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Abstract: Lymphomas are characteristic tumors surrounded by an inflammatory microenvironment.
The cells of the microenvironment are essential for the growth and survival of neoplastic cells and are
recruited through the effect of cytokines/chemokines. Lymphomas include heterogeneous groups
of neoplasms infiltrating various lymphoid structures which may arise from B lymphocytes, T
lymphocytes, and natural killer (NK) cells at various stages of their differentiation state. In this review
article, we analyze the literature data concerning the involvement of the tumor microenvironment
(TME) in the progression of lymphomas and the recent advances in the analysis of microenvironment
components in the most common forms: some mature B cell lymphoma neoplasms and classic
Hodgkin lymphomas. The complex crosstalk between the TME and tumor cells led to the discovery
of many mechanisms usable as molecular-targeted therapy through the control of diverse elements
of the TME, varying from inhibitors of angiogenic cytokines and their receptors to the regulation of
cells’ activities and the novel immune checkpoint inhibitors.

Keywords: inflammatory cells; non-Hodgkin’s lymphomas; classical Hodgkin’s lymphomas; tumor
microenvironment; tumor progression

1. Non-Hodgkin Lymphomas (NHLs) and Their Microenvironment

NHLs include heterogeneous groups of neoplasms infiltrating various lymphoid
structures which may arise from B lymphocytes, T lymphocytes, and natural killer (NK)
cells at various stages of their differentiation state and are characterized by a great tendency
to disseminate towards extra-nodal locations [1]. About 25% of NHLs arise in extra-nodal
locations and most of them are present in both nodal and extra-nodal sites. Based on their
morphology, immunophenotype, genetic and clinical features, NHLs have been classified
into more than 30 different types (Table 1) [2]. NHLs’ histologic features allow us to
discriminate between a nodular and a diffuse pattern. In the first instance, the tumor
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cells aggregate to form large clusters. In the diffuse pattern, no evidence of nodularity
or germinal center formation has been observed, and it is characterized by a profound
impairment of lymph node architecture [3].

Table 1. Classification of NHLs.

Indolent lymphomas

• Follicular lymphoma
• B-chronic lymphocytic leukemia/small lymphocytic lymphoma
• Lymphoplasmacytic lymphoma
• Marginal zone lymphoma (nodal, extra-nodal, splenic)
• T/natural killer large cell granular lymphocyte leukemia
• T-chronic lymphocytic leukemia/prolymphocytic leukemia

Aggressive
lymphomas

• Mantle cell lymphoma
• Diffuse large B cell lymphoma
• Peripheral T-cell lymphoma (unspecified)
• Peripheral T-cell lymphoma (angioimmunoblastic, angiocentric
• T/natural killer cell, hepatosplenic γ/δ, intestinal T cell lymphoma)
• Anaplastic large cell lymphomas

Highly aggressive
lymphomas

• Precursor T or B lymphoblastic leukemia/lymphoma.
• Burkitt and Burkitt-like lymphoma.
• Adult T-cell leukemia/lymphoma (HTLV-1+)

B cell-derived lymphomas may originate during any phase of normal B cell differenti-
ation steps, even if most of them are derived from germinal center reactions [4].

The recent World Health Organization (WHO) classification exploits morphology,
immunophenotype, and genetic findings to classify B cell lymphomas [5]. Clinical trials
allowed us to distinguish the B cell lymphoma histological subtypes as indolent, aggressive,
and very aggressive based on their typical clinical behavior [6,7]. The indolent lymphomas,
whose overall survival is measured in years [8], represent about 40 percent of NHL and
include the follicular lymphomas (FL), chronic lymphocytic leukemia/small lymphocytic
lymphomas (CLL/SLL), a fraction of mantle cell lymphomas (MCL) cases, extra-medullary,
nodal, and splenic marginal zone lymphomas (MZL), and lymphoplasmacytic lymphomas
(LPL). The aggressive group include large B cell lymphomas, subdivided into anaplastic
and primary mediastinal lymphomas, and various kinds of diffuse large B cell lymphomas
(DLBCL). In this group, the survival of untreated patients is a few months but treatment
may lead to definitive remissions and cure in a significant number of patients [9]. The
highly aggressive group represents an NHL minority and is characterized by a survival of
a few weeks if not adequately treated. The elected therapies for B cell NHL are chemother-
apy, radiotherapy and immunotherapy, used either as monotherapies or as combined
therapies [10].

Although their tumor initiation is related to the acquisition of oncogenic mutations in
cells, the following tumorigenesis stages, including the growth, the progression and the
metastatic process, are strongly influenced by the tumor microenvironment (TME) [11,12].
The TME is a complex environment surrounding the cancer cells that includes cellular
and extracellular components and a vascular network [13], which are also involved in the
determination of therapeutic efficacy [14]. Hanahan and Weinberg modified the hallmarks
of cancer expanding them from six to ten, underlining the importance of the TME in cancer
development [15]. Lately, experimental data have demonstrated that the TME, the factors
delivered into it, the stroma, and the agents inducing DNA-damage, influence positively
the neoplastic risk [16]. The equilibrium of cytokines in a tumor is crucial for regulating the
type and expansion of its inflammatory infiltrate [17,18].

2. DLBCL

DLBCL is the largest group of NHLs, representing 49% of B cell cancers worldwide [19].
The median age of prevalence is seventy years, although it has been diagnosed in young
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people and rarely in children, with a slight male prevalence [20]. DLBCL is characterized
by a high heterogeneity at both the clinical and biological levels because it arises from
germinal center B cells at different stages of differentiation associated with recurrent genetic
modifications which contribute to the molecular pathogenesis of the disease [21]. On these
bases, the DLBCL classification results are very complex and constantly evolving due
to heterogenic variants in consideration to morphology, phenotype, genetic anomalies,
prognosis and clinical features [22]. DLBCL tumor mass may grow in lymph nodes and/or
in other multiple external sites, but the gastrointestinal tract constitutes the most frequent
primary tumor site [23]. CD68+ macrophages, tryptase+ mast cells and microvascular
density (MVD) have been evaluated in samples derived from DLBCL patients subdivided
into two groups. The first group included patients who achieved a complete remission
(responders), and the second included patients who never achieved a complete remission
or incomplete remission after first-line chemotherapy, and who relapsed within six months
(non-responders) [24]. A higher number of both CD68+ cells and microvessels in the non-
responders group compared to the responders group has been observed [24]. In DLBCL,
a high expression of CD68+ cells has been correlated with a poor prognosis [25]. The higher
percentage of tryptase+ mast cells found in the non-responders’ group when compared with
the responders’ group positively correlated with the MVD [24], indicating the important
role of mast cells in promoting and sustaining tumor angiogenesis in DLBCL. Bulky and
residual tumors are considered to increase the risk of relapse in DLBCL patients [26].
To investigate the complex relationships occurring between immune cells, stromal cells,
endothelial cells and the tumor cells, the involvement of T cells in the control of bulky and
non-bulky DLBCL development and their correlation with mast cells and MVD has been
estimated [27]. A significant reduction in CD3+ cells in the TME of bulky compared to
non-bulky disease has been reported, suggesting the loss of the immune control resulting
in an increased cell proliferation, and consequently to a large tumor cell-mass in bulky
DLBCL [27]. Moreover, the positive correlation between the percentages of CD3+ cells and
tryptase+ mast cells reveals a complex link between T cells and mast cells in the induction
of tumor angiogenesis in DLBCL [27]. DLBCL, based on its gene expression profile could
be classified as germinal center (GC) B-like DLBCL (GCB) and an activated B-like DLBCL
(ABC), with unique gene expression signatures such as constitutive activation of nuclear
factor kB (NFkB) in ABC DLBCL, and somatic mutations of polycomb repressor 2 complex
gene EZH2 in GCB DLBCL [28]. Furthermore, the GCB group expresses high levels of BCL6
and responds better to conventional chemotherapy, whereas the ABC group has lower
levels of BCL6 and tends to be refractory to chemotherapeutic treatment [29]. The number
of tumor and T cells present in the TME determining the percentages of CD20+ and CD3+,
respectively, in the DLBC GCB and -non-GCB subgroups has been estimated [30]. A lower
CD20+ count was observed in patients with a non-GCB immunophenotype, high LDH,
splenomegaly and an IPI ≥ 3, while CD3+ cells were lower in patients with bulky disease,
an IPI ≥ 3 and disease stage of 3–4 [30].

Constitutively activated STAT3 is correlated with a more advanced clinical stage and
overall poor survival rate of people with DLBCL [31,32]. In addition, STAT3 is strongly
activated in ABC-DLBCL and BCL6-negative normal germinal center B cells representing
both the second oncogenic pathway in ABC-DLBCL and an additional therapeutic target for
treatment [33]. The DLBCL GCB and ABC subgroups of patients have been compared and
by means of RNAscope technology a significantly higher number of STAT-3-expressing cells
in ABC group as compared to GCB has been shown [34]. Tumor vessels in ABC samples
appeared lined by endothelial cells expressing both FVIII and STAT3 signals, while in GCB
samples, only few vessels co-expressed FVIII and STAT3 [34]. A higher Ki67 expression in
tumor cells and a higher number of CD163+ macrophages in ABC patients as compared
with GBC ones has been observed, together with a high density of CD3+ and CD8+ cells,
which correlated with STAT3 expression and microvascular density [35]. In the DLBCL
TME, the prognostic value of the CD4/CD8 ratio has been associated with both better and
worse survival in different studies [36]. No variation in CD4+ cells in ABC with respect to
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GCB has been observed but a higher CD8+ cell infiltrate in the ABC group associated with
a decreased CD4/CD8 ratio [35]. In addition, a higher STAT3 expression is associated not
only with CD8+ cells but also with a higher M2 TAM cell infiltration [35].

3. MCL

MCL represents around 2–10% of NHLs in adults with a median age at diagno-
sis of 65 years old, principally observed in men more than in women, at a 3:1 ratio. It
originates in the lymph nodes although metastasis in the bone marrow, spleen, and gas-
trointestinal tract are frequently present [37]. The WHO 2016 update about lymphomas
distinguished two MCL main subgroups according to the clinical presentation and molec-
ular mutations: classical- and non-nodal-MCL [38]. The first one is characterized by an
unmuted immunoglobulin variable region heavy chain (IgHV) and SOX11+ with a blastoid
or pleomorphic morphology associated with an aggressive outcome. The second one is
characterized by hypermutated IgHV and SOX11-, with an indolent disease course. In our
study, MCL samples were divided into three histological groups based on SOX11-IHC posi-
tivity: “negative” with no staining and 0% of SOX11+ cells; “light” with a weak-moderate
staining and 1–39% of SOX11+ cells; and “strong” with a moderate-strong staining and
≥40% of SOX11+ cells [39]. Higher CD4+ and CD8+ T-lymphocyte infiltrates in MCL lymph
node biopsies belonging to the strong group compared to the other groups have been
demonstrated and correlated with SOX11 intensity and increased angiogenesis [39]. In
the strong group, characterized by worse outcomes, CD8+ cells could be involved in the
activation of tumor immune evasion processes because CD8+ cells promote the secretion
of prostaglandin E2 which consequently induces tumor escape via the Fas signaling path-
way [40,41]. Reduced CD68+ and CD163+ TAM in MCL in the strong group compared to
the other groups inversely correlated with increased SOX11+ cells and angiogenesis [39].
The p53 expression results were negative or very low in all the samples. The functional
loss of p53 induces excessive inflammatory reactions that in turn sustain tumor growth
and progression [42]. Although the literature data indicate that STAT3 is constitutively
activated and acts by decreasing SOX11, the evaluation of STAT3 mRNA expression did
not reveal any variation among the three analyzed MCL group of patients.

4. MZL

MZL is the second most common subtype of indolent B cell NHL, accounting for
10% of total NHL [43–45]. It evolves starting from memory B cells residing in a micro-
anatomic compartment of the secondary lymphoid follicles. This compartment is named
as the “marginal zone” and it is in mucosa-associated lymphoid tissues (MALT) and in
the spleen [46]. The WHO classified MZL as extra-nodal MZL of MALT type, splenic MZL
(SMZL), and nodal MZL (NMZL) [47]. About one-third of MZL cases localize it the stomach,
but other localization sites include gastrointestinal sites as well as in salivary glands, ocular
adnexa, thyroid, lung, skin, breast, and liver [48,49]. MALT lymphoma grows in organs
lacking in lymphoid tissue and in which B cells accumulate as a consequence of chronic
inflammatory stimuli including Helicobacter pylori, Chlamydophila psittaci, Borrelia burgdorferi
infections [50–52], as well as in chronic C hepatitis or autoimmune diseases, including
Sjogren Syndrome and Systemic Lupus Erythematous [53]. MALT lymphomas in the TME
in addition to B cells present the infiltration of T cells, macrophages, and neutrophils. In
MZL-MALT lymphoma specimens the inflammatory cells infiltrating the TME have been
analyzed and quantified [13]. The results indicate an increased number of CD3+, CD4+ and
CD8+ lymphocytes, CD68+, CD163+ macrophages and tryptase+ mast cells in the MALT
group samples compared to the healthy ones. In addition, a higher number of CD34+

vessels have been demonstrated in MALT lymphoma samples in a positive correlation with
CD8+ cells, underlying the important role of these cells in tumor angiogenesis. Furthermore,
the number of CD8+ cells correlated with M2-type macrophages, while tryptase+ mast
cells correlated with CD4+ cells, indicating the complex crosstalk between TME-infiltrating
cells [13].
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5. Classical Hodgkin’s Lymphoma and Its Microenvironment

Classical Hodgkin’s lymphoma (cHL) is one of the most common lymphomas positive
for the presence of large multi- and mono-nucleated cells named Reed–Sternberg (RS) and
Hodgkin (H) cells, respectively [5]. RS and H cells correspond to just 1% to 10% of total
tumor mass; the remaining 90% is composed of tumor inflammatory cells, including T and
B lymphocytes, plasma cells, histiocytes/macrophages, granulocytes, eosinophils, mast
cells, and mesenchymal stromal cells (MSCs) [54].

The study of microdissections has revealed that RS and H cells carry Ig genes somatic
hypermutations and clonal Ig rearrangements, suggesting their origin from pre-apoptotic
germinal center (GC) B cells [55]. However, RS cells present an unusual immunophenotype
characterized by the absence of B cell markers, associated with possible co-expression of
molecules of various hematopoietic lineages [56].

Different cytokines/chemokines, including IL-5, IL-7, IL-8, CCL5 (RANTES), CCL17
(TARC), CCL20 and CCL28, produced by RS cells, H cells and recruited immune cells,
influence the TME composition [57]. T cells secrete IL-3, IL-10 and RANKL: IL-3 influences
the formation of the inflammatory infiltrate and supports the neoplastic cell growth [58],
whereas IL-10 promotes strong anti-inflammatory properties [59] and RANKL contributes
to the activation and survival of dendritic cells [60]. Stromal cells may secrete CCL11, which
attracts eosinophils and Th2 cells, IL-7 and CCL5 are involved in the growth or survival
of RS cells, while dendritic cells secrete TARCs, which are involved in the recruitment of
Th2 cells and regulatory T cells [57]. Macrophages secrete cytokines involved in tumor
progression such as macrophage migration inhibitory factor (MIF), IL-8 and TNFα. In
particular, MIF may contribute to the proliferation of RS cells in the TME [61] and IL-8 may
increase neutrophilic recruitment [62].

Moreover, mast cells may increase the survival signals of tumor cells through CD30L [63].
The T component was composited by CD4+ Th cells, CD4+ T-regulatory (Tregs) and CD8
cytotoxic T lymphocytes (CTL). CD4+ T cells are sometimes in close contact with RS cells as
they can form rosettes around the neoplastic blasts [64,65]. In the immune synapse between
RS cells and CD4+ T cells, the interactions between TCR-MHCII and CD2-CD58 are needed
for T cell activation, while the CD2-C58 axis is associated with cell adhesion and rosette
formation [66].

The prevalent Th phenotype present in the cHL TME is the Th2 [62]. However,
a recent study found the predominance of an activated, proliferative and pro-inflammatory
cytokine-secretory phenotype, typical of Th1 cells [67]. The CD8+ T cells are a proportion
of T-cell infiltrate of HL and are not in close contact with the tumor cells [68]. However
paradoxically, an increased numbers of cytotoxic T+ cells for cytotoxic granule-associated
RNA-binding protein (TIA1) in the TME correlated with poor outcomes [69,70].

In the TME, there is also an accumulation of Treg, expressing [71] factor forkhead box
P3 (FOXP3) [72]. In cHL patients, a higher number of intra-tumoral FOXP3+ Treg cells was
associated with longer DFS and OS, even in multivariate analyses [71].

Tumor-Associated Macrophages (TAM) are present in cHL. According to a topographi-
cal model, in the TME abundant PD-L1+TAMs and PD-1+ CD4 T cells were observed, which
were in contact with PD-L1+ tumor cells. These observations supported a possible role also
of the macrophages in the mechanism of action of checkpoint inhibitor therapy [73].

A macrophage gene signature correlated with the failure of primary treatment and
in an independent cohort of patients it has been demonstrated by immunohistochemistry
that a higher number of CD68+ TAM was associated with shortened survival and with
the outcome of secondary treatments, such as autologous stem-cell transplantation [74].
Other studies, but not all [75–77], have confirmed the relationship among TAMs and lower
outcomes after upfront treatment [78–81]. Moreover, the molecular characterization of HR
cells reported as neoplastic clone the over-expression of colony-stimulating factor 1 receptor
(CSF1R), a gene of the macrophage signature, and the latter gene was associated with
primary treatment failure [82].
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A correlation between the the number of M1 TAMs and favorable prognosis in the
mixed cellularity subtype of cHL has been reported [83].

Large quantities of non-malignant B cells are present in the microenvironment of HL,
but their role is still not well established [84].

The association between the number of mast cells and survival of patients with cHL is
controversial. A significant association between high mast cell counts and poorer EFS, as
well as OS in mixed cellularity but not in nodular sclerosis histological subtype, has been
demonstrated [85].

6. Concluding Remarks

The TME includes a rich cellular component in which secreted cytokines and
chemokines are involved in the regulation of tumor initiation as well as its progression
and metastasis; furthermore, the constitution of the TME also has important effects on
therapeutic efficacy. The complex crosstalk between the TME and tumor cells led to the
discovery of many mechanisms usable as molecular-targeted therapies through the control
of diverse elements of the TME, varying from inhibitors of angiogenic cytokines and their
receptors to the regulation of cells activities and the novel immune checkpoint inhibitors.
The mechanisms of tumor evasion and resistance frequently reduce the efficacy of these
new therapeutic approaches and consequently they currently constitute a major focus
of research.
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