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Abstract
In this paper, we discuss a framework for the polynomial approximation to the solu-
tion of initial value problems for differential equations. The framework is based on
an expansion of the vector field along an orthonormal basis, and relies on pertur-
bation results for the considered problem. Initially devised for the approximation of
ordinary differential equations, it is here further extended and, moreover, generalized
to cope with constant delay differential equations. Relevant classes of Runge-Kutta
methods can be derived within this framework.
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1 Introduction

In this paper, we shall deal with the definition of a framework to discuss polyno-
mial approximations to the solution of initial value problems for ordinary differential
equations (ODEs),

ẏ(t) = f (t, y(t)), t ∈ [t0, T ], y(t0) = y0 ∈ R
m, (1)

and delay differential equations (DDEs) in the form,

ẏ(t) = f (t, y(t), y(t − τ)), t ∈ [t0, T ], y(t0) = y0,

y(t) = φ(t), t ∈ [t0 − τ, t0), (2)

where τ > 0 is a constant delay and, usually, y0 = φ(t0). In the sequel, we shall
always assume that f and φ are suitably regular in their respective arguments. As is
well known, the two problems are related in many ways but, at the same time, have
quite different features, which reflect on their numerical solution. We refer, e.g., to
the comprehensive monograph [27], concerning (1), and [5] (see also [20]) for (2).

In more detail, in this paper we shall fully develop a novel framework for deriving
numerical methods for solving (1), which is then extended to cope with (2).

The framework we are interested in relies on a local expansion of the vector field in
(1) along an orthonormal basis. Such basis will be, in the present case, the Legendre
polynomial basis {Pj }j≥0:

Pj ∈ �j,

∫ 1

0
Pi(x)Pj (x)dx = δij , i, j = 0, 1, . . . , (3)

where, as is usual, �j is the vector space of polynomials of degree j , and δij is the
Kronecker symbol. The idea is actually not new: early use of this approach are, for
example, Hulme [29, 30], Bottasso [7], and Betsch and Steinmann [6]; it is also at the
basis of the energy-conserving class of Runge-Kutta methods named HBVMs [12]
(see also the monograph [9] and the review paper [10]).

The approach that we shall pursue has been initially devised in [14], where the
target was problem (1), and its potentialities have been disclosed by using HBVMs
as spectral methods in time for efficiently solving highly oscillatory problems [19]
and, subsequently, Hamiltonian PDEs [11]. A corresponding error analysis is given
in [3]. Moreover, this allows deriving a formulation of HBVMs as continuous-stage
Runge-Kutta methods [1, 2].

Starting from this background, in this work we carry out a complete perturbation
analysis of problems (1) and (2), and set up a unique and comprehensive framework
to deal with the numerical solution of both problems by exploiting the same dis-
cretization procedure. In more detail, the truncated Fourier series may be interpreted
as a projection of the differential problem onto a finite dimensional vector space,
leading to a new, numerically easy-to-handle, differential problem. This latter may be
regarded as a perturbation of the original one, so that the perturbation analysis turns
out to be crucial to understand how the solutions of the two problems are related.
At the best of our knowledge, the perturbation results for problem (2) are new, and
provide a powerful general tool of analysis. That the same framework may cover
problems of different nature constitute, in our opinion, a specific advancement in this
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field, and reveals its potentialities to deal with other classes of problems (which will
be the subject of future investigations).

With this premise, the paper is organized as follows: Section 2 concerns the result
pertaining to the ODE case; Section 3 contains the corresponding results for the DDE
case; Section 4 contains some numerical tests for the DDE case, involving meth-
ods which are new in this setting; at last, some concluding remarks and possible
developments are reported in Section 5.

2 The ODE case

Without loss of generality, we shall consider problem (1) in the simpler form:

ẏ(t) = f (y(t)), t ∈ [t0, T ], y(t0) = y0 ∈ R
m. (4)

Having fixed the mesh

tn = t0 + nh, n = 0, . . . , N, h = T − t0

N
, (5)

we formally set, for n = 1, . . . , N :

σ̂n(ch) := y(tn−1 + ch) ≡ σ̂ (tn−1 + ch), c ∈ [0, 1], (6)

the restriction of the solution of problem (4) to the time interval [tn−1, tn] (the func-
tion σ̂ (t) ≡ y(t) is introduced for notational purposes). Consequently, σ̂n satisfies
the differential equation

˙̂σn(ch) =
∑
j≥0

Pj (c)γj (σ̂n), c ∈ [0, 1], σ̂n(0) = y(tn−1), (7)

so that,

σ̂n(ch) = y(tn−1) + h
∑
j≥0

∫ c

0
Pj (x)dx γj (σ̂n), c ∈ [0, 1], (8)

and, by virtue of (3),

y(tn) = y(tn−1) + hγ0(σ̂n) ≡ σ̂ (tn), (9)

where, in general, for any suitably regular function z : [0, h] → R
m,

γj (z) :=
∫ 1

0
Pj (ζ )f (z(ζh))dζ . (10)

We now look for a piecewise polynomial approximation σ(t), to the solution of
(4), such that, setting for n = 1, . . . , N ,

σn(ch) ≡ σ(tn−1 + ch), c ∈ [0, 1], (11)
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its restriction to the time interval [tn−1, tn], σn ∈ �s and satisfies the differential
equation:

σ̇n(ch) =
s−1∑
j=0

Pj (c)γj (σn), c ∈ [0, 1], σn(0) = yn−1, (12)

obtained by truncating the infinite series in (7) to a finite sum, with

yn := σn(h) ≡ σ(tn). (13)

Consequently, σn can be formally written as:

σn(ch) = yn−1 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γj (σn), c ∈ [0, 1], (14)

and (compare with (9)),
yn = yn−1 + hγ0(σn). (15)

2.1 Preliminary results

We here provide a few preliminary results, which will be needed to derive the main
ones in the following subsections. Some of them are taken from [14] but we also
report them here, for sake of completeness.

Theorem 1 Let G : [0, h] → V , with V a vector space, admit a Taylor expansion at
0. Then, for all j ≥ 0: ∫ 1

0
Pj (ζ )G(ζh)dζ = O(hj ).

Proof By virtue of (3), one has:∫ 1

0
Pj (ζ )G(ζh)dζ =

∫ 1

0
Pj (ζ )

∑
k≥0

G(k)(0)

k! (ζh)kdζ

=
∑
k≥0

G(k)(0)

k! hk

∫ 1

0
Pj (ζ )ζ kdζ

=
∑
k≥j

G(k)(0)

k! hk

∫ 1

0
Pj (ζ )ζ kdζ = O(hj ).

As a straightforward consequence, setting G(ζh) := f (z(ζh)), the following
result is proved.

Corollary 1 With reference to (10), one has: γj (z) = O(hj ).
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Let us denote by

y(t) ≡ y(t, ξ, η) (16)

the solution of the problem (compare with (4)):

ẏ(t) = f (y(t)), t ∈ [ξ, T ], y(ξ) = η ∈ R
m. (17)

Hereafter, for sake of brevity, we may use either one of the two notations in (16),
depending on the needs. The following theorem contains standard perturbation results
w.r.t. all the arguments (see, e.g., [27, Section I.14]).

Theorem 2 With reference to the solution (16) of problem (17), one has:

a)
∂

∂t
y(t) = f (y(t)), b)

∂

∂η
y(t) = �(t, ξ), c)

∂

∂ξ
y(t) = −�(t, ξ)f (η),

where �(t, ξ) is the solution of the variational problem

�̇(t, ξ) = F(y(t))�(t, ξ), t ∈ [ξ, T ], �(ξ, ξ) = I ∈ R
m×m,

having set

F(y) = ∂

∂y
f (y). (18)

From this theorem, the following result readily follows where, hereafter, | · | will
denote any convenient vector norm.

Corollary 2 With reference to (17), and assuming that ξ ∈ [tn−1, tn], one has:
y(t, ξ, η + δη) = y(t, ξ, η) + �(t, ξ)δη + (t − ξ)O(|δη|2), t ∈ [tn−1, tn].

2.2 Main results (ODE case)

With reference to (5)–(15), we are now in the position of stating the results
concerning the approximation error at the grid points,

y(tn) − yn ≡ σ̂n(h) − σn(h), n = 1, . . . , N, (19)

and, more in general, on each subinterval [tn−1, tn]:
δσn(ch) := σ̂n(ch) − σn(ch) ≡ σ̂ (tn−1 + ch) − σ(tn−1 + ch), c ∈ [0, 1]. (20)

For the first step of the approximation procedure, the following theorem holds
true, the proof being similar to that of [14, Theorem 1].

Theorem 3 With reference to (19) and (20), one has:

y(t1) − y1 = O(h2s+1), ‖δσ1‖ := max
c∈[0,1] |σ̂1(ch) − σ1(ch)| = O(hs+1).
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Proof By virtue of Corollary 1 and Theorem 2, one has:

σ̂1(ch) − σ1(ch) = y(t0 + ch, t0, y0) − y(t0 + ch, t0 + ch, σ1(ch))

= y(t0 + ch, t0, σ1(0)) − y(t0 + ch, t0 + ch, σ1(ch))

=
∫ 0

ch

d

dt
y(t0 + ch, t0 + t, σ1(t))dt

=
∫ 0

ch

[
∂

∂ξ
y(t0 + ch, ξ, σ1(t))

∣∣∣∣
ξ=t0+t

+ ∂

∂η
y(t0 + ch, t0 + t, η)

∣∣∣∣
η=σ1(t)

σ̇1(t)

]
dt

=
∫ ch

0
�(t0 + ch, t0 + t) [f (σ1(t)) − σ̇1(t)] dt

= h

∫ c

0
�(t0 + ch, t0 + ζh) [f (σ1(ζh)) − σ̇1(ζh)] dζ

= h

∫ c

0
�(t0 + ch, t0 + ζh)

⎡
⎣∑

j≥0

Pj (ζ )γj (σ1) −
s−1∑
j=0

Pj (ζ )γj (σ1)

⎤
⎦ dζ

= h
∑
j≥s

[∫ c

0
Pj (ζ )�(t0 + ch, t0 + ζh)dζ

]
γj (σ1)︸ ︷︷ ︸
=O(hj )

.

Consequently, the second part of the statement follows for c ∈ (0, 1), whereas, when
c = 1 one deduces, by virtue of Theorem 1:

y(t1) − y1 ≡ σ̂1(h) − σ1(h)

= h
∑
j≥s

= O(h2j )︷ ︸︸ ︷⎡
⎢⎣
∫ 1

0
Pj (ζ )�(t1, t0 + ζh)︸ ︷︷ ︸

=:G(ζh)

dζ

⎤
⎥⎦

︸ ︷︷ ︸
=O(hj )

γj (σ1) = O(h2s+1).

For the remaining steps, the following result holds true.

Theorem 4 With reference to (19) and (20), for n = 1, . . . , N one has:

y(tn) − yn = y(tn−1) − yn−1 + O(h2s+1), ‖δσn‖ := max
c∈[0,1] |δσn(ch)| = O(hs+1).

Proof By induction on n. For n = 1 the statement follows from the previous
Theorem 3. Assuming it true for n − 1, for n one has:

σ̂n(ch) − σn(ch) = y(tn−1 + ch, tn−1, σ̂n(0)) − y(tn−1 + ch, tn−1 + ch, σn(ch))

= y(tn−1 + ch, tn−1, σ̂n(0)) − y(tn−1 + ch, tn−1, σn(0))︸ ︷︷ ︸
=:En,1(ch)

+y(tn−1 + ch, tn−1, σn(0))−y(tn−1 + ch, tn−1 + ch, σn(ch))︸ ︷︷ ︸
=: En,2(ch)

.
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By using similar arguments as those used in the proof of Theorem 3, one deduces that

En,2(ch) =
{

O(hs+1), c ∈ (0, 1),

O(h2s+1), c = 1.

Moreover, considering that, by the induction hypothesis,

δσn(0) = σ̂n(0) − σn(0) = y(tn−1) − yn−1 = (n − 1)O(h2s+1),

from Corollary 2, one has:

En,1(ch) = �(tn−1 + ch, tn−1)︸ ︷︷ ︸
= I+O(ch)

δσn(0) + ch O(|δσn(0)|2)

= y(tn−1) − yn−1 + (n − 1)O(ch2s+2).

Consequently, for c = 1 one obtains the first part of the statement, whereas the
second part follows by taking c ∈ (0, 1).

Remark 1 We observe that the two equivalent equations (see (10), (12), and (14)):

σ̇n(ch) =
s−1∑
j=0

Pj (c)

∫ 1

0
Pj (ζ )f (σn(ζh))dζ, c ∈ [0, 1], σn(0) = yn−1,

and

σn(ch) = yn−1 + h

s−1∑
j=0

∫ c

0
Pj (x)dx

∫ 1

0
Pj (ζ )f (σn(ζh))dζ, c ∈ [0, 1], (21)

define a so-called HBVM(∞, s) method on the interval [tn−1, tn] (equation (21) is
named Master Functional Equation in [12]. See also [9, 10]). Consequently, such
method defines an order 2s approximation procedure for all s ≥ 1, which can be
also recast as a continuous-stage Runge-Kutta method [1]. In particular, the case
s = 1 corresponds to the so-called AVF method [40]; the case s ≥ 1 has been also
considered in [26].

An interesting question concerns the difference between the Fourier coefficients of
the solution (8)–(10) and those of the polynomial approximation (14) on the interval
[tn−1, tn]. The next result clarifies the issue.

Theorem 5 With reference to (8), (10), and (14), for all n = 1, . . . , N one has:

δγ n
j := γj (σ̂n) − γj (σn) = O(h2s−j ), j = 0, . . . , s − 1.

Proof First of all, from (3), (8), (14), and Theorem 4 we know that:

y(tn) − yn = y(tn−1) − yn−1 + h[γ0(σ̂n) − γ0(σn)] = y(tn−1) − yn−1 + O(h2s+1).

Consequently, from the last equality one derives:

δγ n
0 = γ0(σ̂n) − γ0(σn) = O(h2s).
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Further, by taking into account (18) and (20), one obtains:

O(h2s) = γ0(σ̂n) − γ0(σn) =
∫ 1

0

[
f (σ̂n(ζh)) − f (σn(ζh))

]
dζ

=
∫ 1

0

∫ 1

0
F(σn(ζh) + c δσn(ζh))dc

︸ ︷︷ ︸
=:G(ζh)

δσn(ζh)dζ =
∫ 1

0
G(ζh)δσn(ζh)dζ .

Now, considering that P0(x) ≡ 1 and, for all ζ ∈ [0, 1],∫ ζ

0
Pj (x)dx = ξj+1Pj+1(ζ ) − ξjPj−1(ζ ), j ≥ 1, (22)

with ξj =
(

2
√

4j2 − 1

)−1

,

one has:

δσn(ζh) = σ̂n(ζh) − σn(ζh)

= y(tn−1) − yn−1 + h

s−1∑
j=0

∫ ζ

0
Pj (x)dx δγ n

j + h
∑
j≥s

∫ ζ

0
Pj (x)dx γj (σ̂n)

= y(tn−1) − yn−1 + ζhδγ n
0 + h

s−1∑
j=1

[
ξj+1Pj+1(ζ ) − ξjPj−1(ζ )

]
δγ n

j

+ h
∑
j≥s

[
ξj+1Pj+1(ζ ) − ξjPj−1(ζ )

]
γj (σ̂n).

Consequently, from Theorem 1 and Corollary 1, one obtains:

O(h2s ) =
∫ 1

0
G(ζh)δσn(ζh) dζ =

∫ 1

0
G(ζh)dζ

︸ ︷︷ ︸
= O(1)

[y(tn−1) − yn−1]︸ ︷︷ ︸
= (n−1) O(h2s+1)

+ h

∫ 1

0
G(ζh)ζdζ

︸ ︷︷ ︸
= O(1)

δγ n
0︸︷︷︸

= O(h2s )

+ h

s−1∑
j=1

∫ 1

0
G(ζh)

[
ξj+1Pj+1(ζ ) − ξjPj−1(ζ )

]
dζ δγ n

j

+ h
∑
j≥s

= O(hj−1)︷ ︸︸ ︷∫ 1

0
G(ζh)

[
ξj+1Pj+1(ζ ) − ξjPj−1(ζ )

]
dζ

= O(hj )︷ ︸︸ ︷
γj (σ̂n)

︸ ︷︷ ︸
= O(h2s )

,

from which,

O(h2s) = h

s−1∑
j=1

=O(hj−1)︷ ︸︸ ︷∫ 1

0
G(ζh)

[
ξj+1Pj+1(ζ ) − ξjPj−1(ζ )

]
dζ δγ n

j

follows and, therefore, one concludes that δγ n
j = O(h2s−j ), j = 0 . . . , s − 1.
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2.3 Conservative/dissipative problems

An interesting case [9, 25, 36] is that when problem (4) is in the form

ẏ(t) = S∇H(y(t)), t ∈ [t0, T ], y(t0) = y0 ∈ R
m, (23)

with S ∈ R
m×m either a skew-symmetric matrix, S	 = −S, or a negative semidef-

inite matrix, S ≤ 0, whereas ∇H is the gradient of a scalar function usually called
the Hamiltonian. As is clear:

• when S	 = −S:

d

dt
H(y(t)) = ∇H(y(t))	ẏ(t) = ∇H(y(t))	S∇H(y(t)) = 0,

so that H is a conserved quantity, and the problem is said to be conservative;
• when S ≤ 0:

d

dt
H(y(t)) = ∇H(y(t))	ẏ(t) = ∇H(y(t))	S∇H(y(t)) ≤ 0,

and the problem is said to be dissipative.

The next result shows that this behavior is preserved by the approximations (12)–(15),
upon observing that in this case (10) can be conveniently rewritten as

γj (z) = S

∫ 1

0
Pj (ζ )∇H(z(ζh))dζ =: Sβj (z). (24)

Theorem 6 With reference to (12)–(15) applied for approximating problem (23), for
all n = 1, . . . , N one has:

• H(yn) = H(yn−1), when S	 = −S;
• H(yn) ≤ H(yn−1), when S ≤ 0.

Proof In fact, by considering that yn = σn(h), yn−1 = σn(0), and taking into account
(24), one has:

H(yn) − H(yn−1) = H(σn(h)) − H(σn(0)) =
∫ h

0

d

dt
H(σn(t))dt

= h

∫ 1

0
∇H(σn(ch))	σ̇n(ch)dc = h

∫ 1

0
∇H(σn(ch))	

s−1∑
j=0

Pj (c)γj (σn)dc

= h

s−1∑
j=0

[∫ 1

0
∇H(σn(ch))Pj (c)dc

]	

︸ ︷︷ ︸
= βj (σn)	

Sβj (σn)

= h

s−1∑
j=0

βj (σn)
	Sβj (σn) =: �Hn.

Consequently, if S	 = −S, then �Hn = 0, whereas �Hn ≤ 0, when S ≤ 0.
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Remark 2 According to Remark 1, one then obtains that HBVM(∞, s) methods can
preserve the conservative/dissipative feature of problem (23).

2.4 Discretization and Runge-Kutta formulation

Quoting Dahlquist and Björk [22, p. 521] “as is well known, even many relatively
simple integrals cannot be expressed in finite terms of elementary functions, and
thus must be evaluated by numerical methods.” In this context, this quite obvious
statement means that the approximation procedure defined by (12) and (10) does
not yet provide a “true” numerical method. In fact, the integrals defining the Fourier
coefficients,

γj (σn) =
∫ 1

0
Pj (ζ )f (σn(ζh))dζ, j = 0, . . . , s − 1, (25)

need to be numerically approximated by using a quadrature formula. Since we are
dealing with a polynomial approximation, it is quite natural to do this by using an
interpolatory quadrature with abscissae and weights (ci, bi), i = 1, . . . , k (we shall
always assume k distinct abscissae):

γj (σn) =
k∑

i=1

biPj (ci)f (σn(cih)) + �j(h), (26)

where �j(h) is the quadrature error. The following straightforward result holds true.

Theorem 7 If the quadrature (ci, bi), i = 1, . . . , k has order q, i.e., it is exact for
polynomial integrands of degree q − 1, then

�j(h) = O(hq−j ), j = 0, . . . , s − 1.

Remark 3 As is well known, since the quadrature (26) is based at k (distinct) abscis-
sae, q ∈ {k, . . . , 2k}: the lower limit is obtained by a generic choice of the abscissae,
whereas the upper one is achieved by placing them at the zeros of Pk(c).

When using a quadrature, clearly the Fourier coefficients (25) may be not exactly
evaluated anymore. This implies that we are actually computing a possibly different
piecewise polynomial approximation u(t) such that (compare with (10)–(15)), for all
n = 1, . . . , N :

un(ch) ≡ u(tn−1 + ch), c ∈ [0, 1], (27)

u̇n(ch) =
s−1∑
j=0

Pj (c)γ̂j (un), c ∈ [0, 1], un(0) = yn−1, (28)
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with (see (26))

γ̂j (un) :=
k∑

i=1

biPj (ci)f (un(cih)) ≡ γj (un) − �j(h), j =0, . . . , s − 1,(29)

un(ch) = yn−1 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γ̂j (un), c ∈ [0, 1], (30)

un(h) =: yn ≡ yn−1 + hγ̂0(un). (31)

Actually, (29)–(31) define the nth integration step, by using a timestep h, performed
with the k stage Runge-Kutta method having stages:

Yn
i := un(cih), i = 1, . . . , k. (32)

In fact, evaluating (30) at the abscissae c1, . . . , ck , and substituting in it the s

approximate Fourier coefficients (29), one obtains, after rearranging terms,

Yn
i = yn−1 + h

k∑
�=1

b�

s−1∑
j=0

∫ ci

0
Pj (x)dx Pj (c�)

︸ ︷︷ ︸
=: ai�

f (Y n
� ), i = 1, . . . , n, (33)

yn = yn−1 + h

k∑
i=1

bif (Y n
i ). (34)

In other words, we have derived the k-stage Runge-Kutta method with abscissae and
weights (ci, bi), i = 1, . . . , k, and Butcher matrix A = (ai�

) ∈ R
k×k . Next theorem

puts the Butcher tableau in a more compact form [9].

Theorem 8 The Butcher tableau of the Runge-Kutta method (33)–(34) is given by

c IsP	
s �

b	 (35)

where

b = (b1 . . . bk

)	
, c = (c1 . . . ck

)	
, � = diag(b),

and

Ps =
⎛
⎜⎝

P0(c1) . . . Ps−1(c1)
...

...
P0(ck) . . . Ps−1(ck)

⎞
⎟⎠ , Is =

⎛
⎜⎝
∫ c1

0 P0(x)dx . . .
∫ c1

0 Ps−1(x)dx
...

...∫ ck

0 P0(x)dx . . .
∫ ck

0 Ps−1(x)dx

⎞
⎟⎠ .

It is possible to derive an alternative formulation of the Runge-Kutta method (35).
In fact, using the relation (22) between the integrals of the Legendre polynomials and
the polynomials themselves, and considering that∫ c

0
P0(x)dx = ξ1P1(c) + ξ0P0(c), ξ0 = 1

2
,
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one has that Is = Ps+1X̂s , where

Ps+1 =
⎛
⎜⎝

P0(c1) . . . Ps(c1)
...

...
P0(ck) . . . Ps(ck)

⎞
⎟⎠ , X̂s =

⎛
⎜⎜⎜⎜⎜⎜⎝

ξ0 −ξ1

ξ1 0
. . .

. . .
. . . −ξs−1

ξs−1 0
ξs

⎞
⎟⎟⎟⎟⎟⎟⎠

=:
(

Xs

0 . . . 0 ξs

)
.

Consequently, the Butcher tableau (35) can be rewritten as

c Ps+1X̂sP	
s �

b	 .

When the quadrature (26) has order q ≥ 2s, it is quite straightforward to prove that

P	
s �Ps = Is, P	

s �Ps+1 = [Is 0] ∈ R
s×(s+1),

where in general, hereafter, Ir ∈ R
r×r is the identity matrix (when the dimension

of the identity matrix is not explicitly indicated, it will be easily deducible from the
context). Consequently,

P	
s �

[
Ps+1X̂sP	

s �
]
Ps = Xs,

which can be regarded as a generalization of the W -transformation in [28, Theorem 5.6,
p. 79]. In addition to this, when q ≥ 2s also the following results hold true (for sake
of brevity, we do not discuss the case q < 2s, since it has no practical interest).

Theorem 9 With reference to (4)–(10) and (27)–(31), and assuming that the
quadrature formula (26) has order q ≥ 2s, one has:

y(t1) − y1 = O(h2s+1), max
c∈[0,1] |σ̂1(ch) − u1(ch)| = O(hs+1).

Theorem 10 With reference to (4)–(10) and (27)–(31), and assuming that the
quadrature formula (26) has order q ≥ 2s, for n = 1, . . . , N one has:

y(tn)−yn = y(tn−1)−yn−1 +O(h2s+1), max
c∈[0,1] |σ̂n(ch)−un(ch)| = O(hs+1).

Theorem 11 With reference to (8)–(10) and (29)–(31), and assuming that the
quadrature formula (26) has order q ≥ 2s, for all n = 1, . . . , N one has:

δγ̂ n
j := γj (σ̂n) − γ̂j (un) = O(h2s−j ), j = 0, . . . , s − 1.

Concerning the case of conservative/dissipative problems in the form (23), the
result of Theorem 6 modifies as follows.

Theorem 12 With reference to (27)–(31) applied for approximating problem (23),
and assuming that the quadrature formula (26) has order q ≥ 2s, for all n =
1, . . . , N one has:
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• if H is a polynomial of degree not larger than q/s, then the result of Theorem 6
continues to hold;

• differently,

– H(yn) = H(yn−1) + O(hq+1), when S	 = −S,
– H(yn) ≤ H(yn−1) + O(hq+1), when S ≤ 0.

We here provide only the proof of Theorem 9 (see also [14, Theorem 4]), since
those of Theorems 10, 11, and 12 can be similarly obtained by slightly adapting the
corresponding proofs of Theorems 4, 5, and 6, respectively.

Proof (of Theorem 9) By taking into account the result of Theorem 7, one has:

σ̂1(ch) − u1(ch) = y(t0 + ch, t0, y0) − y(t0 + ch, t0 + ch, u1(ch))

= y(t0 + ch, t0, u1(0)) − y(t0 + ch, t0 + ch, u1(ch))

=
∫ 0

ch

d

dt
y(t0 + ch, t0 + t, u1(t))dt

=
∫ 0

ch

[
∂

∂ξ
y(t0 + ch, ξ, u1(t))

∣∣∣∣
ξ=t0+t

+ ∂

∂η
y(t0 + ch, t0 + t, η)

∣∣∣∣
η=u1(t)

u̇1(t)

]
dt

=
∫ ch

0
�(t0 + ch, t0 + t) [f (u1(t)) − u̇1(t)] dt

= h

∫ c

0
�(t0 + ch, t0 + ζh) [f (u1(ζh)) − u̇1(ζh)] dζ

= h

∫ c

0
�(t0 + ch, t0 + ζh)

⎡
⎣∑

j≥0

Pj (ζ )γj (u1) −
s−1∑
j=0

Pj (ζ )γ̂j (u1)

⎤
⎦ dζ

= h

∫ c

0
�(t0 + ch, t0 + ζh)

⎡
⎣∑

j≥0

Pj (ζ )γj (u1) −
s−1∑
j=0

Pj (ζ )
(
γj (u1) − �j(h)

)
⎤
⎦ dζ

= h
∑
j≥s

[∫ c

0
Pj (ζ )�(t0 + ch, t0 + ζh)dζ

]
γj (u1)︸ ︷︷ ︸
= O(hj )

+h

s−1∑
j=0

[∫ c

0
Pj (ζ )�(t0 + ch, t0 + ζh)dζ

]
�j(h)︸ ︷︷ ︸

= O(hq−j )

.

Consequently, the second part of the statement follows by considering that, for c ∈
(0, 1), this quantity is

O(hs+1) + O(hq−s+2) = O(hs+1),
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since q ≥ 2s, whereas, when c = 1 one deduces, by virtue of Theorem 1, and
considering that t1 = t0 + h:

y(t1) − y1 ≡ σ̂1(h) − u1(h) = h
∑
j≥s

=O(h2j )︷ ︸︸ ︷⎡
⎢⎣
∫ 1

0
Pj (ζ ) �(t1, t0 + ζh)︸ ︷︷ ︸

=: G(ζh)

dζ

⎤
⎥⎦

︸ ︷︷ ︸
=O(hj )

γj (u1)

+ h

s−1∑
j=0

=O(hq )︷ ︸︸ ︷⎡
⎢⎣
∫ 1

0
Pj (ζ ) �(t1, t0 + ζh)︸ ︷︷ ︸

=: G(ζh)

dζ

⎤
⎥⎦

︸ ︷︷ ︸
=O(hj )

�j (h)

= O(h2s+1) + O(hq+1) = O(h2s+1).

Remark 4 When the k abscissae are placed at the zeros of Pk(c), and k ≥ s, one
obtains a HBVM(k, s) method, whose order is 2s [9, 10, 12]. It is worth mentioning
that the HBVM(s, s) method is nothing but the s-stage Gauss-Legendre collocation
method. Moreover, the HBVM(k, 1) methods correspond to the second-order Runge-
Kutta methods described in [21]. Different choices of the quadrature have been also
considered in [15, 31–33].

2.5 Solving the discrete problems

Sometimes, the number of stages k of the Runge-Kutta method (35) can be much
larger than the degree s of the underlying polynomial approximation (29)–(31). This
is the case, for example, of HBVM(k, s) methods when used as energy-conserving
methods [9, 10, 12] (see also Theorem 12 in Section 2.3). In such a case, it is clear
that the usual implementation of the Runge-Kutta method leads to the solution of a
discrete problem having (block) dimension k. Nevertheless, for sake of completeness
we now recall how the discrete problem to be solved can be actually recast so as to
have (block) dimension s, independently of k [13]. This clearly allows for relatively
large values of k, thus making possible the use of an arbitrarily high-order quadrature
(26). Let us then consider the first integration step of the method for solving (4) with
timestep h, (thus, we can skip the index n of the step). Setting 1 = (

1 , . . . , 1
)	 ∈

R
k , and Y the stage vector of (block) dimension k, one obtains that the stage equation

for (35) is given by:

Y = 1 ⊗ y0 + hIsP	
s � ⊗ Im f (Y ), (36)

with an obvious meaning of f (Y ). However, we observe that [13]

P	
s � ⊗ Im f (Y ) =: γ̂ ≡

⎛
⎜⎝

γ̂0(u1)
...

γ̂s−1(u1)

⎞
⎟⎠ ,
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i.e., the (block) vector with the s coefficients of the polynomial approximation u1(ch)

(see (29)–(30)). Consequently, (36) can be rewritten as

Y = 1 ⊗ y0 + hIs ⊗ Im γ̂ .

By combining the last two equations one eventually obtains:

γ̂ = P	
s � ⊗ Im f

(
1 ⊗ y0 + hIs ⊗ Im γ̂

)
, (37)

which is a discrete problem, equivalent to (36), having (block) dimension s, indepen-
dently of k. Once this equation has been solved, the new approximation is derived,
according to (31), as

y1 = y0 + hγ̂0(u1).

It is also worth mentioning that very effective nonlinear iterations have been devised
for solving (37) [8, 9, 13] (the most effective being that derived from the so-called
blended iteration introduced in [17], see also [18]).

3 The DDE case

As for the ODE case, also for DDEs we shall consider, without loss of generality, the
simpler problem

ẏ(t) = f (y(t), y(t − τ)), t ∈ [t0, T ], y(t0) = y0, (38)

y(t) = φ(t), t ∈ [t0 − τ, t0),

in place of (2) where, usually, y0 = φ(t0). Moreover, we shall suppose that both the
timestep h defining the discrete mesh (5) and the width of the integration interval,
T − t0, are commensurable with the delay:

τ = νh, T − t0 = Kτ, K, ν ∈ N, (39)

so that the discrete mesh is now given by:

tn = t0 + nh, n = −ν, . . . , N ≡ Kν. (40)

On one hand, similarly as done in the ODE case, let us denote, for notational
purposes, by σ̂ (t) ≡ y(t) the solution of (38), and

σ̂n(ch) := σ̂ (tn−1 + ch), c ∈ [0, 1], n = 1 − ν, . . . , N, (41)

its restriction to the time interval [tn−1, tn]. Consequently,

σ̂n(ch) ≡ φ(tn−1 + ch), c ∈ [0, 1], n = 1 − ν, . . . , 0, (42)

whereas, for n = 1, . . . , N , one has (compare with (7)–(10)):

˙̂σn(ch) =
∑
j≥0

Pj (c)γj (σ̂n, σ̂n−ν), c ∈ [0, 1], σ̂n(0) = y(tn−1), (43)

so that,

σ̂n(ch) = y(tn−1) + h
∑
j≥0

∫ c

0
Pj (x)dx γj (σ̂n, σ̂n−ν), c ∈ [0, 1], (44)
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and
y(tn) = y(tn−1) + hγ0(σ̂n, σ̂n−ν) ≡ σ̂ (tn), (45)

where, in general, for any suitably regular functions z, w : [0, h] → R
m,

γj (z, w) :=
∫ 1

0
Pj (ζ )f (z(ζh), w(ζh))dζ . (46)

On the other hand, we shall look for a piecewise approximation to σ̂ (t), i.e., σ(t),
such that (compare with (11)–(15))

σn(ch) := σ(tn−1 + ch), c ∈ [0, 1], n = 1 − ν, . . . , N, (47)

denotes its restriction to the time interval [tn−1, tn]. Consequently, one has:

σn(ch) ≡ φ(tn−1 + ch), c ∈ [0, 1], n = 1 − ν, . . . , 0, (48)

whereas, for n = 1, . . . , N , σn ∈ �s satisfies the differential equation

σ̇n(ch) =
s−1∑
j=0

Pj (c)γj (σn, σn−ν), c ∈ [0, 1], σn(0) = yn−1, (49)

so that,

σn(ch) = yn−1 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γj (σn, σn−ν), c ∈ [0, 1], (50)

and
yn = yn−1 + hγ0(σn, σn−ν) =: σn(h), (51)

with γj (σn, σn−ν) defined according to (46). In the sequel, we shall discuss the
accuracy of the approximations:

y(tn) − yn ≡ σ̂n(h) − σn(h), (52)

δσn(ch) := σ̂n(ch) − σn(ch), c ∈ (0, 1), n = 1, . . . , N .

For this purpose, some preliminary results are given in the next section.

3.1 Preliminary results

We start with the generalization of Corollary 1 to the present setting.

Corollary 3 With reference to (46), one has: γj (z, w) = O(hj ).

Proof Immediate from Theorem 1, by setting G(ζh) := f (z(ζh), w(ζh)).

We also need perturbation results corresponding to those of Theorem 2 for ODEs.
For this purpose, it is sufficient to discuss them for a local problem defined on two
contiguous time subintervals of width τ : the former containing the memory, the latter
containing the solution to be computed. Without loss of generality, we shall then fix
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the reference interval [t0 − τ, t0 + τ ], where we consider the following problem,
defined for a generic ξ ∈ [t0, t0 + τ ]:

ẏ(t) = f (y(t), y(t − τ)), t ∈ [t0, t0 + τ ], y(ξ) = η ∈ R
m, (53)

y(t) = φ(t), t ∈ [t0 − τ, t0).

Problem (53) defines a generalization of the localized one associated to (38)
(obtained for ξ = t0 and η = y0), and we shall denote its solution by

y(t) ≡ y(t, ξ, η, φ; t0), (54)

in order to emphasize its dependence on the first four parameters, whereas the last
one refers to the time subinterval. We shall also use the following notation:

F1(z, w) = ∂

∂z
f (z, w), F2(z, w) = ∂

∂w
f (z, w). (55)

Remark 5 It is clear that the function φ in (53) represents the memory term of the
equation, and it is a known function. The same will happen in the subsequent refer-
ence interval, [t0, t0 + 2τ ], obtained by shifting to the right the previous one by τ ,
once the solution of (53) has been computed, and so forth.

To begin with, let us state the following straightforward result, whose proof is
omitted for brevity.

Theorem 13 The solution (54) of problem (53) is defined on the whole time interval
[t0, t0 + τ ], independently of the point ξ ∈ [t0, t0 + τ ] where the condition η is given.

The following result then holds true (compare with Theorem 2).

Theorem 14 With reference to the solution (54) of problem (53), one has:

a)
∂

∂t
y(t) = f (y(t), y(t − τ)), b)

∂

∂η
y(t) = �(t, ξ ; t0),

c)
∂

∂ξ
y(t) = −�(t, ξ ; t0)f (y(ξ), y(ξ − τ)),

where �(t, ξ ; t0) satisfies (see (55)):

�̇(t, ξ ; t0) = F1(y(t), y(t − τ))�(t, ξ ; t0), t ∈ [t0, t0 + τ ],
�(ξ, ξ ; t0) = I ∈ R

m×m, (56)

�(t, ξ ; t0) = O ∈ R
m×m, t ∈ [t0 − τ, t0).
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Proof The statement a) clearly follows from (53). From the same equation one also
derives that, for t ∈ [t0, t0 + τ ],

d

dt

(
∂

∂η
y(t)

)
= ∂

∂η
ẏ(t) = ∂

∂η
f (y(t), y(t − τ)) (57)

= F1(y(t), y(t − τ))
∂

∂η
y(t) + F2(y(t), y(t − τ))

∂

∂η
y(t − τ).

Moreover, at t = ξ ,
∂

∂η
y(ξ) = ∂

∂η
η = I,

and, for t ∈ [t0 − τ, t0),
∂

∂η
y(t) = ∂

∂η
φ(t) = O.

This latter equality implies that, for t ∈ [t0, t0+τ), the term F2(y(t), y(t−τ)) ∂
∂η

y(t−
τ) in (57) vanishes, thus reducing to the first equation in (56), so that b) eventually
follows. Finally, by virtue of Theorem 13, let t∗ be a generic point in the interval
[t0, t0 + τ ], and denote

y∗ = y(t∗, ξ, η, φ; t0).

Consequently, since ξ ∈ [t0, t0 + τ ] as well, one has:

η = y(ξ, t∗, y(t∗, ξ, η, φ; t0), φ; t0),

so that we eventually arrive at the identity

y∗ = y(t∗, ξ, y(ξ, t∗, y∗, φ; t0), φ; t0).

By taking into account the results of the previous points a) and b), one derives:

0 = d

dξ
y(t∗, ξ, y(ξ, t∗, y∗, φ; t0), φ; t0)

= ∂

∂ξ
y(t∗, ξ, η, φ; t0) + ∂

∂η
y(t∗, ξ, η, φ; t0)

∂

∂t
y(t, t∗, y∗, φ; t0)

∣∣∣∣
t=ξ

= ∂

∂ξ
y(t∗, ξ, η, φ; t0) + �(t∗, ξ ; t0)f (y(ξ), y(ξ − τ)).

The statement c) then follows, by taking into account that t∗ is generic.

One main difference with the ODE case, stems from the fact that now (54) also
depends on the memory term φ, which is a functional parameter. Consequently, we
now look for a Frechét derivative such that, for any perturbation δφ ∈ C([t0 − τ, t0])
and t ∈ [t0 − τ, t0 + τ ]:

lim
ε→0

y(t, ξ, η, φ + εδφ; t0) − y(t, ξ, η, φ; t0)

ε
=
∫ t0

t0−τ

δ

δφ(ζ )
y(t)δφ(ζ )dζ, (58)

where
δ

δφ(ζ )
y(t) : (t, ζ ) ∈ [t0 − τ, t0 + τ ]× [t0 − τ, t0) →

(
δ

δφj (ζ )
yi(t)

)
∈ R

m×m, (59)
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is the functional derivative of (54) (see, e.g., [24, Appendix A]), with yi and φj the
respective entries of y and φ. For later use, we recall that, for a given t̂ ∈ [t0 − τ, t0)

and i, j = 1, . . . , m,

δ

δφj (t̂ )
yi(t) ≡ lim

ε→0

yi(t, ξ, η, φ + εej δt̂ ; t0) − yi(t, ξ, η, φ; t0)

ε
(60)

=
∫ t0

t0−τ

δ

δφj (ζ )
yi(t)δt̂ (ζ )dζ,

with ej ∈ R
m the j th unit vector and, hereafter, δt̂ (t) is the Dirac delta function

centered at t̂ . The following result holds true.

Lemma 1 With reference to (58) and (59), for any fixed t ∈ [ξ, t0 + τ ] ⊆ [t0, t0 + τ ]
one has:

δ

δφ(ζ )
y(t) = O ∈ R

m×m, ∀ζ ∈ [t0 − τ, ξ − τ) ∪ (t − τ, t0).

Proof Having fixed t ∈ [ξ, t0 + τ ], it follows that ∀ζ ∈ [t0 − τ, ξ − τ) ∪ (t − τ, t0),
setting as usual δζ the Dirac delta centered at ζ , one has:

y(t, ξ, η, φ + εδζ ; t0) = y(t, ξ, η, φ; t0), ∀ε ∈ R.

In fact, by virtue of (53), the solution (54) is independent of the values of φ outside
the interval [ξ − τ, t − τ ]. Consequently, by taking into account (60), it follows that:

δ

δφ(ζ )
y(t) = lim

ε→0

y(t, ξ, η, φ + εδζ ; t0) − y(t, ξ, η, φ; t0)

ε
= O.

Taking into account Lemma 1, the following result provides a more practical char-
acterization of the functional derivative (58)–(59). Figure 1 displays the location of
the most relevant points and subintervals involved in Theorem 15.

Theorem 15 With reference to the solution (54) of problem (53), for any t̂ ∈ (ξ −
τ, t0) one has:

δ

δφ(t̂ )
y(t) = �(t, t̂ ; t0), (61)

where �(t, t̂ ; t0) satisfies (see (55)):

�̇(t, t̂ ; t0) = F1(y(t), y(t − τ))�(t, t̂ ; t0), t ∈ (t̂ + τ, t0 + τ ],
�(t̂ + τ, t̂ ; t0) = F2(y(t̂ + τ), y(t̂ )), (62)

�(t, t̂; t0) = δt̂ (t)I, t ∈ [t0 − τ, t̂ + τ),

with O, I ∈ R
m×m and δt̂ (t) the Dirac delta function.

Fig. 1 Relevant time subintervals for Theorem 15
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Proof In fact, for t ∈ [t0, t0 + τ ] one has, by virtue of (53):

d

dt

δ

δφ(t̂ )
y(t, ξ, η, φ; t0) = δ

δφ(t̂ )
ẏ(t) = δ

δφ(t̂ )
f (y(t), y(t − τ))

= F1(y(t), y(t − τ))
δ

δφ(t̂ )
y(t) + F2(y(t), y(t − τ))

δ

δφ(t̂ )
y(t − τ),

i.e., using the notation (61),

�̇(t, t̂ ; t0) = F1(y(t), y(t − τ))�(t, t̂ ; t0)

+ F2(y(t), y(t − τ))�(t − τ, t̂ ; t0).
(63)

Moreover, at t = ξ ,

�(ξ, t̂ ; t0) = δ

δφ(t̂ )
y(ξ) = δ

δφ(t̂ )
η = O, (64)

since the condition y(ξ) = η is independent of the history φ. Further, taking into
account (60), for all i, j = 1, . . . , m and for t ∈ [t0 − τ, t0), one has:

δ

δφj (t̂ )
yi(t) = δ

δφj (t̂ )
φi(t) = lim

ε→0

[φi(t) + εδij δt̂ (t)] − φi(t)

ε
= δij δt̂ (t),

with δij the Kronecker delta. Consequently,

�(t, t̂ ; t0) = δ

δφ(t̂ )
y(t) = δt̂ (t)I, t ∈ [t0 − τ, t0). (65)

From (63)–(65), one then derives, considering that (see Fig. 1) t0 − τ ≤ ξ − τ < t̂ :

�(t, t̂ ; t0) =
∫ t

ξ

�̇(ζ, t̂ ; t0)dζ =
{

O, t ∈ [t0, t̂ + τ),

F2(y(t̂ + τ), y(t̂ )), t = t̂ + τ .
(66)

From (65) and (66) the last two equations in (62) follow. Consequently, from (63),
one obtains

�̇(t, t̂ ; t0) = F1(y(t), y(t − τ))�(t, t̂ ; t0), t ∈ (t̂ + τ, t0 + τ ],
which completes the proof of (62).

As a straightforward consequence, the following result holds true, which guaran-
tees the regularity of � w.r.t. its first two arguments (again, for sake of clarity, refer
to Fig. 1).

Corollary 4 With reference to the solution (54) of problem (53), and considering
(55), (56), and (62), for any t̂ ∈ (ξ − τ, t0) one has:

�(t, t̂ ; t0) = �(t, t̂ + τ ; t0)F2(y(t̂ + τ), y(t̂ )), t ∈ [t̂ + τ, t0 + τ ]. (67)

Finally, the following result holds true (compare with Corollary 2 of the ODE
case).

Corollary 5 With reference to the solution (54) of problem (53), and considering
(56) and (67), for any δφ ∈ C([t0 − τ, t0]) one has:
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y(t, ξ, η + δη, φ + δφ; t0) = y(t, ξ, η, φ; t0) + �(t, ξ ; t0)δη

+
∫ t−τ

ξ−τ

�(t, ζ ; t0)δφ(ζ )dζ

+ (t − ξ)O(|δη| + ‖δφ‖)2, t ∈ [ξ, t0 + τ ],
with ‖δφ‖ = maxζ∈[ξ−τ,t−τ ] |δφ(ζ )|.

Proof The statement follows from Theorem 14, part b), and Theorem 15, by taking
into account (58) and the result of Lemma 1.

3.2 Main results (DDE case)

We are now in the position of discussing the accuracy of the approximations (52). To
begin with, the following result holds true.

Theorem 16 With reference to (38)–(52), for n = 1, . . . , ν one has:

y(tn) − yn = y(tn−1) − yn−1 + O(h2s+1), ‖δσn‖ := max
c∈[0,1] |δσn(ch)| = O(hs+1).

Proof The statement follows from Theorem 4 by considering that, for n = 1, . . . , ν,
t ∈ [t0, t0 + τ ] in (38), so that y(t − τ) ≡ φ(t − τ), which is a known function, thus
obtaining an ODE.

This result allows us to state the following one, which generalizes that of
Theorem 5 to the present case.

Theorem 17 With reference to (44), (46), (50), and (52) if for n ≥ 1 one has:

y(tr ) − yr = y(tr−1) − yr−1 + O(h2s+1), r = 1, . . . , n,

then

δγ n
j := γj (σ̂n, σ̂n−ν) − γj (σn, σn−ν) = O(h2s−j ), j = 0, . . . , s − 1.

Proof The proof is by generalized induction. For n = 1, . . . , ν the statement follows
from Theorems 5 and 16 since, in this case,

σ̂n−ν(ch) ≡ σn−ν(ch) ≡ φ(tn−1 + ch − τ), c ∈ [0, 1],
so that we are dealing with an ODE. Assume now it true up to n − 1, and prove for
n. By hypothesis, and from (45) and (51), we know that

y(tn) − yn = y(tn−1) − yn−1 + O(h2s+1) ≡ y(tn−1) − yn−1 + hδγ n
0 ,
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so that δγ n
0 = O(h2s) follows. Then, by taking into account (55), it follows that:

O(h2s) = δγ n
0 = γ0(σ̂n, σ̂n−ν) − γ0(σn, σn−ν)

=
∫ 1

0

[
f (σ̂n(ζh), σ̂n−ν(ζh)) − f (σn(ζh), σn−ν(ζh))

]
dζ

=
∫ 1

0

∫ 1

0

[
F1(σn(ζh) + c δσn(ζh), σn−ν(ζh) + c δσn−ν(ζh))δσn(ζh)

+ F2(σn(ζh) + c δσn(ζh), σn−ν(ζh) + c δσn−ν(ζh))δσn−ν(ζh)
]

dc dζ

=
∫ 1

0

∫ 1

0
F1(σn(ζh) + c δσn(ζh), σn−ν(ζh) + c δσn−ν(ζh))dc

︸ ︷︷ ︸
=: G1(ζh)

δσn(ζh) dζ

+
∫ 1

0

∫ 1

0
F2(σn(ζh) + c δσn(ζh), σn−ν(ζh)+c δσn−ν(ζh))dc

︸ ︷︷ ︸
=: G2(ζh)

δσn−ν(ζh) dζ

=
∫ 1

0
G1(ζh)δσn(ζh)dζ +

∫ 1

0
G2(ζh)δσn−ν(ζh)dζ .

Let us discuss in detail the term

∫ 1

0
G1(ζh)δσn(ζh) dζ,

since the remaining one,

∫ 1

0
G2(ζh)δσn−ν(ζh) dζ = O(h2s),

is similarly discussed, by taking into account the induction hypothesis. By virtue of
(22), one has:

δσn(ζh) = σ̂n(ζh) − σn(ζh)

= y(tn−1) − yn−1 + h

s−1∑
j=0

∫ ζ

0
Pj (x)dx δγ n

j +
∑
j≥s

∫ ζ

0
Pj (x)dx γj (σ̂n, σ̂n−ν)

= y(tn−1) − yn−1 + ζhδγ n
0 + h

s−1∑
j=1

[
ξj+1Pj+1(ζ ) − ξjPj−1(ζ )

]
δγ n

j

+ h
∑
j≥s

[
ξj+1Pj+1(ζ ) − ξjPj−1(ζ )

]
γj (σ̂n, σ̂n−ν).
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Consequently, from Theorem 1 and Corollary 3, one obtains:

O(h2s ) =
∫ 1

0
G1(ζh)δσn(ζh) dζ =

∫ 1

0
G1(ζh)dζ

︸ ︷︷ ︸
=O(1)

[y(tn−1) − yn−1]︸ ︷︷ ︸
= (n−1)O(h2s+1)

+ h

∫ 1

0
G1(ζh)ζdζ

︸ ︷︷ ︸
=O(1)

δγ n
0︸︷︷︸

=O(h2s )

+ h

s−1∑
j=1

∫ 1

0
G1(ζh)

[
ξj+1Pj+1(ζ ) − ξjPj−1(ζ )

]
dζ δγ n

j

+ h
∑
j≥s

=O(hj−1)︷ ︸︸ ︷∫ 1

0
G1(ζh)

[
ξj+1Pj+1(ζ ) − ξjPj−1(ζ )

]
dζ

=O(hj )︷ ︸︸ ︷
γj (σ̂n, σ̂n−ν)

︸ ︷︷ ︸
=O(h2s )

,

from which,

O(h2s) = h

s−1∑
j=1

∫ 1

0
G1(ζh)

[
ξj+1Pj+1(ζ ) − ξjPj−1(ζ )

]
dζ

︸ ︷︷ ︸
=O(hj−1)

δγ n
j

follows and, therefore, one concludes that δγ n
j = O(h2s−j ), j = 0 . . . , s − 1.

As a consequence, the following result can be stated.

Theorem 18 With reference to (38)–(52), for n = 1, . . . , N ≡ Kν one has:

y(tn) − yn = y(tn−1) − yn−1 + O(h2s+1), ‖δσn‖ := max
c∈[0,1]

|δσn(ch)| = O(hs+1).

Proof The proof is done by induction on groups of ν consecutive steps. For the first
ν steps, the statement follows from Theorem 16. Assume now, by induction, that it
holds true up to tkν = t0 + kνh, and let us prove for n = kν + 1, . . . , (k + 1)ν. For
this purpose, for k = 1, . . . , K − 1 let us set:

φk(t) ≡ σ(t), φ̂k(t) ≡ σ̂ (t) ≡ y(t), t ∈ [t(k−1)ν, tkν).

Assuming, again, true the statement for n − 1, and using the notation (54), one has:

δσn(ch) = σ̂n(ch) − σn(ch)

= y(tn−1 + ch, tn−1, y(tn−1), φ̂k; tkν) − y(tn−1 + ch, tn−1 + ch, σn(ch), φk; tkν)

= y(tn−1 + ch, tn−1,

= yn−1︷ ︸︸ ︷
σn(0), φk; tkν) − y(tn−1 + ch, tn−1 + ch, σn(ch), φk; tkν)︸ ︷︷ ︸

=: E(k)
n,1(ch)

+ y(tn−1 + ch, tn−1, y(tn−1), φ̂k; tkν) − y(tn−1 + ch, tn−1,

= σn(0)︷︸︸︷
yn−1 , φk; tkν)︸ ︷︷ ︸

=: E(k)
n,2(ch)

.
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From Theorem 16, it follows that

E
(k)
n,1(h) = σn(0) − σn(0) + O(h2s+1) = O(h2s+1), (68)

‖E(k)
n,1‖ := max

c∈[0,1] |E
(k)
n,1(ch)| = O(hs+1).

Moreover, from Corollary 5, and considering that hν = τ , one has:

E
(k)
n,2(ch) =

= I+O(ch)︷ ︸︸ ︷
�(tn−1 + ch, tn−1; tkν)

= δσn(0)︷ ︸︸ ︷[
y(tn−1) − yn−1

]

+ h

∫ c

0
�(tn−1 + ch, tn−1 + ζh − τ ; tkν)δσn−ν(ζh)dζ

+ ch O(|δσn(0)| + ‖δσn−ν‖)2.

By considering that

|δσn(0)| = (n − 1)O(h2s+1), ‖δσn−ν‖ = O(hs+1),

one eventually derives

‖E(k)
n,2‖ := max

c∈[0,1] |E
(k)
n,2(ch)| = O(hs+2),

from which the second part of the statement follows, by taking into account (68).
Moreover, when c = 1 then tn−1 + h = tn and, by virtue of Theorem 1 and
Theorem 17, one obtains:

∫ 1

0

=: G(ζh)︷ ︸︸ ︷
�(tn, tn−1 + ζh − τ ; tkν) δσn−ν(ζh)dζ

=
∫ 1

0
G(ζh)

⎡
⎣s−1∑

j=0

Pj (ζ )δγ n−ν
j +

∑
j≥s

Pj (ζ )γj (σ̂n−ν, σ̂n−2ν)

⎤
⎦

=
s−1∑
j=0

∫ 1

0
Pj (ζ )G(ζh)dζ

︸ ︷︷ ︸
= O(hj )

δγ n−ν
j︸ ︷︷ ︸

= O(h2s−j )

+
∑
j≥s

∫ 1

0
Pj (ζ )G(ζh)dζ

︸ ︷︷ ︸
= O(hj )

γj (σ̂n−ν, σ̂n−2ν)︸ ︷︷ ︸
= O(hj )

= O(h2s ).

Consequently,

E
(k)
n,2(h) = y(tn−1) − yn−1 + O(h2s+1),

and also the first part of the statement follows.

3.3 Discretization

The discretization issue proceeds as in the ODE case. In fact, also in the DDE case,
the Fourier coefficients (see (46) and (49)),

γj (σn, σn−ν) =
∫ 1

0
Pj (ζ )f (σn(ζh), σn−ν(ζh))dζ, j = 0, . . . , s − 1,
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need to be approximated by using a (interpolatory) quadrature rule of order q, thus
providing a possibly different piecewise approximation u(t),

u(t)≡φ(t), t < t0, un(ch) := u(tn−1+ch), c ∈ [0, 1], n=1−ν, . . . , N,

such that, for n ≥ 1:

u̇n(ch) =
s−1∑
j=0

Pj (c)γ̂j (un, un−ν), c ∈ [0, 1], un(0) = yn−1. (69)

Consequently,

un(ch) = yn−1 + h

s−1∑
j=0

∫ c

0
Pj (x)dx γ̂j (un, un−ν), c ∈ [0, 1], (70)

and

yn = yn−1 + hγ̂0(un, un−ν) =: un(h), (71)

where (see (46)),

γ̂j (un, un−ν) :=
k∑

i=1

biPj (ci)f (un(cih), un−ν(cih)) = γj (un, un−ν) − �j(h),

(72)
with (ci, bi) the abscissae and weights of the quadrature, and �j(h) = O(hq−j ) the
quadrature error, where q is the order of the quadrature.

Formulae (69) and (46) form a subclass of the so-called natural continuous RK
methods for DDEs (see [5, Sec. 6.2]). As a consequence, their convergence proper-
ties could be as well derived by more classical approaches such as Bellman’s method
of steps, which is an analytic procedure specific for DDEs. In the present context, the
main goal is to show how the framework based on the perturbation theory applied
to the truncated Fourier expansion is easily adapted to cope with DDEs, therefore
we will pursue this route of investigation. A further strength of this approach is the
possibility of analyzing the convergence properties of the truncated Fourier approxi-
mations when these are used as spectral methods in time. In this regard, the analysis
for the ODE case has been addressed in [3], while a spectral implementation of the
methods for DDEs has been considered in [16].

By using standard arguments (which we omit, as done in the ODE case), we
can derive the following results, representing the corresponding counterparts of
Theorems 17 and 18, respectively.

Theorem 19 With reference to (44), (46), (69)–(71), and assuming that the quadra-
ture formula (72) has order q ≥ 2s, if for n ≥ 1 one has:

y(tr ) − yr = y(tr−1) − yr−1 + O(h2s+1), r = 1, . . . , n,
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then

δγ̂ n
j := γj (σ̂n, σ̂n−ν) − γ̂j (un, un−ν) = O(h2s−j ), j = 0, . . . , s − 1.

Theorem 20 With reference to (44), (46), (69)–(71), and assuming that the quadra-
ture formula (72) has order q ≥ 2s, for n = 1, . . . , N ≡ Kν one has:

y(tn)−yn = y(tn−1)−yn−1 +O(h2s+1), max
c∈[0,1] |σ̂n(ch)−un(ch)| = O(hs+1).

Remark 6 It is worth mentioning that the result of Theorem 20 states that the super-
convergence order 2s at the mesh-points tn is obtained, even though possibly different
Runge-Kutta methods are used at each integration step, provided that they define a
polynomial approximation of degree s. This, in turn, represents a generalization of
the results in [4] for collocation methods.

We conclude this section, by recalling that the considerations in Remark 4 con-
tinue to hold in the DDE case and by observing that, concerning the implementation
of the resulting Runge-Kutta method used for solving problem (38), the arguments in
Section 2.5, mutatis mutandis, apply as well.

4 Numerical tests

In this section we report a few numerical tests for the DDE case. In fact, in the ODE
case, HBVMs have been extensively used as energy-conserving methods for Hamil-
tonian systems (see, e.g., [2, 9–11, 19]). We show that, under some circumstances,
their use can be advantageous also in the DDE case. Hereafter, we consider a class of
DDEs defined by a Hamiltonian function

H : (q, p) ∈ R
m × R

m → R, (73)

through the equations

q̇(t) = Hp(q(t), p(t)) + αHp(q(t − τ), p(t − τ)),
(74)

ṗ(t) = − [Hq(q(t), p(t)) + αHq(q(t − τ), p(t − τ))
]
,

with α a real parameter, τ > 0 the delay, and Hq and Hp the partial derivatives of H

w.r.t. q and p, respectively. The problem is completed by the initial conditions

q(t) = φ(t), p(t) = ψ(t), t ∈ [−τ, 0]. (75)

The introduction of such a kind of delay Hamiltonian system is partly inspired by the
problem of looking for periodic orbits of DDEs, which has been attacked by many
authors in the past (see, e.g., [23, 34, 35, 37–39, 41]). In this respect, the first two
examples below show an attractive periodic orbit with integer period lying on a level
set of the Hamiltonian function (73) which is, therefore, a constant of motion once
the periodic orbit has been approached. In the third example we are instead inter-
ested in simulating the correct qualitative behavior of a dissipative Hamiltonian delay
problem in the phase space when the dynamics takes place in a neighborhood of a
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separatrix. Taking aside a theoretical discussion of problem (73)–(74) which would
go beyond the scopes of the present work, we infer its properties for the three con-
sidered instances by preliminarily applying a high-order integrator with very small
stepsize, in order to get a very accurate numerical solution that will be taken as a
reference trajectory in the phase space.

For all the three problems, we show that a very accurate approximation of the
Hamiltonian function allows us to reproduce the correct geometric features of the
solution in the discrete setting. To the best of our knowledge, this is the first instance
of the use of HBVMs in the context of DDEs displaying geometric properties. For
comparison purposes, we also solve the problems with the classical Gauss collocation
integrator of the same order. The numerical tests have been implemented in Matlab
(R2020b) on a 3 GHz Intel Xeon W10 core computer with 64GB of memory.

4.1 Problem 1

With reference to (73)–(75), the first problem is defined as follows:

m = 1, H(q, p) = 1

4

(
q4 + p4

)
, α = 10−1,

τ = 1, φ(t) ≡ √
2, ψ(t) ≡ 0.

(76)

We solve this problem by using the following methods:

• HBVM(2,2) (i.e., the 2-stage Gauss method),
• HBVM(4,2).

Both methods are fourth-order, according to Theorem 10, with HBVM(4,2) energy-
conserving once a periodic orbit of integer period is eventually reached (see Theo-
rem 12). Problem (76) possesses an attracting periodic orbit with period T = 2τ = 2
which suggests using a stepsize h equal to a submultiple of τ , in order to mimic a
corresponding discrete periodic solution. As we are going to see, unlike the 2-stage
Gauss collocation method, the conservation property of HBVM(4,2) results in a pre-
cise resolution of this task. We solve the problem on the interval [0, 2 · 103] by using
a timestep h = τ/5 = 0.2. Figure 2 summarizes the obtained results.

• In the upper row of the figure are the plots of the numerical Hamiltonian,
H(qn, pn), from which one deduces that both methods quite soon reach a
stationary behavior.

• To better discern the asymptotic behavior of the two numerical solutions, the
central pictures show the plots of |H(qn, pn) − H(qn−1, pn−1)| for the two
methods. From these plots one infers that, while the stationary value of the
Hamiltonian is constant for the HBVM(4,2) method, it is only approximately
constant for the HBVM(2,2) method, with oscillations having amplitude of order
10−2.

• The bottom row contains the plots of the numerical trajectory in the phase plane
for both methods, relative to the interval [2 · 102, 2 · 103] (i.e., after the tran-
sient phase). For both methods, the solution seems to repeat every 10 points (i.e.,
with period T = 2τ = 2). However, the points obtained by the HBVM(2,2)



   76 Page 28 of 36 L. Brugnano et al.

10-1 100 101 102 103 104

t

1

1.5

2

2.5

3

3.5

4

4.5

H
HBVM(2,2)

10-1 100 101 102 103 104

t

1

1.5

2

2.5

3

3.5

4

4.5

H

HBVM(4,2)

10-1 100 101 102 103 104

t

10-4

10-3

10-2

10-1

100

|
 H

|

HBVM(2,2)

10-1 100 101 102 103 104

t

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

|
 H

|

HBVM(4,2)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
q

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

p

HBVM(2,2)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
q

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

p

HBVM(4,2)

Fig. 2 Numerical results for problem (76) solved by using HBVM(2,2), left plots, and HBVM(4,2), right
plots, using a timestep h = 0.2 (see the text for details)

method are not actually periodic, whereas they are (within to machine precision
and independently of the used stepsize h) for the HBVM(4,2) method. To con-
firm this, in Table 1 we list the last 20 points of the trajectories computed after
each period T = 10h and lying inside the two small circles highlighted in the
plots. As one may see, only the first 4 digit of the points of the trajectory com-
puted by the HBVM(2,2) method are retained, whereas the points computed by
the HBVM(4,2) method differ at most on the last digit.
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Table 1 The last 20 points of the trajectories inside the circles in the plots on the bottom line of Fig. 2

HBVM(2,2) HBVM(4,2)

q p q p

1.344913051657652 1.924341608176171 1.364023296679203 1.918490612087558

1.344895222079097 1.924347768593204 1.364023296679201 1.918490612087558

1.344877390115245 1.924353929533504 1.364023296679201 1.918490612087558

1.344859555766308 1.924360090996891 1.364023296679201 1.918490612087558

1.344841719032502 1.924366252983184 1.364023296679200 1.918490612087558

1.344823879914032 1.924372415492206 1.364023296679201 1.918490612087558

1.344806038411116 1.924378578523775 1.364023296679200 1.918490612087558

1.344788194523964 1.924384742077714 1.364023296679201 1.918490612087559

1.344770348252789 1.924390906153841 1.364023296679202 1.918490612087558

1.344752499597800 1.924397070751980 1.364023296679202 1.918490612087558

1.344734648559217 1.924403235871946 1.364023296679200 1.918490612087559

1.344716795137255 1.924409401513561 1.364023296679199 1.918490612087559

1.344698939332121 1.924415567676645 1.364023296679200 1.918490612087559

1.344681081144034 1.924421734361018 1.364023296679199 1.918490612087559

1.344663220573212 1.924427901566499 1.364023296679200 1.918490612087558

1.344645357619866 1.924434069292906 1.364023296679200 1.918490612087558

1.344627492284208 1.924440237540062 1.364023296679200 1.918490612087558

1.344609624566458 1.924446406307785 1.364023296679200 1.918490612087559

1.344591754466830 1.924452575595894 1.364023296679201 1.918490612087558

1.344573881985545 1.924458745404208 1.364023296679203 1.918490612087558

4.2 Problem 2

The second example is similar in nature to the previous one but considers a non-
polynomial Hamiltonian function with two degrees of freedom. With reference to
(73)–(75), it is defined by:

m = 2, H(q, p) = 1

4

(
q4

1 + q4
2 + p4

1 + p4
2

)
+ π

2

(
1

‖q‖2
2

+ 2

‖p‖2
2

)
,(77)

α = 5 · 10−2, τ = 1, φ(t) ≡ (0.1, 1)	, ψ(t) ≡ (1, 0.2)	.

Again, we have experienced the existence of a periodic orbit with period T = 2τ = 2.
We solve this problem on the interval [0, 103] with timestep h = τ/10 = 0.1, by
using the following methods:

• HBVM(2,2) (i.e., the 2-stage Gauss method),
• HBVM(10,2).

Both methods are fourth-order, the latter being practically energy-conserving, for the
given timestep, in the event that a periodic orbit is reached.
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Also in this case, the conservation property of HBVM(10,2) turns out to be crucial
in reproducing a discrete orbit with period precisely equal to 2, while a small phase
drift affects the solution yielded by the 2-stage Gauss collocation method. Figure 3,
which is similar to Fig. 2, summarizes the obtained results.

• In the upper row of the figure are the plots of the numerical Hamiltonian, namely
H(qn, pn): for both methods it seems to reach a stationary behavior.
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Fig. 3 Numerical results for problem (77) solved by using HBVM(2,2), left plots, and HBVM(10,2), right
plots, using a timestep h = 0.1 (see the text for details)
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• The second row shows the plots of |H(qn, pn) − H(qn−1, pn−1)| for the two
methods. From these plots one infers that, while the stationary value of the
Hamiltonian is constant (up to round-off) for the HBVM(10,2) method, it is only
approximately constant for the HBVM(2,2) method, with oscillations having
amplitude of order 10−3.

• The bottom row contains the plots of the numerical trajectory in the q1 − q2
plane for both methods, relative to the interval [102, 103] (i.e., after the transient
phase). For both methods, the solution seems to repeat every 20 points (i.e., with
period T = 2τ = 2). However, only the points obtained by the HBVM(10,2)
method are actually periodic. To confirm this, in Table 2 we list the last 20
points of the trajectories computed after each period T = 20h and lying inside
the two small circles displayed in the plots. As one may see, the Gauss collo-
cation method only retain the first 5 digits after each period, whereas the points
computed by the HBVM(10,2) method differ at most on the last digit.

Table 2 The last 20 points of the trajectories inside the circles in the plots on the bottom line of Fig. 3

HBVM(2,2) HBVM(10,2)

q1 q2 q1 q2

1.500006047618583 1.868403720200248 1.595245320422993 1.813631211153069

1.500014079966090 1.868399733165645 1.595245320422992 1.813631211153067

1.500022113284264 1.868395745553114 1.595245320422991 1.813631211153069

1.500030147573164 1.868391757362593 1.595245320422994 1.813631211153068

1.500038182832831 1.868387768594017 1.595245320422991 1.813631211153067

1.500046219063319 1.868383779247324 1.595245320422993 1.813631211153069

1.500054256264677 1.868379789322453 1.595245320422994 1.813631211153069

1.500062294436967 1.868375798819335 1.595245320422991 1.813631211153067

1.500070333580236 1.868371807737912 1.595245320422991 1.813631211153068

1.500078373694533 1.868367816078119 1.595245320422993 1.813631211153069

1.500086414779919 1.868363823839889 1.595245320422992 1.813631211153067

1.500094456836429 1.868359831023165 1.595245320422991 1.813631211153069

1.500102499864130 1.868355837627883 1.595245320422994 1.813631211153068

1.500110543863066 1.868351843653977 1.595245320422991 1.813631211153067

1.500118588833287 1.868347849101385 1.595245320422993 1.813631211153069

1.500126634774853 1.868343853970044 1.595245320422994 1.813631211153069

1.500134681687813 1.868339858259893 1.595245320422991 1.813631211153067

1.500142729572213 1.868335861970863 1.595245320422991 1.813631211153068

1.500150778428111 1.868331865102895 1.595245320422993 1.813631211153069

1.500158828255558 1.868327867655927 1.595245320422992 1.813631211153067

1.500166879054607 1.868323869629889 1.595245320422991 1.813631211153069

1.500174930825299 1.868319871024725 1.595245320422994 1.813631211153068
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4.3 Problem 3

For the last problem, we are no more interested in periodic trajectories. Instead, we
consider a delay Hamiltonian problem with dissipation. This can be achieved by
choosing a negative value of the parameter α in (74). With reference to (73)–(75), the
selected parameters are:

m = 1, H(q, p) = 1

2
p2 − cos q, α = −10−5,

τ = 1, φ(t) ≡ 0, ψ(t) ≡ 1.99999.
(78)

This problem is a dissipative delay-variant of the nonlinear pendulum, with the initial
condition chosen close to the separatrix (the level set H(q, p) = 1) between the
two different regimes of the pendulum: librations around the straight-down stationary
position, and rotations. For the given initial conditions, the pendulum should undergo
damped oscillations with a decreasing trend of the Hamiltonian function H(qn, pn).
Consequently, when using relatively large stepsizes, it is fundamental to reproduce
the correct dissipation of the Hamiltonian along the numerical trajectory.

We solve this problem on the interval [0, 500], with a timestep h = τ/2 = 0.5, by
using the following methods:

• HBVM(2,2) (i.e., the 2-stage Gauss method),
• HBVM(10,2).

Figure 4 summarizes the obtained results.

• In the upper row of the figure are the plots of the numerical Hamiltonian,
H(qn, pn), from which one deduces that both methods have a dissipation trend
of the energy H . Nevertheless, for HBVM(2,2) the values of the Hamiltonian
becomes quite larger than 1 in the initial part of the trajectory and undergoes ficti-
tious oscillations which cause the numerical solution to escape the correct region
of the phase space where the dynamics should take place, as we are going to see.
This is not the case for the HBVM(10,2) method, whose numerical Hamiltonian
decreases in the correct way, thus remaining always smaller than 1.

• The central pictures show the numerical solution in the phase space. As one
may see, the numerical solution provided by HBVM(2,2) “jumps” twice, before
being trapped into an invariant region. This means that the pendulum under-
goes two complete rotations until it looses enough energy and begins oscillating
around the rest position. On the contrary, the numerical solution obtained by
using HBVM(10,2) always remains in the correct region.

• The bottom row contains the plots of the numerical solution w.r.t. time, confirm-
ing that the numerical solution provided by the HBVM(2,2) method “jumps”
twice, whereas that obtained by the HBVM(10,2) method does not.
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Fig. 4 Numerical results for problem (78) solved by using HBVM(2,2), left plots, and HBVM(10,2), right
plots, using a timestep h = 0.5 (see the text for details)

5 Conclusions

In this paper we have fully developed a thorough approach for obtaining polynomial
approximations to the solution of initial value ODE and DDE problems. It allows
us to derive a wide class of Runge-Kutta methods, whose properties are easily dis-
cussed within the framework, as well as their actual implementation. Some numerical
tests, concerning the numerical simulation of solutions of certain DDE problems of
Hamiltonian type, confirm this. The present approach leaves room for generalizations



   76 Page 34 of 36 L. Brugnano et al.

along several directions: in particular to different kind of problems, besides the ones
considered here. Another relevant direction of investigation consists in looking for
approximations belonging to functional subspaces different than polynomials: that is,
by considering orthonormal functional bases different from (3). Both directions will
be the subject of future investigations.
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