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Simple Summary: This survey investigated the incidence of Campylobacter (C) jejuni and C. coli
infection in laying hens housed in farms which use different rearing systems: cages (A), barns (B)
and aviaries (C). Two flocks (1 and 2) for each farm were evaluated. The hen plasma levels of
corticosterone and interleukin 6 (IL-6), which are considered welfare indicators, and the sensitivity
of detected Campylobacter strains to the antibiotics were investigated. The highest (p < 0.05) levels
of IL-6 and corticosterone were found in laying hens housed in aviaries. C. jejuni and C. coli were
identified in 77/177 (43.5%) and 69/177 (38.9%) laying hens, respectively. C. jejuni and C. coli were
simultaneously detected in 14 laying hens (7.9%). C. jejuni was prevalently found in laying hens
housed in barns (B1: 53.3%; B2: 46.7%) and aviaries (C1: 34.6%; C2: 86.7%). C. coli was prevalently
identified in laying hens housed in cages (A1: 41.9%; p < 0.001; OR: 10.11, CI95%: 2.04–50.19; A2: 80%;
p < 0.001; OR: 56.00, CI95%: 10.33–303.68) and, depending on the flock, in barns (B2: 40%) and aviaries
(C1 54.8%). In particular, antibiotic resistance to fluoroquinolones and tetracycline was found, and
it was mainly detected among C. coli strains. Multidrug resistance was found in 19.7% of C. coli
and 17.5% C. jejuni strains, respectively. The incidence of Campylobacter infection found in the farms
highlights the opportunity to increase the biosecurity measures to be adopted in the management of
laying hen flocks.

Abstract: Campylobacter (C.) jejuni and C. coli are responsible for food poisoning in humans. Laying
hens may host the bacteria usually without developing symptoms. The aims of this paper were
to evaluate the incidence of C. jejuni and C. coli infection in laying hen flocks housed in different
rearing systems, the plasma levels of two welfare indicators (corticosterone and interleukin 6, IL-6)
and the antimicrobial resistance of the detected Campylobacter strains. Two different flocks (1 and
2) from cage (A), barn (B) and aviary (C) farms were investigated. The highest (p < 0.05) levels of
IL-6 were detected in laying hens housed in aviaries. A similar trend emerged in corticosterone
level, although differences were found between C1 and C2. C. jejuni and C. coli were identified in
43.5% and 38.9% of birds, respectively. In total, 14 out of 177 (7.9%) hens simultaneously hosted
C. jejuni and C. coli. C. jejuni was prevalently detected in hens housed in barns (B1: 53.3%; B2: 46.7%)
and aviaries (C1: 34.6%; C2: 86.7%). Conversely, laying hens housed in cages were significantly
exposed to infection of C. coli (A1: 41.9%; A2: 80%) while, regarding barns and aviaries, a significant
prevalence emerged only in flocks B2 (40%) and C1 (54.8%). Simultaneous infection was statistically
significant in barn B1 (36.7%). Antibiotic resistance was mainly detected among C. coli strains, and
it was most frequent for fluoroquinolones and tetracycline. Multidrug resistance was also found
in C. jejuni (19.7%) and C. coli (17.5%) strains. Based on the results of this study, we recommend
increasing biosecurity and hygienic measures to manage hen flocks.

Keywords: Campylobacter jejuni; Campylobacter coli; laying hen; rearing system; antibiotic resistance;
welfare indicators
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1. Introduction

In recent times, the consumption of safe foods and their impact on human health
have changed the concept of food safety and radically reshaped it. Consumers’ attention
is focused on types of farming that ensure the hygiene of animal products, but at the
same time, concerns about the ethical aspects of animal-sourced foods have increased.
Animal welfare and human health continually fuel interest in animal-friendly farming
systems [1,2]. As a result, the conventional cage system is being replaced by cage-free
and free-range production systems to ensure animal healthiness and improve nutritional
features of products [3]. Currently, Legislative Decree 27 September 2010 n. 181 establishes
minimum standards for the protection of chickens reared for meat production in Italy.
Legislative Decree 29 July 2003 n. 267 establishes the protection of laying hens and the
registration of their breeding systems, by allowing the farming of birds in enriched cages
and cage-free systems, in aviaries or on litters. However, beginning in 2023, the phasing
out of cages by 2027 was planned to encourage a complete transition to litter-breeding
systems. In addition to ethical reasons, reducing stress in hens will also have health
implications [4,5]. An ideal balance between egg production and laying hens’ welfare is the
free-range system [6], but this technique is potentially linked to microbiological implications
that remain controversial [7]. De Reu et al. [8] found no systematic differences in Gram-
negative bacteria distribution on eggshells from laying hens reared in conventional cages,
furnished cages and aviary systems. Later, the same authors reported that bacteriological
egg contamination and eggshell quality differed substantially among individual farms
raised under the same housing system [9]. These results seem to indicate that other factors
such as flock management, shed structure or hygienic conditions may influence bacterial
eggshell contamination in addition to the breeding system [9]. Biosecurity measures and
the hygienic level of farms are critical points in the poultry industry as they can improve
the overall flock health, prevent disease, decrease the cost of treatments, reduce losses,
and improve farm profitability [10]. Although Clostridium perfringens, Salmonella enterica
subsp. enterica, Listeria spp., Escherichia coli, Campylobacter spp. and Vibrio vulnificus are
the major bacteria leading to foodborne illnesses, Campylobacter spp., Salmonella spp. and
E. coli are the ones closely associated with poultry [11,12]. Hens’ resistance to infections
by Campylobacter spp. and Staphylococcus spp. seems to be inversely linked to their stress
levels [4,5].

Bacteria belonging to the Campylobacter genus are commensals of gut microflora in
animals. They are small (0.2–0.8 µm × 0.5–5 µm), Gram-negative and slender spirally
curved rods. With the exception of C. gracilis, Campylobacter spp. are equipped with single
polar unsheathed flagellum at one or both ends of the cell or multiple flagella (C. showae)
that confer a corkscrew-like movement. Campylobacter species are thermotolerant and grow
in a temperature range of 37 to 42 ◦C, with an optimum growth temperature at 41.5 ◦C.
This thermophilic nature may explain the high prevalence rate found in poultry. They are a
microaerophilic organism and grow better at low oxygen tension (5% O2, 10% CO2 and
85% N2) [13].

Campylobacteriosis is the most common food poisoning in Europe and worldwide,
and it has been prevalently linked to poultry meat consumption. Nevertheless, more
than 50% of cases in humans may be attributed to the handling of and contact with
chickens which are a reservoir for Campylobacter [14]. Campylobacter jejuni and C. coli are
the most identified species in fecal samples from human patients with gastroenteritis due
to Campylobacter. According to FoodNet, 89% of campylobacteriosis cases in humans are
induced by C. jejuni, 8% by C. coli, and 3% by other species. Campylobacter in humans causes
gastrointestinal disease, usually self-limiting, lasting 5 to 7 days. Symptoms typically
occur 2 to 5 days after ingestion of the bacteria and include diarrhea with cramping, acute
abdominal pain, nausea and vomiting. In infants and young children, bloody diarrhea
without fever may be the only clinical manifestation [15]. In many cases, the infection
resolves without antimicrobial treatment. Instead, hospitalized patients are treated with
fluoroquinolones and macrolides, which are the drugs of choice for treating Campylobacter
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infections [16]. In 5–10% of patients, especially if immunocompromised, elderly or pregnant
women, extra-intestinal infections may develop, including Guillain–Barre syndrome (GBS),
Miller Fisher syndrome and reactive arthritis (ReA). GBS, due to C. jejuni, is an autoimmune
disease of the peripheral nervous system (PNS), characterized by acute paralysis that can
lead to respiratory muscle impairment and consequently cause patient death [17]. Miller
Fischer syndrome is considered a rare variant of GBS [18], characterized by the triad of
ataxia, areflexia and ophthalmoplegia [19]. Reactive arthritis, associated with C. jejuni
infection, is usually an asymmetric oligoarticular arthritis involving the knees, ankles or
wrists and occurring about 10 days after clinical manifestation of enteritis [15].

Campylobacter jejuni and C. coli, which are commonly considered commensal germs of
poultry gut, especially in the presence of predisposing conditions such as lack of hygiene in
flock management, overcrowding and hierarchic struggles, are known to invade the tissues,
particularly the liver, causing avian vibrionic hepatitis (AVH) [20]. AVH is characterized by
1–2 mm multifocal, grayish-white or cream-colored liver lesions, increased mortality in the
flock (up to 10%) and reduced egg production (10–25%).

Recently, a new Campylobacter species, C. hepaticus, has been identified as responsible
for Spotty Liver Disease (SLD) in laying hens [21,22]. SLD is an emerging disease in
Europe, Australia and the United States, particularly in outdoor and free-range farms, and
is characterized by lesions and decreased egg production very similar to those observed
in AVH.

Colonization of poultry intestine by Campylobacter occurs during the rearing period
and it is age-dependent. The microbiota changes during the growing of the animal and has
a deep impact on the gut immune system [23]. Broiler chickens less than two weeks old
are rarely colonized, and Campylobacter is more frequently detected in the last period of
growing before slaughter [24].

The higher incidence of Campylobacter infection in laying hen farms compared to
broiler flocks depends on the age of the hens and their longer production cycle, potentially
exposing them to numerous sources of contamination [25–28]. The main mode of trans-
mission of Campylobacter among birds is the fecal–oral route, so hens reared in cage-free
systems are potentially more susceptible to infection. As a result, the incidence of SLD
seems to be lower in hens reared in cages than in cage-free systems [21]. In positive farms,
the isolation of Campylobacter spp. or the detection of DNA of Campylobacter can be made
in environmental samples, including water, soil, dust, mites and rat feces. Moreover flies,
which may be involved in Campylobacter transmission within flocks, have been recently
identified as possible vectors of C. hepaticus [21].

Corticosterone secretion from the adrenal gland cortex of birds is stimulated by adreno-
corticotropic hormone (ACTH) from the pituitary gland, which in turn is stimulated by
corticotropin-releasing factor (CRF) and arginine vasotocin (AVT) from the hypothala-
mus [29]. The hypothalamic–pituitary–adrenal (HPA) axis is activated in response to
stressors, with an increase in plasma corticosterone concentrations [30]. Corticosterone
levels have been previously assessed as a stress response in studies of fear behaviors in
chickens and Japanese quail (Coturnix coturnix japonica) [31]. In plasma, the simultaneous
increase in corticosterone [32] and pleiotropic cytokine IL-6 [33] may be suggested as an
adaptive physiological body response involving the HPA axis and the immune system to
stressors [34]. Considering the recent changes in laying hens’ rearing systems, the aims
of this study were to evaluate: (i) the incidence of C. jejuni and C. coli infection in laying
hens reared in different housing systems; (ii) the antimicrobial resistance of the detected
Campylobacter strains; and (iii) the plasma levels of corticosterone and interleukin (IL-6).

2. Material and Methods
2.1. Study Design and Sampling

The study was carried out in three laying hen farms using enriched cages (A), barns
(B) and aviaries (C), respectively. All farms were located in southern Italy, in the provinces
of Taranto (A) and Lecce (B and C). Two different flocks (A1, A2, B1, B2, C1, C2) were tested
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on each farm. All animals were fed with commercial feed. Each shed was equipped with
automatic control systems to provide constant environmental temperatures. In total, 177
laying hens were tested. Details on the bird flocks and the number of individuals tested are
reported in Table 1.

Table 1. Rearing systems and details about flocks and tested individuals.

Farm Rearing
System Flock

Consistence of
Flock (Number

of Birds)

Stage of
Production
(Months)

Environmental
Temperature

Inside the
Shed (T ◦C)

Number of
Sampled Birds

A Cages A1 12.500 6 26.9 ◦C 31
A2 12.000 2 23 ◦C 30

B Barns
B1 3.000 8 24 ◦C 30
B2 3.000 3 20 ◦C 30

C Aviaries
C1 12.000 7.5 24.7 ◦C 26
C2 12.000 5 20.3 ◦C 30

A cloacal swab was collected from each bird. The blood sample from ulnar vein was
also collected to evaluate two animal-based measures (ABMs): plasma corticosterone and
interleukin (IL-6). Bird-handling and sampling were performed according to the guidelines
of the Ethics Committee for Animal Experimentation of the Department of Veterinary
Medicine (DiMeV), Bari, Italy (Approval number 21/2021).

All collected samples were transferred within two hours after sampling, under refrig-
erated conditions to the Department of Veterinary Medicine of Bari, Southern Italy.

2.2. Campylobacter Identification

Cloacal swabs were placed in sterile tubes containing 5 mL of Nutrient Broth (Oxoid,
Basingstoke, UK) supplemented with 5% sheep blood (Oxoid), Campylobacter Selective
Supplement SR0085E (Oxoid), and Growth Supplement SR0232 (Oxoid), and were in-
cubated at 42 ◦C under microaerobic conditions for 24 h. The samples were plated on
Campylobacter agar base (Oxoid), supplemented with 5% sheep blood (Oxoid), Campy-
lobacter Selective Supplement SR0098E (Oxoid), and Campylobacter Growth Supplement
SR0232 (Oxoid). The plates were incubated under the above described same conditions for
48–72 h. Colonies morphologically compatible with Campylobacter spp. were transferred
onto blood agar plates (Oxoid), and incubated at 42 ◦C under microaerobic conditions for
24 h. Of each suspected isolated, three colonies were tested by multiplex PCR according to
Denis et al. [35], with modifications. Briefly, DNA extraction was performed by dissolving
each colony in 100 µL of distillate water and boiled at 100 ◦C for 10 min.

The reaction mixture consisted of iTaq buffer 10X, MgCl2 50 mM, dNTPs 10 mM (of
each of the four oligonucleotides), 11 µM of MD16S1 and MD16S2 and 10.42 µM of the
remaining two primers pairs (Table 2), 1.34 U of iTaq DNA polymerase Platinum II Green
HS PCR MM (Invitrogen, Lithuania) and 2 µL of sample DNA and sterile distilled water to
complete a total volume of 25 µL.

Cycling conditions were as follows: 94 ◦C for 5 min for 1 cycle; 94 ◦C for 15 s, 60 ◦C
for 15 s, 72 ◦C for 10 s for 34 cycles; and 72 ◦C for 10 min for final elongation. PCR products
were loaded for electrophoresis on a 1.5% agarose gel stained with ethidium bromide. The
rection was visualized with Gel Doc-It image analyzer (UVP, Upland, CA, USA). C. jejuni
ATCC 29428 and C. coli ATCC 33559 obtained from LGC Promochem (LGC Promochem,
Teddington, UK) were used as positive controls (Figure 1).
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Table 2. Primers used for the identification of C. jejuni and C. coli.

Target Gene Primer Sequence Amplicon Molecular
Weight

Genus Campylobacter 16S rRNA MD16 S1
MD16 S2

ATCTAATGGCTTAACCATTAAAC
GGAGGGTAACTAGTTTAGTATT 857 bp

C. jejuni MapA MD mapA1
MD mapA2

CTATTTTATTTTTGAGTGCTTGTG
GCTTTATTTGCCATTTGTTTTATTA 598 bp

C. coli CeuE COL3
MDCOL2

AATTGAAAATTGCTCCAACTATG
TGATTTTATTATTTGTAGCAGCG 462 bp
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Ladder, Ready to use, 250–10,000 bp, Thermo Scientific Inc., Waltham, MA, USA); Lanes 1–5: C. jejuni
strains; Lanes 6–9: C. coli strains; Lanes 11–12: C. coli strains; Lane 13: C. jejuni strain; Lanes 14–16:
C. coli strains; Lane 17: C. coli positive control; Lane 19: C. jejuni positive control; Lanes 18 and 20:
negative control.

2.3. Antibiotic Susceptibility Testing

Overall, 76 strains of C. jejuni and 63 strains of C. coli were tested to determine
susceptibility to azithromycin (AZM) 15 µg (Oxoid); chloramphenicol (CHL) 30 µg (Oxoid);
ciprofloxacin (CIP) 5 µg (Oxoid); enrofloxacin (ENR) 5 µg (Oxoid); erythromycin (E) 15 µg
(Oxoid); gentamicin (CN) 10 µg (Oxoid); acid nalidixic (NA) 30 µg (Oxoid); tetracycline
(TE) 30 µg (Oxoid); and trimethoprim-sulfamethoxazole (SXT) 25 µg (Oxoid). Antibiotic
susceptibility tests were performed on Mueller–Hinton agar supplemented with 5% horse
blood using the standard Kirby–Bauer disk diffusion method according to the European
Committee for Antimicrobial Susceptibility Testing [36,37].

2.4. Plasma Corticosterone and IL-6-ELISA Test

ELISA tests were performed using a DYNEX DSX® fully automated four-plate ELISA
processing system. Plasma corticosterone and IL-6 concentrations were measured with
Avian-Corticosterone ELISA (My-Bio-Source, San Diego, CA, USA) and Avian-IL-6 ELISA
(My-Bio-Source) respectively, according to manufacturer’s instructions. All reagents were
kept at 25–28 ◦C for 30–40 min before reconstruction. Enzyme conjugate was stored at
−20 ◦C until use. Optical density (OD) was determined using a microplate reader with a
wavelength of 450 nm. The mean of the duplicate’s readings for each standard and sample
was calculated, and the average OD of the blank was subtracted. A standard curve was
created using computer software capable of generating a four-parameter logistic (4-PL)
curve-fit.

2.5. Statistical Analysis

The data for different flocks were analyzed by univariate statistical analysis (Pearson’s
chi-square test and Fisher’s exact test for independence) using Campylobacter spp. status
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(positive/negative) as the dependent variable. The odds ratio (OR) and 95% confidence
interval (CI95%) were also calculated. Values of p < 0.05 were considered statistically
significant. Statistical analysis was performed using spss 13 software for Windows (SPSS
Inc., Chicago, IL, USA). Data for inteleukin-6 and cortisol levels were submitted to a one-
way ANOVA to show significant differences within different flocks of birds. Data were
analyzed using Statistic 13.0 (Statsoft Inc., Tulsa, OK, USA). Tukey post hoc tests was used
to compare means, with significant level of 5%.

3. Results
3.1. Campylobacter Prevalence

In total, 160 out of 177 (90.4%) laying hens tested positive for Campylobacter (Table 3).
The incidence of infection was 94.6% in laying hens reared in aviaries, 91.7% in barns and
86.7% in cage systems. C. jejuni and C. coli were identified in 77 (43.5%) and 69 (38.9%)
birds, respectively. Both C. jejuni and C. coli were simultaneously detected in 14 animals
(7.9%). C. jejuni was prevalently detected in laying hens housed in barns from both B1
(53.3%; p < 0.001; OR: 7.43, CI95%: 2.08–26.55) and B2 (46.7%; p < 0.001; OR: 5.69, CI95%:
1.59–20.33) flocks. A high prevalence was also found in aviary C2 (86.7%; p < 0.001; OR:
42.25, CI95%: 9.53–187.22), and to a lesser extent in aviary C1 (34.6%; p < 0.001; OR: 3.44,
CI95%: 0.91–12.97). Conversely, laying hens housed in cages were significantly exposed to
infection by C. coli both in A1 (41.9%; p < 0.001; OR: 10.11, CI95%: 2.04–50.19) and A2 (80%;
p < 0.001; OR: 56.00, CI95%: 10.33–303.68) flocks. Regarding C. coli incidence in barn and
aviary housing, differences were found among flocks. A significant prevalence of C. coli
emerged only in flocks B2 (40%; p < 0.001; OR: 9.33, CI95%: 1.87–46.68) and C1 (54.8%;
p < 0.001; OR: 16.33, CI95%: 3.2–83.25). Simultaneous infection was found in the cages from
both flocks (A1 and A2) and in barn B1, although a statistically significant exposure was
found only in the latter (36.7%; p < 0.001; OR: 17.37, CI95%: 2.07–145.61).

3.2. Antibiotic Resistance

Antibiotic resistance was mainly observed in C. coli strains (Table 4). Among C. jejuni
strains, 14 (18.4%), 9 (11.8%) and 10 (13.1%) were resistant to ciprofloxacin, enrofloxacin and
nalidixic acid, respectively, while 13 (20.6%), 10 (15.9%) and 11 (17.5%) C. coli strains were
resistant to those drugs. In addition, partial susceptibility to these antibiotics was detected
in 8 (12.7%), 16 (25.4%) and 11 (17.5%) C. coli strains. Twenty-five (39.7%) of the tested C.
coli strains and four of the C. jejuni strains (5.3%) were resistant to tetracycline. Resistance
to trimethoprim/sulfamethoxazole was detected in 10 (13.1%) and 6 (9.5%) strains of C.
jejuni and C. coli, respectively.

Among C. jejuni strains, only one was resistant to erythromycin, while no resistance
was found to azithromycin, chloramphenicol and gentamicin. No C. coli strains were
resistant to chloramphenicol, erythromycin and gentamicin.

Drug-resistant strains of C. jejuni were found in the cage (A) and barn (B) systems,
while no strains were detected in the aviary systems (C). Resistant C. coli strains were
identified in all considered rearing systems but were mostly found in the aviary (flock C1
and C2).

It was found that 15 (19.7%) C. jejuni and 11 (17.5%) C. coli were resistant to more than
two molecules. Details of the multidrug resistance found in the detected strains are shown
in Table 5.

Resistance to ciprofloxacin/enrofloxacin/nalidixic acid association was the most fre-
quently detected among C. jejuni strains and was found in strains from cage-reared birds
(A:25%) (flock A1: 37.5%) but resistance to ciprofloxacin/nalidixic acid/trimethoprim-sulfame
thoxazole (A:8.3%), ciprofloxacin/enrofloxacin/nalidixic acid/trimethoprim-sulfamethoxazole
(B:6.9%) and ciprofloxacin/nalidixic acid/tetracycline/trimethoprim-sulfamethoxazole (B:6.9%)
were also observed. Resistance to ciprofloxacin/enrofloxacin/nalidixic acid (A:15.1%) and
ciprofloxacin/enrofloxacin/nalidixic acid/tetracycline (B:14.3% and C1: 16.7%) was also fre-
quently detected in C. coli strains.
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Table 3. Prevalence of C. jejuni and C. coli in flocks of laying hens housed in enriched cages (A1-A2), barns (B1-B2) and aviaries (C1-C2).

C. jejuni C. coli Both C. jejuni and C. coli

Flocks N◦ Pos/Tested (%) p-Value OR (CI 95%) N◦ Pos/Tested (%) p-Value OR (CI 95%) N◦ Pos/Tested (%) p-Value OR (CI 95%)

A1 8/31 (25.8) <0.001 2.26 (0.6–8.5) 13/31 (41.9) <0.001 10.11 (2.04–50.19) 1/31 (3.2) <0.001 1.00 (Reference group)
A2 4/30 (13.3) 1.00 (Reference group) 24/30 (80) 56.00 (10.33–303.68) 2/30 (6.7) 2.14 (0.18–24.96)
B1 16/30 (53.3) 7.43 (2.08–26.55) 2/30 (6.7) 1.00 (Reference group) 11/30 (36.7) 17.37 (2.07–145.61)
B2 14/30 (46.7) 5.69 (1.59–20.33) 12/30 (40) 9.33 (1.87–46.68) 0/30 (0) NA
C1 9/26 (34.6) 3.44 (0.91–12.97) 14/26 (54.8) 16.33 (3.2–83.25) 0/26 (0) NA
C2 26/30 (86.7) 42.25 (9.53–187.22) 4/30 (13.3) 2.15 (0.36–12.76) 0/30 (0) NA

Total 77/177 (43.5) 69/177 (38.9) 14/177 (7.9)

Dependent variable is Campylobacter spp. positive/negative status. OR: odds ratio, CI95%: 95% confidence interval, NA: not applicable due to zero positive samples.



Animals 2022, 12, 2978 8 of 16

Table 4. Antibiotic resistance detected in C. jejuni and C. coli strains isolated from laying hens housed in enriched cages (A), barns (B) and aviaries (C).

AZM CHL CIP ENR E CN NA TE SXT

Flock
(N◦ strains) I R I R I R I R I R I R I R I R I R

C
.j

ej
un

i

C
ag

e
(A

) A1 (8) 0
(0)

0
(0)

0
(0)

0
(0)

1
(12.5)

5
(62.5)

0
(0)

5
(62.5)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

3
(37.5)

0
(0)

0
(0)

0
(0)

0
(0)

A2 (4) 0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

Sub total (12) 0
(0)

0
(0)

0
(0)

0
(0)

1
(8.3)

5
(41.6)

0
(0)

5
(41.6)

0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

3
(25)

0
(0)

0
(0)

0
(0)

0
(0)

Ba
rn

(B
) B1 (15) 0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
9

(60)
1

(6.7)
4

(26.7)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
6

(40)
0

(0)
4

(26.7)
0

(0)
8

(53.3)
B2 (14) 0

(0)
0

(0)
0

(0)
1

(7.1)
2

(14.3)
0

(0)
0

(0)
0

(0)
0

(0)
1

(7.1)
0

(0)
0

(0)
0

(0)
1

(7.1)
0

(0)
0

(0)
0

(0)
2

(14.3)
Sub total (29) 0

(0)
0

(0)
0

(0)
0

(0)
2

(6.9)
9

(31)
1

(3.4)
4

(13.8)
0

(0)
1

(3.4)
0

(0)
0

(0)
0

(0)
7

(24.1)
0

(0)
4

(13.8)
0

(0)
10

(34.5)

A
vi

ar
y

(C
) C1 (9) 0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
C2 (26) 0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
Sub total (35) 0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)

Total (76) 0
(0)

0
(0)

0
(0)

0
(0)

3
(3.9)

14
(18.4)

1
(1.3)

9
(11.8)

0
(0)

1
(1.3)

0
(0)

0
(0)

0
(0)

10
(13.1)

0
(0)

4
(5.3)

0
(0)

10
(13.1)

C
.c

ol
i

C
ag

e
(A

) A1 (13) 0
(0)

0
(0)

0
(0)

0
(0)

4
(30.8)

2
(15.4)

0
(0)

2
(15.4)

0
(0)

0
(0)

0
(0)

0
(0)

2
(15.4)

2
(15.4)

0
(0)

2
(15.4)

2
(15.4)

0
(0)

A2 (20) 0
(0)

1
(5)

0
(0)

0
(0)

4
(20)

1
(5)

0
(0)

1
(5)

0
(0)

0
(0)

0
(0)

0
(0)

1
(5)

1
(5)

0
(0)

2
(10)

1
(5)

5
(25)

Sub total (33) 0
(0)

1
(3)

0
(0)

0
(0)

8
(24.2)

3
(9)

0
(0)

3
(9)

0
(0)

0
(0)

0
(0)

0
(0)

3
(9)

3
(9)

0
(0)

4
(12.1)

3
(9)

5
(15.1)

Ba
rn

(B
) B1 (2) 0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
2

(100)
0

(0)
1

(50)
0

(0)
0

(0)
0

(0)
0

(0)
1

(50)
1

(50)
0

(0)
2

(100)
1

(50)
1

(50)
B2 (12) 0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
11

(91.7)
3

(25)
2

(16.7)
0

(0)
0

(0)
0

(0)
0

(0)
4

(33.3)
3

(25)
0

(0)
7

(58.3)
4

(33.3)
0

(0)
Sub total (14) 0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
13

(92.8)
3

(21.4)
3

(21.4)
0

(0)
0

(0)
0

(0)
0

(0)
5

(35.7)
4

(28.6)
0

(0)
9

(64.3)
5

(35.7)
1

(7.1)

A
vi

ar
y

(C
) C1 (12) 0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
9

(75)
2

(16.7)
4

(33.3)
0

(0)
0

(0)
0

(0)
0

(0)
2

(16.7)
4

(33.3)
0

(0)
9

(75)
4

(33.3)
0

(0)
C2 (4) 0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
1

(25)
1

(25)
0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
1

(25)
0

(0)
0

(0)
3

(75)
1

(25)
0

(0)
Sub total (16) 0

(0)
0

(0)
0

(0)
0

(0)
0

(0)
10

(62.5)
3

(18.7)
4

(25)
0

(0)
0

(0)
0

(0)
0

(0)
3

(18.7)
4

(25)
0

(0)
12

(75)
5

(31.2)
0

(0)

Total (63) 0
(0)

1
(1.6)

0
(0)

0
(0)

8
(12.7)

13
(20.6)

16
(25.4)

10
(15.9)

0
(0)

0
(0)

0
(0)

0
(0)

11
(17.5)

11
(17.5)

0
(0)

25
(39.7)

13
(20.6)

6
(9.5)

The cutoff values as defined by EUCAST (European Committee on Antimicrobial Susceptibility Testing) were used to interpret the antimicrobial susceptibilities to AZM: azithromycin;
CIP: ciprofloxacin; E: erythromycin; TE: tetracycline. The cutoff values as defined by CLSI Clinical Laboratory and Standards Institute) were used the antimicrobial susceptibilities to CN:
gentamicin; NA: nalidixic acid; SXT: trimethoprim-sulfamethoxazole CHL: chloramphenicol; ENR: enrofloxacin.
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Table 5. Multidrug resistance found in C. jejuni and C. coli strains isolated from laying hens housed
in enriched cages (A), barns (B) and aviaries (C).

3 Drugs 4 Drugs

Flock CIP/ENR/
NA

CIP/NA/
SXT

CIP/ENR/
SXT

CIP/ENR/
NA/TE

CIP/ENR/
NA/SXT

CIP/NA/
TE/SXT

CHL/E/NA/
SXT

M
ul

ti
dr

ug
re

si
st

an
tC

.j
ej

un
i:

15
/7

6
(1

9.
7%

)

C
ag

e
(A

) A1 3/8
(37,5)

0/8
(0)

0/8
(0)

0/8
(0)

0/8
(0)

0/8
(0)

0/8
(0)

A2 0/4
(0)

1/4
(25)

0/4
(0)

0/4
(0)

1/4
(25)

0/4
(0)

0/4
(0)

Sub total 3/12
(25)

1/12
(8.3)

0/12
(0)

0/12
(0)

1/12
(8.3)

0/12
(0)

0/12
(0)

O
n

flo
or

(B
) B1 0/15

(0)
2/15
(13.3)

2/15
(13.3)

0/15
(0)

2/15
(13.3)

2/15
(13.3)

0/15
(0)

B2 0/14
(0)

0/14
(0)

0/14
(0)

0/14
(0)

0/14
(0)

0/14
(0)

1/15
(7.1)

Sub total 0/29
(0)

2/29
(6.9)

2/29
(6.9)

0/29
(0)

2/29
(6.9)

2/29
(6.9)

1/29
(3.4)

A
vi

ar
y

(C
) C1 0/9

(0)
0/9
(0)

0/9
(0)

0/9
(0)

0/9
(0)

0/9
(0)

0/9
(0)

C2 0/26
(0)

0/26
(0)

0/26
(0)

0/26
(0)

0/26
(0)

0/26
(0)

0/26
(0)

Sub total 0/35
(0)

0/35
(0)

0/35
(0)

0/35
(0)

0/35
(0)

0/35
(0)

0/35
(0)

Total 3/76
(3.9)

3/76
(3.9)

2/76
(2.6)

0/76
(0)

3/76
(3.9)

3/76
(3.9)

1/76
(1.3)

M
ul

ti
dr

ug
re

si
st

an
tC

.c
ol

i:
11

/6
3

(1
7.

5%
)

C
ag

e
(A

) Flock A1 2/13
(15.4)

0/13
(0)

0/13
(0)

0/13
(0)

0/13
(0)

0/13
(0)

0/13
(0)

Flock A2 3/20
(15)

0/20
(0)

0/20
(0)

0/20
(0)

0/20
(0)

0/20
(0)

0/20
(0)

Sub total 5/33
(15.1)

0/33
(0)

0/33
(0)

0/33
(0)

0/33
(0)

0/33
(0)

0/33
(0)

O
n

flo
or

(B
) B1 0/2

(0)
0/2
(0)

0/2
(0)

1/2
(50)

0/2
(0)

0/2
(0)

0/2
(0)

B2 0/12
(0)

0/12
(0)

0/12
(0)

1/12
(8.3)

0/12
(0)

0/12
(0)

0/12
(0)

Sub total 0/14
(0)

0/14
(0)

0/14
(0)

2/14
(14.3)

0/14
(0)

0/14
(0)

0/14
(0)

A
vi

ar
y

(C
) C1 2/12

(16.7)
0/12
(0)

0/12
(0)

2/12
(16.7)

0/12
(0)

0/12
(0)

0/12
(0)

C2 0/4
(0)

0/4
(0)

0/4
(0)

0/4
(0)

0/4
(0)

0/4
(0)

0/4
(0)

Sub total 2/16
(12.5)

0/16
(0)

0/16
(0)

2/16
(12.5)

0/16
(0)

0/16
(0)

0/16
(0)

Total 7/63
(11.1)

0/63
(0)

0/63
(0)

4/63
(6.3)

0/63
(0)

0/63
(0)

0/63
(0)

The cutoff values as defined by EUCAST (European Committee on Antimicrobial Susceptibility Testing) were
used to interpret the antimicrobial susceptibilities to AZM: azithromycin; CIP: ciprofloxacin; E: erythromycin; TE:
tetracycline. The cutoff values as defined by CLSI Clinical Laboratory and Standards Institute) were used the
antimicrobial susceptibilities to CN: gentamicin; NA: nalidixic acid; SXT: trimethoprim-sulfamethoxazole CHL:
chloramphenicol; ENR: enrofloxacin.

The cutoff values as defined by EUCAST (European Committee on Antimicrobial
Susceptibility Testing) were used to interpret the antimicrobial susceptibilities to AZM:
azithromycin; CIP: ciprofloxacin; E: erythromycin; TE: tetracycline. The cutoff values as
defined by CLSI Clinical Laboratory and Standards Institute) were used the antimicrobial
susceptibilities to CN: gentamicin; NA: nalidixic acid; SXT: trimethoprim-sulfamethoxazole
CHL: chloramphenicol; ENR: enrofloxacin.

3.3. Corticosterone and Interleukin-6 Levels

The highest (p < 0.05) levels of IL-6 were detected in laying hens housed in aviaries
from both C1 and C2 flocks (Figure 2). Intermediate values were found in birds raised in
barns, although differences emerged between farms (p < 0.05). Cage housing resulted in
the lowest (p < 0.05) levels of IL-6, showing no differences between A1 and A2.
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Figure 2. Levels of interleukin-6 (IL-6) in flocks of laying hens housed in enriched cages (A1–A2),
barns (B1–B2) and aviaries (C1–C2). Data are reported as means ± standard deviations. Different
letters (a–d) indicate significant differences (p < 0.05) among the different flocks of birds.

A similar trend emerged in corticosterone level, with the highest (p < 0.05) values
recorded in laying hens farmed in aviaries (Figure 3). Within the same housing method,
significant differences (p < 0.05) for corticosterone amount were found only between C1
and C2.
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Figure 3. Levels of corticosterone in flocks of laying hens housed in enriched cages (A1–A2), barns
(B1–B2) and aviaries (C1–C2). Data are reported as means ± standard deviations. Different letters
(a–d) indicate significant differences (p < 0.05) among the different flocks of birds.

4. Discussion

Campylobacter was detected in 90.4% of laying hens tested in the study. Campylobacter
jejuni and C. coli were identified in 43.5% and 38.9% of birds, respectively. In addition, 14
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hens (7.9%) were carriers of both C. jejuni and C. coli. Even if C. jejuni infection is responsible
for avian vibrionic hepatitis [20], infected hens usually harbor the germ without developing
clinical symptoms, spreading a large amount of Campylobacter through their feces [38,39].
Although the epidemiological dynamics of infection transmission in laying hen farms are
not well known, their production cycles are longer than those used for broilers, exposing
hens to close and constant contacts between infected and healthy individuals over several
months [38]. This may explain why the incidence of infection can be high in laying hen
farms. Infection rates of 70% [40], 90% [41], 97.9% [42] and up to 100% [43] have been
reported in hen flocks from different countries, although lower incidence rates are also
reported in the literature [38,43–47]. Several factors may influence the incidence of infection
in poultry farms, and different fomites such as rodents, wild birds, visitors, equipment,
drinking water and flies may carry the germ to flocks [48–50].

As Campylobacter transmission occurs via the fecal–oral route, the infection easily
involves many birds [51] and could potentially spread more rapidly in cage-free flocks.
Although the incidence of infection varied greatly among flocks, a prevalent trend emerged
in aviaries and barns compared with cages. Similarly, a significantly higher incidence of
bacterial and parasitic diseases, as well as other disorders such as cannibalism, has been
previously found in laying hens reared in litter-based and free-range systems than in those
kept in cages [52]. Higher levels of bacterial contamination have also been observed in
eggs from cage-free systems than in eggs from caged hens [53]. In addition, more frequent
antibiotics use has been reported in Germany in laying hens housed in litter-based housing
systems than in caged birds [54].

The highest values of corticosterone and IL-6 were found in hens raised in cage-free
systems, particularly in aviaries, while the lowest values were detected in cage-reared birds.
The results seem to indicate that the rearing method may have an impact on the stress
indicators evaluated. Barn and aviary systems provide animals with more movement than
cages, but, on the other hand, they may increase opportunities for competition, potentially
leading to increased stress and plasma corticosterone levels. The greater chances for laying
hens to move around, climb the perch floors and use their wings could also explain the
higher IL-6 levels found in aviaries. Indeed, IL-6 is not only a cytokine released in response
to stressor situations, but also a myokine released during prolonged exercise without mus-
cle damage [55]. Further investigations are needed to assess the actual relevance of these
parameters as predictors of welfare conditions in different housing systems, and to estab-
lish a possible relationship between stress conditions and the incidence of Campylobacter
infection in laying hens.

On the tested flocks, no relationship was found between the detection of C. jejuni
and C. coli and the sampling time, except for a few flocks. Due to efficiency of ventilation
systems, the temperatures recorded inside the different sheds at the time of samplings were
quite similar to each other. Although 84% and 76% positivity rates have been found in
Finland in autumn and in spring, respectively [43], some studies have highlighted an in-
creased incidence of Campylobacter detection in chicken and pig samples at slaughterhouses
in relation to increased environmental temperature [56] and increased temperature and
drought on broiler farms [57]. As a result, foodborne diseases, including campylobacte-
riosis, occur more frequently in warmer months [58]. The higher incidence of infection in
farms during summer may also be influenced by the presence of flies [59], which may carry
the germ within and between flocks [60].

Regarding antimicrobial resistance, it has been found to be more frequent among C. coli
than C. jejuni strains, according to some studies performed on laying hen farms [38,61].
However, in other investigations on strains from broiler [62], laying hens [47,63] and poultry
meat [64], drug resistance was found more often in C. jejuni. Quinolones and tetracycline
were the drugs to which both germs were most frequently found to be resistant. This kind of
resistance was dependent on bird flock but was frequently found in C. coli strains from cage-
free systems. Resistance to quinolones in Campylobacter isolated from laying hens [47,65,66],
broilers [62,67,68] and chicken meat [68,69] has been found in the United States, Italy, Spain,
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Poland and other countries. These molecules, frequently used in veterinary medicine,
are considered a viable alternative to macrolides for the treatment of campylobacteriosis
in humans [66,70,71]. A relationship has been found between the use of quinolones in
poultry and increased resistance in chicken and human Campylobacter strains [69], leading
to more cautious use in the poultry industry [72]. In our study, resistance to ciprofloxacin,
which is the most widely used quinolone in human medicine, was detected in C. coli from
laying hens in barns (flock B2: 91.7%) and aviaries (flock C1: 75%), and in C. jejuni in
laying hens from cages (flock A1: 62.5%) and barns (flock B1: 60%), according to other
studies where resistance rates to quinolones other than tetracycline were relevant [61]
and reached 100% [38]. Resistance to erythromycin, which is the drug of choice for the
treatment of campylobacteriosis in humans, was found more rarely and was detected
only among C. jejuni strains, in agreement with other investigations in laying hens [70,72]
and broilers [68]. Resistance to tetracycline, which is often used to treat gastrointestinal
disorders in humans, has been found more often in C. coli (39.7%) than C. jejuni (5.3%)
and has been detected in strains from barns and aviaries. Previous studies have reported
resistance rates ranging from 33.3 to 98.9% [38,47,65,67,70]. Multidrug resistance was found
in both C. jejuni (19.7%) and C. coli (17.5%) and was more frequent in C. jejuni strains from
birds reared in cages and C. coli isolated from barn and aviary-reared hens. Similar rates
of multidrug resistance were detected in Campylobacter strains from poultry meat [73] and
laying hens, in which 41% of multidrug resistant strains were identified [74].

Although campylobacteriosis in humans is mainly associated with the consumption
and handling of chicken meat [75], the public health relevance of C. jejuni and C. coli
infection on laying hen farms should be better investigated. There is no evidence of risks to
humans associated with infected eggs because only eggshell contamination usually occurs,
even though vertical transmission of Campylobacter can occur [76]. Eggshells and cuticles are
effective barriers to bacteria [77–80]. Moreover, egg white contains antimicrobial proteins
such as lysozyme and ovotransferrin that induce bacteriostatic effects [81]. Nevertheless,
transmission of Campylobacter from poultry to humans can potentially occur directly by
handling infected birds or indirectly during the removal of contaminated litter or bedding
from cages.

Proper implementation of biosecurity measures should be able to reduce the incidence
of infection in laying hen farms, as already observed in broilers [82]. In particular, the use
of dedicated boots, clothing and equipment and handwashing before and after contact
with the flock should be adopted [83–85]. The boot baths at the entrance to the shed may
be effective if the disinfectant is changed regularly every week [86]. In addition, shielding
ventilation openings may be useful in reducing the incidence of Campylobacter in flocks by
preventing flies’ entry into the sheds [59].

5. Conclusions

Based on the results of this study, the infection of C. jejuni and C. coli occurred
frequently in laying hen flocks. Resistance to quinolones, tetracycline and trimetho-
prim/sulfamethoxazole, as well as multidrug resistance was found in the strains tested.
Although eggs do not pose a risk of Campylobacter transmission to humans, infection in
laying hens should be considered more carefully. In fact, it usually occurs in birds without
clinical signs, increasing the potential risks of transmission to humans when handling hens,
removing litter or cages. Increasing biosecurity measures should be helpful in reducing the
incidence of Campylobacter infection in laying hens’ farms.
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