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 Abstract: Obesity is a growing pandemic. Endocrine-disrupting chemicals are widespread in the en-

vironment. In this perspective, the authors examine the issue related to the exposure to several chem-

icals with endocrine-disrupting properties as promoting factors to obesity. Data show that Phthalates, 

Bisphenol compounds, Persistent Organic Pollutants (POPs), solvents, and personal care products 

can modify metabolic properties in a dose-response and sex-specific manner. Phthalates and bi-

sphenol compounds increase body mass index, waist circumference, waist to height ratio, and the 

sum of skinfold thicknesses in women and not in men. Low-dose exposure to Persistent Organic Pol-

lutants is strongly associated with increased body mass index in men and decreased this parameter in 

women. The mechanism through which these compounds act on anthropometric parameters is not 

entirely understood. Several studies suggest a possible interference in gonadotropin secretion and the 

thyroid axis. These inspire a decrease in both total and free testosterone levels in men and FT3 and 

FT4 levels in women, particularly after a pregnancy. The impact of endocrine disruptor chemicals on 

adipose tissue inflammation and future cardio-metabolic disorders remains to be elucidated. There-

fore, studies involving both healthy and obese individuals are needed to unambiguously confirm re-

sults from in vitro and animal models. 
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1. INTRODUCTION 

 The obesity incidence rate has more than doubled in the 
last decades, and nearly one-third of the world population is 
now classified as overweight or obese [1]. This condition 
represents a notable risk factor for several chronic illnesses, 
such as insulin resistance [2], impaired glucose metabolism 
and type 2 diabetes [2], dyslipidemia [2], non-alcoholic fatty 
liver disease and non-alcoholic steatohepatitis [2-4], hyperu-
ricemia [5], obstructive sleep apnoea syndrome [6, 7], pro-
thrombotic state [8], hypertension [9,10], cardiovascular 
diseases [11, 12], male [13] and female [14-16] fertility im-
pairment and some types of cancer [17-19], and vitamin D 
deficiency [20, 21].  

 Obesity has a multifactorial etiology deriving from in-
teractions among genetic, nutritional, and environmental 
factors [21]. The association between high calorie-dense 
food intake and a sedentary lifestyle leads to pathological  
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overweight [22]. Moreover, there is evidence that exposure 
to several chemicals in perinatal life could represent a risk 
factor for obesity [23, 24] since this period of life is more 
susceptible to exogenous agents. Plastics, cleaning products, 
cigarette smoking, pesticides, and flame retardants are de-
fined as "endocrine-disrupting chemicals" (EDCs) since 
they induce possible adverse effects on the endocrine sys-
tem in healthy people and their offspring. Some of them are 
defined as "obesogens" since they affect the lipid metabo-
lism and storage in the adipose tissue [25, 26]. For instance, 
tributyltin (TBT), phthalate (DEHP), bisphenol A (BPA), 4-
nonylphenol, and parabens may exert estrogenic activity 
[27, 28] and interfere with adipogenesis by disrupting Pe-
roxisome Proliferator-Activated Receptor (PPAR) signaling 
[29], whereas polybrominated diphenyl esters and other 
compounds could disrupt thyroid function [30].  

 Given the dimension of the topic and considering the 
widespread consumption and wastage of these chemicals in 
the environment, this review aims to discuss several mecha-
nisms by which EDCs may be involved in obesity patho-
genesis as possible risk factors. 
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2. EDCS AND OBESITY 

 Grun and Blumberg demonstrated for the first time how 
exogenous agents can alter adipogenic pathways and energy 
balance, promoting an increase in adipocyte differentiation 
and proliferation rates [25]. To date, phthalates, bisphenol 
compounds, and Persistent Organic Pollutants (POPs) are 
considered the main compounds possibly involved in the 
pathophysiology of obesity. 

3. PHTHALATES 

 Phthalates belong to a family of synthetic organic chem-
icals employed in manufacturing plastics, solvents, and per-
sonal care products. The prominent representatives of these 
compounds are Mono(2-carboxymethylhexyl) phthalate, 
monocyclohexyl phthalate, mono-3-hydroxybutyl phthalate, 
and monocarboxyisooctyl phthalate. They play a crucial role 
in dysregulating endocrine homeostasis and promoting body 
fat gain. A tight correlation between several phthalates and 
obesity in adults and children has been observed [31]. Stud-
ies suggest a sex-specific action of these compounds [32-
34]. For instance, Vafeiadi et al. observed opposite effects 
on the body mass index (BMI), and waist circumference 
(WC) in boys than girls [34]. Precocious exposure to 
phthalates is associated with lowering BMI, WC, and waist-
to-hip ratio in boys but not in girls [34]. Additionally, a lon-
gitudinal study on 1239 girls aged 6-8 years showed similar 
results [35]. However, the results of a recently published 
meta-analysis of observational studies showed a slight cor-
relation between phthalate exposure and body mass out-
comes, especially in children [36].  

4. BISPHENOL COMPOUNDS 

 Bisphenol compounds, such as BPA, BPF, and BPS, are 
some of the most widespread synthetic chemicals employed 
in plastics manufacturing [37, 38]. Several studies demon-
strated that BPA exposure could significantly affect anthro-
pometric parameters, increasing WC and BMI, thus promot-
ing abdominal obesity [39, 40]. Early-life exposure to bi-
sphenols may be associated with fat mass gain, hypertri-
glyceridemia, and high circulating levels of free fatty acids, 
especially in rodents. This effect was robust after exposure 
to bisphenol over the current reference dose of 50 
μg/kg/daily [41]. 

 Continuous exposure to these compounds could modify 
metabolic properties, fostering abdominal obesity and over-
weight in humans. Using data from the US National Health 
and Nutrition Examination Survey (NHANES) from 2013 to 
2016, Jacobson et al. evaluated the association between uri-
nary bisphenols compounds (a biomarker of cumulative 
exposure to bisphenols) and anthropometric parameters in 
children and adolescents aged 6 to 19 years. Urinary con-
centrations of BPS and BPF, but not BPA, were associated 
with a higher WC and increased BMI z-score overall [42]. 

 Due to its similarities with estrogen structure, BPA can 
exert sex-specific effects on body mass [43]. For example, a 
prospective study evaluated a positive association between 
urinary BPA and the sum of skinfold thickness in women 
but not in men [33]. Furthermore, an increased risk of cen-

tral adiposity in 7-year-old girls was related to maternal 
BPA exposure during pregnancy [44]. 

 A comparative study performed in adults by using the 
NHANES data from 2013 to 2014 shows a significant posi-
tive relationship between BPA exposure [44], but not BPF 
and BPS, and excessive fat accumulation [45, 46], thus in-
creasing BMI and WC and raising the risk of abdominal 
obesity [47, 48]. 

5. PERSISTENT ORGANIC POLLUTANTS (POPS) 

 Persistent organic pollutants (POPs) include polychlo-
rinated biphenyls, organochlorine pesticides hexachloroben-
zene, and p,p-dichlorodiphenyldichloroethylene (DDE) 
(primary metabolite of DDT). The CHAMACOS study rep-
resents a relevant study evaluating the interaction between 
POPs and the adipose tissue. This longitudinal birth cohort 
study was performed on 527 pregnant women and their off-
spring and found a significant correlation between EDCs’ 
exposure, including DDT, through fetal life and increased 
BMI and WC in 9-year-old girls. This could represent a sig-
nificant risk factor for metabolic syndrome in adulthood 
[49]. The prenatal window is one of the most vulnerable 
periods of life, especially for adipocyte development. Expo-
sure to a low dose of POPs during this period of life could 
raise the risk of fat accumulation in children. Mainly, in 
utero exposure to DDE and HBC, but not to PBC's, drives 
an increase in BMI and WC in 4-year-aged children [50]. 
Furthermore, a non-monotonic dose-exposure response has 
also been described. For instance, adverse effects of these 
compounds were induced in the case of low-dose exposure 
to POPs. Conversely, high-dose exposure seems to be in-
versely associated with abdominal obesity [51, 52]. POPs, 
as well as other EDCs, act in a sex-specific manner. They 
pointed out the action of oxychlordane and DDT on BMI 
and WC in both samples. Notably, according to Elobeid et 
al., oxychlordane is associated with a BMI increase in men 
and a BMI decrease in women [52]. On the contrary, DDT 
was associated with a WC decrease in males and a WC in-
crease in females [53]. This might be due to hormonally 
directed differences in fat storage among men and women: 
although women are prone to accumulate fat in their hips, 
men are predisposed to store it at the waist level. 

6. DISCUSSION 

6.1. The Pathogenesis of Obesity: Interaction between 
Edcs and Adipogenesis 

 Adipose tissue was previously considered a storage tis-
sue only, but it is now clear that it is fully involved in meta-
bolic and endocrine homeostasis [52, 54]. The differentia-
tion of mesenchymal stem cells into adipocytes is crucial 
since it defines the pathophysiology of obesity. The devel-
opment of mature adipocytes occurs in a series of ontoge-
netic steps. Initially, mesodermal cells are differentiated 
from pluripotent embryonic stem cells that change into mul-
tipotent fibroblasts. Then, they could be converted into 
unipotent preadipocytes. Finally, these are differentiated 
into mature adipocytes due to the activation of PPAR [55]. 
BPA, phthalates, and TBT are widespread EDCs. Notably, 
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due to their lipophilic nature, they are mainly stored in the 
adipose tissue. A significant body of evidence demonstrated 
that exposure to phthalates, 4-nonylphenol, and BPA could 
alter normal lipid metabolism and adipogenesis [56], operat-
ing on adipocyte differentiation or proliferation in murine 
cell lines [57, 58]. Indeed, these molecules affect adipogenic 
differentiation of mesenchymal stem cells (C3H/10T1/2) in 
a concentration-, stage- and compound-specific manner 
[29]. More specifically, TBT could reversibly bind to 
PPAR-γ and Retinoid X Receptor (RXR) [29], and it may 
mediate the related signaling pathway in in vitro [59] and 
mouse models [60]. PPAR-γ is a nuclear receptor that en-
hances gene expression promoting fatty acid storage in adi-
pocytes. Additionally, it inhibits gene expression related to 
stimulation of lipolysis and promotes insulin-sensitivity 
[61]. RXR ligands act similarly [62], highlighting the poten-
tial effects on obesity of both PPAR-γ and RXR agonists. 
TBT acts as a dual ligand for permissive heterodimers such 
as RXRα/PPAR-γ. Given this mechanism, possible additive 
or synergistic effects increasing the potency of these com-
pounds have been described in vivo [63]. Even though the 
mechanism by which EDCs induce an increase in adipo-
cytes number in vitro is well-known [29, 56, 58], it is still 
unknown which factors induce the same phenomenon in 
vivo. It might result from an increase in adipocyte precursor 
cell number or maybe the consequence of an increase in 
adipocyte size without an increase in the number or a com-
bination of both [63]. Further studies on humans are needed 
to explain these phenomena better. 

6.2. Anti-androgenic and Estrogenic Effects of EDCs and 
Obesity 

 EDCs’ gender-specific action on human metabolism 
might depend on their molecular structure. Many com-
pounds such as BPA, phthalates, and flame retardants dis-
play molecular similarities with synthetic estrogens. Due to 
this chemical similarity, most of them can interact with es-
trogenic receptors modulating sex steroid hormone actions 
in men and women. Gravel et al. demonstrated that a rele-
vant professional exposure to these compounds increases the 
risk of sex hormone dysregulation contributing to the patho-
physiology of obesity. Their study shows that a higher uri-
nary concentration of OPE-related metabolites is associated 
with a decrease in both total and free testosterone levels and 
an increase in estradiol (E2) in men [30]. By contrast, no 
relevant associations were found in women [30]. Further-
more, a cross-sectional study of Chinese workers confirmed 
these data in men. Notably, it shows that exposure to DEHP, 
DBP, MEHP, and MBP induces a decrease in serum free 
testosterone, not followed by a compensatory increase in LH 
and FSH [64], suggesting a possible alteration in the hypo-
thalamic-pituitary-testicular axis. Short-term professional 
exposure to phthalates also seems to reduce total serum tes-
tosterone levels in men [65]. Nevertheless, according to 
NHANES data from 2013 to 2016, these effects vary ac-
cording to men's age [66]. Exposure to high-molecular-
weight phthalates was associated with lower total, free and 
bioavailable testosterone among men ≥ 60 years. By con-
trast, low-molecular-weight phthalate exposure was associ-
ated with lower total, free and bioavailable testosterone 
among younger men (i.e., 20-39 years). 

 The leading mechanism of sex hormone disturbance is 
still unclear. Several studies suggest that EDCs play as ster-
oid antagonists on estrogen and androgen receptors [67]. 
Moreover, EDCs were found to upregulate the aromatase 
enzyme activity, thus enhancing testosterone conversion to 
estrogen [68]. In this way, lower serum testosterone concen-
tration reduces the risk of fat accumulation in women and 
predicts a more significant weight gain in men.  

6.3. The Relationship between Obesogens, EDCs, and 
Thyroid Hormones  

 EDCs may affect each endocrine organ, including the 
thyroid gland. For instance, hypothyroidism predisposes to 
weight gain, and the contrary is observed in hyperthyroid-
ism [69]. In the Puerto Rico Test site for Exploring Contam-
ination Threats (PROTECT) birth cohort, Johns et al. re-
ported an inverse association between meta-chlorophenyl-
piperazine and free triiodothyronine (T3) levels and a posi-
tive association between mono-benzyl phthalate and thy-
roid-stimulating hormone (TSH) during pregnancy [70]. 
This phenomenon can partly explain why lower weight loss 
was observed in post-pregnancy women exposed to these 
substances regardless of baseline BMI after a year from 
birth. Accordingly, a recent study by Perng W et al. investi-
gated the effect of EDCs’ exposure in 199 pregnant women 
from Mexico City and showed lower weight loss after one 
year from birth compared to controls [71]. The same result 
was confirmed by a cohort study (ELEMENT project), par-
ticularly after exposure to meta-chlorophenylpiperazine 
[72]. Difficulty in losing pregnancy-related weight gain 
could potentially be related to EDC-mediated thyroid hor-
mone imbalance or the activation of PPAR-γ nuclear recep-
tors.  

 TBT, a pesticide commonly used in agriculture, is an-
other EDC affecting thyroid hormones. TBT modifies thy-
roid function either directly or indirectly by influencing the 
hypothalamus-pituitary-thyroid axis. In this way, it alters 
TSH secretion interfering with endogenous hypothalamic 
TRH in rats [73]. Furthermore, the isoforms of RXR and 
PPAR-γ have been described as regulators of the hypotha-
lamic TRH gene, and this suggests a possible alternative 
mechanism for the action of TBT on the HPT axis [74, 75]. 
As a result, it can induce weight gain by reducing T3 and T4 
levels and acting as a PPAR agonist.  

6.4. EDC Exposure During the Perinatal Window 

 The perinatal period is a critical window for adipocytes 
development. This is relevant since the epigenome is still 
malleable and can receive and store signatures originating 
from the maternal environment. Exposure to toxic com-
pounds during this time induces significant effects on health 
status. For instance, exposure to cigarette smoke in utero is 
a risk factor for obesity later in life. A large prospective 
cohort study underlines maternal smoking during pregnancy 
and postnatal life involves the risk of overweight in children 
at age seven years in a clear dose-response manner [76].  

 EDC exposure could further affect newborn body 
weight. Indeed, it has been detected that a higher urinary 
concentration of BPA during the gestational period is relat-
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ed to an increase in central adiposity in childhood, particu-
larly in girls [77]. Furthermore, low birth weight is consid-
ered a risk factor for obesity in adulthood. A large meta-
analysis investigated the association between EDC exposure 
during pregnancy and offspring birth weight. Birks et al. 
suggested that the toxic effect of exogenous compounds 
during the perinatal window induces low birth weight in 
newborns [78, 79], which could represent a risk factor for 
overweight later in life. Another mechanism through which 
EDCs interfere with metabolic homeostasis is the alteration 
of adipokine assets. Adiponectin is a white adipose tissue-
released hormone which plays an anti-inflammatory, insu-
lin-sensitizing role [80]. Lower adiponectin levels induce 
pathological fat accumulation and insulin resistance, driving 
the metabolic syndrome [81]. Next to adiponectin, leptin is 
also produced by white the adipose tissue. This hormone, 
secreted parallel to fat accumulation, plays a key role in 
hypothalamus pathways promoting the sense of satiety [82]. 
A longitudinal cohort study on 1363 subjects highlighted the 
adverse effects of phthalate exposure on adipokine patterns, 
such as leptin and adiponectin. Positive and negative rela-
tionships between mono-(3-carboxypropyl) and leptin and 
adiponectin were found in males, respectively. By contrast, 
leptin levels in women show more vulnerability to mono-
benzyl phthalate action [83]. Additionally, the regulation of 
gene expression for adiponectin secretion in children is also 
influenced by BPA [84]. In this way, these pathways could 
promote pathological overweight and insulin resistance in 
adults [85] and children [82].  

6.5. EDC Exposure and Adipose Tissue Macrophages 

 Adipose tissue is a key factor in the pathogenesis of car-
dio-metabolic diseases [86]. Adipose tissue distribution af-
fects cardiometabolic risk, as visceral distribution remarka-
bly increases this risk [87, 88]. Adipose tissue morphology 
is another well-established determinant of atherosclerosis 
and cardio-metabolic risk [89]. Relevant histological and 
functional dissimilarities characterize the white and brown 
adipose tissues. The former is composed of unilocular white 
adipocytes with scarce mitochondria, acts as an energy 
store, and represents the main component of visceral and 
subcutaneous adipose tissue [90]. Brown adipose tissue is 
mainly expressed at cervical, supraclavicular, axillary, para-
vertebral, and suprarenal levels. It is characterized by multi-
locular and mitochondrial-rich brown adipocytes and plays 
an essential role in energy expenditure and heat output [90]. 
Browning of adipose tissue is a well-recognized phenome-
non of gene expression reprogramming consisting of white 
to brown-like (beige or brite) transition under environmental 
(i.e., cold) and pharmacological (e.g., beta3-adrenergic acti-
vation, PPAR agonists) conditions, and after exposure to 
physical exercise and certain foods [91-93]. Overnutrition 
induces adipose tissue enlargement and triggers inflamma-
tion as a sort of adaptive mechanism [94]. The pathophysi-
ology of this phenomenon remains unclear (e.g., local hy-
poxia, genetic background) but is implicated in the patho-
genesis of insulin resistance, type 2 diabetes, arterial hyper-
tension, and cardiovascular complications [95, 96]. Macro-
phages are the leading component of immune cells in the 
adipose tissue of obese individuals. They play a fundamen-
tal role in obesity-related local and systemic inflammation, 

particularly M1-polarized macrophages [97]. These macro-
phages secrete TNFα and IL-1beta, that, in turn, contribute 
to local and systemic insulin and catecholamine resistance 
[95]. As an alternative, IL-4 induces polarization of adipose 
tissue macrophages in the M2 sense. M2-polarized macro-
phages secrete catecholamines and are, therefore, involved 
in adipose tissue browning. Hence, the M1-to-M2 ratio 
could be a key regulator of adipose tissue homeostasis, en-
ergy balance, and local and systemic inflammation [97, 98].  

 To our knowledge, the macrophage poll in the adipose 
tissue is replenished by self-renewal of local stem cells with 
only a scarce peripheral contribution (i.e., peripheral mono-
cytes). Therefore, the total number of macrophages in the 
adipose tissue largely depends on the intrinsic balance be-
tween self-renewal and degradation by innate lymphoid 
cells [99]. Self-renewal exceeds the macrophages degrada-
tion rate in obese individuals. As a result, mature adipose 
tissue macrophages are more represented in obese than lean 
individuals [99]. This phenomenon could be considered a 
(mal) adaptive response to overnutrition and adipose tissue 
expansion and may strengthen local and systemic inflamma-
tion.  

 Preclinical studies have demonstrated that EDCs may 
disrupt the regulation of macrophage self-renewal. BPA 
increased macrophage self-renewal in mice models by bind-
ing to the liver receptor Xα, highly expressed on quiescent 
macrophage surface in the adipose tissue [100]. In addition, 
in an in vitro study, macrophages cultured with BPA exhib-
ited a marked and dose-dependent inflammatory response 
(IL-1β, IL-6, and TNFα) than controls via ERK-NFκB and 
JAK1/2-STAT3 pathways [101]. BPA promotes macro-
phage proinflammatory patterns by enhancing M1 polarisa-
tion whilst suppressing M2 polarisation via the interferon 
regulatory factor 5 (IRF5). Similar findings were obtained 
from another in vitro study using different EDCs, including 
diethylstilbestrol, BPA, bis(2-ethylhexyl) phthalate, and p-
nonylphenol. A dose-response correlation was also con-
firmed with a maximum response at 10-7 M [102]. Opposite 
results were induced by the phthalate diethylhexyl-phthalate 
as, in in vitro and animal models, it promoted M2-
polarization of macrophages [103-105].  

Thus, EDCs exposure could influence the levels of adi-
pose tissue inflammation predisposing to atherosclerosis and 
cardio-metabolic diseases [106, 107]. So far, evidence has 
been obtained from pre-clinical observations with opposite 
results by different EDCs (mostly phthalates vs. BPA). In 
addition, the effect of simultaneous exposure to a mixture of 
different EDCs has not been investigated, and studies in-
volving humans are not currently available. Although it is a 
current topic, not enough evidence has been provided to 
draw a clear conclusion. 

CONCLUSION 

 In conclusion, exposure to obesogenic compounds such 
as bisphenols, phthalates, POPs, and TBT may modify met-
abolic properties and possibly predispose to obesity by dis-
rupting hormonal metabolism and signaling [108]. The ear-
lier the exposure to EDCs, the greater the risk of metabolic 
consequences. Gender dimorphism is possibly involved in 
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the metabolic consequences of EDC exposure. The role of 
EDCs in inducing or modulating adipose tissue and system-
ic inflammation should be better elucidated, possibly by 
long-term observational human studies. 

LIST OF ABBREVIATIONS 

BPA  = Bisphenol A 

BMI  = Body Mass Index 

DDT  = Dichlorodiphenyldichloroethylene  

EDCs  = Endocrine-Disrupting Chemicals 

NHANES  = National Health and Nutrition Examina-
tion Survey  

PPAR  = Peroxisome Proliferator-Activated Recep-
tor 

POPs  = Persistent Organic Pollutants 

DEHP  = Phthalate 

RXR  = Retinoid X Receptor 

TSH  = Thyroid-Stimulating Hormone 

TBT  = Tributyltin 

WC  = Waist Circumference 
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