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Abstract

Despite the ease of collecting more and more data about various phenomena,

obtaining labeled data needed for learning models with high predictive perfor-

mance remains a very difficult and expensive task. To leverage the information

from the small amounts of labeled data, we need to also exploit the information

coming from unlabeled data. This can be achieved by employing semi-supervised

machine learning methods.

In this paper, we propose a novel semi-supervised method that learns inter-

pretable regression trees. It is based on the predictive clustering trees paradigm

that extends regression trees towards structured output prediction. We also

propose to learn ensembles of semi-supervised regression trees.

The method we propose is particularly suited for the chemoinformatics task

of quantitative structure-activity relationship (QSAR) modeling, which is the

main application context considered in this paper. Specifically, we evaluate the

proposed method on 4 QSAR modelling datasets and illustrate its use in a case

study. Additionally, we also evaluate our approach on 8 benchmark datasets

not related to the QSAR modeling problem.

The evaluation reveals the following: semi-supervised trees and ensembles
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have better predictive performance than their supervised counterparts (espe-

cially when the number of labeled examples is very small); different datasets

and different amounts of labeled data require different amounts of unlabeled

data to be included in the learning process; and the learned semi-supervised

regression trees can be used for better understanding the problem at hand and

the way predictions are being made.

Keywords: Semi-supervised learning, Regression, Decision trees, Random

forests, QSAR

1. Introduction

Semi-supervised learning (SSL) (Chapelle et al., 2006) aims to leverage ma-

chine learning algorithms by exploiting both labeled and unlabeled data. The

motivation to include unlabeled data in the learning process stems from the fact

that labeled data are hard to obtain in many applications of machine learning,5

while unlabeled data are easily available in large quantities. For example, in

chemistry, determination of the biological activity of compounds requires ex-

pensive and time-consuming experiments, while a huge amount of unlabeled

compounds is freely available through public databases (such as ChEMBL1 or

PubChem2), c.f., Figure 1. Furthermore, in ecology the presence and abundance10

of specific species at a given site has to be manually determined by experts, while

descriptive attributes for the site, such as temperature or humidity, are easy to

obtain. The lack of labeled data in domains such as the above-mentioned can

negatively affect the predictive performance of supervised machine learning al-

gorithms, highlighting the need for semi-supervised learning.15

Orthogonal to the ability to exploit unlabeled data, another feature of ma-

chine learning algorithms that is often necessary is the interpretability of the

models learned. This feature is particularly important given that many (or

1https://www.ebi.ac.uk/chembl/
2https://pubchem.ncbi.nlm.nih.gov/
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Figure 1: Histogram of dataset sizes (in terms of number of labeled compounds) for 3047

biological targets extracted from the ChEMBL database. For a vast majority of targets, less

than 100 compounds are labeled. These QSAR datasets are available for download from

OpenML (Vanschoren et al., 2014).

probably most) of the developed machine learning tools do not natively gener-

ate interpretable models, whereas machine learning techniques able to explain20

the decisions of the models are increasingly important in many domains (Es-

calante et al., 2017). Practitioners of machine learning are frequently not only

interested in the predictive performance of the models, but also apply them

to extract knowledge from data and generate novel plausible hypotheses. The

prominent machine learning methods bearing this property are decision trees25

(Breiman et al., 1984) and rules (Fürnkranz et al., 2012).

Semi-supervised learning has emerged several decades ago as a sub-field

of machine learning (Chapelle et al., 2006). Since then, a plethora of semi-

supervised learning algorithms have been proposed in the literature. However,

the majority of the development has been focused on the classification task,30

while the regression task has received much less attention (Zhu, 2008). Fur-

thermore, we are not aware of machine learning methods for regression that
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can learn both semi-supervised and interpretable models - apart from the self-

training wrapper approach proposed by Yarowsky (1995).

In this paper, we propose an algorithm for semi-supervised learning of re-35

gression trees. The algorithm employs unlabeled data directly in the tree con-

struction phase, inheriting the properties of regression trees, i.e., interpretability

and low computational complexity. Additionally, the algorithm adapts to the

data at hand by controlling the influence of unlabeled (relative to labeled) data,

lowering the risk of unlabeled data degrading the predictive performance. Fur-40

thermore, semi-supervised ensembles can easily be constructed by using the

proposed semi-supervised regression trees as base learners.

The application domain considered in this study is the chemoinformatics

task of quantitative structure-activity relationship (QSAR) modeling. In QSAR

modeling, the goal is to relate a description of a molecule’s structure and prop-45

erties to its biological activities. Conceived as an extension of physical organic

chemistry in 1960s, QSAR modeling has since grown to become a standard req-

uisite in the drug development process. Stimulated by the continous growth of

chemical data and databases, QSAR modeling has evolved from the analysis

of small series of similar compounds using simple regression methods, to the50

analysis of large datasets of diverse molecular structures using a wide variety of

statistical and machine learning techniques (Cherkasov et al., 2014).

Machine learning techniques have been able to improve over the simple linear

regression methods initially used in deriving QSAR models. However, existing

approaches do not consider (at least not simultaneously) two important chal-55

lenges in the domain of QSAR modelling:

• Labeled datasets are typically very small, because of the complex and ex-

pensive annotation process, often containing only few tens of compounds.

For example, the largest QSAR study to date considered 2764 datasets,

where median dataset size is 73 (Olier et al., 2018). On the contrary,60

unlabeled data are abundant in public databases.

• QSAR modeling has shifted away from simple and interpretable models

4



towards more complex multiparametric approaches, somewhat trading in-

terpretability for better predictive ability. However, interpretability is still

desired, in order to facilitate the practical acceptance of QSAR solutions65

by domain experts (Cherkasov et al., 2014).

The semi-supervised learning algorithm of regression trees that we propose

in this paper addresses both challenges. The empirical evaluation of the pro-

posed approach demonstrates its validity and its relevance for QSAR modelling,

as well as for other application domains. In the remainder of this paper, we de-70

scribe the proposed method (Section 2), lay out the experimental questions and

experimental design (Section 3), present and discuss the results of the exper-

imental evaluation (Section 4), show a case study on predicting inhibitors of

farnesyltransferase (Section 5), discuss work related to this study (Section 6),

and finally conclude the paper with a summary of the main findings (Section 7).75

2. Semi-supervised learning of regression trees

In classical regression, given a set of observed data {x, y} ∈ X × Y , where

X denotes the feature space spanned by m independent (or predictor) variables

xi (both numerical and categorical), the goal is to predict the target variable Y

that is continuous.80

A regression tree approximates a function y = g(x) by means of a piece-wise

constant function. The standard way to construct this function is top-down

induction, that is, recursive partitioning of the training set while moving down

the tree (Breiman et al., 1984). The output model is a tree, where each internal

node represents a partitioning of the example space and each leaf represents85

a subdomain (and its associated constant function) of the piece-wise constant

function. In such top-down construction of a regression tree, one of the main

problems is choosing the best partition (or split) of a region of the example

space. For this purpose, several evaluation functions have been proposed in

the literature, mostly based on the mean square error of the response variable90

(Malerba et al., 2004): The main idea is to choose the partition that minimizes
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the mean square error (computed on the training set) of the resulting piece-wise

constant function.

A more general formulation of this solution is that of choosing the best

partition of a region of the example space by considering, according to the semi-95

supervised learning setting, not only the labeled examples, but also unlabeled

examples. This, however, requires a different evaluation function that not only

depends on the response variable (whose values are not available for unlabeled

examples), but also depends on the values of predictor variables, whose values

are available for both labeled and unlabeled examples.100

Following this generalization, in this work, we propose an algorithm for

learning semi-supervised regression trees. Their construction is still based on

the top-down induction algorithm. However, there is a major difference with

respect to standard regression tree induction algorithm: the evaluation function

(h) evaluates the impurity (imp) of candidate splits by taking into account both105

labeled and unlabeled examples.

More formally, the best split (partition) is chosen such that the impurity

reduction is maximized, i.e., the difference between the impurity of the parent

node and the sum of impurities of child nodes:

h = imp(E)−
(
|Ey|
|E|

imp(Ey) +
|En|
|E|

imp(En)

)
(1)

where E,Ey, En are the sets of examples in the parent, left and right child

nodes, respectively.

In supervised regression trees, the impurity measure corresponds to the vari-

ance of target variable values belonging to the examples in a given node:

imp(E ) = Var(E ) =

∑N
i=1(yi)

2 − 1
N ·
(∑N

i=1 yi

)2
N

, (2)

where yi is the value of the target (response) attribute of the ith example, and

N = |E| is the number of examples.110

Classical supervised regression tree learning algorithms evaluate the splits

considering only the target variable, i.e., the examples in the resulting nodes
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(partitions) are homogeneous with respect to the target variable. In this work,

we propose semi-supervised regression trees that produce nodes homogeneous

both with respect to the target variable and the descriptive attributes.Our115

theoretical rationale follows the semi-supervised smoothness assumption, which

states that if two examples ei and ej in a high-density region are close (with

respect to descriptive space), then also their target values yi and yj should be

close (Chapelle et al., 2006). By including (a large quantity of) unlabeled exam-

ples into the learning process, the semi-supervised regression trees can produce120

splits that group together examples that are close both in the descriptive and

the target space. Then, if the semi-supervised smoothness assumption holds,

more accurate predictions can be achieved. It is noteworthy that, in order to

benefit from unlabeled data (that by definition does not carry any information

about the target variable), semi-supervised methods are bound to assumptions125

about the distribution of the unlabeled data with respect to the target variables

(Chapelle et al., 2006).

The proposed semi-supervised learning of regression trees utilizes the same

principle of impurity reduction maximization as in Eq. 1. The above-described

extension to a semi-supervised setting is achieved by modifying the impurity

function so that it accommodates both labeled El and unlabeled Eu examples.

The impurity of a set of examples El+u = El ∪ Eu in semi-supervised trees is

then computed as a weighted sum of impurities over the target variable and the

independent attributes:

impSSL(El+u) = w · impYSSL(El)

impYSSL(Etrain
l )

+
1− w

D
·

D∑
i=1

impXi

SSL(El+u)

impXi

SSL(Etrain
l+u )

, (3)

where Y is the target variable, D is the number of independent attributes, and

Xi is the ith independent attribute. To ensure commensurate contributions

of the target and the descriptive attributes, normalization with the respective130

impurities over the entire training set (Etrain) is performed.

The weight parameter w ∈ [0, 1] controls the relative contribution of the tar-

get variable and the descriptive attributes to the overall impurity. It is notewor-

thy that the impurity over the target variable (impYSSL) is computed using only
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the labeled examples (El), whereas the impurity over the descriptive attributes135

(impXi

SSL) is calculated by using all the examples (i.e. labeled and unlabeled

examples, El+u). Therefore, the w parameter controls the amount of supervi-

sion employed during the learning of semi-supervised trees, where increasing the

value of w corresponds to more supervision and decreasing it to less supervision,

enabling the learning of trees to range from perfectly supervised (i.e., w = 1) to140

perfectly unsupervised (i.e., w = 0).

The impurity over the target variable Y is calculated by using Eq. 2, while

the impurity of the descriptive attributes depends on the type of the attribute:

impXi

SSL(El+u) =

V arXi(El+u), if Xi is numeric

GiniXi(El+u), if Xi is nominal,

(4)

where V arXi(El+u) is the variance of a set of examples El+u for the attribute

Xi calculated as defined in Eq. 2 and GiniXi(El+u) is the Gini score of a set of

examples El+u for the attribute Xi calculated as follows:

Gini(El+u) = 1−
C∑
i=1

p2i , (5)

where C is the number of categories of the attribute Xi, and pi is the apriori

probability of the category ci (i.e., the relative frequency of examples in the set

El+u belonging to the category ci).

Having defined semi-supervised regression trees, we can easily extend them145

to semi-supervised regression tree ensembles, by simply using the semi-supervised

trees as base predictive models of an ensemble. In this work, we extend the ran-

dom forest algorithm (Breiman, 2001) to a semi-supervised setting in this way.

More specifically, we construct ensembles of semi-supervised predictive models

by creating bootstrap replicates of the training set and using each replicate to150

construct a semi-supervised predictive model. Additionally, according to the

random forest approach (Breiman, 2001), the set of descriptive attributes con-

sidered for split selection in each node is a freshly randomized selection of the

attributes. The prediction of an ensemble for a new instance is then obtained
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by combining (averaging) the predictions of all the base predictive models from155

the ensemble. The semi-supervised regression trees and semi-supervised random

forests we propose in this work are based on the predictive clustering framework,

namely predictive clustering trees (PCTs) (Blockeel et al., 1998) and ensembles

thereof (Kocev et al., 2013). Both semi-supervised trees and random forests

thereof are implemented in the CLUS system (Blockeel & Struyf, 2002) and are160

available at http://kt.ijs.si/jurica_levatic/.

We next discuss the computational complexity of the proposed method. We

start by discussing the computational complexity of learning a supervised PCT.

Learning a supervised PCT requires the following steps which contribute to

the computational complexity as follows: sorting the values of D descriptive165

attributes (O(DN logN)), calculating the best split (O(DN)), and applying the

split to the N (labeled) training examples (O(N)). Assuming that the depth

of the tree is O(logN) (Witten & Frank, 2005), the computational complexity

of constructing a single (supervised) PCT is O(DN log2 N) + O(DN logN) +

O(N logN).170

Learning a semi-supervised PCT involves both labeled and unlabeled exam-

ples (i.e., N = Nl + Nu, instead of N = Nl). Also both the target variable

and the D independent attributes are used when the splits are evaluated, thus

the complexity of the evaluation of a single split is O((1 + D)DN). This gives

the total computational complexity of learning a single semi-supervised PCT of175

O(DN log2 N)) +O((1 + D)DN logN) +O(N logN).

The worst case computational complexity of learning semi-supervised ran-

dom forests is k(O(D′N ′ log2 N ′) + O((1 + D)D′N ′ logN ′)), where N ′ is the

size of the bootstrap samples. D′ is the size of the attribute subsets at each tree

node, and k is the number of base models in the ensemble.180
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3. Experimental design

3.1. Data description

We evaluate the predictive performance of our approach using four QSAR

datasets from the OpenML repository (Vanschoren et al., 2014). The tasks at

hand are to relate molecular properties to biological activities: the Neurokinin185

1 receptor, the Glycogen synthase kinase-3 alpha, the Rho-associated protein

kinase 2 and the Human immunodeficiency virus type 1 protease, respectively.

Moreover, we use 8 additional benchmark datasets that differ in the domains

they represent, the number of attributes and the number of examples. These

datasets are obtained from the Keel repository (Alcalá et al., 2010) and from the190

repository of Lúıs Torgo (Torgo, 2016). We have selected all the 12 regression

datasets to have more than a thousand of examples, so that we can use an

evaluation scenario relevant for SSL where large amounts of unlabeled data are

available.

3.2. Experimental setting195

In this work, we propose semi-supervised regression trees (SSL-PCT) and

semi-supervised random forest tree ensembles (SSL-RF). We compare these

methods to their supervised counterparts, i.e., regression trees (CLUS-PCTs),

and random forests (CLUS-RF), respectively. These are the most reasonable

baselines, as the purpose of the comparison is to evaluate the contribution pro-200

vided by unlabeled data to the overall predictive capabilities in an experimental

setting that guarantees a fair comparison.

In the experiments, both supervised and semi-supervised trees are pruned

with the M5P pruning procedure (Quinlan, 1993). For each variant of the

ensemble approaches (i.e., CLUS-RF and SSL-RF), we build random forests205

consisting of 100 unpruned trees. When building these trees, the number of

randomly considered attributes, at each internal node, is set to blog2(D) + 1c,

where D is the number of independent attributes (Breiman, 2001).

In order to explore the influence of the amount of labeled data on the pre-

dictive capabilities of the semi-supervised methods, we perform experiments by210
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Table 1: Characteristics of the datasets. N : number of instances, D/C: number of descriptive

attributes (nominal/continuous).

Dataset name and source Domain N D/C

Neurokinin 1 receptor

(NK1) (Vanschoren et al., 2014)
QSAR 2446 1024/0

Glycogen synthase kinase-3 alpha

(GSK3A) (Vanschoren et al., 2014)
QSAR 1211 1024/0

Rho-associated protein kinase 2

(ROCK2) (Vanschoren et al., 2014)
QSAR 1521 1024/0

Human immunodeficiency virus type 1 protease

(HIV-1) (Vanschoren et al., 2014)
QSAR 4442 1024/0

2dplanes (Torgo, 2016) Artificial 40768 0/10

Abalone (Torgo, 2016) Biology 4177 1/7

Elevators (Torgo, 2016) Optimal control 16559 0/18

Kinematics (Torgo, 2016) Robotics 8192 0/8

Laser (Alcalá et al., 2010) Optics 993 0/4

Plastic (Alcalá et al., 2010) Plastic strength 1650 0/2

Pole (Torgo, 2016) Telecommunication 5000 0/48

Stock (Torgo, 2016) Economy 950 0/10

varying the absolute number of labeled examples in the set {25, 50, 100, 200, 350,

500}. The labeled examples used for the training phase (both for supervised and

semi-supervised learning) are randomly sampled from the whole dataset. The

remaining examples are then used both as unlabeled examples and as testing

set. This evaluation approach is coherent with the transductive learning setting215

(Malerba et al., 2009) where the learning algorithms cannot see the labels of the

examples that are considered ”unlabeled” but, during evaluation, the evaluation

measures are computed on the true labels. In order to guarantee a fair compar-

ison between semi-supervised and supervised algorithms, the supervised models

are learned exclusively on the labeled part of the data and their performance is220

evaluated on the same test data. Moreover, in order to guarantee valid results

and conclusions, the whole evaluation procedure is executed 10 times. All the

results reported in this paper refer to the average of the evaluation measures

obtained with these 10 runs.
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In the experiments, the values of the parameter w are automatically set225

according to a 3-fold cross-validation on both labeled and unlabeled examples

of the training set. Specifically, for each run, the algorithm identifies the value

of w, taken from the set {0, 0.1, 0.2, · · · 1}, which optimizes the considered

evaluation measure.

The predictive performances of the algorithms are evaluated in terms of230

the relative root-mean-square-error (RRMSE). In addition, we also perform a

statistical evaluation of the results in order to statistically assess the differences

among the considered and proposed methods. At this purpose, we use the

Wilcoxon paired signed rank test (Wilcoxon, 1945) by comparing the average

RRMSE of two methods over the considered datasets. In all the statistical tests235

reported in the following, the selected significance level is 0.05.

4. Results and discussion

In this section, we present the empirical results obtained. We first confirm

the ability of the proposed semi-supervised methods to take advantage of un-

labeled data by comparing them to their supervised counterparts in terms of240

predictive performance. We then analyze and discuss the characteristics of the

proposed methods from the aspect of practical usability: sensitivity to param-

eters and interpretability of the trees.

4.1. Predictive performance

Figure 2 depicts how the predictive performance (RRMSE) of semi-supervised245

(SSL-PCT and SSL-RF) and supervised methods (CLUS-PCT and CLUS-

RF) changes with increasing the amount of labeled data on the 12 regression

datasets.

We can observe that SSL-PCTs achieve lower predictive error than CLUS-

PCTs on several datasets: 2dplanes, Elevators, Kinematics, Laser and Pole.250

Furthermore, it seems that SSL-PCTs are especially effective on the QSAR

datasets (NK1, GSK3A, ROCK2 and HIV-1) when the amount of labeled data
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is rather limited (i.e., from 25 to 100 of labeled examples). This case corresponds

to the size of the datasets typically used in QSAR studies.

Semi-supervised random forests achieve consistent improvement over CLUS-255

RF on the majority of datasets. Furthermore, it seems that SSL-RF can im-

prove over CLUS-RF even if SSL-PCT does not improve over CLUS-PCT and

vice versa (e.g., for Plastic and Stock datasets). In other words, the improve-

ment provided by SSL is orthogonal to the improvement provided by ensembles

(random forests). In particular, the domain of QSAR modeling seems to be260

suitable for SSL-RF, since SSL-RF improves over CLUS-RF for almost all

different amounts of labeled data on all four QSAR datasets considered.

Table 2 presents a statistical analysis of the predictive performance esti-

mates. We can observe that semi-supervised regression trees are the most effec-

tive for small amounts of labeled data: They achieve statistically significantly265

better performance than supervised PCTs up to 100 labeled examples. A simi-

lar observation can be made for semi-supervised random forests: They achieve

statistically significantly better performance than supervised random forests for

amounts of labeled data ranging from 25 to 350 examples, while statistical sig-

nificance of improvement is not achieved for 500 labeled examples.270

4.2. Controlling the influence of unlabeled data with the w parameter

As mentioned before, the w parameter controls the influence of the amount

of information coming from unlabeled examples. This aspect enables semi-

Table 2: p-values obtained with the Wilcoxon signed-rank test on the RRMSE performance

values of both supervised and semi-supervised algorithms. In bold, we indicate significant

p-values (< 0.05) for which there is a statistically significant difference between the compared

methods. In all of the comparisons, the semi-supervised algorithm outperformed its supervised

counterpart in terms of average RRMSE and sums of ranks.

Methods Number of labeled examples

25 50 100 200 350 500

CLUS-PCT vs. SSL-PCT 0.011 0.010 0.004 0.367 0.480 0.583

CLUS-RF vs. SSL-RF 0.008 0.065 0.008 0.023 0.034 0.126

13



0.8

0.85

0.9

0.95

1.0

1.05

1.1

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(a) NK1

0.75

0.8

0.85

0.9

0.95

1.0

1.05

1.1

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(b) GSK3A

0.7

0.75

0.8

0.85

0.9

0.95

1.0

1.05

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(c) ROCK2

0.8

0.85

0.9

0.95

1.0

1.05

1.1

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(d) HIV-1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(e) 2dplanes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(f) Abalone

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0

1.05

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(g) Elevators

0.7

0.75

0.8

0.85

0.9

0.95

1.0

1.05

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(h) Kinematics

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(i) Laser

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(j) Plastic

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(k) Pole

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

R
R
M
S
E

25 50 100 200 350 500

Number of labeled examples

SL-PCT

SSL-PCT

CLUS-RF

SSL-RF

(l) Stock

Figure 2: RRMSE of the supervised and semi-supervised methods on the regression datasets.
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supervised trees to adapt to the data at hand, which is important since, as

several studies have demonstrated, unlabeled examples are sometimes not ben-275

eficial for the prediction accuracy of semi-supervised algorithms (Cozman et al.,

2002; Nigam et al., 2000; Guo et al., 2010; Zhou & Li, 2007).

Figure 3 presents the values of w, automatically determined by the inter-

nal cross-validation procedure (see Section 3). We can observe that the deter-

mined values of w vary among the datasets and even for the same dataset, with280

different number of labeled examples used. Therefore, a general recommenda-

tion for setting the value of w is difficult to provide, rather, the w parameter

must be optimized for each dataset separately. As noted before, SSL-PCTs

are most successful up to 100 labeled examples (Section 4.1 and Fig. 2). This

is also reflected in the values of w: as the amount of labeled data increases,285

w = 1 is more frequently chosen as an optimal value for SSL-PCTs (Fig. 3,

top panel). Note that w = 1 means that the algorithm disregards unlabeled

examples and essentially performs supervised learning, likely preventing unla-

beled examples to hurt the predictive performance. Also, some datasets do not

benefit from semi-supervised learning (with the proposed algorithms), such as290

Stock for SSL-PCTs or Kinematics for SSL-RF, where w = 1 is used for all

the cases, independently of the amount of labeled data.

Interestingly, for datasets where SSL-RF improves over CLUS-RF, w = 0 is

almost always chosen as an optimal value for SSL-RF (Fig. 3-Random Forests,

bottom panel). In these cases, the models are induced with unsupervised learn-295

ing: the examples are clustered considering only the descriptive attributes, while

the target variables are employed only to assign labels in the leaf nodes of the

trees. This observation may suggest that the data in these datasets comply with

the semi-supervised smoothness assumption (see Section 2) – the examples that

are close in the descriptive space also have similar target values. This is par-300

ticularly true for QSAR datasets, suggesting that SSL is particularly helpful in

this specific application domain.

To further emphasize the importance of controlling the influence of unlabeled

data, we compare the predictive performance of semi-supervised models induced
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with the w chosen by internal cross-validation to the models where w = 0.5, that305

is, when an equal weight is given to unlabeled and labeled data (Figures 4). We

can observe that the former models, which adapt to the dataset at hand, achieve

better predictive performance in almost all of the cases.

Single trees

Random Forests

Figure 3: An illustration of the w parameter values used in the experiments (as chosen by

cross-validation) for different datasets and various amounts of labeled data used.

4.3. Interpretability of the learned trees

Interpretability is a desired property of predictive models in many applica-310

tions of machine learning. The semi-supervised PCTs method learns predictive
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Single trees Random Forests

Figure 4: Comparison of the predictive performance of semi-supervised models induced with

w chosen by internal 3-fold cross-validation and with w = 0.5, which weights equally labeled

and unlabeled examples. Points below the diagonal line indicate that the later (w = 0.5)

performs worse (higher RRMSE).

regression models that are easily interpretable – they are as easy to interpret as

supervised regression trees. Therefore, as in common regression trees, the inter-

pretability of the tree-shaped models is influenced by their size: a very large tree

may be hard to analyze, and vice versa, a tree with fewer nodes may be easier315

to understand. In practice, the size of the tree is usually a trade-off between

accuracy and interpretability. Namely, very small trees are easy to understand,

but they may fail to capture structural information in the data and therefore fail

to deliver satisfactory predictive performance. On the other hand, larger trees

may avoid these issues, but at the cost of reduced understandability. Certainly,320

increased size of the tree does not necessarily imply improved predictive capa-

bility, due to the danger of overfitting. In general, it is hard to tell (a priori)

when the tree is ”large enough”, i.e., whether it overfits or underifts.

Here, we discuss the differences in model sizes between the supervised and

semi-supervised trees. The differences are given in Table 3. We can observe325

that semi-supervised regression trees are, on average, of a very similar size as
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the supervised regression trees. This suggests that SSL-PCTs have a more

favourable trade-off between accuracy and interpretability than CLUS-PCTs.

In fact, SSL-PCTs offer comparable interpretability of CLUS-PCTs, but a

better predictive performance.330

Table 3: Size of regression trees expressed with number of nodes. The trees are learned by

using the supervised (SL) and the semi-supervised (SSL) regression trees method.

Dataset

Number of labeled examples

25 50 100 200 350 500

SL SSL SL SSL SL SSL SL SSL SL SSL SL SSL

2dplanes 4.4 10 9.6 18.8 17.8 32.2 32.8 47.2 50 50 61.4 61.4

Abalone 4 2 5.2 2.8 7.8 5.4 14 8 20.8 11.4 27.6 15.2

Elevators 4 1.6 4.6 2.8 13.6 4.8 19 19 29.4 10.2 36.8 15

Kinematics 3.2 1 5.6 3.2 5.8 5.4 10.4 7.8 18.8 22.2 29.8 17

Laser 5.4 6.4 11 11.4 21.2 16.6 39.4 23 87.4 87.4 106.2 106.2

Plastic 2.4 1 6.2 6.2 13 13 22.2 22.2 35.2 35.2 43 43

Pole 5.6 10 8.2 19.8 14.6 31.4 28.2 61.2 45.4 75.4 60.4 102

Stock 7.4 7.4 12.4 12.4 26 26 47.4 47.4 74.8 74.8 104 104

NK1 1.8 1.4 4.4 2 7 1 12.2 12.2 26.8 26.8 31.4 31.4

GSK3A 2.8 1 4 1 12.4 1 19.8 2.2 35.6 35.6 45.4 45.4

ROCK2 2.6 1 3.8 3.8 6.6 6.6 16.4 16.4 22.4 22.4 37.4 37.4

HIV-1 2.4 1.2 3.2 1 5 4.4 11.6 11.6 21.6 21.6 28.8 28.8

Average: 3.8 3.7 6.5 7.1 12.6 12.3 22.8 23.2 39.0 39.4 51.0 50.6

5. Use case: Predicting inhibitors of farnesyltransferase

The results reported in Figure 2 suggest that the proposed semi-supervised

algorithms may be especially suitable for QSAR modeling, since on all four used

datasets from this domain, either SSL-PCT or SSL-RF (or both methods) out-

perform their supervised counterparts. This observation is appealing, since the335

domain of QSAR modeling is particularly suitable for semi-supervised learning:

Determining the biological activity of chemical compounds is a very expensive

and tedious process (DiMasi et al., 2003), while descriptions of the structure

of hundreds of thousands of unlabeled compounds are freely available in public
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databases, such as ChEMBL (Bento et al., 2014).340

Motivated by the above-mentioned observations, we pursue a practical appli-

cation of the proposed semi-supervised method on the domain of QSAR mod-

elling. The application is practical in a sense that we extract real unlabeled

data from a public database and feed it to our algorithm. Note that the vast

majority of work on semi-supervised learning published in the scientific litera-345

ture actually simulates semi-supervised learning: Unlabeled data are simulated

by sampling from labeled datasets and temporary removing their labels. This

is somewhat contradictory to the motivation behind semi-supervised learning,

i.e., the exploitation of unlabeled data that are easily and/or freely available in

large quantities.350

By applying the proposed semi-supervised methods we develop models for

predicting inhibitors of farnesyltransferase (FTase). FTase is one of the three

enzymes in the prenyltransferase group that catalyzes most prenylation reac-

tions. Its targets include members of the Ras superfamily, which plays pivotal

roles in control of cell growth. Ras genes are mutated in 30% of human cancers.355

Therefore, FTase inhibitors have been developed as anticancer drugs (Agrawal

& Somani, 2009).

From the ChEMBL database (Bento et al., 2014), we extracted a dataset of

57 compounds for which inhibition of FTase was measured in the model organ-

ism Saccharomyces cerevisiae S288c (ID in the database: CHEMBL2111393),360

expressed as −logIC50 - the negative logarithm of the concentration of a com-

pound causing 50% enzyme inhibition. Note that the sizes of datasets in the

QSAR modelling domain commonly range from tens to hundreds of molecules.

We next extracted unlabeled compounds from ChEMBL, i.e., compounds

for which their inhibitory property of FTase is unknown. To ensure that the365

unlabeled compounds bear structural similarity to labeled dataest, we queried

for compounds with at least 0.8 Tanimoto similarity to the labeled compounds

(Willett, 2006). This yielded 74 unlabeled compounds. We then trained su-

pervised and semi-supervised trees and random forests, where semi-supervised

algorithms were provided with unlabeled data in addition to labeled data. The370
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structures of the compounds were described with MACCS structural keys fin-

gerprints (MACCS-II, 1984), calculated with the RDKit library (RDKit, 2018).

The fingerprints are binary vectors of length 166, where each bit corresponds to

a specific SMARTS3 pattern.

Estimation of the predictive performance of the algorithms via 10-fold cross375

validation yielded RMSE of 0.764 and 0.683 for CLUS-PCT and SSL-PCT,

respectively, and RMSE of 0.766 and 0.755 for CLUS-RF and SSL-RF, respec-

tively. Therefore, by exploiting unlabeled data freely available in the ChEMBL

database, the predictive performance of regression trees and random forests was

improved by 10% and 1%, respectively.380

Figure 5 depicts the regression trees obtained by the CLUS-PCT and SSL-

PCT algorithms. It illustrates the interpretabiliy of the models obtained by

this semi-supervised algorithm. We can see that both trees have the same

size. They only differ in one split, and according to the evaluation of predictive

performance, the SSL-PCT algorithm selects a better split.385

The patterns used in the trees in Figure 5 are graphically explained in Fig-

ure 6. The most important pattern denotes the presence of an NC3 group. The

pattern selected by SSL-PCT denotes the presence of a CH2 group, connected

to a non-C and non-H atoms further connected to some H atom (non-H0).

6. Related work390

In this section, we review several prominent semi-supervised regression meth-

ods and applications of semi-supervised learning to QSAR modeling. We refer

to (Kostopoulos et al., 2018) for a more detailed and complete overview of semi-

supervised regression methods.

One of the main approaches to semi-supervised regression relies on the multi-395

view learning approach, where two or more regressors are trained on different

views of the data (Sindhwani et al., 2005; Brefeld et al., 2006; Zhou & Li, 2007;

3SMARTS is a line notation developed by Daylight Chemical Information Systems for

compactly representing molecular substructure queries.
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Figure 5: The regression trees for predicting the inhibition of FTase, induced by the (a) super-

vised and (b) semi-supervised regression tree learning algorithms. The test nodes contains the

SMARTS patterns that were searched for in the molecules. Figure 6 shows the explanations

of the SMARTS patterns.

Kakade & Foster, 2007; Appice et al., 2010). Such methods rely on the multi-

view assumption (Ceci et al., 2015), which is an extension of the co-training

assumption to multiple views: Each view should be sufficient to build a model400

and features belonging to different views should be as independent as possible.

This assumption, however, limits the applicability of such approaches since, in

practice, different views complying with the multi-view assumption are often

not available.

Belkin et al. (2006) proposed the Laplacian Regularized Least Squares (LapRLS)405

algorithm, which was long considered as a state-of-the-art semi-supervised re-

gression algorithm. More recently, Ji et al. (2012) proposed the SSSL algorithm

which finds top eigenfunctions spanning the feature space of labeled and unla-

beled examples and then trains a model using labeled examples considering the

subspace spanned by these eigenfunctions. The method was shown to outper-410

form LapRLS, but is computationally very demanding, making scalability an

issue. McWilliams et al. (2013) successfully dealt with the multi-view assump-

tion by automatically constructing views from the data in such a way that they

satisfy the assumption by design. Their method, named XNV, was shown to

outperform SSSL, while being computationally efficient.415

However, to the best of our knowledge, the existing semi-supervised regres-
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Figure 6: Visualization of the SMARTS patterns used in the trees in Figure 5. The im-

age was generated with the help of SMARTSviewer, available at https://smartsview.zbh.

uni-hamburg.de, ZBH Center for Bioinformatics, University of Hamburg.
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sion algorithms (including the ones mentioned before) do not produce readily

interpretable models. In principle, interpretability could be achieved by apply-

ing the self-training approach (Yarowsky, 1995) to regression trees. Self-training

iteratively re-trains the model by using its own most reliable predictions on420

unlabeled data as additional training examples; therefore, if the underlying su-

pervised method produces interpretable models, also the final model will be

interpretable. Self-training has an inherent danger of error propagation: If a

wrongly predicted example enters the training set, the error may propagate

in subsequent iterations deteriorating the predictive performance of the model425

(Guo et al., 2010). For this reason, powerful regression methods are usually

used as underlying methods of self-training, such as support vector regression

(Kang et al., 2016) or random forests (Levatić et al., 2017). This study presents

semi-supervised regression trees which are readily interpretable and follow a

recent trend in semi-supervised learning: development of safe semi-supervised430

algorithms (Gan et al., 2018b,a; Li et al., 2017). Such algorithms are aimed

to reduce the risk of unlabeled data degrading the performance and ideally

should guarantee performance better than or as good as the one of supervised

algorithms. This is achieved without using the self-training framework. The

algorithms proposed in this study achieve this by implementing flexibility in435

terms of how much influence unlabeled data has during the learning process.

Closest to the work presented in this paper is our own work on semi-supervised

multi-target regression. This includes the use of multi-target regression tree en-

sembles in a self-training setting (Levatić et al., 2017), as well as an approach

similar to the one presented here (Levatić et al., 2018). The first of these two440

lines of work does not produce interpretable models, so we don’t discuss it in

more detail.

Levatić et al. (2018) does produce interpretable models, but focuses on multi-

target, rather than single-target regression. No datasets from the domain of

QSAR are used in the evaluation of (Levatić et al., 2018). Even more impor-445

tantly, the conclusions regarding the experimental comparison differ substan-

tially. In the case of multi-target regression, semi-supervised ensembles do not
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perform significantly better than supervised ensembles, for any of the differ-

ent amounts of labeled data. This is in stark contrast with the present paper,

where for single-target regression, semi-supervised ensembles perform signifi-450

cantly better than the supervised ones, for almost all amounts of labeled data.

The probable explanation for this lies in the fact that the better performance of

semi-supervised learning is largely due to preventing overfitting (Levatić, 2017).

Multi-target regression tree ensembles overfit less than their single-target coun-

terparts, leaving less room for improvement by semi-supervised learning. Since455

regression tree ensembles overfit more, the additional unlabeled data improves

their performance more noticeably.

Despite the fact that semi-supervised learning solutions seem to be, in prin-

ciple, appropriate for QSAR modeling, due to difficulty of labeling the data and

abundance of unlabeled data, very few published works combine semi-supervised460

learning and QSAR modeling (Guo-Zheng et al., 2008; Levatić et al., 2013; Kon-

dratovich et al., 2013; Pan & Wei, 2012; Seeland et al., 2012). This study aims

to contribute to both fields: semi-supervised learning and QSAR modeling, by

proposing a novel semi-supervised regression method and demonstrating its ad-

vantage over supervised learning in QSAR modeling and other domains.465

Furthermore, interpretability of QSAR models is an important property for

their usability and practical acceptance (Cherkasov et al., 2014). Cherkasov

et al. (2014) discusses approaches to indirectly interpret black-box QSAR mod-

els and hence faces the problem of simultaneously achieving both accurate and

interpretable predictive models. Such approaches include the analysis of fea-470

ture importance scores of molecular descriptors or the virtual modification of

molecules by adding or removing fragments of interest, followed by re-doing the

predictions in order to asses the importance of these fragments with respect

to the activity of a compound. Our study presents semi-supervised regression

trees which are natively interpretable, as well as semi-supervised random forests,475

which can offer state-of-the-art predictive performance when accuracy is a pri-

ority.
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7. Conclusion

In this paper, we propose and evaluate a method for semi-supervised learning

of regression trees and ensembles thereof. We have evaluated the method and480

its variants on a number of benchmark regression datasets and several datasets

in the chemoinformatics domain of quantitative structure-activity relationship

(QSAR) modeling. We have also performed a case study in QSAR modelling

i.e., the determination of the biological activity of chemical compounds.

The proposed approach is motivated by the need to exploit, during the model485

learning stage, the vast amount of unlabeled data in addition to small sets of

labeled data, which is particularly relevant in the QSAR domain. Unlabeled

data, although not directly connected to labels (e.g., biological activity of com-

pounds), can still convey useful information for learning models with better

predictive performance. An additional advantage of the proposed approach is490

that it learns regression trees, which can be easily interpreted and understood by

domain experts. This property is considered very important for QSAR modeling

since it facilitates the understanding of the predictions being made.

Obviously, extending regression tree induction to the semi-supervised learn-

ing setting requires novel heuristic functions which take into account both the495

target and the descriptive spaces. For this reason, we extend predictive cluster-

ing trees – these naturally support extensions in such direction. The experiments

confirm the expectations and prove the effectiveness of the semi-supervised

learning approach in exploiting unlabeled examples in the induction of more

accurate models. This aspect is clear both when we learn single regression trees500

and when we learn random forests. Moreover, a case study demonstrates the

interpretability of extracted QSAR models. Experiments also prove the effec-

tiveness of the proposed learning algorithm in other domains, different from

QSAR modeling. This confirms the general-purpose nature of the proposed

approach.505

For future work, we first intend to study and develop transfer learning ap-

proaches to “transfer” the quantitative structure-activity relationship acquired
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on some specific compounds to other (similar) compounds. Next, we will inves-

tigate other heuristic functions that take into account other impurity functions

(e.g., entropy for discrete variables). Finally, we will use the proposed semi-510

supervised regression trees in order to provide a ranking of the feature, based

on their relevance for the semi-supervised regression task.
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