 
a reduction in 28-day mortality in favor of earlier starts 
[92]. In contrast, both in the Artificial Kidney Initiation 
in Kidney Injury (AKIKI) multicenter trial [93] and Di-
alysis Early versus Late in the Intensive Care Unit (IDE-
AL-ICU) study [94], the benefit of an early RRT start was 
not provided. Therefore, these controversial findings 
contribute to lack of a strong recommendation for the use 
of early RRT in the KDIGO guidelines. In addition, the 
Surviving Sepsis Campaign Guidelines contain weak rec-
ommendations for the choice of intermittent hemodialy-
sis or continuous RRT (CRRT) [95].

In the late 1970s, CRRT was introduced in the inten-
sive care unit [96] in order to manage critically ill patients 
needing renal support therapy due to AKI and sepsis [97]. 
CRRT includes four basic techniques as follows: CVVH, 
continuous veno-venous hemodialysis, and continuous 
veno-venous hemodiafiltration. CRRT is being increas-
ingly performed in ICU because it offers certain practical 
advantages such as the cardiovascular tolerance, the con-
trol of electrolyte, and acid-base homeostasis [98]. Bel-
lomo et al. [99] suggested that CRRT should be the ther-
apy of choice for critically ill patients requiring RRT, es-
pecially for those with hemodynamic instability. CRRT 
has been criticized for its lack of specificity because it re-
moves both useful molecules and inflammatory media-
tors [100]. However, the absence of specificity could be 
seen as an advantage considering the complexity of the 
septic process.

High-volume hemofiltration (HVHF) is defined as a 
CRRT with a convective dose >35 mL/kg per h. The ben-
efits of HVHF were investigated in sepsis-like syndromes 
such as resuscitated cardiac arrest patients [101] and pa-
tients with severe acute pancreatitis [102]. A multicenter 
study (Hemofiltration Study: High Volume in Intensive 
Care [IVOIRE]) investigated the 28-, 60-, or 90-day mor-

tality after HVHF (70 mL/kg per h) or standard hemofil-
tration (35 mL/kg per h) for 96 h. No differences were 
found in terms of survival rate, renal function, hemody-
namics, or organ failure between two treatment modali-
ties. However, the results were underpowered since only 
30% of the estimated sampling size was effectively recruit-
ed [103]. In accordance, another clinical study that com-
pared the HVHF treatment with two different convective 
doses (85 mL/kg and 50 mL/kg per h) failed to demon-
strate improved survival and renal outcome [104].

Some clinical studies demonstrated that HVHF in-
duced an improvement in hemodynamics and organ per-
fusion and a decrease in circulating inflammatory cyto-
kines. However, these improvements did not ameliorate 
survival and clinical outcome [95]. Otherwise, recent 
clinical trial with septic children and children with septic 
AKI assessed the efficacy of HVHF (convective dose of 
50–100 mL/kg/h) in decreasing the plasma concentration 
of inflammatory mediators and improving hemodynam-
ics and survival rate [105]. The discordance between these 
findings is probably due to the use of conventional hemo-
filters in HVHF [106], such as membranes without ad-
sorbing properties [107]. Combining HVHF and adsorp-
tive membranes may optimize the technique, providing a 
significant clinical outcome and mortality benefit in sep-
tic patients.

Experimental Therapies for SI-AKI: Blood 
Purification Approaches

The complexity of septic disease characterized by a 
dysfunctional immune response with a cytokine storm, 
poor clinical outcomes, and low survival rates led to op-
timize available extracorporeal blood purification tech-
niques [96, 106]. Systemic immune imbalance is the com-
mon denominator between renal failure and sepsis. In-
deed, early renal dysfunction has been well documented 
in experimental septic models with systemic inflamma-
tion [19, 63, 67, 68, 108] and also in critically ill patients, 
according to SOFA scores [8, 109]. Ronco et al. [110] pro-
posed the “cytokine peak hypothesis,” affirming that the 
early removal of both pro- and anti-inflammatory media-
tors from the bloodstream may effectively prevent the 
toxic tolerance, reducing local and systemic injuries. In 
addition, the removal of cytokines might influence the 
level of local inflammatory mediators, preserving organ 
function [110–112]. The hypothesis that blood purifica-
tion improves the outcome of SI-AKI remains to be es-
tablished.
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In the last decades, new adsorptive membranes have 
been developed to offer both renal support and ameliora-
tion of hemodynamic stability. These membranes have 
the advantage to enhance the clearance of middle-to-high 
molecular weight mediators. Polymyxin B is a resin mem-
brane with demonstrated capacity to bind endotoxin, de-
creasing circulating LPS levels in septic patients [113]. 
Multiple clinical trials have been conducted to determine 
the efficacy of PMX-HP and have shown conflicting re-
sults [114]. A multicenter pilot trial enrolled 36 surgical 
patients with intra-abdominal sepsis and demonstrated 
that the treatment with 2-h PMX-HP improved left ven-
tricular function and decreased RRT requirement [114]. 
Accordingly, another clinical trial, Early Use of Polymyx-
in B Hemoperfusion in Abdominal Sepsis (EUPHAS), re-
ported significant improvements in terms of hemody-
namic stability, renal function, and 28-day survival in pa-
tients with severe intra-abdominal sepsis, treated with 
PMX-HP [115]. A multicenter trial, Safety and Efficacy of 
Polymyxin B Hemoperfusion for Septic Shock (EU-
PHRATES) analyzed the effects of 2 PMX-HP sessions 
versus hemoperfusion plus standard therapy in 450 pa-
tients with septic shock. The authors did not find signifi-
cant improvement in survival rate and renal function 
[116]; however, a post hoc analysis of the trial focusing on 
patients with endotoxin activity assay between 0.6 and 0.9 
reported a significant improvement in mortality as well 
as in hemodynamic and respiratory endpoints [117]. In-
terestingly, Srisawat et al. [118] demonstrated for the first 
time that PMX-HP improved mHLA-DR expression in 
severe sepsis patients, providing beneficial effects in im-
mune response.

CytoSorb membrane is used as hemoperfusion car-
tridge to absorb and remove high cytokines. Several stud-
ies showed the capacity of this membrane to remove cy-
tokines, complement mediators, PAMPs, and DAMPs 
[119–121]. However, these studies did not report im-
provements in terms of hemodynamics and renal func-
tion. CytoSorb has been used to reduce inflammatory re-
sponse in course of severe pancreatitis or cardio-pulmo-
nary bypass [122]. The first results of the clinical trial, 
NCT02312024, related to the use of CytoSorb adsorber in 
real-life critically ill patients, reported significantly de-
crease of IL-6 levels and no declines in SOFA scores [123].

Oxiris is AN69-based membrane designed specifically 
for cytokine and LPS removal, through its surface treated 
with polyethyleneimine and heparin [95]; it is capable of 
removing inflammatory mediators. Moreover, a random-
ized double-blind crossover study of septic shock-related 
acute renal failure showed beneficial hemodynamic ef-

fects and reduced levels of LPS and pro-inflammatory 
mediators compared to standard hemofilter [124]. How-
ever, evidence supporting its favorable outcomes on renal 
function has to be demonstrated.

PMMA Membrane Hemofilter: Recent Advances

Another membrane with adsorptive properties is the 
PMMA characterized by larger and longer pores and an 
overall high-specific surface area dedicated, almost exclu-
sively, to trap substances with high molecular weights 
[95]. PMMA is principally composed of two methylmeth-
acrylate polymer elements that, when mixed together, 
generated a synthetic polymeric membrane [95]. This fil-
ter was developed for dialysis treatment in chronic field; 
moreover, PMMA showed excellent capacity to remove 
β2-MG by adsorption, decreasing toxic effects of this 
pathogenic molecule, involved in dialysis-related amyloi-
dosis [125]. In the last forty years, the potential of this ad-
sorptive membrane has been well recognized. Indeed, sev-
eral clinical studies revealed significant effects in critically 
ill patients that cannot be explained as those of RRT alone 
[95]. In particular, there was a rapid improvement in sev-
eral clinical symptoms and also clinical parameters such 
as recovery of urine output and mean arterial pressure 
[109, 126, 127]. Of course, these results could be related to 
the capacity of PMMA to remove pathogenic mediators.

Matsuda et al. [126] investigated the effectiveness of PM-
MA-CHDF treatment in 43 consecutive septic shock pa-
tients with AKI, comparing it to a standard hemofilter 
made of polyacrylonitrile. Following 24 h of treatment, the 
authors found an increase of urine output and amelioration 
of hemodynamic stability compared with standard hemo-
filter. Accordingly, Sakamoto et al. [127] showed a great ef-
ficacy of PMMA for removal of several cytokines in septic 
patients. Then, these clinical findings showed that PMMA 
membrane hemofilter in CHDF modality reduced systemic 
inflammation and improved hemodynamic stability and 
renal function in critically ill patients [8].

Different publications show in vitro data on the effect 
of PMMA high adsorptive properties in removing IL-6, 
IL-8, IL1-β, TNF-α, and HMGB-1 [95, 128]. Recently, a 
new version of PMMA membrane hemofilter for contin-
uous RRT obtained the CE mark and is available for the 
clinical use in Europe. This membrane, HEMOFEEL CH-
1.8 W, is a non-ionic PMMA membrane with an effective 
surface area of 1.8 m2, an internal hollow fiber diameter 
of 240 μm, and a wall thickness of 30 μm. A declared cut-
off of 38 kD with an ultrafiltration rate of 30 mL/h/mm 
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Hg, measured in standard experimental setting condition 
with a Qb = 200 mL/min.

Considering the principal clinical signs for AKI, such 
as the significant increase in serum creatinine, decrease 
in urine output, and the sepsis-induced hypotension, our 
group recently demonstrated the effectiveness of PMMA 
to recover renal function and hemodynamic status com-
pared to polysulphone (PS) treatment in a swine model 
of LPS-induced AKI [19]. Moreover, histological analysis 
and, in particular, Masson trichrome staining underlined 
the impact of PMMA in reducing renal damage and early 
fibrosis with respect to PS [19]. Interestingly, at systemic 
level, we found that PMMA and not PS reduced LBP, se-
rum complement activation, and significantly reduced 
circulating sCD40 and sCD40L [19].

LBP is an acute-phase protein, synthesized by hepato-
cytes that enhances and amplifies cellular response to en-
dotoxin, and it is crucial in the development of early renal 
fibrosis [63, 67, 129–131]. Interestingly, PMMA signifi-
cantly removed LBP from blood circulation, suggesting 
its efficacy in preventing renal fibrosis and the subsequent 
progression to CKD. In addition, it was able to modulate 
the sCD40L/sCD40 axis, through the removal of both 
mediators [19]. Then, the ability of PMMA is to remove 
those mediators that are present in large number, pre-
serving homeostatic balance, assuring better immune 
competence in septic patients, and avoiding immunode-
pression phase and secondary infections.

Several studies reported that the gene expression pro-
files of circulating leukocytes correlate with renal diseases 
[132, 133] and might be a potentially useful tool for dis-
covery-oriented studies of the pathogenesis of sepsis and 
severe infection [134, 135]. Indeed, such studies are based 
on the assumption that molecular profiling of circulating 
blood cells might reflect physiological and pathological 
events occurring in different tissues of the body [135]. 
Interestingly, we analyzed gene expression profile of cir-
culating leukocytes, and we provided molecular explana-
tion of the PMMA effectiveness by modulation of PBMC 
transcriptome [19]. In particular, our analysis demon-
strated an increased expression of several genes involved 
in inflammatory response and complement system acti-
vation with significant downregulation in PMMA-treat-
ed peripheral blood mononuclear cells that was also as-
sociated to better renal recovery [19].

In addition, hemadsorption with this new membrane-
modulated local and systemic complement activation was 
contributing to the balance between pro- and anti-in-
flammatory processes. Therefore, the use of the new 
PMMA membrane hemofilter might prevent an exacer-

bated inflammatory response on one hand and the pa-
ralysis of cell-mediated immunity on the other, resulting 
in early recovery of renal function. Considering these 
findings, we believe that PMMA-CVVH treatment might 
represent a promising therapeutic strategy to modulate 
cytokine storm and to assure immune competence with a 
significant impact on short- and long-term outcomes for 
patients with systemic inflammatory syndrome.

Conclusion

The early application of blood purification therapies to 
remove circulating inflammatory mediators and bacterial 
toxins might improve immune homeostasis, preventing 
the subsequent molecular mechanisms involved in SI-
AKI and CKD progression. Despite initially promising 
results in preclinical studies, the application of these nov-
el techniques in clinical studies did not provide sustain-
able survival benefits. Large-scale randomized controlled 
trials could measure the effectiveness of this intervention 
in septic-AKI field. Then, the hypothesis that blood puri-
fication improves the outcome of septic AKI remains to 
be established. Therefore, technological advancements in 
blood purification approaches and well-designed, pro-
spective randomized controlled trials are the way to ob-
tain concrete evidence in terms of clinical outcome.
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