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Abstract
We study existence of semi-classical states for the nonlinear Choquard equation:

−ε2�v + V (x)v = 1

εα
(Iα ∗ F(v)) f (v) in RN ,

where N ≥ 3, α ∈ (0, N ), Iα(x) = Aα/|x |N−α is the Riesz potential, F ∈ C1(R,R),
F ′(s) = f (s) and ε > 0 is a small parameter. We develop a new variational approach,
in which our deformation flow is generated through a flow in an augmented space
to get a suitable compactness property and to reflect the properties of the potential.
Furthermore our flow keeps the size of the tails of the function small and it enables us
to find a critical point without introducing a penalization term. We show the existence
of a family of solutions concentrating to a local maximum or a saddle point of V (x) ∈
C N (RN ,R) under general conditions on F(s). Our results extend the results byMoroz
and Van Schaftingen (Calc Var Partial Differ Equ 52:199–235, 2015) for local minima
(see also Cingolani and Tanaka (Rev Mat Iberoam 35(6):1885–1924, 2019)) and Wei
and Winter (J Math Phys 50:012905, 2009) for non-degenerate critical points of the
potential.
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1 Introduction

In the recent years a large amount of papers has been devoted to investigate concen-
tration phenomena of solutions to nonlinear Schrödinger equations with local sources
around potential wells, namely local minima of some external potential functions.
Starting to the celebrated papers by Floer and Weinstein [31] and Rabinowitz [58],
several variational approacheswere implemented and some efforts were done to obtain
optimal results. We mention for instance [7, 16, 18–21, 29, 36, 37]. A more difficult
problem seems to detect concentration phenomena around local maxima or saddle
points of the potential type function. Some results are known for nonlinear Schrödinger
equations under nondegeneracy conditions of the local maxima which allow to per-
formLyapunov Schmidt reduction arguments [2, 3, 31, 41, 51].More recently, del Pino
and Felmer in [30] introduced a new reduction and proved a concentration result for
solutions of nonlinear Schrödinger equation around local maxima and saddle points
of the potential, assuming Ambrosetti-Rabinowitz type conditions and monotonicity
conditions on the nonlinearity, which are crucial to apply a Nehari manifold approach.
We refer to [28] for a generalization of the result of [30]. The more general result is
contained in [8, 9] where Byeon and the second author succeeded to show the existence
of families of solutions to nonlinear Schrödinger equations with local nonlinearity of
Berestycki-Lions type concentrating at critical points which are given by minimax
method with suitable linking properties, e.g. local maxima, mountain pass critical
points, non-degenerate critical points. See also [6, 10–12, 39].

The goal of the present paper is to develop a new theoretical approach to obtain
existence of solutions which concentrate at local maxima or saddle points of poten-
tial functions, under quite optimal assumptions on the nonlinearity and without any
nondegeneracy conditions for class of nonlinear Schrödinger equations having local
or nonlocal source.

As prototype of nonlocal problem in the source, we focus our analysis on the
following class of equations

⎧
⎨

⎩

−ε2�v + V (x)v = 1

εα
(Iα ∗ F(v)) f (v) in RN ,

v > 0 in RN , v ∈ H1(RN ),

(1.1)

where ε > 0 is a small positive parameter, N ≥ 3, α ∈ (0, N ),

Iα(x) = �( N−α
2 )

�(α
2 )πα|x |N−α

: RN \ {0} → R

is the Riesz potential, F(s) ∈ C1(R,R) and f (s) = F ′(s). We recall that in 1954
the Eq. (1.1) with N = 3, α = 2 and F(s) = 1

2 |s|2 was introduced by Pekar [52]
to describe the quantum theory of a polaron at rest. In 1976, (1.1) appeared in the
work of Choquard on the modeling of an electron trapped in its own hole, in a certain
approximation to the Hartree-Fock theory of plasma (see also [32]). More recently it
has found a great attention due to models of self-gravitational collapse of a quantum
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mechanical wave function, proposed by Roger Penrose [53–55] and in that context it
is known as as Schrödinger-Newton equation (see also [46, 60]).

In literature, (1.1) is usually referred as nonlinearChoquard equation or Schrödinger
equation with Hartree type potential. From a mathematical point of view, the early
existence and symmetry results are due to Lieb [42] and Lions [43]. Successively,
Ma and Zhao [44] classified all positive solutions to (1.1) for power nonlinearity and
showed that they must be radially symmetric and monotonically decreasing about
some fixed point. Recently Moroz and Van Schaftingen [48] investigated existence,
some qualitative properties and decay asymptotics of positive ground state solutions
to (1.1) for ε > 0 fixed when F satisfies the Berestycki-Lions type conditions. Other
results are contained in [4, 13, 17, 18, 24, 27, 40, 47, 50, 57].

In the present paper we are interested in the study the existence of concentrating
family of solutions of (1.1) at local maxima or saddle point of V (x) as ε → 0.

Denoting u(x) = v(εx), the Eq. (1.1) is equivalent to

{ −�u + V (εx)u = (Iα ∗ F(u)) f (u) in RN ,

u > 0 in RN . u ∈ H1(RN ),
(1.2)

Thus we try to find critical points of the corresponding functional:

Iε(u) = 1

2

∫

RN
|∇u|2 + V (εx)u2 − 1

2

∫

RN
(Iα ∗ F(u))F(u) : H1(RN ) → R

and we ask the existence of a concentrating family (uε) of solutions of (1.2) as ε → 0.
Firstly the concentration at nondegenerate critical points of the potential V (x) has

been studied byWei andWinter [62] using Lyapunov Schmidt reduction when N = 3,
α = 2 and F(s) = s2. The case of local minima (possibly degenerate) of V when
N = 3 and F(s) = s2 has been considered in [22] by means of a penalization
approach (see also [14, 59, 63]). More recently, Moroz and Van Schaftingen [49]
proved existence of a single-peak solution of (1.1) concentrating at a local minima of
V (x) for f (s) = |s|p−2s, p ∈ [2, N+α

N−2 ) via a new non-local penalizationmethod. [64]

extended the result in [49] and showed the existence under (f4) below, limt→∞ f (t)

t
α+2
N−2

=
0 and

lim
t→0

f (t)

t
= 0. (1.3)

They also proved the existence of multi-peak solutions, whose each peak concentrates
at different local minimum of V (x) as ε → 0. We note that conditions p ≥ 2 or (1.3)
is important in their arguments as it enables them to use linearized problems at infinity.
See also [1, 45, 56] dealing with critical Choquard equations.

In [23] we developed a new variational approach which is applicable to a wide class
of nonlinearities including F(s) = |s|p, p ∈ ( N+α

N , N+α
N−2 ). In particular, we can deal

with the sublinear case p ∈ ( N+α
N , 2), differently to [49]. We obtained the multiplicity

of concentrating solutions via the cup-length of a critical set CritV0 = {x ∈ �; V (x) =
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V0}, where � ⊂ R
N is a bounded set such that V0 ≡ inf x∈� V (x) < inf x∈∂� V (x).

See also [38] for the effect of the topology of the potential wells on the existence of
multi-bumps solutions.

The main purpose of this paper is to study the existence of concentrating family of
solutions of nonlinear Choquard equation (1.1) at a local maximum or saddle point
of V (x). To our knowledge, the only concentration result dealing nondegenerate local
maxima is due to Wei and Winter [62], when N = 3, α = 2 and F(s) = s2.

The existence of concentrating families of solutions at local maxima and saddle
points of V (x) is a more involved open problem and deformation argument using the
standard gradient flow associated to Iε(u) does not seem enough. We also note that
non-degeneracy of solutions of the limit problem −�u + V (x0)u = (Iα ∗ F(u)) f (u)

is not known except the case N = 3, α = 2, F(u) = |u|2 and it seems difficult to
apply Lyapunov Schmidt reduction methods in general.

To show the existence of concentrating family of solutions, in this paper we develop
a new deformation argument, which is partially inspired by [8, 25, 33, 35].

Our deformation argument is developed for V (x) ∈ C1(RN ,R) through a defor-
mation in an augmented space RN × H1(RN ) and it has the following new features:

(i) Our deformation flow is developed through a deformation for an augmented
functional:

Jε(z, u) = 1

2

∫

RN
|∇u|2 + 1

2

∫

RN
V (εx + z)u(x)2 − 1

2

∫

RN
(Iα ∗ F(u))F(u)

for all (z, u) ∈ R
N × H1(RN ). We use the following translation of u ∈ H1(RN )

as a part of our new deformation argument:

t �→ u

(

x − h

ε
t

)

; (−δ, δ) → R, (1.4)

where h ∈ R
N . If uε(x) “concentrates” at some point p0 ∈ R

N in the original
scale for (1.1), that is, uε(x) ∼ v(x − p0

ε
) for some function v(x), then as ε ∼ 0

d

dt

∣
∣
∣
t=0

Iε

(

uε

(

x − h

ε
t

))

= 1

2

d

dt

∣
∣
∣
t=0

∫

RN
V (εx)uε

(

x − h

ε
t

)2

dx

∼ 1

2

d

dt

∣
∣
∣
t=0

∫

RN
V (εx)v

(

x − p0 + ht

ε

)2

dx

= 1

2

d

dt

∣
∣
∣
t=0

∫

RN
V (εx + p0 + ht)v(x)2 dx

= 1

2
(∇V (p0), h)

∫

RN
v(x)2 dx .

Thus, if ∇V (p0) = 0, choosing h = ∇V (p0), the traslation flow (1.4) gives a
decreasing flow for Iε(u) in a small neighborhood of uε. Thus ∇V (p0) gives a
useful information for deformation argument. However we note that in H1(RN )
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the flow (1.4) is continuous but not of classC1 in general and it cannot be obtained
through the standard deformation theory, where the flow is obtained as a solution
of ODE in a Banach space and it must be of class C1.
Our augmented functional Jε(z, u) enjoys the following property:

Jε(z, u) = Iε
(

u
(

x − z

ε

))
for all z ∈ R

N and u ∈ R

and the traslation flow (1.4) can be obtained as a composition of a C1-flow in the
augmented space

t �→ (ht, u(x)); (−δ, δ) → R
N × H1(RN )

and a projection

πε : (z, u) �→ u
(

x − z

ε

)
; RN × H1(RN ) → H1(RN ).

We also note that the standard deformation flow η(t) : (−δ, δ) → H1(RN ) for
Iε(u) in H1(RN ) also can be obtained as a composition of a flow (−δ, δ) →
R

N × H1(RN ); t �→ (0, η(t)) and the projection πε.
In the following sections, first we construct a deformation flow η̃ for the aug-

mented functional Jε(z, u) in R
N × H1(RN ) and we construct a deformation

flow for Iε(u) as a composition (πε ◦ η̃)(t). We also note that our new construc-
tion of a deformation flow works under weaker version of Palais-Smale type
condition (see Proposition 4.5, 4.7 and 6.1).

(ii) Another new aspect of our deformation flow is that it keeps the size of the tail
of functions small during deformation. That is, defining the size of a tail of a
function u by

Tε(u) =
∫

RN
ζ̃4/

√
ε(x − β(u))(|∇u|2 + u2) dx,

where ζ̃R(x) ∈ C∞(RN ,R) satisfies ζ̃R(x) = 1 for |x | ≥ R and ζ̃R(x) = 0 for
|x | ≤ R−1 andβ(u) is the “center ofmass” of u whichwill be defined in Sect. 3.3.
We observe that for small κε with κε → 0, the set {u : Tε(u) ≤ κε} is positively
invariant under our deformation flow. See Proposition 6.1 and (6.3) in Sect. 6.
This property ensures that if u(x) concentrates around the center β(u) of mass,
deformed function η(t, u) continues to concentrate around the center β(η(t, u))

ofmass of the deformed functionsη(t, u). The standard deformationflowdoes not
have this property. Such a property is usually obtained by using tail minimization
methods for local problems, that is,we solve the elliptic boundaryproblemoutside
of a large ball centered at β(u). We note that such a tail minimizing problem
requires the unique solvability of the elliptic boundary problem and usually it is
ensured for local problems, i.e., for nonlinear Schrödinger equations, under the
condition f ∈ C1. For non-local problems, e.g. nonlinear Choquard equations
such an approach does not work because of non-local feature of the problem. In
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Sects. 5 and 6 we develop a new deformation method in which the deformation
flow is constructed through a deformation in an augmented spaceRN × H1(RN ).
Our deformation method works for both of local and non-local problems. In a
paper in preparation, we aim to apply this new approach to fractional problem
(see [15] for concentration around local minima). See Remark 8.3 in Sect. 8 for
an application to local problem (see also [26]).

Remark 1.1 In [8, 9], a related deformation argument is developed for nonlinear
Schrödinger equation:

− �u + V (εx)u = g(u) in RN (1.5)

in a different way. Namely it is constructed as an iteration of 3 flows:

(1) The standard deformation flow η1(t, ·). Here η1(t, ·) is a solution of dη1
dt =

−ϕ(η1)V(η1), η1(0, u) = u, where V(·) is a pseudo-gradient vector associated to
the functional corresponding to (1.2).

(2) The translation flow η2(t, u)(x) = u(x − h
ε

t). Here h = −∇V (εβ(u)), where
β(u) is the center of mass of u.

(3) The tail minimizing operator τε(u), which is defined by τε(u) = v, where v is a
solution of the exterior problem:

{
−�v + V (εx)v = g(v) in |x − β(u)| > R,

v(x) = u(x) on |x − β(u)| = R.
(1.6)

The procedure is rather complicated and in present paper we give an “easier” deforma-
tion argument through a construction flow in an augmented space RN × H1(RN ). We
note that the exterior problem (1.6) is well-defined for local problem (1.5). But for non-
local problem (1.2), the exterior problem is not well-defined because of non-locality
of the problem.

To state our existence result for (1.2), we assume

(f1) f (s) ∈ C(R,R);
(f2) there exists C > 0 such that for all s ∈ R

|s f (s)| ≤ C
(
|s| N+α

N + |s| N+α
N−2

)
;

(f3) F(s) = ∫ s
0 f (t) dt satisfies

lim
s→0

F(s)

|s| N+α
N

= 0, lim
s→∞

F(s)

|s| N+α
N−2

= 0;

(f4) f (s) is odd and f is positive on (0,∞).
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We remark that the conditions (f1)–(f4) are in the spirit of Berestycki and Lions
[5, 34, 48] and in our previous work [23] for a continuous potential V (x) we studied
concentration at a local minimum under these conditions.

In the present paper we require much regularity on the potential V (x). Precisely
for V (x) we assume

(V1) V (x) ∈ C N (RN ,R), ∇V (x) ∈ L
N
2 (RN ) + L∞(RN );

(V2) infx∈RN V (x) ≡ V > 0, supx∈RN V (x) ≡ V < ∞;
(V3) there exists a bounded connected open set � ⊂ R

N with a smooth boundary
∂� such that

∇V (x) = 0 for all x ∈ ∂�.

We mainly study two situations where V (x) has a local maximum in � or V (x) has a
mountain pass geometry in �. More precisely, we assume (LM) or (MP) below.

(LM) V0 ≡ supx∈� V (x) > supx∈∂� V (x);
(MP) There exist e0, e1 ∈ � such that setting

V0 ≡ inf
c∈�

max
ξ∈[0,1] V (c(ξ)),

� = {c(ξ) ∈ C([0, 1],�) : c(0) = e0, c(1) = e1},
V0 satisfies

(i) V (e0), V (e1) < V0;
(ii) for x ∈ ∂� with V (x) = V0,

−∇V (x) /∈ {μn(x) : μ ≥ 0},
where n(x) ∈ R

N is the unit outer normal at x ∈ ∂�.

We note that under the assumption (i), (ii) it is standard to see that V0 is a critical value
of V (x).

Our main result is

Theorem 1.2 Assume (f1)–(f4) and (V1)–(V3). Moreover suppose (LM) or (MP). Then
(1.1) has at least one positive solution concentrating in

CritV0 ≡ {x ∈ � : V (x) = V0, ∇V (x) = 0}.
That is, there exist ε0 > 0 and a family (uε)ε∈(0,ε0] of solutions of (1.2) with the
following property: for any sequence (ε j )

∞
j=1 ⊂ (0, ε0] with ε j → 0 after extracting

a subsequence—we denote it by ε j for simplicity of notation—, there exist (x j )
∞
j=1 ⊂

R
N , x0 ∈ CritV0 and a least energy solution ω0 ∈ H1(RN ) of the limit problem

−�u + V (x0)u = (Iα ∗ F(u)) f (u) in R
N such that

ε j x j → x0,

uε j (x − x j ) → ω0(x) strongly in H1(RN ) as j → ∞.

123



  316 Page 8 of 55 S. Cingolani, K. Tanaka

In (V1)–(V3), the assumption V (x) ∈ C N (RN ,R) is used in order to show via
Sard’s Theorem that the set of critical values of V (x) is of measure 0. For a poten-
tial V (x) of class C1, we can show the existence of a solution under the following
assumption of isolatedness of critical points of V (x)

(V1’) V (x) ∈ C1(RN ,R), ∇V (x) ∈ L
N
2 (RN ) + L∞(RN );

(V1”) critical points of V (x) in � are isolated in �.

Namely we have

Theorem 1.3 Assume (f1)–(f4) and (V1’), (V1”), (V2), (V3). Moreover suppose (LM)
or (MP). Then the conclusion of Theorem 1.2 holds.

Remark 1.4 If we assume (V1’) without (V1”) instead of (V1) in Theorem 1.2, a
weaker version of the result holds. See Sect. 7.4.

This paper is organized as follows: In Sect. 2 we give some preliminary results. In
Sect. 3 we study the limit problem. We introduce a Pohozaev type function Pa(u) and
a center β(u) of mass, which are used in this paper repeatedly. In Sect. 4 we intro-
duce a neighborhood of expected solutions and we show a concentration-compactness
type results for functional Iε(u). We will develop a local deformation argument in
this neighborhood in Sects. 5, 6, and 7. Here newly introduced ε-dependent distance
distε(·, ·) in H1(RN ) plays an important role. In Sect. 5 we introduce a functional
Tε(u) to estimate the size of the tail of functions u and we construct a vector field,
which decreases both of Tε(u) and Iε(u) and which enables us to generate a spe-
cial deformation flow that keeps the tail of functions small. In Sect. 6 we give our
new deformation result for Iε(u), which has new features stated above. Finally we
give a proof of our main existence result in Sect. 7. In Sect. 8 we give a remark on
concentration at a local minimum of V (x).

2 Preliminaries

In what follows, we use notation: for u ∈ H1(RN )

‖u‖H1 =
(∫

RN
|∇u|2 + u2

)1/2

,

‖u‖r =
(∫

RN
|u|r

)1/r

for r ∈ [1,∞), ‖u‖∞ = ess sup
x∈RN

|u(x)|.

We also use notation for p ∈ R
N , u0 ∈ H1(RN ), r > 0

B(p, r) = {x ∈ R
N : |x − p| < r}, B(p, r) = {x ∈ R

N : |x − p| ≤ r},
BH1(u0, r) = {u ∈ H1(RN ) : ‖u − u0‖H1 < r}.
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2.1 Estimates for Non-local Term

First we give some estimates for
∫

RN (Iα ∗ f )g and

D(u) =
∫

RN
(Iα ∗ F(u))F(u).

For proofs, we refer to [23].
We denote various constants, which are independent of u, by C , C ′, C ′′, · · ·

Lemma 2.1 (c.f. Section 2.1 of [23]).

(i) For p, r > 1 and α ∈ (0, N ) with 1
p + 1

r = N+α
N there exists a constant

C = C(N , α, p, r) > 0 such that

∣
∣
∣
∣

∫

RN
(Iα ∗ f )g

∣
∣
∣
∣ ≤ C‖ f ‖p‖g‖r

for all f ∈ L p(RN ), g ∈ Lr (RN ).
(ii) Assume p, r > 1 and α ∈ (0, N ) with 1

p + 1
r < N+α

N . Then for L ≥ 1 there
exists a constant DL = DL(N , α, p, r) > 0 such that DL → 0 as L → ∞ and

∣
∣
∣
∣

∫

RN
(Iα ∗ f )g

∣
∣
∣
∣ ≤ DL‖ f ‖p‖g‖r

for all f ∈ L p(RN ), g ∈ Lr (RN ) with dist(supp f , supp g) ≥ L. ��

In (ii), DL is given by

DL = ‖I L
α ‖q ,

where q satisfies 1
p + 1

q + 1
r = 2, in particular q > N

N−α
and I L

α (x) is defined by

I L
α (x) =

{
1

|x |N−α for |x | ≥ L,

0 otherwise.

Setting σ(s) = s2 + |s| 2N
N−2 for s ∈ R, under (f2) we have for u, v ∈ H1(RN )

‖F(u)‖ 2N
N+α

≤ Cσ(‖u‖H1)
N+α
2N ,

|D(u)| ≤ C‖F(u)‖22N
N+α

≤ C ′σ(‖u‖H1)
N+α

N ,

|D′(u)v| ≤ C‖F(u)‖ 2N
N+α

‖ f (u)v‖ 2N
N+α

≤ C ′σ(‖u‖H1)
N+α
2N (‖u‖

α
N
H1 + ‖u‖

α+2
N−2

H1 )‖v‖H1 .
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We also have

Iε(u) ≥ 1

2
‖∇u‖22 + 1

2
V ‖u‖22 − C ′σ(‖u‖H1)

N+α
N ,

I ′
ε(u)u ≥ ‖∇u‖22 + V ‖u‖22 − C ′σ(‖u‖H1)

N+α
N .

In particular, Iε(u) has mountain pass geometry uniformly in ε ∈ (0, 1] and we have

Corollary 2.2 There exist ρ0 > 0 and c0 > 0 such that for ε ∈ (0, 1]

Iε(u) ≥ c0‖u‖2H1 , I ′
ε(u)u ≥ c0‖u‖2H1

for all u ∈ H1(RN ) with ‖u‖H1 ≤ ρ0. ��
For R > 0 we choose functions ζR(s), ζ̃R(s) ∈ C∞(RN ,R) such that

ζR(x) =
{
1 for |x | ≤ R,

0 for |x | ≥ R + 1,
ζ̃R(x) =

{
0 for |x | ≤ R − 1,

1 for |x | ≥ R,

ζR(x), ζ̃R(x) ∈ [0, 1], |∇ζR(x)|, |∇ ζ̃R(x)| ≤ 2 for all x ∈ R
N . (2.1)

We will use the following inequalities frequently: for u ∈ H1(RN ), R > 0, p ∈ R
N

‖ζR(x − p)u‖H1 ≤ 3‖u‖H1 , ‖̃ζR(x − p)u‖H1 ≤ 3‖u‖H1 . (2.2)

In fact,

‖ζR(x − p)u‖2H1 = ‖∇(ζR(x − p)u)‖22 + ‖ζR(x − p)u‖22
≤ 2‖ζR(x − p)∇u‖22 + 2‖(∇ζR(x − p))u)‖22 + ‖u‖22
≤ 2‖∇u‖22 + 9‖u‖22 ≤ 9‖u‖2H1 .

We can show the second inequality in a similar way.

Lemma 2.3 (c.f. Corollary 2.6 of [23]). For a fixed M > 0 there exists C > 0 such
that for any R, L ≥ 1 and u ∈ H1(RN ) with ‖u‖H1 ≤ M

(i) |(D′(u) − D′(ζRu))ζRu| ≤ C(DL + σ(‖u‖H1(|x |∈[R,R+L]))
N+α
2N ).

(ii) |(D′(u) − D′(̃ζR+Lu))ζR+Lu| ≤ C(DL + σ(‖u‖H1(|x |∈[R,R+L]))
N+α
2N ).

Here DL > 0 is given in Lemma 2.1. In particular DL → 0 as L → ∞.

Proof We set

χ1(x) =
{
1 if |x | ≤ R,

0 otherwise,
χ2(x) =

{
1 if |x | ∈ [R, R + L],
0 otherwise,
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χ3(x) =
{
1 if |x | ≥ R + L,

0 otherwise.

We also set for i = 1, 2, 3

Fi = χi (x)F(u(x)), F̃i = χi (x)F(ζRu(x)),

fi = χi (x) f (u(x)), f̃i = χi (x) f (ζRu(x)),

ũi = χi (x)ζRu(x).

Since F1 = F̃1, f1 = f̃1, F̃3 = f̃3 = ũ3 = 0, L > 1, we have

1

2
(D′(u) − D′(ζRu))ζRu

=
∫

RN
(Iα ∗ (F1 + F2 + F3))( f1ũ1 + f2ũ2) −

∫

RN
(Iα ∗ (F1 + F̃2))( f1ũ1 + f̃2ũ2)

=
∫

RN
(Iα ∗ F1)( f2 − f̃2)̃u2 +

∫

RN
(Iα ∗ F2)( f1ũ1 + f2ũ2)

+
∫

RN
(Iα ∗ F̃2)( f1ũ1 + f̃2ũ2) +

∫

RN
(Iα ∗ F3)( f1ũ1 + f2ũ2).

Since ‖F2‖ 2N
N+α

, ‖F̃2‖ 2N
N+α

, ‖ f̃2ũ2‖ 2N
N+α

, ‖ f2ũ2‖ 2N
N+α

≤ Cσ(‖u‖H1(|x |∈[R,R+L]))
N+α
2N ,

‖F1‖ 2N
N+α

, ‖F3‖ 2N
N+α

, ‖ f1ũ1‖ 2N
N+α

≤ Cσ(‖u‖H1)
N+α
2N ≤ Cσ(M)

N+α
2N and

∣
∣
∣
∣

∫

RN
(Iα ∗ F3)( f1ũ1)

∣
∣
∣
∣ ≤ DL‖F3‖

L
2N

N+α (|x |≥R+L)
‖ f1ũ1‖

L
2N

N+α (|x |≤R)
,

We can see that (i) holds. We can show (ii) in a similar way. ��
The above lemma gives a useful localization property of D(u).

Finally in this section we give the following lemma on the behavior of bounded
Palais-Smale sequences, which will help us to get concentration-compactness type
result in Sect. 4.

Lemma 2.4 There exists ρ1 > 0 with the following property: if (ε j )
∞
j=1 ⊂ (0, 1], a

bounded sequence (u j )
∞
j=1 ⊂ H1(RN ) and (y j )

∞
j=1 ⊂ R

N satisfy

I ′
ε j

(u j ) → 0 strongly in (H1(RN ))∗,

u j (x + y j )⇀u0 weakly in H1(RN )

for some u0 ∈ H1(RN ) with ‖u0‖H1 ≤ ρ1, then u0 = 0.
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Proof We set v j (x) = u j (x + y j ). Let L ∈ N. Since (u j )
∞
j=1 is bounded in H1(RN ),

we have for C > 0 independent of j and L

L∑

i=1

‖v j‖2H1(|x |∈[Li,L(i+1)]) ≤ ‖v j‖2H1 ≤ C .

Thus there exists i j ∈ {1, 2, · · · , L} such that ‖v j‖2H1(|x |∈[Li j ,L(i j +1)]) ≤ C
L . Extract-

ing a subsequence if necessary, we may assume that for any L ∈ N there exists
kL ∈ {1, 2, · · · , L} such that

‖v j‖2H1(|x |∈[LkL ,L(kL+1)]) ≤ C

L
for all j ∈ N. (2.3)

Let ζR(s) be a function satisfying (2.1) and set

v
(L)
j (x) = ζLkL (x)v j (x).

We have from (2.3)

∣
∣
∣
∣

∫

RN
∇v j∇v

(L)
j + V (ε j x + y j )v jv

(L)
j −

∫

RN
|∇v

(L)
j |2 + V (ε j x + y j )(v

(L)
j )2

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

RN
∇(v j − v

(L)
j )∇v

(L)
j + V (ε j x + y j )(v j − v

(L)
j )v

(L)
j

∣
∣
∣
∣ ≤ aL ,

|(D′(v j ) − D′(v(L)
j ))v

(L)
j | ≤ aL ,

where aL is independent of j and satisfies aL → 0 as L → ∞. Here we apply Lemma
2.3 (i) with R = LkL and L . Thus we have

I ′
ε j

(v
(L)
j (x − y j ))(v

(L)
j (x − y j )) =

∫

RN
|∇v

(L)
j |2 + V (ε j x + y j )(v

(L)
j )2 − D′(v(L)

j )v
(L)
j

≤ I ′
ε j

(u j )(v j (x − y j )) + 2aL = o(1) + 2aL . (2.4)

Since v
(L)
j → u(L)

0 ≡ ζLkL (x)u0(x) strongly in L p(RN ) for p ∈ (2, 2N
N−2 ) and

‖I ′
ε j

(u j )‖(H1(RN ))∗ → 0,

lim sup
j→∞

∫

RN
|∇v

(L)
j |2 + V (ε j x + y j )(v

(L)
j )2 ≤ D′(u(L)

0 )u(L)
0 + 2aL .

Let ρ0 > 0 be the number given in Corollary 2.2. Since ‖u(L)
0 ‖H1 ≤ C‖u0‖H1 ,

choosing ρ1 > 0 small, we have for L large

lim sup
j→∞

‖v(L)
j ‖H1 ≤ ρ0, provided ‖u0‖H1 ≤ ρ1.
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By Corollary 2.2 and (2.4),

c0 lim sup
j→∞

‖v(L)
j ‖2H1 ≤ lim sup

j→∞
I ′
ε j

(v
(L)
j (x − y j ))(v

(L)
j (x − y j )) ≤ 2aL .

Thus

‖ζLkL (x)u0‖2H1 = ‖u(L)
0 ‖2H1 ≤ lim sup

j→∞
‖v(L)

j ‖2H1 ≤ 2

c0
aL .

Since L is arbitrary, we have u0 = 0. ��

3 Limit Problems

3.1 Limit Problems

For a > 0 we define

La(u) = 1

2
‖∇u‖22 + a

2
‖u‖22 − 1

2
D(u) : H1(RN ) → R.

Critical points of La(u) is a solution of

− �u + au = (Ia ∗ F(u)) f (u) in RN , (3.1)

which appears as a limit equation for (1.2). That is, for a family (uε(x)) of solutions of
(1.2) and (xε) ⊂ R

N with xε → x0, if there exists a limit v0(x) = limε→0 uε(x + xε

ε
),

then v0 is a critical point of LV (x0)(u), that is, a solution of (3.1) with a = V (x0). We
denote by Ea the least energy level for (3.1):

Ea = inf{La(u) : u = 0, L ′
a(u) = 0}.

In [48], the existence of a least energy solution is proved under the conditions (f1)–(f3)
and

(f4’) there exists s0 ∈ R \ {0} such that F(s0) > 0.

They also proved that under (f1)–(f3), (f4’) every ground state solution of (3.1) is
radially symmetric with respect to some point inRN . It is also shown that any solution
of (3.1) satisfies the Pohozaev identity:

Pa(u) = 0,

where

Pa(u) = N − 2

2
‖∇u‖22 + N

2
a‖u‖22 − N + α

2
D(u). (3.2)
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The least energy level Ea is characterized as

Ea = inf{La(u) : u ∈ H1(RN ) \ {0}, Pa(u) = 0}. (3.3)

For c > 0 we set

Sc
a = {u ∈ H1(RN ) \ {0} : L ′

a(u) = 0, La(u) ≤ c, |u(0)| = max
x∈RN

|u(x)|}.

Arguing as in [48], we can show that

Lemma 3.1 Sc
a is compact in H1(RN ) provided c < 2Ea.

3.2 Scaling Argument for La(u)

As in [23], to see the scaling property of the limit function La(u), we consider for
u ∈ H1(RN ) \ {0}

d(λ) = La(u(x/λ)) = 1

2
‖∇u‖22λN−2 + a

2
‖u‖22λN − 1

2
D(u)λN+α : (0,∞) → R.

We have

(i) d(λ) → +0 as λ → +0;
(ii) d(λ) → −∞ as λ → ∞;
(iii) d(λ) has a unique critical point λ0(u), which is a maximum of d(λ);
(iv) d ′(λ) = 0 if and only if Pa(u(x/λ)) = 0.

In particular, we have

Proposition 3.2 For a least energy solution ω0(x) of (3.1), that is, L ′
a(ω0) = 0,

La(ω0) = Ea, we have

La

(
ω0

( x

s

))
< Ea for s ∈ (0,∞) \ {1},

Pa

(
ω0

( x

s

))
{

> 0 for s ∈ (0, 1),

< 0 for s ∈ (1,∞).

3.3 Center of Mass

Here we introduce a center of mass β(u) in a neighborhood of a shifted compact set.
We will use the following

Proposition 3.3 Let D̂ ⊂ H1(RN ) \ {0} be a compact set. We set for ρ > 0

D̃ = {ω(x − p) : ω ∈ D̂, p ∈ R
N },

D̃ρ = {u ∈ H1(RN ) : distH1(u, D̃) < ρ}.

Then there exist ρ2 > 0, R0 > 0 and C1-function β : D̃ρ2 → R
N such that
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(i) For u(x) = ω(x − p) + ϕ(x) ∈ D̃ρ2 with ω ∈ D̂, p ∈ R
N , ‖ϕ‖H1 < ρ2,

|β(u) − p| ≤ R0.

(ii) β(u) is shift-invariant, that is,

β(u(x − q)) = β(u) + q

for all u ∈ D̃ρ2 and q ∈ R
N .

(iii) If u, v ∈ D̃ρ2 satisfy

u(x) = v(x) in B(β(u), 4R0), (3.4)

then β(u) = β(v).
(iv) There exists C > 0 independent of u such that

‖β ′(u)‖(H1(RN ))∗ ≤ C for all u ∈ D̃ρ2 .

A similar center of mass is given in [8, 9], which is locally Lipschitz continuous. Here
we modify and improve the argument in [8, 9] and give a center of mass β(u), which
is of class C1.

Proof We set r∗ = infω∈D̂ ‖ω‖H1 > 0. Since D̂ is compact, there exists R∗ > 0 such
that

‖ω‖H1(|x |≤R∗) ≥ 2

3
r∗, ‖ω‖H1(|x |≥R∗) ≤ 1

6
r∗ for all ω ∈ D̂.

For u = ω(x − p) + ϕ(x) with

p ∈ R
N , ω ∈ D̂ and ‖ϕ‖H1 <

1

6
r∗ (3.5)

we have

‖u(x)‖H1(|x−p|≤R∗) ≥ 1

2
r∗, ‖u(x)‖H1(|x−p|≥R∗) ≤ 1

3
r∗. (3.6)

We set for q ∈ R
N and u ∈ D̃r∗/6

�(q, u) =
∫

RN
ζR∗(x − q)(|∇u|2 + u2) dx,
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where ζR∗(x−q) is introduced in (2.1). By (3.6),wehave foru(x) = ω(x−p)+ϕ(x) ∈
D̃r∗/6

�(p, u) ≥
(
1

2
r∗

)2

,

�(q, u) ≤
(
1

3
r∗

)2

for |q − p| ≥ 2R∗ + 1,

�(q, u(x − q ′)) = �(q − q ′, u(x)) for all q, q ′ ∈ R
N .

In fact, supp ζR∗(x − q) ⊂ {x : |x − p| ≥ R∗} for |q − p| ≥ 2R∗ + 1. We choose
and fix a function ψ(s) ∈ C∞([0,∞),R) such that

ψ(s) =
{
1 s ∈ [( 12r∗)2,∞),

0 s ∈ [0, ( 13r∗)2], ψ(s) ∈ [0, 1] for all s ∈ R.

Then we have for u = ω(x − p) + ϕ(x) ∈ D̃r∗/6 with (3.5)

ψ(�(p, u)) = 1 and ψ(�(q, u)) = 0 for |q − p| ≥ 2R∗ + 1. (3.7)

We set

β(u) =
∫

RN qψ(�(q, u)) dq
∫

RN ψ(�(q, u)) dq
: D̃r∗/6 → R

N .

Then we have

|β(u) − p| ≤ 2R∗ + 1,

β(u(x − q ′)) = β(u(x)) + q ′. (3.8)

Thus, setting R0 = 2R∗ + 1, ρ2 = r∗/6, we have (i)–(ii).
Next we prove (iii). We suppose that u(x) = ω(x − p) + ϕ(x), v(x) = ω′(x −

p′) + ϕ′(x) ∈ D̃r∗/6 satisfy (3.4). By (3.7) and (3.8),

suppψ(�(·, u)) ⊂ B(p, R0) ⊂ B(β(u), 2R0). (3.9)

Similarly suppψ(�(·, v)) ⊂ B(p′, R0) ⊂ B(β(v), 2R0).
By (3.4), we have v(x) = u(x) on B(p, R0), from which we have ψ(�(p, v)) =

ψ(�(p, u)) = 1. Thus p ∈ suppψ(�(·, v)) and we have |p − p′| ≤ R0. And
thus suppψ(�(·, v)) ⊂ B(p′, R0) ⊂ B(p, 2R0). Since v = u on B(p, 3R0) ⊂
B(β(u), 4R0), we haveψ(�(·, v)) = ψ(�(·, u)) onRN . Thus we have β(v) = β(u).
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Finally we prove (iv). We set A = ∫

RN ψ(�(q, u)) dq. For h ∈ H1(RN ) we
compute that

β ′(u)h = 1

A

∫

RN
qψ ′(�(q, u))∂u�(q, u)h dq

− 1

A2

∫

RN
qψ(�(q, u)) dq

∫

RN
ψ ′(�(q, u))∂u�(q, u)h dq

= 1

A

∫

RN
(q − β(u))ψ ′(�(q, u))∂u�(q, u)h dq.

By (3.9),

|β ′(u)h| ≤ 2R0

A

∫

RN
|ψ ′(�(q, u))∂u�(q, u)h| dq

≤ 2R0

A
|B(β(u), 2R0)| ‖ψ ′‖∞ max

q∈B(β(u),2R0)

|∂u�(q, u)h|.

Noting |∂u�(q, u)h| = 2|∫
RN ζR∗(x − q)(∇u∇h + uh)| ≤ 2‖u‖H1‖h‖H1 , we have

(iv). ��
In the following sections, we develop a deformation argument for Iε(u) in D̃ρ2 for

a suitable choice of D̂.

4 A Neighborhood of Expected Solutions

In this section we set up a neighborhood of expected solutions, in which we will
develop a deformation argument in Sect. 6.

4.1 A NeighborhoodÄ of Concentrating Points

In this section, we show that we may assume the following (V4) in addition to (V1)–
(V3) and (LM) (or (MP)).

(V4) For any p ∈ �, 2EV (p) > EV0 .

In fact, since Ea is a continuous function of a ∈ (0,∞), there exists α > 0 such that

2EV0−α > EV0 .

On the other hand, since V (x) is of class C N , the set of critical values of V (x) is of
measure 0 inR by Sard Theorem. Therefore we may assume V0 −α is a regular value
of V (x). We set

�α = {x ∈ � : V (x) > V0 − α}.

Then, V (x) satisfies (V1)–(V4).

123



  316 Page 18 of 55 S. Cingolani, K. Tanaka

We observe that if V (x) satisfies (LM) ((MP) respectively) in�, then V (x) satisfies
(LM) ((MP) respectively) in �α . We show just for (MP).

We may assume V (e0), V (e1) < V0 − α. We set

Mi = {x ∈ � : V (x) = V0 − α, x and ei are path connected in

{x ∈ � : V (x) ≤ V0 − α}} for i = 0, 1,

�̃ = {c(ξ) ∈ ([0, 1],�α) : c(0) ∈ M0, c(1) ∈ M1, V (c(ξ)) > V0 − α for ξ ∈ (0, 1)}.

Thenwe can easily see that V0 = infc∈�̃ maxξ∈[0,1] V (c(ξ)). Clearly there exists paths
(ck)

∞
k=1 ⊂ �̃ with

ck(0) ∈ M0, ck(1) ∈ M1, max
ξ∈[0,1] V (ck(ξ)) → V0 as k → ∞.

Since M0, M1 are compact, we may assume after extracting a subsequence

ck(0) → ẽ0 ∈ M0, ck(1) → ẽ1 ∈ M1 as k → ∞.

Choose˜̃e0,˜̃e1 ∈ �α so that˜̃e0 is close to ẽ0 and˜̃e1 is close to ẽ1. Replacing �, e0, e1,
� with �α , ˜̃e0, ˜̃e1 and ˜̃� = {c(ξ) ∈ C([0, 1],�α) : c(0) = ˜̃e0, c(1) = ˜̃e1}. we can
see that (MP) holds.

4.2 A Neighborhood of Expected Solutions

In what follows, we assume (V1)–(V4) hold for � and V0 is a critical value of V (x)

in �. We write

b = EV0

and set

Kb = {(ξ, ω) ∈ � × H1(RN ) : ∇V (ξ) = 0, L ′
V (ξ)(ω) = 0, LV (ξ)(ω) = b}.

We note that

Kb = {(ξ, ω) ∈ � × H1(RN ) : DL(ξ, ω) = 0, L(ξ, ω) = b},

where D = (∂z, ∂u) and

L(z, u) = 1

2
‖∇u‖22 + 1

2
V (z)‖u‖22 − 1

2
D(u) : R

N × H1(RN ) → R.

We remark that L(z, u) appears as a limit functional for Iε(u). In fact, for z ∈ R
N and

u(x) ∈ H1(RN ), we have

Iε
(

u
(

x − z

ε

))
= 1

2
‖∇u‖22 + 1

2

∫

RN
V (εx + z)u(x)2 − 1

2
D(u) → L(z, u) as ε → 0.
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In what follows, we denote the projections to the first and second components by

P1(z, u) = z, P2(z, u) = u.

Remark 4.1 (i) We have

{(ξ, ω) ∈ � × H1(RN ) : V (ξ) = V0, ∇V (ξ) = 0,

ω is a least energy solution of L ′
V0

(ω) = 0} ⊂ Kb.

(ii) Since Ea > b = EV0 for a > V0, (ξ, ω) ∈ Kb implies V (ξ) ≤ V0. Thus we
have

P1Kb ∩ ∂� = ∅, P1Kb ⊂ {ξ ∈ � : V (ξ) ≤ V0}

and P1Kb is compact in � by the assumption (V3).
(iii) If (ξ, ω) ∈ Kb satisfies V (ξ) = V0, we have LV (ξ)(ω) = b, that is, ω is a least

energy solution of LV0(·). On contrary, if V (ξ) < V0, we have LV (ξ)(ω) = b >

EV (ξ) and ω is not a least energy solution of LV (ξ)(·).
We set Q = [0, 1]N and

K̂b = {(ξ, ω) ∈ Kb : ‖ω‖L2(Q) = max
n∈ZN

‖ω‖L2(n+Q)}.

For ε > 0 we set

K̂ (ε)
b =

{

ω

(

x − ξ

ε

)

: (ξ, ω) ∈ K̂b

}

.

and we try to find a critical point of Iε(u) in a neighborhood of K̂ (ε)
b . We introduceKb

and K̂b to obtain necessary compactness properties, in particular, to show Proposition
4.5 below.

For our minimax argument, we also introduce

Ŝb =
{

ω
( x

s

)
: ω ∈ P2K̂b, s ∈

[
1

2
,
3

2

]}

,

Ẑb = {(ξ, w) : ξ ∈ �, w ∈ Ŝb},
Ẑ (ε)

b =
{

ω

(

x − ξ

ε

)

: (ξ, ω) ∈ Ẑb

}

. (4.1)

It holds

K̂b ⊂ Ẑb, K̂ (ε)
b ⊂ Ẑ (ε)

b .

By (V1)–(V4) and Lemma 3.1, we see
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Lemma 4.2 K̂b and Ẑb are compact inRN × H1(RN ). K̂ (ε)
b and Ẑ (ε)

b are also compact
in H1(RN ).

Here and in what follows we indicate compact sets by ·̂.
To describe neighborhoods, we introduce an ε-dependent distance distε(·, ·) on

H1(RN ) by

distε(u(x), v(x)) = inf
h∈RN

(

|h|2 +
∥
∥
∥
∥u(x) − v

(

x − h

ε

)∥
∥
∥
∥

2

H1

)1/2

.

The ε-dependent distance distε(·, ·) is a natural distance to consider concentration of
a sequence (uε j )

∞
j=1 ⊂ H1(RN ), ε j → 0 to a limit profile (ξ, ω) ∈ K̂b as uε j (x) ∼

ω(x − ξ
ε j

). In fact, introducing Hε : H1(RN ) → R
N by

Hε(u) = 1

2

∫

RN
∇V (εx)u(x)2,

we have

Lemma 4.3 (i) For (ξ, ω) ∈ R
N × H1(RN ), if (u j )

∞
j=1 ⊂ H1(RN ), ε j → 0 satis-

fies

distε j

(

u j , ω

(

x − ξ

ε j

))

→ 0, (4.2)

then for ϕ ∈ H1(RN )

Iε j (u j ) → L(ξ, ω),

I ′
ε j

(u j )ϕ

(

x − ξ

ε j

)

→ ∂u L(ξ, ω)ϕ, (4.3)

Hε j (u j ) → 1

2
∇V (ξ)‖ω‖22 = ∂z L(ξ, ω). (4.4)

(ii) For (ξ, ω), (ξ ′, ω′) ∈ R
N × H1(RN ) with ω, ω′ = 0 and ε j → 0,

distε j

(

ω

(

x − ξ

ε j

)

, ω′
(

x − ξ ′

ε j

))

→ 0 (4.5)

holds if and only if

ξ ′ = ξ and ω′(x) = ω(x − h0) for some h0 ∈ R
N . (4.6)
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Proof (i) distε j (u j (x), ω(x − ξ
ε j

)) → 0 holds if and only if there exists (h j )
∞
j=1 ⊂ R

N

and (ϕ j )
∞
j=1 ⊂ H1(RN ) such that

h j → 0, ‖ϕ j‖H1 → 0

and

u j (x) = ω

(

x − ξ + h j

ε j

)

+ ϕ j

(

x − ξ + h j

ε j

)

.

Thus

Iε j (u j ) = 1

2
‖∇ω + ∇ϕ j‖2H1 + 1

2

∫

RN
V (ε j x + ξ + h j )|ω(x) + ϕ j (x)|2

− 1

2
D(ω + ϕ j )

→ L(ξ, ω).

(4.3) and (4.4) hold in a similar way. (ii) can be shown easily. ��
We also note that distε(·, ·) is weaker than H1-distance, namely there exist

sequences (u j )
∞
j=1, (v j )

∞
j=1 ⊂ H1(RN ) such that for ε j → 0

distε j (u j , v j ) → 0, lim inf
j→∞ ‖u j − v j‖H1 > 0. (4.7)

In fact, for ω = 0, setting u j (x) = ω(x − p1√
ε j

), v j (x) = ω(x), where p1 =
(1, 0, · · · , 0), we have (4.7).

Lemma4.3 (i) shows that for (ξ, ω) ∈ K̂b, (u j )
∞
j=1 satisfying (4.2) is an ε-dependent

Palais-Smale type sequence with the limit profile (ξ, ω). Conversely, in Proposition
4.5 below, we study the convergence of ε-dependent Palais-Smale type sequences with
respect to the distance distε(·, ·).

We set for ρ > 0

N (ε)
ρ = {u ∈ H1(RN ) : distε(u, K̂ (ε)

b ) < ρ}
=

{

ω

(

x − ξ + h

ε

)

+ ϕ

(

x − ξ + h

ε

)

: (ξ, ω) ∈ K̂b, |h|2 + ‖ϕ‖2H1 < ρ2
}

,

A(ε)
ρ = {u ∈ H1(RN ) : distε(u, Ẑ (ε)

b ) < ρ}
=

{

ω

(

x − ξ + h

ε

)

+ ϕ

(

x − ξ + h

ε

)

: ω ∈ Ŝb, ξ ∈ �, |h|2 + ‖ϕ‖2H1 < ρ2
}

.

These sets are uniformly bounded with respect to ε ∈ (0, 1] and we have

N (ε)
ρ ⊂ A(ε)

ρ .
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In what follows, for suitable 0 < ρ < ρ′ we develop a deformation argument in A(ε)

ρ′

to find a critical point in N (ε)
ρ .

Remark 4.4 The reason we introduce A(ε)
ρ is to construct neighborhoods which are

suitable for our deformation arguments. Our neighborhood A(ε)
ρ includes a suitable

initial path in H1(RN ) which is related to a minimax argument in � ⊂ R
N . See

Sect. 7.1 below. Our another neighborhood N (ε)
ρ is precisely an ε-neighborhood of

expected solutions with the profile in K̂b.

4.3 Concentration-Compactness Type Results

In this section we give an ε-dependent concentration-compactness type results, which
will be useful to develop deformation theory in Sect. 6.

Proposition 4.5 There exists ρ3 > 0 such that if (ε j )
∞
j=1 ⊂ (0, 1] and (u j )

∞
j=1 ⊂

H1(RN ) satisfy ε j → 0, u j ∈ A
(ε j )
ρ3 and

Iε j (u j ) → b, (4.8)

I ′
ε j

(u j ) → 0 strongly in (H1(RN ))∗, (4.9)

Hε j (u j ) → 0 in R
N (4.10)

as j → ∞, then

distε j (u j , K̂
(ε j )

b ) → 0 as j → ∞.

In particular, for any ρ > 0 there exists jρ ∈ N such that

u j ∈ N
(ε j )
ρ for j ≥ jρ.

Remark 4.6 To show the existence of a family concentrating at a local minimum of

V (x), in [23] we obtained a similar result for (u j )
∞
j=1 ⊂ N

(ε j )
ρ3 but without the assump-

tion (4.10). To study concentration at local maxima and saddle points, we need (4.10).
In fact, if (ξ, ω) ∈ � × H1(RN ) satisfies

L(ξ, ω) = b, ∂u L(ξ, ω) = 0, ‖ω‖L2(Q) = max
n∈ZN

‖ω‖L2(n+Q),

then u j (x) = ω(x − ξ
ε j

)with ε j → 0 satisfies (4.8) and (4.9). However we don’t have
∇V (ξ) = 0 and the limit set

{(ξ, ω) : L(ξ, ω) = b, ∂u L(ξ, ω) = 0, ‖ω‖L2(Q) = max
n∈ZN

‖ω‖L2(n+Q)} (4.11)

is not compact in � × H1(RN ) in general.
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We note that if b is corresponding to local minimum, L(ξ, ω) = b, ∂u L(ξ, ω) = 0
imply V (ξ) = V0 (= infx∈� V (x)), L(ξ, ω) = EV0 and the set defined in (4.11) is
compact.

Proof of Proposition 4.5 For ρ′ > 0 suppose that (ε j )
∞
j=1, (u j )

∞
j=1 satisfy ε j → 0,

u j ∈ A
(ε j )

ρ′ and (4.8)–(4.10). Since u j ∈ A
(ε j )

ρ′ , there exist (ξ j , ω j ) ∈ Ẑb, ϕ j ∈
H1(RN ) and h j ∈ R

N such that

u j (x) = ω j

(

x − ξ j + h j

ε j

)

+ ϕ j

(

x − ξ j + h j

ε j

)

, (4.12)

‖ϕ j‖H1 < ρ′, |h j | < ρ′. (4.13)

Extracting a subsequence if necessary, we may assume for some (ξ0, ω0) ∈ Ẑb,
ϕ0 ∈ H1(RN ) and h0 ∈ R

N such that

ξ j → ξ0, h j → h0,

ω j → ω0 strongly in H1(RN ),

ϕ j⇀ϕ0 weakly in H1(RN ).

We set

ξ̃ j ≡ ξ j + h j → ξ̃0 ≡ ξ0 + h0,

ω̃ j (x) ≡ ω j (x) + ϕ j (x)⇀ω̃0(x) = ω0 + ϕ0 weakly in H1(RN ). (4.14)

Suppose ρ′ ∈ (0, ρ1), where ρ1 > 0 is given by Lemma 2.4. Then we have
Step 1: ω̃ j (x) → ω̃0(x) strongly in H1(RN ).
It suffices to show that

sup
n∈ZN

‖ω̃ j − ω̃0‖L2(n+Q) → 0 as j → ∞. (4.15)

Since (ω̃ j )
∞
j=1 is bounded in H1(RN ), (4.15) implies for p ∈ (2, 2N

N−2 )

ω̃ j → ω̃0 strongly in L p(RN ),

D′(ω̃ j )ω̃ j → D′(ω̃0)ω̃0 as j → ∞.

It follows from

I ′
ε j

(

ω̃ j

(

x − ξ̃ j

ε j

))

ω̃ j

(

x − ξ̃ j

ε j

)

→ 0, I ′
ε j

(

ω̃ j

(

x − ξ̃ j

ε j

))

ω̃0

(

x − ξ̃ j

ε j

)

→ 0
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that

‖∇ω̃ j‖22 +
∫

RN
V (ε j x + ξ̃ j )ω̃

2
j = D′(ω̃ j )ω̃ j + o(1) = D′(ω̃0)ω̃0 + o(1),

‖∇ω̃0‖22 +
∫

RN
V (ε j x + ξ̃ j )ω̃

2
0 = D′(ω̃0)ω̃0 + o(1).

And thus ω̃ j → ω̃0 strongly in H1(RN ).
If (4.15) does not hold, there exists (n j )

∞
j=1 ⊂ Z

N such that

‖ω̃ j − ω̃0‖L2(n j +Q) → 0. (4.16)

By (4.14), we have |n j | → ∞. Thus letting ω̃ j (x + n j )⇀˜̃ω0(x) weakly in H1(RN ),
we have from (4.13), (4.16) that ˜̃ω0 = 0 and

‖˜̃ω0‖H1 ≤ ρ′. (4.17)

On the other hand, since ω̃ j (x + n j ) = u j (x + ξ̃ j
ε j

+ n j ) and I ′
ε j

(u j ) → 0 strongly in

(H1(RN ))∗, Lemma 2.4 and (4.17) imply ˜̃ω0 = 0, which is in contradiction.
Step 2: ∇V (̃ξ0) = 0.
We have

Hε j (u j ) = 1

2

∫

RN
∇V (ε j x)u j (x)2 = 1

2

∫

RN
∇V (ε j x)ω̃ j

(

x − ξ̃ j

ε j

)2

= 1

2

∫

RN
∇V (ε j x + ξ̃ j )ω̃ j (x)2 → 1

2
∇V (̃ξ0)‖ω̃0‖22 as j → ∞

and thus (4.10) implies ∇V (̃ξ0) = 0.
Step 3: DL (̃ξ0, ω̃0) = 0 and L (̃ξ0, ω̃0) = b.
For any ϕ ∈ C∞

0 (RN ), we have

I ′
ε j

(u j )ϕ

(

x − ξ̃ j

ε j

)

=
∫

RN
∇ω̃ j∇ϕ + V (ε j x + ξ̃ j )ω̃ jϕ − D′(ω̃ j )ϕ

→
∫

RN
∇ω̃0∇ϕ + V (̃ξ0)ω̃0ϕ − D′(ω̃0)ϕ.

Thus (4.9) implies ∂u L (̃ξ0, ω̃0) = 0. It is easily seen that (4.8) implies L (̃ξ0, ω̃0) = b.

Step 4: For ρ′ > 0 small, distε j (u j , K̂
(ε j )

b ) → 0
It is clear that ξ̃ j = ξ j + h j is in a ρ′-neighborhood of � and thus so is ξ̃0. Since
∇V (x) = 0 on ∂�, we have (̃ξ0, ω̃0) ∈ Kb if ρ′ > 0 is sufficiently small. Thus there
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exists h0 ∈ R
N such that ω̂0(x) = ω̃0(x − h0) satisfies (̃ξ0, ω̂0) ∈ K̂b. We have

distε j (u j , K̂
(ε j )

b ) ≤ distε j

(

u j (x), ω̂0

(

x − ξ̃0

ε j

))

= distε j

(

ω̃ j

(

x − ξ̃ j

ε j

)

, ω̂0

(

x − ξ̃0

ε j

))

≤ distε j

(

ω̃ j

(

x − ξ̃ j

ε j

)

, ω̃0

(

x − ξ̃ j

ε j

))

+ distε j

(

ω̃0

(

x − ξ̃ j

ε j

)

, ω̂0

(

x − ξ̃0

ε j

))

≤ ‖ω̃ j − ω̃0‖H1 + distε j

(

ω̂0

(

x − ξ̃ j − ε j h0

ε j

)

, ω̂0

(

x − ξ̃0

ε j

))

≤ ‖ω̃ j − ω̃0‖H1 + |̃ξ j − ε j h0 − ξ̃0| → 0 as j → ∞.

Thus choosing ρ3 > 0 small, the proof is completed. ��
Next we show that Iε(u) satisfies the Palais-Smale type condition in A(ε)

ρ1 for ε ∈ (0, 1]
fixed.

Proposition 4.7 Let ρ1 > 0 be the number given in Lemma 2.4. For ε ∈ (0, 1] fixed,
Iε(u) satisfies the Palais-Smale type condition in A(ε)

ρ1 . That is, if (u j )
∞
j=1 ⊂ A(ε)

ρ1

satisfies

(Hε(u j ), I ′
ε(u j )) → 0 strongly in (RN × H1(RN ))∗, (4.18)

then (u j )
∞
j=1 has a strongly convergent subsequence in H1(RN ). Moreover, after

extracting a subsequence if necessary, assume u j → u0 strongly as j → ∞. Then u0
satisfies I ′

ε(u0) = 0 and

Hε(u0) = 0. (4.19)

Proof Since (u j )
∞
j=1 ⊂ A(ε)

ρ1 , there exist (ξ j , ω j ) ∈ Ẑb, h j ∈ R
N and ϕ j ∈ H1(RN )

such that

u j (x) = ω j

(

x − ξ j + h j

ε j

)

+ ϕ j

(

x − ξ j + h j

ε j

)

,

|h j | ≤ ρ1, ‖ϕ j‖H1 ≤ ρ1.

Extracting a subsequence if necessary, we may assume for some (ξ0, ω0) ∈ K̂b,
ϕ0 ∈ H1(RN ) and h0 ∈ R

N

ξ j → ξ0, h j → h0,

ω j → ω0 strongly in H1(RN ),

ϕ j⇀ϕ0 weakly in H1(RN ).
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Using Lemma 2.4 and arguing as in Step 1 of the proof of Proposition 4.5, we have
the strong convergence of (u j ). (4.19) follows from Hε(u j ) → 0. ��
Remark 4.8 In Proposition 4.7, the condition (4.18) can be relaxed to

I ′
ε(u j ) → 0

To see this fact, first we remark that I ′
ε(u0) = 0 implies Hε(u0) = 0. Indeed, from the

regularity argument (c.f. [47, 50]), it follows from I ′
ε(u0) = 0 that u0 ∈ H2(RN ). On

the other hand, we have for j ∈ {1, 2, · · · , N }
∫

RN
∇u0∇u0x j = 1

2

∫

RN
∂x j (|∇u0|2) = 0,

∫

RN
V (εx)u0u0x j = 1

2

∫

RN
V (εx)∂x j (u

2
0) = −ε

2

∫

RN

∂V

∂x j
(εx)u2

0,

D′(u)(u0x j ) =
∫

RN
(Iα ∗ F(u0))F ′(u0)u0x j =

∫

RN
(Iα ∗ F(u0))(F(u0))x j = 0.

Thus I ′
ε(u0) = 0 implies

∫

RN
∂V
∂x j

(εx)u2
0 = 0 for j = 1, 2, · · · , N . That is,

Hε(u0) = 1

2

∫

RN
∇V (εx)u2

0 = 0.

If I ′
ε(u j ) → 0 strongly in (H1(RN ))∗, from the proof of Proposition 4.7 there exists a

strongly convergent subsequence (u jk )
∞
k=1. Let u jk → u0 in H1(RN ). Then we have

I ′
ε(u0) = 0, Hε(u jk ) → Hε(u0). Since I ′

ε(u0) = 0 implies Hε(u0) = 0, we have
Hε(u jk ) → 0. Thus we have (4.18).

4.4 A Choice of Neighborhoods and Gradient Estimates

We choose ρ∗∗ > 0 small so that in a neighborhood A(ε)
ρ∗∗ of K̂ (ε)

b , we can develop a
deformation argument for a proof of our main result.

We set

S̃b = {w(x − p) : w ∈ Ŝb, p ∈ R
N },

S̃b,ρ = {u ∈ H1(RN ) : distH1(u, S̃b) < ρ} for ρ > 0.

Here Ŝb is defined in (4.1). Applying the argument in Sect. 3.3 with D̂ = Ŝb, D̃ = S̃b

and D̃ρ = S̃b,ρ , we can define the center of mass:

β : S̃b,ρ2 → R
N for small ρ2 > 0.

We choose and fix ρ∗, ρ∗∗ > 0 such that

0 < 16ρ∗ < ρ∗∗ < min

{
1

6
ρ0, ρ1, ρ2, ρ3

}

, (4.20)
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where ρ2 is given above and ρ0 (ρ1, ρ3 respectively) is given in Corollary 2.2 (Lemma
2.4, Proposition 4.5 respectively). We will use relation 16ρ∗ < ρ∗∗ later in the proof
of Lemma 6.9. We note that the center of mass β(u) is defined on A(ε)

ρ∗∗ and

distRN (εβ(u),�) < εR0 + ρ∗∗ for u ∈ A(ε)
ρ∗∗ . (4.21)

In fact, by the definition of A(ε)
ρ∗∗ , we have for some ξ ∈ �, ω ∈ Ŝb, h ∈ R

N

|h|2 +
∥
∥
∥
∥u(x) − ω

(

x − ξ + h

ε

)∥
∥
∥
∥

2

H1
< ρ∗∗2.

Thus by Proposition 3.3 (i) we have (4.21).
By Propositions 4.5 and 4.7, we have the following estimates.

Proposition 4.9 For 0 < ρ∗ < ρ∗∗ with (4.20). Then we have

(i) There exist ε0 > 0, ν0 > 0 and δ0 > 0 with the following properties: For
ε ∈ (0, ε0]

‖(Hε(u), I ′
ε(u))‖(RN ×H1(RN ))∗ ≡

(
|Hε(u)|2 + ‖I ′

ε(u)‖2
(H1(RN ))∗

)1/2 ≥ ν0

for all u ∈ A(ε)
ρ∗∗\N (ε)

ρ∗ with Iε(u) ∈ [b − δ0, b + δ0].
(ii) Suppose that for some ε ∈ (0, ε0]

(Hε(u), I ′
ε(u)) = 0 for all u ∈ N (ε)

ρ∗ with Iε(u) ∈ [b − δ0, b + δ0]. (4.22)

Then there exists νε > 0 such that

‖(Hε(u), I ′
ε(u))‖(RN ×H1(RN ))∗ ≥ νε, (4.23)

for u ∈ A(ε)
ρ∗∗ with Iε(u) ∈ [b − δ0, b + δ0].

In what follows we assume without loss of generality νε ≤ ν0.

Proof (i), (ii) follow from Propositions 4.5 and 4.7 easily. ��
We fix ε0, ν0 > 0 and δ0 > 0 given in Proposition 4.9.

Remark 4.10 (4.22) can be replaced with I ′
ε(u) = 0. We note that I ′

ε(u) = 0 implies
Hε(u) = 0 (see Remark 4.8). (4.23) can be replaced by

‖I ′
ε(u)‖(H1(RN ))∗ ≥ νε.

In the following Sect. 5, we develop a special deformation argument for Iε(u).
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5 A Functional Corresponding to the Tail of a Function

5.1 Functional T�(u)

To find a critical point of Iε(u) in a neighborhood N (ε)
ρ of expected solutions, it is

important to control the size of u outside of a ball B(β(u), 4√
ε
).

We set for u ∈ S̃b,ρ2 and ε > 0

Tε(u) =
∫

RN
ζ̃4/

√
ε(x − β(u))(|∇u|2 + |u|2) ∈ C1(S̃b,ρ2 ,R). (5.1)

We note that Tε(u) is translation invariant, that is,

Tε(u(· − h)) = Tε(u) for all h ∈ R
N

and

‖u‖2
H1(|x−β(u)|≥ 4√

ε
)
≤ Tε(u).

We use Tε(u) to estimate the size of u outside of a ball B(β(u), 4√
ε
).

In this section, we extend our idea in [23] to generate a special deformation flow
for Iε(u), which keeps Tε(u) small along the flow.

5.2 A Special Vector Field in A(�)�∗∗

To construct a deformation flow which keeps the size of tail Tε(u) small, we find a
special vector field in this section.

We note A(ε)
ρ∗∗ is bounded and so there exists C > 0 such that

‖u‖2H1 ≤ C for all u ∈ A(ε)
ρ∗∗ .

First we decompose u ∈ A(ε)
ρ∗∗ into a center part u(1) and a tail part u(2). We denote the

integer part of a > 0 by [a].
Since

[ε−1/4]−1∑

k=0

‖u‖2
H1(|x−β(u)|∈[ 2√

ε
+ k

ε1/4
, 2√

ε
+ k+1

ε1/4
]) ≤ ‖u‖2H1 ≤ C,

there exists k ∈ {1, 2, · · · , [ε−1/4] − 1} such that

‖u‖2
H1(|x−β(u)|∈[ 2√

ε
+ k

ε1/4
, 2√

ε
+ k+1

ε1/4
]) ≤ C

[ε−1/4] → 0 as ε → 0. (5.2)
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In what follows we denote by cε various constants which do not depend on u and
satisfy cε → 0 as ε → 0. We set

u(1)(x) = ζ 2√
ε
+ k

ε1/4
(x − β(u))u(x), u(2)(x) = ζ̃ 2√

ε
+ k+1

ε1/4
(x − β(u))u(x),

where ζR(x), ζ̃R(x) are defined in (2.1). We also set

M1(u) = ζ1/
√

ε(x − β(u))u, M2(u) = (1 − ζ1/
√

ε(x − β(u)))u. (5.3)

These function also give decomposition of u into a center part and a tail part. Clearlywe
have u = M1(u)+M2(u). By (2.2), we also have ‖M1(u)‖H1 , ‖M2(u)‖H1 ≤ 3‖u‖H1 .

We note that u(1), u(2), M1(u), M2(u) depend on ε. But for simplicity of notation,
we omit ε from the notation.

We use −u(2) to construct a deformation flow and we use M1(u) and M2(u) to
estimate effects of −u(2).

u(2) has the following properties.

Lemma 5.1 There exists cε > 0 independent of u ∈ A(ε)
ρ∗∗ such that

cε → 0 as ε → 0

and for ε > 0 small u ∈ A(ε)
ρ∗∗ satisifes the following properties (i)–(v).

(i)

‖u(2)‖H1 , ‖M2(u)‖H1 < ρ0, (5.4)

‖u − u(1) − u(2)‖H1 ≤ cε, (5.5)

|(u − u(2), u(2))H1 | ≤ cε, (5.6)

|(I ′
ε(u) − I ′

ε(u
(2)))u(2)| ≤ cε. (5.7)

(ii) For the center of mass β(u) defined in Sect.3.3,

β ′(u)u(2) = 0. (5.8)

(iii) For M1(u), M2(u) defined in (5.3),

∂u M1(u)u(2) = 0, (5.9)

∂u(‖M2(u)‖2H1)u
(2) ≥ −cε. (5.10)

(iv) For Tε(u) defined in (5.1),

Tε(u) ≤ ‖u(2)‖2H1 , (5.11)

T ′
ε(u)u(2) = 2Tε(u). (5.12)
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(v) For c0 > 0 given in Corollary 2.2, we have

I ′
ε(u)u(2) ≥ c0Tε(u) − cε. (5.13)

From Lemma 5.1, we can observe a vector field u �→ −u(2) has good properties for
deformation. By (ii), (iii), −u(2) does not effect the center part M1(u) and the center
β(u) of mass of u. By (5.12) and (5.13), −u(2) gives a direction which decreases
both of Iε(u) and Tε(u) provided Tε(u) ≥ cε

c0
. Thus it is convenient to construct a

deformation flow for Iε(u) which keeps the size Tε(u) of tail small.

Proof (i) u ∈ A(ε)
ρ∗∗ ⊂ S̃b,ρ∗∗ can be written as

u(x) = ω(x − p) + ϕ(x),

where ω ∈ Ŝb and ‖ϕ‖H1 < ρ∗∗. Since |β(u) − p| ≤ R0 and Ŝb is compact in
H1(RN ), we have ‖u‖H1(|x−β(u)|≥1/

√
ε) ≤ 2ρ∗∗ for ε small. Thus by (2.2)

‖u(2)‖H1 , ‖M2(u)‖H1 ≤ 3‖u‖H1(|x−β(u)|≥1/
√

ε) ≤ 6ρ∗∗ < ρ0.

By (5.2), we have uniformly in u ∈ A(ε)
ρ∗∗ ,

‖u − u(1) − u(2)‖H1 = ‖(1 − ζ 2√
ε
+ k

ε1/4
(x − β(u)) − ζ̃ 2√

ε
+ k+1

ε1/4
(x − β(u)))u‖H1

≤ 3‖u‖H1(|x−β(u)|∈[ 2√
ε
+ k

ε1/4
, 2√

ε
+ k+1

ε1/4
]) → 0 as ε → 0.

We also have

|(u − u(2), u(2))H1 | ≤ C‖u‖2
H1(|x−β(u)|∈[ 2√

ε
+ k

ε1/4
, 2√

ε
+ k+1

ε1/4
]) → 0 as ε → 0.

Thus we have (5.5) and (5.6). In a similar way, using Lemma 2.3 (ii) with R =
2√
ε

+ k
ε1/4

and L = 1
ε1/4

, we have (5.7).

(ii) Since supp u(2) ⊂ R
N \B(β(u), 2√

ε
) does not intersect B(β(u), 3R0) for ε ∈

(0, 1
9R2

0
), we have by (iii) of Proposition 3.3

β(u + t�u(2)) = β(u) for small t .

Thus we have (5.8).
By supp u(2) ⊂ R

N \B(β(u), 2√
ε
) we note that

ζ1/
√

ε(x − β(u))u(2)(x) = 0. (5.14)

(iii) We have from (5.8), (5.14)

∂u M1(u)u(2) = −ζ ′
1/

√
ε
(x − β(u))(β ′(u)u(2))u + ζ1/

√
ε(x − β(u))u(2) = 0.
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Thus we have (5.9).
For M2(u), we compute by (5.6)

1

2
∂u(‖M2(u)‖2H1)u

(2) = (M2(u), ∂u M2(u)u(2))H1

=((1 − ζ1/
√

ε(x − β(u))u(x), ζ ′
1/

√
ε
(x − β(u))(β ′(u)u(2))u

+ (1 − ζ1/
√

ε)(x − β(u))u(2))H1

=(u, u(2))H1 = ‖u(2)‖2H1 + (u − u(2), u(2))H1 ≥ (u − u(2), u(2))H1

≥ − cε.

Thus we have (5.10).
(iv) Since u(x) = u(2)(x) in supp ζ̃4/

√
ε(x −β(u)) = R

N \B(β(u), 4√
ε
−1), we have

(5.11) and

T ′
ε(u)u(2) = −

∫

RN
ζ̃ ′
4/

√
ε
(x − β(u))(β ′(u)u(2))(|∇u|2 + u2)

+ 2
∫

RN
ζ̃4/

√
ε(x − β(u))(∇u∇u(2) + uu(2))

=2Tε(u).

Thus we have (5.12).
(v) By (5.4), (5.7), (5.11) and Corollary 2.2,

I ′
ε(u)u(2) ≥ I ′

ε(u
(2))u(2) − cε ≥ c0‖u(2)‖2H1 − cε ≥ c0Tε(u) − cε.

Thus we get (v).
��

Choice of κε. By the compactness of Ŝb, we have

sup
ω∈Ŝb

Tε(ω) → 0 as ε → 0.

For cε > 0 given in Lemma 5.1, we set

κε ≡ max

{

2 sup
ω∈Ŝb

Tε(ω),
2cε

c0

}

→ 0 as ε → 0. (5.15)

With this choice of κε, we have the following corollary. In what follows, we use the
following notation for c ∈ R

[Iε ≤ c] = {u ∈ H1(RN ) : Iε(u) ≤ c},
[Tε ≥ c] = {u ∈ H1(RN ) : Tε(u) ≥ c}.
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Corollary 5.2 For u ∈ A(ε)
ρ∗∗ ∩ [Tε ≥ κε], we have

I ′
ε(u)u(2) ≥ cε,

in particular, I ′
ε(u) = 0 in A(ε)

ρ∗∗ ∩ [Tε ≥ κε].

Proof By (v) of Lemma 5.1, we have for u ∈ A(ε)
ρ∗∗ ∩ [Tε ≥ κε].

I ′
ε(u)u(2) ≥ c0Tε(u) − cε ≥ c0κε − cε ≥ c0 · 2cε

c0
− cε = cε.

��

As a corollary to Proposition 4.9 (ii) and Corollary 5.2, we have

Corollary 5.3 Suppose that for ε > 0

(Hε(u), I ′
ε(u)) = (0, 0) for u ∈ N (ε)

ρ∗ ∩ [Tε ≤ κε] with Iε(u) ∈ [b − δ0, b + δ0].
(5.16)

Then there exists νε > 0 such that

‖(Hε(u), I ′
ε(u))‖(RN ×H1(RN ))∗ ≥ νε (5.17)

for u ∈ A(ε)
ρ∗∗ with Iε(u) ∈ [b − δ0, b + δ0].

In fact, Corollary 5.2 and (5.16) imply (4.22). Thus Proposition 4.9 (ii) implies
(5.17).

For later use, we state the following lemma, which states that the property u ∈
[Tε ≤ κε] ensures that u concentrates around the center of mass β(u).

Proposition 5.4 Assume u ∈ A(ε)
ρ∗∗ ∩ [Tε ≤ κε]. Then we have

Iε(u) ≥ L(εβ(u), u) − cε − 1

2
V κε.

Here cε > 0 is independent of u and satisfies cε → 0 as ε → 0.
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Proof For u ∈ A(ε)
ρ∗∗ ∩ [Tε ≤ κε] we compute

Iε(u) = L(εβ(u), u) + 1

2

∫

RN
(V (εx) − V (εβ(u)))u2

= L(εβ(u), u) + 1

2

(∫

|x−β(u)|≤ 4√
ε

+
∫

|x−β(u)|≥ 4√
ε

)

(V (εx) − V (εβ(u)))u2

≥ L(εβ(u), u) − 1

2
‖V (y) − V (εβ(u))‖L∞(|y−εβ(u)|≤4

√
ε)‖u‖22

− 1

2
V ‖u‖2

H1(|x−β(u)|≥ 4√
ε
)

≥ L(εβ(u), u) − 1

2
‖V (y) − V (εβ(u))‖L∞(|y−εβ(u)|≤4

√
ε)‖u‖22 − 1

2
V Tε(u).

Let �εR0+ρ∗∗ be a (εR0 + ρ∗∗)-neighborhood of �, that is, �εR0+ρ∗∗ = {x ∈ R
N :

distRN (x,�) ≤ εR0 + ρ∗∗}. We recall (4.21) and we note that A(ε)
ρ∗∗ is uniformly

bounded for all ε ∈ (0, 1] and let C = sup
ε∈(0,1],u∈A(ε)

ρ∗∗
‖u‖22 < ∞. Setting

cε = 1

2
C sup{|V (y) − V (y′)| : y, y′ ∈ �εR0+ρ∗∗ , |y − y′| ≤ 4

√
ε} → 0 as ε → 0,

and noting u ∈ [Tε ≤ κε], we have the conclusion of Proposition 5.4. ��

6 Deformation Argument

6.1 Deformation Result

In this section we develop a special deformation argument for Iε(u), which keeps
Tε(u) small. Our aim is to show the following deformation result.

Proposition 6.1 Let ε0, ν0, δ0 > 0 be numbers given in Proposition 4.9 and let κε > 0
be a number given in (5.15), which satisfies κε → 0 as ε → 0. Moreover suppose for
some ε ∈ (0, ε0]

(Hε(u), I ′
ε(u)) = 0 for u ∈ N (ε)

ρ∗ with Iε(u) ∈ [b − δ0, b + δ0]. (6.1)

Then for any δ1 ∈ (0, δ0) there exist δ ∈ (0, δ1) and a continuous map η(t, u) :
[0, 1] × A(ε)

ρ∗∗ → A(ε)
ρ∗∗ such that

(i) η(0, u) = u for all u ∈ A(ε)
ρ∗∗ .

(ii) η(t, u) = u for all t ∈ [0, 1] if Iε(u) /∈ [b − δ1, b + δ1] or u /∈ A(ε)
3ρ∗∗+ρ∗

4

.

(iii) t �→ Iε(η(t, u)) is a non-increasing function of t for all u ∈ A(ε)
ρ∗∗ .

(iv) η(1, u) ∈ [Iε ≤ b − δ] if u ∈ A(ε)
ρ∗ ∩ [Iε ≤ b + δ].

(v) η(t, u) ∈ [Tε ≤ κε] for all t ∈ [0, 1] if u ∈ [Tε ≤ κε].
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The properties (i)–(iv) are standard under the standard Palais-Smale condition. How-
ever our concentration-compactness type result Proposition 4.5 ensures a weaker
condition; we assume (4.10) in addition to (4.8) and (4.9) and we have (4.23) under
the condition (4.22).

We note that Hε(u) gives a useful information on deformation. In fact, for h ∈ R
N

we have

d

dt

∣
∣
∣
t=0

Iε(u(x − h

ε
t)) = 1

2

d

dt

∣
∣
∣
t=0

∫

RN
V (εx + ht)u(x)2 = 1

2

∫

RN
h · ∇V (εx)u(x)2

= 1

2
h · Hε(u).

Thus, if Hε(u) = 0, the translation flow:

(t, v) �→ v

(

x − h

ε
t

)

with h = −Hε(u) (6.2)

gives a decreasing flow in a neighborhood of u.
The property (v) means that the set [Tε ≤ κε] is positively invariant for the flow

η(t, u), i.e.,

η(t, [Tε ≤ κε]) ⊂ [Tε ≤ κε] for t ≥ 0. (6.3)

This property is related to the tail minimizing flow developed in [23]. In [23], we used
the tail minimizing flow separately from the deformation flow (the steepest descent
flow) for Iε(u). Here, extending the idea in [23] we construct a deformation flow for
Iε(u) which keeps the size Tε(u) of the tail u|RN \B(β(u),4/

√
ε) small.

Remark 6.2 In [25, 33, 35], we study radially symmetric problems in R
N . A typi-

cal example is a nonlinear scalar field equation: −�u = g(u) in R
N . The natural

corresponding functional is

I(u) = 1

2
‖∇u‖22 −

∫

RN
G(u) : H1

r (RN ) → R

and scaling θ �→ u(x/eθ ) is important in the arguments in [25, 33, 35]. Precisely
Pohozaev functional

P(u) = N − 2

2
‖∇u‖22 − N

∫

RN
G(u)

is characterized as

P(u) = d

dθ

∣
∣
∣
θ=0

I(u(x/eθ )). (6.4)
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Thus, if P(u) > 0 (P(u) < 0 resp.), the scaling flow (θ, u) �→ u(x/e−θ ) (u(x/eθ )

resp.) gives a decreasing flow in a neighborhood of u. In [25, 33, 35], we introduce an
augmented functional J (θ, u) by

J (θ, u) = 1

2
e(N−2)θ‖∇u‖22 − eNθ

∫

RN
G(u),

which enjoys the property J (θ, u) = I(u(x/eθ )). We develop a deformation flow for
I(u) through a deformation for J (θ, u) in the augmented space R × H1

r (RN ).

In the following sections, replacing scaling (6.4) to translation (6.2), we give a proof
of Proposition 6.1.

6.2 Augmented Functional

To prove Proposition 6.1, we consider the following functional in the augmented space
R

N × H1(RN ):

Jε(z, u) = 1

2
‖∇u‖22 + 1

2

∫

RN
V (εx + z)u(x)2 − 1

2
D(u) : R

N × H1(RN ) → R.

We note that Jε(z, u) ∈ C1(RN × H1(RN ),R) and

(i) Jε(z, u) = Iε(u(x − z
ε
)).

(ii) ∂u Jε(z, u)ϕ = I ′
ε(u(x − z

ε
))ϕ(x − z

ε
).

(iii) ∂z Jε(z, u) = Hε(u(x − z
ε
)).

Recalling D = (∂z, ∂u), we have

Lemma 6.3 (i) For (z, u) ∈ R
N × H1(RN ), (z, u) is a critical point of Jε, i.e.,

D Jε(z, u) = 0 if and only if v(x) = u(x − z
ε
) satisfies

I ′
ε(v) = 0 and Hε(v) = 0.

(ii) For c ∈ R, c is a critical value of Jε if and only if there exists v ∈ H1(RN ) such
that

Iε(v) = c, I ′
ε(v) = 0 and Hε(v) = 0.

(iii) For all (z, u) ∈ R
N × H1(RN )

‖D Jε(z, u)‖2
(RN ×H1(RN ))∗ =

∣
∣
∣Hε

(
u

(
x − z

ε

))∣
∣
∣
2 +

∥
∥
∥I ′

ε

(
u

(
x − z

ε

))∥
∥
∥
2

(H1(RN ))∗
.

As in Corollary 2.2, we have
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Corollary 6.4 There exist ρ0 > 0 and c0 > 0 such that

Jε(z, u) ≥ c0‖u‖2H1 , ∂u Jε(z, u)u ≥ c0‖u‖2H1

for all (z, u) ∈ R
N × H1(RN ) with ‖u‖H1 ≤ ρ0.

To show our Proposition 6.1, we develop a deformation argument in R
N × H1(RN )

and we construct a flow η(t, u) through a flow η̃(t, z, u) on a product space
R

N × H1(RN ).
We introduce a pseudo-distance DISTε(·, ·) on RN × H1(RN ), which is related to

distε(·, ·), by

DISTε((z, u), (z′, u′)) = inf
h∈RN

√

|z′ − z − h|2 +
∥
∥
∥
∥u

(

x − h

ε

)

− u′(x)

∥
∥
∥
∥

2

H1

for (z, u), (z′, u′) ∈ R
N × H1(RN ). We note that

DISTε((z, u), (z′, u′)) = distε

(

u
(

x − z

ε

)
, u′

(

x − z′

ε

))

and

DISTε((z, u), (z′, u′)) ≤ distRN ×H1(RN )((z, u), (z′, u′))

≡
√

|z − z′|2 + ‖u − u′‖2
H1 .

We set

N (ε)
ρ = {(z, u) ∈ R

N × H1(RN ) : DISTε((z, u), K̂b) < ρ}
=

{
(z, u) ∈ R

N × H1(RN ) : distε
(

u
(

x − z

ε

)
, K̂ (ε)

b

)
) < ρ

}
,

A(ε)
ρ = {(z, u) ∈ R

N × H1(RN ) : DISTε((z, u), Ẑb) < ρ}
=

{
(z, u) ∈ R

N × H1(RN ) : distε
(

u
(

x − z

ε

)
, Ẑ (ε)

b

)
< ρ

}
.

Clearly these sets are uniformly bounded with respect to ε ∈ (0, 1] and we have
N (ε)

ρ ⊂ A(ε)
ρ . From Proposition 4.9 (i), Corollary 5.3 and Lemma 6.3 we have the

following

Proposition 6.5 Let 0 < ρ∗ < ρ∗∗ be the numbers satisfying (4.20). Then we have

(i) There exist ν0 > 0 and δ0 > 0 independent of ε such that for ε > 0 small

‖D Jε(z, u)‖(RN ×H1(RN ))∗ ≥ ν0 (6.5)

for all (z, u) ∈ A(ε)
ρ∗∗\N (ε)

ρ∗ with Jε(z, u) ∈ [b − δ0, b + δ0].
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(ii) Suppose that (6.1) holds, in other words, it holds that

D Jε(z, u) = 0 for all (z, u) ∈ N (ε)
ρ∗ with Jε(z, u) ∈ [b − δ0, b + δ0]. (6.6)

Then there exists νε > 0 such that

‖D Jε(z, u)‖(RN ×H1(RN ))∗ ≥ νε for all (z, u) ∈ A(ε)
ρ∗∗ with

Jε(z, u) ∈ [b − δ0, b + δ0]. (6.7)

We note that we may assume νε < ν0.

6.3 Construction of a Vector Field

In what follows, we will show that the existence of a critical point (z, u) ∈ N (ε)
ρ∗ with

Jε(z, u) ∈ [b − δ0, b + δ0]. Arguing indirectly, we assume (6.1) holds. To construct a
deformation flow, we find a special vector field Vz,u : A(ε)

ρ∗∗ → R
N × H1(RN ). Since

(6.5) and (6.7) hold byProposition 6.5, for (z, u) ∈ A(ε)
ρ∗∗ with Jε(z, u) ∈ [b−δ0, b+δ0]

there exists (ξ, w) ∈ R
N × H1(RN ) such that

|ξ |2 + ‖w‖2H1 ≤ 1, (6.8)

D Jε(z, u)(ξ, w) > ν0 if (z, u) ∈ A(ε)
ρ∗∗ \ N (ε)

ρ∗ , (6.9)

D Jε(z, u)(ξ, w) > νε if (z, u) ∈ N (ε)
ρ∗ . (6.10)

We compute for (z, u) ∈ A(ε)
ρ∗∗ and � ≥ 0

∂u Tε(u)(w + �u(2)) = ∂u Tε(u)w + �∂u Tε(u)u(2) ≥ −C1 + 2�Tε(u), (6.11)

where C1 > 0 is independent of ε and u. Here we used (5.12) and the boundedness
of ‖∂u Tε(u)‖H1(RN )∗ .

For κε defined in (5.15), we set

�ε ≡ C1

κε

→ ∞ as ε → 0. (6.12)

Finally we define Vz,u ∈ R
N × H1(RN ) for (z, u) ∈ A(ε)

ρ∗∗ with Jε(z, u) ∈ [b−δ0, b+
δ0] by

Vz,u =
{

(ξ, w + �εu(2)) if Tε(u) ≥ κε,

(ξ, w) if Tε(u) < κε.

Then we have
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Proposition 6.6 Suppose that (6.1) holds. Then for ε ∈ (0, 1
9R2

0
) and (z, u) ∈ A(ε)

ρ∗∗ ,

we have

(i) If Tε(u) ≥ κε, then

DTε(u)Vz,u > 0.

(ii) For (z, u) ∈ A(ε)
ρ∗∗ with Jε(z, u) ∈ [b − δ0, b + δ0],

D Jε(z, u)Vz,u > νε.

(iii) For (z, u) ∈ A(ε)
ρ∗∗\N (ε)

ρ∗ with Jε(z, u) ∈ [b − δ0, b + δ0],

D Jε(z, u)Vz,u > ν0.

(iv) There exist C, C ′ > 0 such that for M1(u), M2(u) given in (5.3)

‖DM1(u)Vz,u‖H1 < C, (6.13)

D(‖M2(u)‖2H1)Vz,u > −C ′. (6.14)

In the above proposition, we write

DTε(u) = (0, ∂u Tε(u)), DMi (u) = (0, ∂u Mi (u)) for i = 1, 2.

In particular,

DTε(u)Vz,u =
{

∂u Tε(u)(w + �εu(2)) if Tε(u) ≥ κε,

∂u Tε(u)w if Tε(u) < κε.

We use similar formulas also for M1(u) and ‖M2(u)‖2
H1 .

Proof First we recall that (6.5), (6.7) hold under (6.1).
(i) By (6.11) and (6.12), we have for Tε(u) ≥ κε

DTε(u)Vz,u ≥ −C1 + 2�εTε(u) ≥ −C1 + 2�εκε = C1 > 0.

Thus we have (i).
(ii), (iii) By our choice (5.15) of κε, as in Corollary 5.2 we have D Jε(z, u)(0, u(2)) ≥ 0
when Tε(u) ≥ κε. Thus (ii) and (iii) follow from (6.9)–(6.10).
(iv) Since

∂u M1(u)w = −ζ ′
1/

√
ε
(x − β(u))(β ′(u)w)u + ζ1/

√
ε(x − β(u))w,
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‖∂u M1(u)w‖H1 and ‖∂u M2(u)w‖H1 are uniformly bounded by the boundedness of
‖β ′(u)‖H1(RN )∗ . Thus (6.13) follows from (5.9). As to (6.14), we have from (5.10)
and (6.12)

∂u(‖M2(u)‖2H1)�εu(2) ≥ −�εcε = −C1.

Thus (6.14) follows from the boundedness of ‖∂u M2(u)w‖H1 . ��
Proposition 6.7 Suppose that (6.1) holds. Then for ε > 0 small, there exists a locally
Lipschitz vector field W (z, u) : A(ε)

ρ∗∗ ∩ {(z, u) : Jε(z, u) ∈ [b − δ0, b + δ0]} →
R

N × H1(RN ) with the following properties.

(i) DTε(u)W (z, u) > 0 if Tε(u) > κε.
(ii) D Jε(z, u)W (z, u) > νε if (z, u) ∈ A(ε)

ρ∗∗ and Jε(z, u) ∈ [b − δ0, b + δ0].
(iii) D Jε(z, u)W (z, u) > ν0 if (z, u) ∈ A(ε)

ρ∗∗ \ N (ε)
ρ∗ and Jε(z, u) ∈ [b − δ0, b + δ0].

(iv) ‖DM1(u)W (z, u)‖H1 ≤ C, D(‖M2(u)‖2
H1)W (z, u) ≥ −C ′.

Proof Let Vz,u be a vector field given in Proposition 6.6. We remark that for any
(z, u) ∈ A(ε)

ρ∗∗ there exists a small neighborhood Uz,u of (z, u) in RN × H1(RN ) such
that for (z′, u′) ∈ Uz,u

(i) DTε(u′)Vz,u > 0 if Tε(u) > κε.
(ii) D Jε(z′, u′)Vz,u > νε if (z, u) ∈ A(ε)

ρ∗∗ and Jε(z, u) ∈ [b − δ0, b + δ0].
(iii) D Jε(z′, u′)Vz,u > ν0 if (z, u) ∈ A(ε)

ρ∗∗ \ N (ε)
ρ∗ and Jε(z, u) ∈ [b − δ0, b + δ0].

(iv) ‖DM1(u′)Vz,u‖H1 < C , D(‖M2(u′)‖2
H1)Vz,u > −C ′.

We may choose a neighborhood Uz,u of (z, u) so that

Uz,u ⊂ {(z′, u′) : Tε(u
′) > κε} if Tε(u) > κε,

Uz,u ⊂ A(ε)
ρ∗∗ \ N (ε)

ρ∗ if (z, u) ∈ A(ε)
ρ∗∗ \ N (ε)

ρ∗ .

Using a partition of unity, we can construct a locally Lipschitz continuous vector field
W (z, u) : A(ε)

ρ∗∗ ∩{(z, u) : Jε(z, u) ∈ [b−δ0, b+δ0]} → R
N × H1(RN ) in a standard

way. We can easily see that W (z, u) satisfies (i)–(iv). ��
We note that W (z, u) is bounded in the following sense:

‖W (z, u)‖RN ×H1(RN ) ≤ C(1 + �ε) (6.15)

for all (z, u), where C > 0 is independent of ε, (z, u).

6.4 Deformation Flow for the Augmented Functional J�(z, u)

Using the pseudo-gradient flow W (z, u) obtained in Proposition 6.7, we have

Proposition 6.8 For ε > 0 small, suppose that (6.1) holds. Then for any given δ1 ∈
(0, δ0) there exist δ ∈ (0, δ1) and a continuous map η̃(t, z, u) : [0, 1]×A(ε)

ρ∗∗ → A(ε)
ρ∗∗

such that
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(i) η̃(0, z, u) = (z, u) for all (z, u) ∈ A(ε)
ρ∗∗ .

(ii) η̃(t, z, u) = (z, u) for all t ∈ [0, 1] if Jε(z, u) /∈ [b − δ1, b + δ1] or (z, u) /∈
A(ε)

3ρ∗∗+ρ∗
4

.

(iii) t �→ Jε(̃η(t, z, u)) is non-increasing on [0, 1] for all (z, u) ∈ A(ε)
ρ∗∗ .

(iv) Jε(̃η(1, z, u)) ≤ b − δ if (z, u) ∈ A(ε)
ρ∗ satisfies Jε(z, u) ≤ b + δ.

(v) Tε(̃η(1, z, u)) ≤ κε if Tε(u) ≤ κε.

For a proof we use notation for c ∈ R

[[Jε ≤ c]] = {(z, u) ∈ R
N × H1(RN ) : Jε(z, u) ≤ c}.

Proof Let W (z, u) be a locally Lipschitz continuous vector field given in Proposition
6.7. For δ ∈ (0, 1

2δ1) we choose locally Lipschitz continuous functions ϕ1 : R →
[0, 1], ϕ2 : R

N × H1(RN ) → [0, 1] such that

ϕ1(s) =
{
1 for s ∈ [b − δ, b + δ],
0 for s /∈ [b − 2δ, b + 2δ], ϕ2(z, u) =

⎧
⎨

⎩

1 for (z, u) ∈ A(ε)
ρ∗∗+ρ∗

2
,

0 for (z, u) /∈ A(ε)
3ρ∗∗+ρ∗

4

.

We consider the following ODE:

dη̃

dt
= −ϕ1(Jε(̃η))ϕ2(̃η)W (̃η), η̃(0, z, u) = (z, u). (6.16)

First we note that for each ε ∈ (0, 1] the vector field W (z, u) is locally Lipschitz
and uniformly bounded, where the bound depends on ε (c.f. (6.15)), the solution
η̃(t) = η̃(t, z, u) of (6.16) is extendable as long as η̃(t) ∈ A(ε)

ρ∗∗ . Moreover the right

hand side of (6.16) vanishes in A(ε)
ρ∗∗\A(ε)

3ρ∗∗+ρ∗
4

and thus η̃(t) exists for all t ≥ 0.

We compute

d

dt
Jε(̃η) = D Jε(̃η)

dη̃

dt
= −ϕ1(Jε(̃η))ϕ2(̃η)D Jε(̃η)W (̃η),

d

dt
Tε(̃η) = −ϕ1(Jε(̃η))ϕ2(̃η)DTε(̃η)W (̃η).

Thus, we have from Proposition 6.7 that

d

dt
Jε(̃η) ≤ 0 on A(ε)

ρ∗∗ , (6.17)

d

dt
Jε(̃η) ≤ −νε if η̃ ∈ A(ε)

ρ∗∗+ρ∗
2

and Jε(̃η) ∈ [b − δ, b + δ], (6.18)

d

dt
Jε(̃η) ≤ −ν0 if η̃ ∈ A(ε)

ρ∗∗+ρ∗
2

\ N (ε)
ρ∗ and Jε(̃η) ∈ [b − δ, b + δ], (6.19)

d

dt
Tε(̃η) ≤ 0 if Tε(̃η) ≥ κε. (6.20)
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The properties (i)–(iii) and (v) follow from the definition (6.16) and the properties
(6.17) and (6.20). To complete the proof, we need to show (iv).

We suppose (z, u) ∈ A(ε)
ρ∗ ∩ [[Jε ≤ b + δ]] and we show for some tε > 0

η̃(tε, z, u) ∈ [[Jε ≤ b − δ]]. (6.21)

Arguing indirectly, we assume that η̃(t) ∈ [[Jε > b − δ]] for all t ≥ 0. If η̃(t) =
η̃(t, z, u) satisfies

η̃(t0) ∈ ∂A(ε)
ρ∗∗+ρ∗

2
for some t0 > 0, (6.22)

then we can find an interval [sz,u, tz,u] such that

η̃(t) ∈ A(ε)
ρ∗∗+ρ∗

2
\ A(ε)

ρ∗ for t ∈ (sz,u, tz,u), (6.23)

η̃(sz,u) ∈ ∂A(ε)
ρ∗ , η̃(tz,u) ∈ ∂A(ε)

ρ∗∗+ρ∗
2

. (6.24)

The following Lemma 6.9 shows that for some τ0 > 0 independent of ε, (z, u)

tz,u − sz,u ≥ τ0. (6.25)

Thus by (6.19),

Jε(̃η(tz,u)) ≤ Jε(̃η(sz,u)) − ν0τ0 ≤ b + δ − ν0τ0.

Choosing δ < 1
3ν0τ0, we have

Jε(̃η(tz,u)) ≤ b − 2δ, (6.26)

which is in contradiction. Thus (6.22) cannot occur and we have η̃(t) ∈ A(ε)
ρ∗∗+ρ∗

2
for

all t ≥ 0. By (6.18), setting tε = 2δ
νε

> 0, we have (6.21) and (iv) holds. ��
The following lemma is a key of the proof of Proposition 6.8. We remark that

distRN ×H1(RN )(A(ε)
ρ∗ , ∂A(ε)

ρ∗∗+ρ∗
2

) ≥ DISTε(A(ε)
ρ∗ , ∂A(ε)

ρ∗∗+ρ∗
2

) ≥ 1

2
(ρ∗∗ − ρ∗).

However, since �ε → ∞ as ε → 0, ‖ dη̃
dt ‖RN ×H1(RN ) = ‖W (̃η)‖RN ×H1(RN ) is not

uniformly bounded by (6.15). Thus (6.25) does not follow from (6.23)–(6.24). In the
following lemma, (iv) of Proposition 6.7 plays a role.

Lemma 6.9 There exists τ0 > 0 independent of ε > 0 such that if η̃(t) = η̃(t, z, u)

satisfies (6.23)–(6.24), then (6.25) holds.
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Proof By Proposition 6.7 (iv), we have for η̃(t) = η̃(t, z, u)

‖ d

dt
M1(̃η(t))‖H1 ≤ ϕ1(Jε(̃η))ϕ2(̃η)‖DM1(̃η)W (̃η)‖H1 ≤ C,

d

dt

(
‖M2(̃η(t))‖2H1

)
= −ϕ1(Jε(̃η))ϕ2(̃η)D(‖M2(̃η)‖2H1)W (̃η) ≤ C ′.

Thus, for t ∈ [sz,u, sz,u + τ ] we have

‖P2η̃(t) − P2η̃(sz,u)‖H1

≤ ‖M1(P2η̃(t)) − M1(P2η̃(sz,u))‖H1 + ‖M2(P2η̃(t)) − M2(P2η̃(sz,u))‖H1

≤ C(t − sz,u) + ‖M2(P2η̃(sz,u))‖H1 + ‖M2(P2η̃(t))‖H1

≤ C(t − sz,u) + ‖M2(P2η̃(sz,u))‖H1 +
(
‖M2(P2η̃(sz,u))‖2H1 + C ′(t − sz,u)

)1/2

≤ Cτ + ‖M2(P2η̃(sz,u))‖H1 +
(
‖M2(P2η̃(sz,u))‖2H1 + C ′τ

)1/2
. (6.27)

On the other hand we have

‖M2(P2η̃(sz,u))‖H1 ≤ 3ρ∗ + dε, (6.28)

where

dε = sup
ω∈Ŝb,|y|≤R0

‖(1 − ζ1/
√

ε(x))ω(x − y)‖H1 → 0 as ε → 0.

In fact, writing η̃(sz,u) = (z′, u′) ∈ A(ε)
ρ∗ , we have for some (ξ0, ω0) ∈ � × Ŝb

distε

(

u′
(

x − z′

ε

)

, ω0

(

x − ξ0

ε

))

< ρ∗.

Thus, there exists h ∈ R
N such that

|h|2 +
∥
∥
∥
∥u′

(

x − z′

ε

)

− ω0

(

x − ξ0 + h

ε

)∥
∥
∥
∥

2

H1
< ρ∗2.
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By Proposition 3.3, we have |β(u′) − ξ0−z′+h
ε

| ≤ R0. Since P2η̃(sz,u) = u′, we have
by (2.2)

‖M2(P2η̃(sz,u))‖H1 = ‖M2(u
′)‖H1 = ‖(1 − ζ1/

√
ε(x − β(u′))u′(x)‖H1

≤
∥
∥
∥
∥(1 − ζ1/

√
ε(x − β(u′)))

(

u′(x) − ω0

(

x − ξ0 − z + h

ε

))∥
∥
∥
∥

H1

+
∥
∥
∥
∥(1 − ζ 1√

ε

(x − β(u′)))ω0

(

x − ξ0 − z′ + h

ε

)∥
∥
∥
∥

H1

≤ 3

∥
∥
∥
∥u′(x) − ω0

(

x − ξ0 − z′ + h

ε

)∥
∥
∥
∥

H1
+ dε ≤ 3ρ∗ + dε.

Thus we have (6.28). By (6.27),

‖P2η̃(t) − P2η̃(sz,u)‖H1 ≤ Cτ + (3ρ∗ + dε) + ((3ρ∗ + dε)
2 + C ′τ)1/2

for t ∈ [sz,u, sz,u + τ ].

Since |P1W (z, u)| ≤ 1 for all (z, u), we have |P1η̃(t) − P1η̃(sz,u)| ≤ τ . Thus there
exists τ0 > 0 such that for ε > 0 small

DISTε(̃η(t), η̃(sz,u)) ≤‖η̃(t) − η̃(sz,u)‖RN ×H1(RN )

≤
(
|P1η̃(t) − P1η̃(sz,u)|2 + ‖P2η̃(t) − P2η̃(sz,u)‖2H1

)1/2

<7ρ∗ for t ∈ [sz,u, sz,u + τ0],

which implies

DISTε(̃η(t), Ẑb) ≤ DISTε(̃η(t), η̃(sz,u)) + DISTε(̃η(sz,u), Ẑb)

< 7ρ∗ + ρ∗ <
ρ∗∗ + ρ∗

2
for t ∈ [sz,u, sz,u + τ0].

Here we used (4.20). Thus we have η̃(t) ∈ A(ε)
ρ∗+ρ∗∗

2
for t ∈ [sz,u, sz,u + τ0] and the

proof of Lemma 6.9 is completed. ��
End of the proof of Proposition 6.1 We define πε : R

N × H1(RN ) → H1(RN ) by

πε(z, u)(x) = u
(

x − z

ε

)
.

For the flow η̃(t, z, u) obtained in Proposition 6.8, set

η(t, u) = πε(̃η(t, 0, u)).

Noting Tε(πε(z, u)) = Tε(u), it is easily observed that η(t, u) has the desired proper-
ties. ��
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7 Existence of Critical Points

In this section we complete a proof of Theorem 1.2. We argue 2 setting (MP) and
(LM) separately.

7.1 Existence Under the Condition (MP)

First we consider (1.1) under the assumptions (f1)–(f4), (V1)–(V4) and (MP). Let
V0 > 0 be the number given in (MP) and let b = EV0 .

Proposition 7.1 Assume (f1)–(f4), (V1)–(V4) and (MP) and let b = EV0 . For any
ρ∗ > 0 and δ > 0 there exists ε0 = ε0(ρ∗, δ) > 0 such that for ε ∈ (0, ε0], Iε(u) has

a critical point u in N (ε)
ρ∗ ∩ [Tε ≤ κε] with Iε(u) ∈ [b − δ, b + δ].

Proof of Proposition 7.1 Let e1, e2,� be given in (MP).Wemay choose ρ∗ > 0 smaller
if necessary and choose ρ∗∗ > 0 so that (4.20) holds.

Let ω0(x) be a least energy solution of L ′
V0

(u) = 0. We choose s0 ∈ (0, 1
2 ) such

that
∥
∥
∥ω0

( x

s

)
− ω0(x)

∥
∥
∥

H1
<

ρ∗
3

for all s ∈ [1 − s0, 1 + s0], (7.1)

LV (ei )

(
ω0

( x

s

))
< b for all s ∈ [1 − s0, 1 + s0] and i = 0, 1. (7.2)

Since LV (ei )(ω0(
x
s )) < LV0(ω0(

x
s )) ≤ b, (7.2) holds for small s0 ∈ (0, 1

2 ).
We may assume that δ > 0 satisfies

max
s∈[1−s0,1+s0]

LV (ei )

(
ω0

( x

s

))
< b − 2δ for s ∈ [1 − s0, 1 + s0] and i = 0, 1,

(7.3)

LV0

(
ω0

( x

s

))
< b − 2δ for s = 1 ± s0. (7.4)

Arguing indirectly and noting Corollary 5.2, we assume that (6.1) holds. Applying
Proposition 6.1, there are δ ∈ (0, δ) and η(t, u) ∈ C([0, 1] × A(ε)

ρ∗∗ , A(ε)
ρ∗∗) such that

(i)–(v) of Proposition 6.1 hold.
Step 1: Choice of an initial path γε(s, ξ) : [1 − s0, 1 + s0] × [0, 1] → H1(RN )

For c(ξ) ∈ �, we set

γ0ε(c; s, ξ)(x) = ω0

(
x − c(ξ)/ε

s

)

: [1 − s0, 1 + s0] × [0, 1] → H1(RN ).

By the choice (5.15) of κε, we have

γ0ε(c; s, ξ) ∈ [Tε ≤ κε], (7.5)

γ0ε(c; s, ξ) ∈ A(ε)
ρ∗ for all (s, ξ) ∈ [1 − s0, 1 + s0] × [0, 1]. (7.6)
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In fact, ω0(x − c(ξ)/ε) ∈ Ẑ (ε)
b and (7.1) imply (7.6).

We also have

Iε(γ0ε(c; s, ξ)) → L
(

c(ξ), ω0

( x

s

))

= LV0

(
ω0

( x

s

))
+ 1

2
(V (c(ξ)) − V0)

∥
∥
∥ω0

( x

s

)∥
∥
∥
2

2
(7.7)

as ε → 0 uniformly in [1 − s0, 1 + s0] × [0, 1].
Thus, choosing c(ξ) ∈ � such that maxξ∈[0,1] V (c(ξ)) is very close to V0, from

(7.3), (7.4) and (7.7) we have for sufficiently small ε > 0

γ0ε(c; s, ξ) ∈ [Iε ≤ b − δ] for (s, ξ) ∈ ∂([1 − s0, 1 + s0] × [0, 1]), (7.8)

γ0ε(c; s, ξ) ∈ [Iε ≤ b + δ] for (s, ξ) ∈ [1 − s0, 1 + s0] × [0, 1]. (7.9)

Let η(t, u) : [0, 1] × A(ε)
ρ∗∗ → A(ε)

ρ∗∗ be a deformation given in Proposition 6.1 and we
set

γε(s, ξ) = η(1, γ0ε(c; s, ξ)). (7.10)

By (7.8) and the property (ii) of Proposition 6.1,

γε(s, ξ) = γ0ε(c; s, ξ) = ω0

(
x − c(ξ)/ε

s

)

for (s, ξ) ∈ ∂([1 − s0, 1 + s0] × [0, 1]). (7.11)

By (7.9) and the properties (iv), (v) of Proposition 6.1, we have for (s, ξ) ∈
[1 − s0, 1 + s0] × [0, 1]

γε(s, ξ) ∈ [Iε ≤ b − δ] ∩ [Tε ≤ κε]. (7.12)

Next we will show under (7.5)–(7.6) and (7.11) that γε(s, ξ) satisfies

lim inf
ε→0

max
(s,ξ)∈[1−s0,1+s0]×[0,1] Iε(γε(s, ξ)) ≥ b. (7.13)

We note that (7.13) is incompatible with (7.12) and it shows the existence of a critical

point in N (ε)
ρ∗ ∩ [Tε ≤ κε].

We remark that under (MP) there exists a small neighborhood �′(⊃ �) of � with
the following properties:

(1) For ε > 0 small,

εβ(γε(s, ξ)) ∈ �′ for all (s, ξ) ∈ [1 − s0, 1 + s0] × [0, 1].
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(2) Set

W = {x ∈ �′ : V (x) < V0},

then e0 and e1 belong to different components of W .

Since γε(s, z) ∈ A(ε)
ρ∗∗ for all (s, z), we have

distRN (εβ(γε(s, ξ)),�) ≤ εR0 + ρ∗∗

and (1) follows.
We denote by W− the component of W , to which e0 belongs, and we set

W+ = W \ W−, W0 = {x ∈ �′ : V (x) ≥ V0}.

We also introduce a signed distance function d0(x) on �′ by

d0(x) =

⎧
⎪⎨

⎪⎩

− dist(x,W0)
dist(e0,W0)

if x ∈ W−,
dist(x,W0)
dist(e1,W0)

if x ∈ W+,

0 if x ∈ W0.

For Pa(u) defined in (3.2), we set a = V0 and consider

Fε(u) = (PV0(u), d0(εβ(u))) : A(ε)
ρ∗∗ → R × R.

Then we have
Step 2: For γε(s, ξ) defined in (7.10),

deg(Fε(γε(s, ξ)), [1 − s0, 1 + s0] × [0, 1], (0, 0)) = −1. (7.14)

In particular, there exists (sε, ξε) ∈ [1 − s0, 1 + s0] × [0, 1] such that

PV0(γε(sε, ξε)) = 0 and V (εβ(γε(sε, ξε))) ≥ V0. (7.15)

In fact, for (s, ξ) ∈ ∂([1 − s0, 1 + s0] × [0, 1]), we have by (7.11)

Fε(γε(s, ξ)) = Fε

(

ω0

(
x − c(ξ)/ε

s

))

=
(

PV0

(
ω0

( x

s

))
, d0

(

εβ

(

ω0

(
x − c(ξ)/ε

s

))))

=
(

PV0

(
ω0

( x

s

))
, d0(c(ξ) + o(1))

)
.
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By Proposition 3.2 we have

PV0

(
ω0

( x

s

))
{

> 0 for s = 1 − s0,

< 0 for s = 1 + s0,
d0(c(ξ))

{
> 0 for ξ = 0,

< 0 for ξ = 1,

and thus we have (7.14). Since d0(y) = 0 implies V (y) ≥ V0, (7.14) implies the
existence of (sε, ξε) with (7.15).
Step 3: Iε(γε(sε, ξε)) ≥ b + o(1) as ε → 0.
We write wε = γε(sε, ξε). Since wε ∈ A(ε)

ρ∗∗ ∩ [Tε ≤ κε], it follows from Proposition
5.4

Iε(wε) ≥ L(V (εβ(wε)), wε) − cε − 1

2
V κε

≥ LV0(wε) + 1

2
(V (εβ(wε)) − V0)‖wε‖22 − cε − 1

2
V κε.

By (7.15), we have

Iε(wε) ≥ LV0(wε) − cε − 1

2
V κε.

By (3.3), it follows from PV0(wε) = 0 that LV0(wε) ≥ EV0 = b. Thus we have Step
3.
Step 4: Conclusion.
(7.12) and (7.13) are incompatible and thus (6.1) does not hold. Thus we have the
conclusion of Proposition 7.1. ��

7.2 Existence Under the Condition (LM)

In this sectionwe consider (1.1) under the assumptions (f1)–(f4), (V1)–(V4) and (LM).
Let V0 > 0 be the maximum in � and let b = EV0 . We have

Proposition 7.2 Assume (f1)–(f4), (V1)–(V4) and (LM) and let b = EV0 . For any
ρ∗ > 0 and δ > 0 there exists ε0 = ε0(ρ∗, δ) > 0 such that for ε ∈ (0, ε0], Iε(u) has

a critical point u in N (ε)
ρ∗ ∩ [Tε ≤ κε] satisfying Iε(u) ∈ [b − δ, b + δ].

Proof of Proposition 7.2 Let ω0(x) be a least energy solution corresponding to b =
EV0 . We choose s0 ∈ (0, 1

2 ) satisfying (7.1) and set γ0ε(s, ξ) : [1− s0, 1+ s0]×� →
H1(RN ) by

γ0ε(s, ξ)(x) = ω0

(
x − ξ/ε

s

)

.
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We note that

Iε(γ0ε(s, ξ)) = 1

2

∥
∥
∥∇

(
ω0

( x

s

))∥
∥
∥
2

2
+ 1

2

∫

RN
V (εx + ξ)ω0

( x

s

)2 − 1

2
D

(
ω0

( x

s

))

→ L
(
ξ, ω0

( x

s

))
= LV0

(
ω0

( x

s

))
− 1

2
(V0 − V (ξ))

∥
∥
∥ω0

( x

s

)∥
∥
∥
2

2

as ε → 0 uniformly in (s, ξ) ∈ [1 − s0, 1 + s0] × �.
Thus there exists δ > 0 such that

max
(s,ξ)∈[1−s0,1+s0]×�

L
(
ξ, ω0

( x

s

))
≤ b,

max
(s,ξ)∈∂([1−s0,1+s0]×�)

L
(
ξ, ω0

( x

s

))
≤ b − 2δ.

Moreover for any δ ∈ (0, δ) we have for sufficiently small ε > 0

max
(s,ξ)∈[1−s0,1+s0]×�

Iε(γ0ε(s, ξ)) ≤ b + δ,

max
(s,ξ)∈∂([1−s0,1+s0]×�)

Iε(γ0ε(s, ξ)) ≤ b − δ.

We also note that γ0ε(s, ξ) ∈ [Tε ≤ κε] for all (s, ξ) ∈ [1 − s0, 1 + s0] × �. We
define Fε : A(ε)

ρ∗∗ → R × R
N by

Fε(u) = (PV0(u), εβ(u)).

Arguing as in the proof of Proposition 7.1, we can prove Proposition 7.2. ��

7.3 End of the Proof of Theorem 1.2

Finally we derive our Theorem 1.2 from Propositions 7.1 and 7.2.

End of the proof of Theorem 1.2 Let V0 be the critical value given by (MP) or (LM).
Since V (x) ∈ C N (RN ,R), by the Sard Theorem there exists a sequence (αn)∞n=1 ⊂
(0,∞) such that

(1) α1 > α2 > · · · > αn > αn+1 > · · · ;
(2) αn → 0 as n → ∞;
(3) V0 − αn is a regular value of V (x).

We set

�n = {x ∈ � : V (x) > V0 − αn}.

We can see that (V1)–(V4) and (MP) or (LM) hold in �n for large n (See Sect. 4.1).
Thus we can apply the arguments in previous sections in �n and, replacing � with
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�n , we prove Propositions 7.1 or 7.2 for �n . That is, for any ρ∗ > 0 and δ > 0 there
exists ε0(n, ρ∗, δ) > 0 such that for ε ∈ (0, ε0(n, ρ∗, δ)], Iε(u) has a critical point uε

in N (ε)
n,ρ∗ with Iε(uε) ∈ [b − δ, b + δ]. Precisely,

K̂b,n = {(ξ, ω) : ξ ∈ �n, DL(ξ, ω) = 0, L(ξ, ω) = b, ‖ω‖L2(Q) = max
n∈ZN

‖ω‖L2(n+Q)}
= {(ξ, ω) : ξ ∈ �, V (ξ) ∈ [V0 − αn, V0], ∇V (ξ) = 0, L ′

V (ξ)(ω) = 0,

LV (ξ)(ω) = b, ‖ω‖L2(Q) = max
n∈ZN

‖ω‖L2(n+Q)},

K̂ (ε)
b,n =

{

ω

(

x − ξ

ε

)

: (ξ, ω) ∈ K̂b,n

}

,

N (ε)
n,ρ∗ = {u ∈ H1(RN ) : distε(u, K̂ (ε)

b,n) < ρ∗}.

We note that K̂b,n shrinks to the following K̂b,∞ as n → ∞:

K̂b,∞ = {(ξ, ω) : ξ ∈ �, V (ξ) = V0, DL(ξ, ω) = 0, L(ξ, ω) = b,

‖ω‖L2(Q) = max
n∈ZN

‖ω‖L2(n+Q)}
= CritV0 × {ω ∈ H1(RN ) : L ′

V0
(ω) = 0, LV0(ω) = b,

‖ω‖L2(Q) = max
n∈ZN

‖ω‖L2(n+Q)}.

That is, distRN ×H1(RN )(K̂b,n, K̂b,∞) → 0 as n → ∞. Nowwe can complete the proof
of Theorem 1.2. We choose sequences (ρ∗n)∞n=1, (δn)

∞
n=1 with ρ∗n → 0, δn → 0 as

n → ∞. Then there exists εn = ε0(n, ρ∗n, δn) > 0 such that for ε ∈ (0, εn], Iε(u)

has a critical point unε ∈ N (ε)
n,ρ∗n with Iε(unε) ∈ [b − δn, b + δn]. We may assume

ε1 > ε2 > · · · > εn > εn+1 > · · · and εn → 0 as n → ∞. Finally we set

uε(x) = unε(x) for ε ∈ (εn−1, εn].

We observe that (uε)ε∈(0,ε1] is the desired family of solutions. ��
Proof of Theorem 1.3 Under the assumptions (V1’) and (V1”), V (x) has finitely many
critical points in �. So there exists α > 0 such that there are no critical values of V |�
in [V0 − α, V0 + α]\{V0}. Replacing � with

{x ∈ � : V (x) ∈ (V0 − α, V0 + α)}

and arguing as in Sect. 4.1, we may assume that x ∈ � and ∇V (x) = 0 imply
V (x) = V0. Thus for b = EV0

K̂b = CritV0 × Cb,

where Cb is a set of least energy solutions of LV0(u) = 0, that is,

Cb = {ω ∈ H1(RN ) : LV0(ω) = b, L ′
V0

(ω) = 0, ‖ω‖L2(Q) = max
n∈NN

‖ω‖L2(n+Q)}.
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Thus N (ε)
ρ is a ρ-neighborhood of

K̂ (ε)
b =

{

ω

(

x − ξ

ε

)

: ξ ∈ CritV0 , ω ∈ Cb

}

.

By the arguments in the proof of Propositions 7.1 and 7.2, for any ρ∗ and δ > 0 there
exists ε0 = ε0(ρ∗, δ) > 0 such that for ε ∈ (0, ε0], Iε(u) has a critical point in N (ε)

ρ∗ .
Taking sequences (ρ∗n)∞n=1, (δn)∞n=1 with ρ∗n → 0, δn → 0 and arguing as in the

proof of Theorem 1.2, we complete the proof of Theorem 1.3. ��

7.4 Potential V(x) of Class C1

In previous sections we consider the situation where the set of critical values {V (x) :
x ∈ �, ∇V (x) = 0} is of measure 0, which is ensured by Sard Theorem for V (x) ∈
C N (RN ,R). In this sectionwe assume just V (x) ∈ C1(RN ,R). Then the set of critical
values may not be of measure 0.

We have the following weaker result.

Theorem 7.3 Assume (f1)–(f4) and (V1’), (V2), (V3). Moreover suppose (LM) or (MP).
Moreover assume (V4) in Sect.4.1 for a constant V0 appeared in (LM) or (MP). Then
(1.1) has a family of solutions, which concentrates in �. That is, there exists ε0 > 0 and
a family (uε)ε∈(0,ε0] of solutions of (1.2)with the following property: for any sequence
(ε j )

∞
j=1 ⊂ (0, ε0] with ε j → 0 after extracting a subsequence — still we denote it by

ε j — there exist (x j )
∞
j=1 ⊂ R

N , x0 ∈ � and a non-trivial solution ω0(x) ∈ H1(RN )

of the limit problem −�u + V (x0)u = (Iα ∗ F(u))F ′(u) in R
N such that

ε j x j → x0, u j (x + x j ) → ω0(x) strongly in H1(RN ) as j → ∞.

Moreover, (x0, ω0) satisfies for b = EV0

∇V (x0) = 0, V (x0) ≤ V0, ∂L(x0, ω0) = 0, L(x0, ω0) = b.

In Theorem 7.3, the concentration point x0 is a critical point of V (x) in � but its
critical level may be lower than V0 in general.

Proof of Theorem 7.3 For V0 > 0 given in (LM) or (MP) and let b = EV0 > 0 be a
least energy level for the limit functional LV0(u). As in the previous sections, we set

K̂b = {(ξ, ω) ∈ � × H1(RN ) : DL(ξ, ω) = 0, L(ξ, ω) = b,

‖ω‖L2(Q) = max
n∈ZN

‖ω‖L2(n+Q)}.

Then, following the proofs of Proposition 7.1 and 7.2, let 0 < ρ∗ < ρ∗∗ be the numbers
satisfying (4.20). For any δ > 0 there exists ε0(ρ∗, δ) > 0 such that for ε ∈ (0, ε0],
Iε(u) has a critical point u in N (ε)

ρ∗ satisfying Iε(u) ∈ [b − δ, b + δ].
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Choosing sequences (ρ∗n)∞n=1, (δn)
∞
n=1 with ρ∗n → 0, δn → 0, we complete the

proof of Theorem 7.3. ��

8 Concentration at a Local Minimum

In Sects. 1, 2, 3, 4, 5, and 6, we develop a deformation theory under our new version of

Palais-Smale condition (see Proposition 4.5), i.e., if (ε j )
∞
j=1 ⊂ (0, 1] and u j ∈ A

(ε j )
ρ3

satisfy as j → ∞

ε j → 0, Iε j (u j ) → b, I ′
ε j

(u j ) → 0 in (H1(RN ))∗, (8.1)

Hε j (u j ) → 0, (8.2)

then

distε j (u j , K̂
(ε j )

b ) → 0. (8.3)

And our deformation flow η(t, u) is constructed through a deformation in the aug-
mented spaceRN × H1(RN ).When a stronger version of Palais-Smale condition, i.e.,
if (8.3) holds under (8.1) (without (8.2)), we can construct the desired flow directly as
a deformation in H1(RN ).

We note that for the functional Iε(u) corresponding to the nonlinear Choquard
equation (1.2) under the conditions (f1)–(f4), (V2) and

(Ṽ1) V ∈ C(RN ,R);

(L̃M) There exists a bounded connected open set � ⊂ R
N such that

V0 ≡ inf
x∈�

V (x) < inf
x∈∂�

V (x),

the compactness (8.3) holds under (8.1). This fact is essentially given in Proposition
4.1 in [23].

In fact, if (8.3) holds under (8.1) and if

I ′
ε(u) = 0 for all u ∈ N (ε)

ρ∗ with Iε(u) ∈ [b − δ0, b + δ0],

then for any ρ∗, ρ∗∗ > 0 with (4.20) and for ε > 0 small there exist constants νε > 0
depending on ε and ν0 > 0 independent of ε and a locally Lipschitz continuous vector
field

W (u) : A(ε)
ρ∗∗ → H1(RN )

such that

(i) For Tε(u) : Ŝb,ρε → R defined (5.1),

T ′
ε(u)W (u) > 0 if Tε(u) ≥ κε.
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(ii) For u ∈ A(ε)
ρ∗∗ with Iε(u) ∈ [b − δ0, b + δ0]

I ′
ε(u)W (u) ≥ νε.

(iii) For u ∈ A(ε)
ρ∗∗ \ N (ε)

ρ∗ with Iε(u) ∈ [b − δ0, b + δ0]
I ′
ε(u)W (u) ≥ ν0.

(iv) There exist C , C ′ > 0 such that for M1(u), M2(u) given in (5.3)

‖M ′
1(u)W (u)‖H1 < C,

∂u(‖M2(u)‖2H1)W (u) > −C ′.

Here we use the arguments in Sects. 5 and 6. We obtain a deformation flow η(t, u) :
[0, 1] × A(ε)

ρ∗∗ → A(ε)
ρ∗∗ with the properties (i)–(v) in Proposition 6.1 as a solution of

ODE in H1(RN ):

dη

dt
= −ϕ1(Iε(η))ϕ2(η)W (η), η(0, u) = u,

where ϕ1(s) : R → [0, 1], ϕ2(u) : H1(RN ) → [0, 1] are suitable cut-off functions.
Thus we have the following result.

Theorem 8.1 (Theorem 1.1 of [23]). Assume the conditions (f1)–(f4) and (Ṽ1), (V2),
(L̃M). Then (1.1) has at least one positive solution concentrating in �.

Remark 8.2 In [23], we study the existence of solutions of (1.1) concentrating in a
potential well �, i.e., under (L̃M) using 2 flows; one flow is the standard gradient
flow corresponding to −I ′

ε(u) and the other is the tail minimizing flow. We can give a
simplified proof to the result in [23] using our deformation flow η(t, u), which keeps
the size Tε(u) of tail of functions small and we can show the existence of critical
points using just one flow η(t, u). We note that in [23] we also study the multiplicity
of solutions using cup length of the critical set K = {x ∈ � : V (x) = V0}.
Remark 8.3 Our deformation argument can be applied to various singular perturba-
tion problems. For example, it is applicable to the following nonlinear Schrödinger
equations:

− ε2�u + V (x)u = g(u) in RN , (8.4)

where N ≥ 2, g(ξ) ∈ C(R,R).
We can use our new deformation argument to improve results in [8] slightly and

to simplify the proofs and arguments (c.f. [26]). In [8], Byeon and the second author
studied (8.4) under the assumption g(ξ) ∈ C1(R,R), which is used to solve elliptic
problems (1.6) outside of a large ball uniquely. By virtue of our new deformation flow
obtained in Proposition 6.1, which keeps the H1-energy small outside a ball, we don’t
need to solve the elliptic problems outside of a ball uniquely and we can relax the
regularity assumption on g to the class C0.
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