
Noname manuscript No.
(will be inserted by the editor)

An Exploratory Study on Confusion in Code Reviews

Felipe Ebert · Fernando Castor · Nicole
Novielli · Alexander Serebrenik

Received: date / Accepted: date

Abstract Context: Code review is a widely used technique of systematic ex-
amination of code changes which aims at increasing software quality. Code
reviews provide several benefits for the project, including finding bugs, knowl-
edge transfer, and assurance of adherence to project guidelines and coding
style. However, code reviews have a major cost: they can delay the merge of
the code change, and thus, impact the overall development process. This cost
can be even higher if developers do not understand something, i.e., when de-
velopers face confusion during the code review. Objective: This paper studies
the phenomenon of confusion in code reviews. Understanding confusion is an
important starting point to help reducing the cost of code reviews and enhance
the effectiveness of this practice, and hence, improve the development process.
Method: We conducted two complementary studies. The first one aimed at
identifying the reasons for confusion in code reviews, its impacts, and the cop-
ing strategies developers use to deal with it. Then, we surveyed developers to
identify the most frequently experienced reasons for confusion, and conducted
a systematic mapping study of solutions proposed for those reasons in the
scientific literature. Results: From the first study, we build a framework with
30 reasons for confusion, 14 impacts, and 13 coping strategies. The results of

Felipe Ebert
Eindhoven University of Technology, The Netherlands
E-mail: f.ebert@tue.nl

Fernando Castor
Federal University of Pernambuco, Brazil
E-mail: castor@cin.ufpe.br

Nicole Novielli
University of Bari, Italy
E-mail: nicole.novielli@uniba.it

Alexander Serebrenik
Eindhoven University of Technology, The Netherlands
E-mail: a.serebrenik@tue.nl

Nicole Novielli
Empirical Software Engineering (2021) 26: 12 https://doi.org/10.1007/s10664-020-09909-5

2 Felipe Ebert et al.

the systematic mapping study shows 38 articles addressing the most frequent
reasons for confusion. From those articles, we found 19 different solutions for
confusion proposed in the literature, and nine impacts were established re-
lated to the most frequent reasons for confusion. Conclusions: Based on the
solutions identified in the mapping study, or the lack of them, we propose an
actionable guideline for developers on how to cope with confusion during code
reviews; we also make several suggestions how tool builders can support code
reviews. Additionally, we propose a research agenda for researchers studying
code reviews.

Keywords Code reviews · Confusion · Card sorting · Survey · Systematic
mapping study

1 Introduction

Code review is a technique of systematic examination of code changes. It
can be conducted before or after the change is integrated into the main code
repository (Rigby et al., 2008). Code changes submitted by a developer are
reviewed by one or more of their peers. This is why code reviews are also
known as peer reviews or peer code reviews. For the sake of simplicity, we use
the term code review in this study.

Code review is an important practice for software quality assurance (Tao
and Kim, 2015; Bavota and Russo, 2015; Boehm and Basili, 2001; Mäntylä and
Lassenius, 2009; Barnett et al., 2015). Several open source projects, e.g., An-
droid1, Qt2, and Eclipse3, as well as companies, e.g., Microsoft4, Ora-
cle5, and Samsung6, adopt code review as part of their development process.
Likewise, studies have also shown that code review can provide multiple ben-
efits in the development process (Bacchelli and Bird, 2013; Pangsakulyanont
et al., 2014; Morales et al., 2015; Cohen et al., 2006; McIntosh et al., 2015).

The main goals of code reviews are to find bugs in the code change, and
verify whether the project guidelines and coding style are being respected (Fa-
gan, 1976; Wiegers, 2002; Wang et al., 2015; Bacchelli and Bird, 2013; Bosu
et al., 2017). Furthermore, code reviews help to improve the quality of the
code on production, find better ways to implement the change, spread the
knowledge about the project, and create awareness of the changes in the code
base (Bacchelli and Bird, 2013; Pangsakulyanont et al., 2014; Morales et al.,
2015; Cohen et al., 2006; McIntosh et al., 2015).

Despite such benefits, code reviews can incur costs on software development
projects, as they can delay the merge of a code change in the repository and,

1 https://android-review.googlesource.com
2 https://codereview.qt-project.org
3 https://git.eclipse.org/r
4 https://queue.acm.org/detail.cfm?id=3292420
5 https://smartbear.com/product/collaborator/overview
6 https://www.perforce.com/case-studies/vcs/samsung

An Exploratory Study on Confusion in Code Reviews 3

consequently, slow down the overall development process (Pascarella et al.,
2018; Greiler, 2016). The time invested by a developer in reviewing code is
non-negligible (Tao and Kim, 2015) and may take 10%–15% of the overall
time invested in software development activities (Bosu et al., 2017; Cohen
et al., 2006). Furthermore, performing a code review is not a trivial task per
se. In fact, understanding the code change and its context is one of the major
issues reviewers face during code reviews (Bacchelli and Bird, 2013; Cohen
et al., 2006; Tao et al., 2012; Sutherland and Venolia, 2009; LaToza et al.,
2006). The merge of a code change in the repository can be further delayed
when reviewers experience difficulties in understanding the change, i.e., when
they are not certain of its correctness, run-time behaviour and impact on
the system (Cohen et al., 2006; Bacchelli and Bird, 2013; Tao et al., 2012;
Sutherland and Venolia, 2009; LaToza et al., 2006).

We believe that confusion, i.e., any situation where a person is uncertain
about something or unable to understand something (Ebert et al., 2017), can
affect the artifacts that developers produce and the way they work, and hence,
impact the development process (Cohen et al., 2006; Bacchelli and Bird, 2013;
Tao et al., 2012; Sutherland and Venolia, 2009; LaToza et al., 2006). For in-
stance, on the one hand, the code review might take longer than it should, the
quality of the review might decrease, more discussions might take place, or
even the code change might be blindly accepted or summarily rejected (Ebert
et al., 2019). On the other hand, confusion might lead reviewers and authors
to reach an improved solution (Ebert et al., 2019). As such, we believe that a
proper understanding of the phenomenon of confusion in code reviews is a nec-
essary starting point towards reducing the cost of code reviews and enhancing
the effectiveness of this practice, thereby improving the overall development
process.

In this paper, we extend our previous study of the reasons and impact of
confusion in code reviews, as well as the strategies developers adopt to deal
with confusion (Ebert et al., 2019). In that study, we built a framework for
confusion in code reviews including reasons, impacts, and the coping strategies
adopted by developers. To do so, we employed a concurrent triangulation strat-
egy combining a developer’s survey and the analysis of code review comments.
Our findings show that there are 30 different reasons for confusion, and that
the three most prevalent ones relate to the missing rationale for the change,
discussion of non-functional aspects of the solution, and the lack of familiarity
with the existing project code. Furthermore, we observed that confusion can
impact code reviews in 14 different ways. The most popular impacts are delay-
ing, decrease of review quality, and the need for additional discussions. Finally,
our framework includes 13 coping strategies developers reported to adopt when
dealing with confusion in code reviews. The most prevalent strategies include
requesting more information, improving own familiarity with the existing code,
and engaging in off-line discussions.

The evidence provided by our previous study has several implications for
both tool builders and researchers (Ebert et al., 2019). However, two factors
motivated us to follow up on that study. The first factor is the relatively

4 Felipe Ebert et al.

low number of coping strategies for confusion, (13), when compared to the
number of reasons for confusion (30). This stems in part from the adopted
methodology, since most of the discussion in the code reviews we examined
revolves around the reasons for confusion (Ebert et al., 2019). The second
factor is related to the contextualization of confusion in the literature, i.e., we
want to discover to what extent different aspects of confusion are addressed
in scientific studies. Code reviews has been extensively addressed by recent
literature, and hence, we intend to identify suggested solutions for confusion
in code reviews and, most importantly, summarize existing gaps, i.e., where
future research should focus on. To contextualize our findings, we performed a
systematic mapping study in order to identify mitigation strategies designed
to address confusion, as well negative impacts of these factors going beyond
confusion. The strategies might be beneficial for developers facing confusion
and complement the currently employed coping mechanisms. To address these
issues, we decided to conduct a deeper investigation of the solutions proposed
and impacts identified in the scientific literature.

This paper extends our previous study by reporting on a systematic map-
ping study of the most frequently experienced reasons for confusion and solu-
tions proposed for them. To identify the most frequently experienced reasons
for confusion, we conduct a survey with 62 developers. Based on their an-
swers, we selected the five most frequent reasons for confusion and performed
a systematic mapping study of the Software Engineering literature to assess to
what extent does the scientific literature discuss these reasons and identify so-
lutions proposed in the literature for each one of them. Based on the identified
solutions or the lack thereof, we propose an actionable guideline for develop-
ers on how to deal with confusion in code reviews. Furthermore, we propose a
research agenda for researchers interested in studying how to provide support
for developers experiencing confusion.

The remainder of this paper is organized as follows. Section 2 presents
the background related to this study. In Section 3, we present our first study
aimed at understanding the reasons for confusion, its impacts, and the strate-
gies developers used to deal with it. In Section 4, we present the preliminary
study we conducted in order to identify the most frequent reasons for confu-
sion according to developers. Next, in Section 5, we present the second study
we conducted in order to investigate the solutions and impacts of the most
frequent reasons for confusion proposed by literature. The discussion is pre-
sented in Section 6. The related work is discussed in Section 7. Finally, the
conclusions and future work are presented in Section 8.

2 Background

In this section, we provide a background of code reviews in Section 2.1. Then,
we present our definition of confusion in Section 2.2.

An Exploratory Study on Confusion in Code Reviews 5

2.1 Code Reviews

Formal code review was first defined by Fagan in 1976 as software inspec-
tions (Fagan, 1976). Software inspection, the most formal type of code re-
view (Rigby and Bird, 2013), is a structured process for reviewing source code
that relies on rigid roles and steps, with the single goal of finding defects (Fa-
gan, 1976). Notwithstanding the initial success of Fagan’s inspections with
both the industry and research, its formality brings several drawbacks. In-
deed, the inspections are very time consuming because the meetings need to
be organised and the participants need to do some preparation. Another dis-
advantage is the chance of turning the inspection meeting into a political or
social disaster (Wiegers, 2002). Moreover, the formality of the inspection does
not fit well with agile development methods (Martin, 2003).

As a result, a more lightweight code review process with a better fit for
test-driven and iterative development processes started to become more popu-
lar. Formalising this practice, Bacchelli and Bird (2013) defined the lightweight
code review process as a “modern code review”, which is a review that is infor-
mal (as opposed to Fagan’s inspections), supported by code review tools, and
occurs regularly in practice. We also use the term code reviews as a synonym
for modern code reviews in this study.

The code review process is an iterative process and can be instantiated in
different ways. As input, a code review receives the original code change and
the outcome is the reviewed change, which might be either accepted or rejected.
The developer who wrote the code change is the author, and might also be
responsible for submitting the change for review. The reviewer is responsible
for assuring that the code change is functionally correct, meets the performance
requirements, and follows the quality standards of the project.

In general, there are two types of workflow for code reviews, depending on
when the review is conducted in the development process:

– Review-then-commit (pre-commit): the code is reviewed before it is
integrated into the main repository of the Version Control System (VCS) (Tichy,
1985);

– Commit-then-review (post-commit): the code is reviewed after it is
integrated into the main repository of the VCS (Tichy, 1985);

Since the most common type of code review is review-then-commit (Rigby,
2011), it will be the focus of this thesis. We present an example of the code
review process within this approach in Figure 1.

It starts with the author submitting the code change (1). The reviewers
are notified and start reviewing the code change (2). They should check and
verify it based on several quality criteria, such as correctness, adherence to
the project guidelines, and conventions. If the reviewers believe that the code
change does not fulfil those requirements, they ask the author to fix it, or to
submit a new one (3). Thus, the author needs to work on the code change and
submit it again (1) for review (2). When the reviewers are satisfied that the
code change is suitable, it is integrated into the code repository (4). However,

6 Felipe Ebert et al.

Code
Repository

Reviewers Author
Code change

Approved

Reviewers’ Comments

Abandoned

Rejected

1 2

3

4

5

Fig. 1 The code review process.

if reviewers’ quality criteria are not achieved by the code change, it is rejected,
and the code review is abandoned (5). There might be several iterations before
the reviewers decide to end the process (1 to 3), where the code change might
be accepted (i.e., it is merged into the main repository), or rejected (i.e., it is
discarded).

2.2 Confusion Definition

There are several studies which tried to model the affective disequilibrium
related to confusion, uncertainty, and lack of knowledge, especially from the
Psychology field. In this section, we discuss some of the most relevant studies
on those topics.

The Merriam-Webster dictionary7 provides the following definitions of the
word confusion: (1) “a situation in which people are uncertain about what
to do or are unable to understand something clearly” and (2) “the feeling that
you have when you do not understand what is happening, what is expected,
etc.”, i.e., confusion is both the situation and a sentiment.

Armour (2000) suggested categorising ignorance into layers based on what
we know and what we do not know. He defined the Five Orders of Ignorance:

7 www.merriam-webster.com/dictionary/confusion

An Exploratory Study on Confusion in Code Reviews 7

– 0th Order Ignorance - Lack of Ignorance: when we know something,
i.e., it is knowledge;

– 1st Order Ignorance - Lack of Knowledge: when we do not know
something, but we can easily identify that fact;

– 2nd Order Ignorance - Lack of Awareness: when we do not know
that we do not know something, i.e., when we are unaware of that fact;

– 3rd Order Ignorance - Lack of Process: when we do not know a
suitably efficient way to find out we do not know that we do not know
something;

– 4th Order Ignorance - Meta Ignorance: when we do not know about
the Five Orders of Ignorance.

D’Mello and Graesser (2014) focused on confusion and how it impacts
learning and problem solving. Similarly to the second definition of Merriam-
Webster, D’Mello and Graesser consider confusion to be an affective state.
According to the authors, confusion happens when an individual detects new
or discrepant information, e.g., there is a conflict with prior knowledge. Jordan
et al. (2012) investigated the frequency of uncertainty expressions in discus-
sions of students using a computer-mediated environment. The authors intro-
duced their own definition of uncertainty and provided a coding scheme to
describe and model it. Acknowledging that defining uncertainty was not sim-
ple, Jordan et al. (2012) define uncertainty as: “situations when individuals
have a sense of wondering, doubt, or unease about how the future will unfold,
what the present means, or how to interpret the past”.

We believe that lack of knowledge and confusion, which can also encompass
doubt and uncertainty, are strictly linked (e.g., confusion could be determined
as lack of knowledge) and are both actionable (D’Mello and Graesser, 2014).
Thus, we define confusion broadly as:

“a situation where a person is uncertain about or unable to understand
something.”

3 Understanding Confusion in Code Reviews (Ebert et al., 2019)

In this section, we summarize our previous study aimed at a framework for
confusion in code reviews. Specifically, we investigated what are reasons for
confusion (RQ1), its impacts (RQ2), and the strategies developers are using
to deal with it (RQ3) (Ebert et al., 2019). To the best of our knowledge, our
study on is the first one conducting a deep investigating of the phenomenon of
confusion in code reviews. In Section 4 we build upon this study to get further
insights in frequently experienced reasons for confusion.

We describe the methodology in Section 3.1. The results are presented in
Section 3.2. Finally, we discuss the threats to validity in Section 3.3.

8 Felipe Ebert et al.

3.1 Methodology

To strengthen the validity of the study we follow the recommendation of East-
erbrook et al. (2008) and opt for a concurrent triangulation strategy, which is
a combination of different research methods. Firstly, we conduct a survey to
understand “what developers say” (Section 3.1.1). Then, we analyze the code
review comments to understand “what developers do” (Section 3.1.2). Finally,
we compare and contrast the findings of the two analyses (Section 3.1.3):
indeed, Easterbrook et al. (2008) observe that “what people say” could be
different from “what people do”.

3.1.1 Surveys

In the SE literature, a theory is missing to describe what are the reasons for
confusion in code reviews, the impact of confusion on the development process,
and what coping strategies developers employ to deal with confusion. As such,
to answer our RQs we opt for grounded theory building (Glaser and Strauss,
1967; Stol et al., 2016). We implement an iterative approach. During each
iteration, we administer a survey to developers involved in code reviews. We
ask developers that already answered the survey during one of the previous
iterations to refrain from answering it again.

Survey Design. The survey was designed according to the established best
practices (Groves et al., 2009; Kitchenham and Pfleeger, 2008; Singer and
Vinson, 2002; Steele and Aronson, 1995): prior to asking questions, we explain
the purpose of the survey and our research goals, disclose the sponsors of our
research and ensure that the information provided will be treated in a confi-
dential way. In addition, we inform the participants about the estimated time
required to complete the survey, and obtain their informed consent. The invi-
tation message includes a personalized salutation, a description of the criteria
we used for participant selection, as well as the explanation that there would
not be any follow up if the respondent did not reply. This last decision also
implies that we did not send reminders.

The survey starts with the definition of confusion as provided in Section 2,
followed by a question requiring the participants to confirm that they under-
stood the definition. Next, we ask two series of questions: the questions were
essentially the same but were first asked from the perspective of the author of
the code change, and then from the perspective of the reviewer of the change
(cf. Table 1). Each series starts with the Likert-scale question about the fre-
quency of experienced confusion: never, rarely, sometimes, often, and always.
To ensure that the respondents interpret these terms consistently we provide
quantitative estimates: 0%, 25%, 50%, 75% and 100% of the time. For respon-
dents who answered anything different from never, we pose four open-ended
questions (to get the as rich as possible data (Foddy, 1993)): i) what are the
reasons for confusion, ii) whether they can provide an example of a practi-
cal situation where confusion occurred during a code review (RQ1), iii) what

An Exploratory Study on Confusion in Code Reviews 9

are the impacts of confusion (RQ2), and iv) how do they cope with confusion
(RQ3). Finally, we ask the participants to provide information about their ex-
perience as developers and frequency of reviewing and authoring code changes.
We ask these question at the end of the survey rather than at the beginning
to reduce the stereotype threat (Steele and Aronson, 1995). Prior to deploying
the survey, we discussed it with other software engineering researchers and
clarified it when necessary.

Participants. The target population consists of developers who participated
in code reviews either as a change author or as a reviewer. During the first
iteration we target Android developers who participated in code reviews on
Gerrit: 4,645 of their email addresses provided by Ebert et al. (2017) allow
us to contact the developers by email and evaluate the response rate. In the
subsequent iterations, the survey was announced on Facebook and Twit-
ter. As the exact number of developers participating in code reviews reached
cannot be known we do not report the response rate for the follow-up surveys.

Data analysis. To analyze the survey data, we use a card sorting approach (Zim-
mermann, 2016). We analyze the survey responses from the first iteration using
open card sorting (Zimmermann, 2016), i.e., topics were not predefined but
emerged and evolved during the sorting process. After each subsequent survey
iteration, we use the results of the previous iteration to perform closed card
sorting (Zimmermann, 2016), i.e., we sort the answers of each survey iteration
according to the topics emerging from the previous one. If the closed card sort-
ing succeeds, this means that the saturation has been reached and sampling
more data is not likely to lead to the emergence of new topics (Finfgeld-
Connett, 2014; Lenberg et al., 2017). In such a case the iterations stop. If,
however, during the closed card sorting additional topics emerge, another it-
eration is required.

To facilitate analysis of the data we use axial coding (Kitchenham and
Pfleeger, 2008) to find the connections among the topics and group them into
dimensions. These dimensions emerge and evolve during the final phase of the
sorting process, and they represent a higher level of abstraction of the topics.

As we have multiple iterations and multiple surveys answered by different
groups of respondents, a priori it is not clear whether the respondents can be
seen as representing the same population. Indeed, it could have been the case
that, e.g., respondents of the second survey happened to be less inclined to ex-
perience confusion than the respondents of the third survey and the reasons of
their confusions are very different. This is why we first check similarity of the
groups of respondents in terms of their experience as developers and code re-
viewers, frequency of submitting changes to be reviewed and reviewing changes
as well as frequency of experiencing confusion. If the groups of respondents are
found to be similar, we can consider them as representing the same population
and merge the responses. If the groups of respondents are found to be differ-
ent, we treat the groups separately. To perform the similarity check we use
two statistical methods: i) analysis of similarities (ANOSIM) (Clarke, 1993),

10 Felipe Ebert et al.

Table 1 Survey questions. The questions marked “*” were only used in the first survey,
“+” —only in the second and third surveys.

Electronic Consent
0. Please select your choice below. Selecting the “yes” option below indicates that: i) you have

read and understood the above information, ii) you voluntarily agree to participate, and iii)
you are at least 18 years old. If you do not wish to participate in the research study, please
decline participation by selecting “No”.

Definition of Confusion
The remainder of this survey is dedicated to “confusion”. We do not make a distinction
between lack of knowledge, confusion, or uncertainty. For simplicity reasons, we use the
“confusion” to refer to all these terms.

1. By clicking “next” you declare that you understand the meaning of confusion on this survey.
Review-Then-Commit

2.+ Have you ever taken part in a “review-then-commit” type of code review (i.e., the code is
reviewed before it is integrated into the main repository), either in the role of author or
reviewer?

When reviewing code changes
3. Developers might feel confused or think that they do not understand the code they review.

How often did you feel this way when reviewing code changes?
4. What usually makes you confused when you are reviewing code changes? Please explain

which factors led you to be confused.
5. Please describe a change you have been reviewing that has confused you.
6. How does the confusion you experience as a reviewer impact code review?
7. What do you usually do to overcome confusion in code reviews? Please explain the actions

you take when you feel confused.

8.* When you do not understand a code change, do you usually express this in general comments
or in inline comments? Please explain why in the “other” field.

When authoring code changes
9. Developers who authored code changes might feel confused or think that they do not under-

stand something when their code is being reviewed. How often did you feel this way when
your code has been reviewed?

10. What usually makes you confused during the code review when you are the author of the
code changes? Please explain which factors led you to be confused.

11. Please describe a change you have been authoring that has confused you.
12. How does confusion you experience as the code change author impact the code review?
13. What do you usually do to overcome confusion in code reviews? Please explain the actions

you take when you feel confused.

14.*When you do not understand a code change, do you usually express this in general comments
or in inline comments? Please explain why in the “other” field.

Background
15. What is your experience as a developer?
16. What is your experience as a code reviewer?
17. How often do you submit code changes to be reviewed?
18. How often do you review code changes?

19.*Do you have the merge approval right (i.e., the permission to give +2) in Gerrit at least for
one software development project?

20.*Which option would best describe yourself?
I contribute to Android voluntarily.
I’m employed by a company other than Google and I contribute to Android as part of my
job.
I’m employed by Google and I contribute to Android as part of my job.
Other.

Results
21. Would you like to be informed about the outcome of this study and potential publications?

Please leave a contact email address.
22. Would you be willing to be interviewed afterwards?
23. Please add additional comments below.

which provides a way to test statistically if there is a significant difference be-
tween two or more groups of sampling units, and ii) permutational multivariate

An Exploratory Study on Confusion in Code Reviews 11

analysis of variance using distance matrices (PERMANOVA) (Anderson, 2001;
McArdle and Anderson, 2001).8

3.1.2 Analysis of Code Review Comments

To triangulate the survey findings for the RQs we perform an analysis of code
review comments. As a dataset we use the one provided by Ebert et al. (2017).
Similarly to the developers contacted during the first survey iteration, this
dataset pertains to Android. The code reviews of Android are supported by
Gerrit, which enables communication between developers during the process
by using general and inline comments. The former are posted in the code
review page itself, which presents the list of all general comments, while the
inline comments are included directly in the source code file. The dataset of
Ebert et al. comprises 307 code review comments manually labeled by the
researchers as confusing: 156 are general and 151 are inline comments.

Similarly to the analysis of the survey data, we use card sorting to extract
topics from the code review comments. We conduct an open card sorting of
the general comments to account for the possibility of divergent results, i.e.,
we did not want to use the results from the surveys because what developers
do often differs from what they think they do and the emergent codes might
a priori be different from those obtained when analyzing the survey data. To
confirm the topics emergent from the general comments we then perform a
closed card sorting on the inline comments.

3.1.3 Triangulating the Findings

Recall that the goal of concurrent triangulation is to corroborate the findings of
the study, increasing its validity. However, following Easterbrook et al. (2008)
we expect to see some differences between ‘what people say’ (survey) and ‘what
people do’ (code review comments). Hence, if the topics extracted from the
surveys and code review comments disagree, we conduct a new card sorting
round only on the cards associated with topics discovered on the basis of the
survey but not on the basis of the code review comments, or vice versa. In order
not to be influenced by the results of the previous card sorting, we perform
open card sorting and exclude the researchers who participated in the previous
card sorting rounds. Finally, in order to finalize the framework for confusion in
code reviews, we perform the consistency check within the topics and deduction
of more generic topics, as recommended by Zimmermann (2016), as well as a
consistency check across RQs (i.e., reasons, impacts, and coping strategies)
and emergent dimensions.

8 Both methods are available as functions in the R package vegan. ANOSIM has been im-
plemented by Jari Oksanen, with a help from Peter R. Minchin. ADONIS (PERMANOVA)
has been implemented by Martin Henry H. Stevens and adapted to vegan by Jari Oksanen.

12 Felipe Ebert et al.

3.2 Results

We discuss the application of the research method in practice (Section 3.2.1),
and analyze similarity between the responses received at each one of the survey
iterations (Section 3.2.2). Then, we present the demographics results from the
survey (Section 3.2.3), and discuss reasons for confusion (RQ1, Section 3.2.4),
its impact (RQ2, Section 3.2.5), and the strategies employed to cope with it
(RQ3, Section 3.2.6).

3.2.1 Implementation of Approach

The implementation of the approach designed in Section 3.1 is shown in Fig-
ure 2. Individuals involved in the card sorting are graduate students in com-
puter science or researchers.

First, following the iterative approach we have performed three iterations
since saturation has been reached. Among the 4,645 emails sent during the first
iteration, 880 emails have bounced; hence, 17 valid responses correspond to the
response rate 0.45%. Such response rate was unexpected9 and might have been
caused by presence of inactive members or one-time-contributors (Lee et al.,
2017). For the second and the third survey rounds, the number of responses
are 24 and 13 respectively; the response rate could not be computed.

The open card sorting of the first survey resulted in 52 topics related to the
reasons (25), impacts (14) and coping strategies for confusion (13). The closed
card sorting of the second survey resulted in three additional topics: two for
impacts and one for the coping strategies. Finally, the closed card sorting of the
third survey resulted in no new topics. The open card sorting on the general
comments resulted in 16 topics related only to the reasons for confusion, i.e.,
no topics related to the impacts and coping strategies appeared. Then, the
closed card sorting on the inline comments resulted in no new topics.

During the triangulation, we verified that what developers said about the
reasons for confusion (survey) has a little agreement with what developers did
in the code review comments. Only 6 topics were found both among the survey
answers and code review comments, 19 topics appeared only in the survey
and 10 topics—in the code review comments. Thus, we decided to conduct
another card sorting on the divergent 29 topics. This time, since it was an
open card sorting, from the cards belonging to divergent topics we identified
42 topics. As the last step, we finalized the framework and obtained a total
of 57 topics related to reasons (30), impacts (14), and coping strategies (13).
After finalizing the topics we observe that 70% (21/30) of them have cards
both from the surveys and from the review comments. Moreover, the shared
topics cover the lion’s share of the cards: 94.9% of the survey cards and 90.7%
of the code review comments’ cards.

9 The common response rates in Software Engineering range between 15% and
20% (Palomba et al., 2015; Vasilescu et al., 2015a,b; Qiu et al., 2019) and sometimes much
higher response rates are reported (Palomba et al., 2018).

An Exploratory Study on Confusion in Code Reviews 13

Surveys

Code Review
Comments

Card Sorting

17 valid
responses

1st Survey

24 valid
responses

2nd Survey

13 valid
responses

3rd Survey

• From: Nov 13, 2017
• Till: Dec 20, 2017
• Last response: Dec 8, 2017
• Response rate: 0.45%

• From: Dec 20, 2017
• Till: Jan 25, 2018
• Last response: Jan 16, 2018

• From: Mar 20, 2018
• Till: Apr 10, 2018
• Last response: Mar 22, 2018

156 General
Comments

151 Inline
Comments

52 topics

open

Felipe, Weslley, Tianyu

3 new
topics

closed

Felipe, Weslley, Tianyu

0 new
topics

closed

Felipe, Fernando

16 topics

open

Felipe, Weslley, Tianyu

0 new
topics

closed

Felipe, Weslley, Tianyu

• 25 reasons
• 14 impacts
• 13 coping strategies

• 25 reasons
• 16 impacts
• 14 coping strategies

• 25 reasons
• 16 impacts
• 14 coping strategies

• 16 reasons
• 0 impacts
• 0 coping strategies

• 16 reasons
• 0 impacts
• 0 coping strategies

Triangulation Card Sorting

42 topics

open

Fernando with Wellington,
Nicole with Alexander Reasons

19

10

6

• 30 reasons
• 14 impacts
• 13 coping strategies

Framework Finalization

Nicole and Alexander

• From: Oct, 2010
• Till: Nov, 2016

• From: Oct, 2010
• Till: Nov, 2016

Fig. 2 Implementation of the approach: three survey rounds, general and inline comments,
the triangulation, and finalization rounds (Ebert et al., 2019)

.

As explained above, using axial coding we identified the following dimen-
sions, common for answers to the three RQs: review process (18 topics): the
code review process, including issues that affect the review duration; artifact
(15 topics): the system prior to change, code change itself and its documenta-
tion or the system after change; developer (15 topics): topics regarding the
person implementing or reviewing the change; link (9 topics): the connection
between developers and artifacts, e.g., when a developer indicates that they
do not understand the code. Examples of topics of different dimensions can be
found in Sections 3.2.4, 3.2.5 and 3.2.6.

3.2.2 Analysis of Similarity of the Surveys’ Results

First, we verified the similarity of the second and third surveys. Since both were
published on Facebook and Twitter, we expect the values to be similar,
i.e., respondents to represent the same population. Using both ANOSIM (R =
−0.0171 and p-value = 0.542) and PERMANOVA (p-value = 0.975) we could
not observe statistically significant differences between the groups, i.e., the

14 Felipe Ebert et al.

answers can be grouped together. Then, we checked the similarity between
the answers to the first survey (Android developers) and the answers to
the second and the third surveys taken together. The results of the ANOSIM
analysis, R = 0.126 and p-value = 0.01, showed that the difference between the
groups is statistically significant. However, the low R means that the groups
are not so different (values closer to 1 mean more of a difference between
samples), i.e., the overlap between the surveys is quite high. This observation
is confirmed by the outcome of the PERMANOVA test: the p-value = 0.191 is
above the commonly used threshold of statistical significance (0.05). Based on
those results, we conclude that the respondents represent the same population
of developers and report the results of all three surveys together.

3.2.3 Demographics of the Survey Respondents

The respondents are experienced code reviewers, 80% (38 of 47 respondents
that answered questions about demographics) have more than two years of
experience reviewing code changes. The experience of our population as devel-
opers, i.e., authoring code changes, is even higher: 93% (44 respondents) have
been developing for more than two years. The number of years of experience
as developers is higher than the number of years of experience as reviewers:
this is expected because reviewing tasks are usually assigned only to more
experienced individuals (van Wesel et al., 2017). Respondents are active in
submitting changes for review, and even more active in reviewing changes:
almost 49% (23 developers) submit code reviews several times a week, while
for reviewing this percentages reaches 72% (34).

The frequencies with which code change authors and code reviewers expe-
rience confusion are summarized in Figure 3. On the one hand, when reviewing
code changes, about 41% (20) of the respondents feel confusion at least half
of the time, and only 10% (5) do not feel confusion. On the other hand, when
authoring code changes only 12% (6) of the respondents feel confusion at least
half of the time, and 35% (17) of the respondents do not feel confusion. Com-
paring the figures we conclude that confusion when reviewing is very common,
and that developers are more often confused when reviewing changes submit-
ted by others as opposed to when authoring the change themselves. We also
applied the χ2 test to check whether experience influences frequency of con-
fusion being experienced. The test was not able to detect differences between
more and less experienced developers in terms of frequency of confusion being
experienced as a developer, nor between more and less experienced reviewers
in terms of frequency of confusion being experienced as a reviewer (p ' 0.26
and 0.09, respectively).

3.2.4 RQ1. What Are the Reasons for Confusion in Code Reviews?

We found 30 reasons for confusion in code review (see Table 2). They are
spread over all the dimensions, with the artifact and review process being the
most prevalent.

An Exploratory Study on Confusion in Code Reviews 15

Fig. 3 Frequency of confusion for developers and reviewers.

There are seven reasons for confusion related to the code review process.
The most common is organization of work which comprises reasons such as
unclear commit message (e.g., “when the description of the pull request is not
clear”, R50), the status of the change (e.g., “ I’m unsure about the status of
your parallel move changes. Is this one ready to be reviewed? [...]”)10, or the
change addressing multiple issues (e.g., “change does more than one things”,
R31). The second and third reasons most cited are, respectively, confusion
about the tools, e.g., “I don’t know why the rebases are causing new CLs”,11,
and the need of the code change, e.g., “If I understand correctly, this change
might not be relevant any more”.12

The artifact dimension it is the largest group with 11 topics related to the
reasons for confusion. The most popular is the absence of the change ratio-
nale, e.g., “I do not fully understand why the code is being modified” (R20).
Discussion of the solution related to non-functional aspects of the artifact is
the second largest topic and it comprises reasons such as poor code readabil-
ity (e.g., “Poorly implemented code” (R43)), and performance (e.g., “is this
true? i can’t tell any difference in transfer speed with or without this patch. i
still get roughly these numbers from “adb sync” a -B build of bionic: [...]”).13

The third most frequent reason indicates that developers experience confusion
when unsure about the system behavior, e.g., “what is the difference between
this path (false == unresolved) and the unresolved path below. [...]”.14

Six reasons for confusion are related to the developer dimension. Disagree-
ment among the developers is the prevalent topic, e.g., “[...] If actual change
has a big difference from my expectation, I am confused.” (R11). The second

10 https://android-review.googlesource.com/c/132581
11 https://android-review.googlesource.com/c/71976
12 https://android-review.googlesource.com/c/33140
13 https://android-review.googlesource.com/c/91510
14 https://android-review.googlesource.com/c/83350

16 Felipe Ebert et al.

Table 2 The reasons, impacts and coping strategies developers use to deal with confusion;
in the parenthesis are the numbers of cards.

Reasons Impacts Coping strategies
30 topics (507) 14 topics (98) 13 topics (116)

Process
18 topics (120)

Organization of work (17) Delaying (31) Improved organization
Issue tracker, version control (7) Decreased review quality (11) of work (5)
Unnecessary change (6) Additional discussions (11) Delaying (2)
Not enough time (3) Blind approval (8) Assignment to
Dependency between changes (3) Review rejection (4) other reviewers (1)
Code ownership (2) Increased development effort (4) Blind approval (1)
Community norms (2) Assignment to

other reviewers (2)
Artifact

15 topics (300)
Missing rationale (66) Better solution (1) Small, clear changes (4)
Discussion of the solution: Incorrect solution (1) Improved documentation (4)

non-functional (49)
Unsure about system behavior (37)
Lack of documentation (29)
Discussion of the solution:

strategy (29)
Long, complex change (25)
Lack of context (19)
Discussion of the solution:

correctness (14)
Impact of change (11)
Irreproducible bug (6)
Lack of tests (5)

Developer
15 topics (124)

Disagreement (18) Decreased confidence (10) Information requests (36)
Communicative intention (9) Abandonment (6) Off-line discussions (12)
Language issues (3) Frustration (5) Providing or accepting
Propagation of confusion (3) Anger (2) suggestions (10)
Fatigue (1) Propagation of confusion (2) Disagreement resolution (6)
Noisy work environment (1)

Link
9 topics (177)

Lack of familiarity with Improved familiarity with
the existing code (47) the existing code (28)

Lack of programming skills (40) Testing the change (5)
Lack of understanding of Improved familiarity with

the problem (21) the technology (2)
the change (17)

Lack of familiarity with
the technology (14)

Lack of knowledge about
the development process (3)

most cited reason is the misunderstanding of the message’s intention, e.g.,
“Sometimes I don’t understand general meaning (need to read several times to
understand what person means)” (R13).

Six reasons are related to the link between the developer and the artifact.
The most popular one is the lack of familiarity with existing code, e.g., “Lack
of knowledge about the code that’s being modified.” (R37) followed by the lack
of programming skills, e.g., “sometimes I’m confused because missing some

An Exploratory Study on Confusion in Code Reviews 17

programming” (R13), and the lack of understanding of the problem, e.g., “I’m
embarrassed to admit it, but I still don’t understand this bug.”15

RQ1 Summary - Reasons for confusion: We found a total of 30 rea-
sons for confusion. The most prevalent are missing rationale, discussion
of the solution: non-functional, and lack of familiarity with existing code.
We observe that tools (code review, issue tracker, and version control) and
communication issues, such as disagreement or ambiguity in communica-
tive intentions, may also cause confusion during code reviews.

3.2.5 RQ2. What Are the Impacts of Confusion in Code Reviews?

The total number of topics related to the impacts of confusion is 14 (see
Table 2). They are related to the dimensions of the review process, artifact,
and developer. There was no topic related to the link between the developer
and the artifact.

We found seven impacts of confusion related to the code review process.
Delaying the merge decision is the most popular impact, e.g., “The review
takes longer than it should” (R46). The second and third most cited impact
are that confusion makes the code review quality decrease, e.g., “Well I can’t
give a high quality code review if I don’t understand what I am looking at” (R5),
and an increase in the number of messages exchanged during the discussion,
e.g., “Code reviews take longer as there’s additional back and forth” (R1).
One interesting impact of confusion is the blind approval of the code change
by the developer, even without understanding it, e.g., “Blindly approve the
change and hope your coworker knows what they’re doing (it is clearly the
worst; that’s how serious bugs end up in production)” (R16). Confusion may
also lead to developers to just reject a code change, e.g., “I’m definitely much
more likely to reject a ’confusing’ code review. Good code, in my experience,
is usually not confusing” (R36).

There are only two impacts of confusion related to the artifact itself. First,
the developer may find a better solution because of the confusion, e.g., “It has
not only bad impact but also good impact. Sometimes I can encounter a better
solution than my thought” (R11). Second, the code change might be approved
with bugs, as the reviewer is not be able to review it properly due confusion,
e.g., “Sometimes repeated code is committed or even a wrong functionality”
(R24). The incorrect solution impact is related to decrease review quality,
however, the perspective is of the code change containing a bug in production
rather than of the reviewing process.

Finally, there are four impacts of confusion related to the developer. The
most quoted impact is the decrease of self confidence, either by the author, e.g.,
“I can’t be confident my change is correct” (R38), or by the reviewer, e.g., “I
feel less confident about approving it” (R48). Another impact is the developer
giving up, abandoning a code change instead of accounting for the reviewer’s

15 https://android-review.googlesource.com/c/170280

18 Felipe Ebert et al.

comments, e.g., “other times I just give up” (R14), or leave the project, e.g.,
“dissociated myself a little from the codebase internally” (R14). We also found
emotions being triggered by confusion, such as anger (e.g., “It pissed me off ”,
R3) and frustration (e.g., “Cannot be an effective reviewer—can replace me
with a lemur”, R40). And finally, confusion can be contagious, e.g., “It often
causes confusion spreading to other reviewers” (R12).

RQ2 Summary - Impacts of confusion: We identified 14 different
impacts of confusion in code reviews. The most common are delaying,
decrease of review quality, and additional discussions. Some developers
blindly approve the code change, regardless the correctness of it; other
impacts include frustration, abandonment and decreased confidence.

3.2.6 RQ3. How Do Developers Cope with Confusion?

We found 13 topics describing the strategies developers use to deal with con-
fusion in code reviews. Four of them are related to the review process. The
most common is to improve the organization of work, such as making clearer
commit messages, e.g., “Leave comments on the files with the main changes”
(R50). It is followed by spending more time and delaying the code review, e.g.,
“I need to spend much more time” (R13). Assigning other reviewers is also a
strategy adopted by developer, e.g., “Sometimes I completely defer to other
reviewers” (R48). Interestingly, blind approval is also a strategy developers use
to cope with confusion, i.e., it is not just an impact, e.g., “assume the best,
(of the change)” (R34).

Two strategies are related to the artifact. Developers make the code change
smaller, e.g., “Also I ask large changes to be broken into smaller” (R31), and
clearer, e.g., “Try to make the actual code change clear” (R12). They also im-
prove the documentation by adding code comments, e.g., “A good description
in the commit message describing the bug and the method used to fix the bug
is also helpful for reviewers” (R5).

The dimension with the most quotes is related to the developers them-
selves. Requesting for information on the code review tool itself is the most
quoted among developers, e.g., “Put comment and ask submitter to explain
unclear points” (R15). Developers also take the discussions off-line, i.e., us-
ing other means to reach their peers, e.g., “schedule meetings” (R50) or “ask
in person” (R1). Providing and accepting suggestions is also mentioned as a
good way to cope with confusion. It includes strategies such as being open
minded to the comments of their peers, e.g., “Being open to critical review
comments” (R12), and providing polite criticism, e.g., “Trying to be ’a nice
person’. Gently criticizing the code” (R3). The use of criticism by developers
in code reviews was also found by Ebert et al. (2018), but their study focused
on the intention of questions in code reviews. Disagreement resolution is also
a good strategy to cope with confusion, e.g., “I try to explain the reasoning
behind the decisions/assumptions I made” (R31).

An Exploratory Study on Confusion in Code Reviews 19

Regarding the link between the developer and the artifact, there are three
strategies developers use to cope with confusion. Firstly, to study the code or
the documentation, e.g., “It forces me to dig deeper and learn more about the
code module to make sure that my understanding is correct (or wrong)” (R12),
and “Read requirements documentation” (R24). Secondly, to test the code
change, e.g., “play with the code” (R9). Finally, developers also use external
sources to improve their knowledge about the technology, e.g., “Sometimes
further research on the web [...]” (R25).

RQ3 Summary - Coping strategies: We have identified 13 coping
strategies. Common strategies include information requests, improved fa-
miliarity with the existing code, and off-line discussions.

3.3 Threats to Validity

As any empirical study, our work is subject to several threats of validity. We
identified three kinds of threats to its validity: construct, internal, and external,
all of which are discussed below.

Construct validity is related to the relation between the concept being
studied and its operationalisation. In particular, it is related to the risk of re-
spondents misinterpreting the survey questions. To reduce this risk we included
our own definition of confusion and requested the respondents to confirm that
they understood it. For the same reason, we always anchored the frequency
questions and adhered to well-known survey design recommendations (Groves
et al., 2009; Kitchenham and Pfleeger, 2008; Singer and Vinson, 2002; Steele
and Aronson, 1995).

Internal validity pertains to inferring conclusions from the data collected.
The card sorting adopted in our work is inherently subjective because of the
necessity to interpret text. To reduce subjectivity every card sorting step has
been carried out by several researchers. Moreover, to assure the complete-
ness of the topics related to the reasons, impacts and confusion coping strate-
gies we conducted several survey iterations until the data saturation has been
achieved, and augmented the insights from the surveys with those from the
code review comments.

External validity is related to the generalizability of the conclusions be-
yond the specific context of the study. Our first survey targeted only a single
project: Android. However, the second and the third ones targeted a general
software developer population. Statistical analysis has not revealed any dif-
ferences between the respondents of the different surveys suggesting that the
answers obtained are likely to reflect opinions of the code review participants,
in general. To complement the surveys we consider 307 code review comments
from Gerrit. While the functionality of Gerrit is typical for most modern
code review tools, developers using more advanced code review tools do not
necessarily experience confusion in the same way. For instance, Collabora-

20 Felipe Ebert et al.

tor16 supports custom templates and checklists, that if properly configured
might require the change authors to indicate rationale of their change, reducing
the importance of “missing rationale” from Table 2.

4 Which Reasons for Confusion are Most Frequent? A Preliminary
Study

The long-term goal of our research is to help developers combat confusion in
code reviews. The main contribution of the study discussed in Section 3 is
a framework for confusion in code reviews, presented in Table 2, including
30 reasons, 14 impacts, and 13 coping strategies. The difference in numbers
between the reasons, on the one hand, and impacts and coping strategies, on
the other hand, suggested a gap between the way confusion is experienced and
the ways it impacts software development and is addressed. However, many
of these reasons for confusion have been extensively studied in the scientific
literature (Bacchelli and Bird, 2013; Tao et al., 2012; Kononenko et al., 2015).
Hence, we decided to complement the results in Table 2 by investigating the
solutions proposed by literature for the most frequent reasons for confusion,
as well as the impacts of those reasons. As a preliminary step towards this
goal, we survey developers to gauge the frequency with which the 30 reasons
for confusion from our framework typically occur in practice. The results of
the survey allow us to prioritize the reasons for confusion, i.e. to identify the
reasons for confusion to focus on in the literature review discussed in Section 5.

In the remainder of this section, we present the aforementioned survey,
involving 62 developers. More specifically, we aim at answering the following
research question:

– RQ4. Which reasons for confusion do developers perceive as occurring
most frequently?

We describe the methodology in Section 4.1. Section 4.2 presents the re-
sults, and threats to the validity are discussed in Section 4.3.

4.1 Methodology

We start by discussing the design of our survey (Section 4.1.1). Then, we
present the participants selection (Section 4.1.2). Finally, we discuss the data
analysis process we used (Section 4.1.3).

4.1.1 Survey Design

We designed a survey to ask code reviewers how often they experience each
of the 30 reasons for confusion included in our framework (see Table 2). We

16 https://smartbear.com/product/collaborator/overview/

An Exploratory Study on Confusion in Code Reviews 21

design the survey in line with established best practices (Groves et al., 2009;
Kitchenham and Pfleeger, 2008; Singer and Vinson, 2002; Steele and Aronson,
1995). We start by explaining the goal of this survey and our research goals,
disclose the sponsors of our research and inform that the information provided
will be treated in a confidential way. We also inform the respondents about
the estimated time to finish the survey, and then, obtain the respondents’
informed consent.

The questions of the survey are presented in Table 3. It starts with the same
definition of confusion used in the former study and presented in Section 2.
Then, we ask the respondents to confirm their understanding of this definition
(Q1). Next, Q2–Q29 ask how often do the respondents feel confused when
reviewing changes due to reasons for confusion from Table 2, i.e., we focused
on code reviewers. Frequency is measured on a Likert scale: not at all, less than
once a month, once a month, once a week, once a day, and more than once
a day. For the sake of readability, we split the 30 questions corresponding to
reasons for confusion from Table 2 according to the four dimensions defined in
Section 3.2: review process, artifact, developer, and link between the developer
and the artifact. We do not include two reasons for confusion in this survey
since they are only related to the code change author, and not the reviewer,
i.e., the reasons code ownership and community norms.

Before deploying the survey, we discussed it with other software engineering
researchers and clarified it when necessary: e.g., we replaced “unnecessary
change” by “a change which is unnecessary for the project”.

4.1.2 Participants

As the target population, we considered developers who reviewed code changes
in reviews. We sent the survey to two different groups. The first group com-
prises 33 developers who answered the survey from our first study (cf. Section
3.1.1) and indicated that they would like to be informed about the results of
that study. Within ten days after the first mail we sent a reminder. The email
message included a personalized salutation, a brief discussion of the results of
our first study (Ebert et al., 2019), an explanation about this new study, and
the link for the new survey. The second group consists of developers recruited
via social media: we published the survey on Facebook and Twitter and
asked developers to answer it. We left the survey open until we received no
more responses for two weeks (cf. surveys conducted by German et al. (2018)
and Kononenko et al. (2018)).

4.1.3 Data analysis

Similarly to the analysis of Section 3.1.1, we have a survey with two different
groups of respondents. Thus, a priori it is not clear if the responses can be
seen as representing the same population. We used the same statistical meth-
ods, ANOSIM (Clarke, 1993) and PERMANOVA (Anderson, 2001; McArdle
and Anderson, 2001), to perform the similarity check. Again, if the groups of

22 Felipe Ebert et al.

Table 3 Survey questions.

Electronic Consent
0. Please select your choice below. Selecting the “yes” option below indicates that: i) you

have read and understood the above information, ii) you voluntarily agree to participate,
and iii) you are at least 18 years old. If you do not wish to participate in the research
study, please decline participation by selecting “No”.

Definition of Confusion
The remainder of this survey is dedicated to “confusion”. We do not make a distinction
between lack of knowledge, confusion, or uncertainty. For simplicity reasons, we use the
“confusion” to refer to all these terms.

1. By clicking “next” you declare that you understand the meaning of confusion on this
survey.

Topics related to the code review process
How often do you feel confused when reviewing code changes due to:

2. Organization of work (e.g., an unclear commit message, the status of the code review,
a change addressing multiple issues)

3. Any development related tool (e.g., issue tracker, code review or version control system)
4. A change which is unnecessary for the project
5. Not having enough time
6. Dependency between different code changes

Topics related to the code change
How often do you feel confused when reviewing code changes due to:

7. Missing code change rationale (e.g., in the commit message, or in code comments)
8 Discussion of the solution related to non-functional aspects (e.g., maintainability, per-

formance, or poor code readability)
9. Lack of understanding of the system behavior
10.Lack of documentation
11.Disagreement with the strategy proposed in the code change
12.Long or complex code change
13.Lack of context
14.Lack of understanding of the correctness of the code change
15.The impact of code change
16.Lack of understanding of how to reproduce the bug
17.Lack of tests

Topics related to the developer
How often do you feel confused when reviewing code changes due to:

18.Disagreement with the peers
19.Lack of understanding of the intention of peers’ comments
20.Language issues in the communication (e.g., due to poor mastery of English)
21.Propagation of confusion (spreading confusion among the peers)
22.Fatigue
23.Noisy work environment

Topics related to the link between the developer and the artifact
How often do you feel confused when reviewing code changes due to:

24.Lack of familiarity with the existing code
25.Lack of programming skills
26.Lack of understanding of the problem
27.Lack of understanding of the code change
28.Lack of familiarity with the technology
29.Lack knowledge about the development or code review process

Results
30.Would you like to be informed about the outcome of this study and potential publica-

tions? Please leave a contact email address.
31.Please add additional comments below.

respondents can be said to be similar, we can consider them as representing
the same population, and then merge the responses. Otherwise, we would treat
the groups separately.

To further analyze the responses of our survey, we applied the Scott-Knott
Effect Size Difference (ESD) test (Tantithamthavorn et al., 2017) to group
the 28 reasons for confusion into statistically distinct ranks according to their
Likert scores in terms of frequency. Scott-Knott ESD is a variant of Scott-

An Exploratory Study on Confusion in Code Reviews 23

Knott test (Scott and Knott, 1974), in which there is no normality assumption
of the data. The Scott-Knott ESD test merges any two statistically distinct
groups that have a negligible effect size into one group. Scott-Knott ESD has
been successfully applied in the software engineering context (Calefato et al.,
2019; Catolino and Ferrucci, 2019; Tantithamthavorn et al., 2017).

4.2 Results

In this section, we present the results of our survey. We start by explaining
how we conducted the survey (Section 4.2.1). Then we present the results of
the similarity analysis (Section 4.2.2). Finally, we present the results of RQ4
using Scott-Knott ESD test (Tantithamthavorn et al., 2017) (Section 4.2.3).

4.2.1 Implementation of the Survey

The first emails were sent on the July 15th, 2019. Among the 33 emails sent
for the first group, four emails have bounced. We received 13 responses, i.e.,
a response rate of 44%. Seven developers answered the survey in the first day,
while the remaining six developers answered our survey after the reminder.
The survey was published on Facebook and Twitter on the same day we
sent the emails. The response rate could not be computed for this group. We
closed the survey after two weeks with no new response in August 21st, i.e.,
the last response we received was on August 7th. We received 50 responses
from the social media but one respondent did not indicate their consent, i.e.,
we have obtained 49 valid responses.

4.2.2 Analysis of Similarity of the Surveys’ Results

The results of the similarity check with ANOSIM, R = −0.06928 and p-value
= 0.792, did not show any statistically significant differences between the two
groups. The results for the PERMANOVA method, p-value = 0.506, also did
not show any statistically significant differences. Based on those results, we
conclude that the two groups of respondents represent the same population of
developers, and subsequently we merged their responses and report the results
pertaining to the combined group. Hence, we have a total of 62 valid responses
considered in our analysis.

4.2.3 RQ4. Which reasons for confusion do developers perceive as occurring
most frequently?

The results of the frequency of reasons for confusion are presented in Table 4.
Since our goal is to define the most frequent reasons for confusion, we need a
fair measure to order them. One possibility is to consider as more frequent the
reasons that more developers classified as “More than once a day”, normalized
by the overall number of classifications for each reason. A similar approach has

24 Felipe Ebert et al.

been employed by previous work (Begel and Zimmermann, 2014). However,
in our case, every reason has been classified the same number of times, unlike
previous work. Furthermore, we do not think that a reason classified just once
as “More than once a day” but not as “Once a day” is really more frequent
than one that has not been classified as “More than once a day” but received,
e.g., ten classifications as “Once a day”.

Thus, we used the Scott-Knott Effect Size Difference (ESD) test (Tan-
tithamthavorn et al., 2017) to group reasons with similar frequencies. Table 4
shows the 28 reasons for confusion organized into seven different groups. The
first group contains the most frequent five reasons for confusion. Additionally,
Table 4 also shows the mean and median Likert scores for the 28 reasons for
confusion in terms of frequency, and their respective dimensions.

We can see that the most frequent reasons for confusion are either re-
lated to the artifact (i.e., the code change itself) or to the review process.
They are: long or complex code change, organization of work (e.g., an unclear
commit message, the status of the code review, a change addressing multi-
ple issues), dependency between different code changes, lack of documentation,
and missing code change rationale. The least frequent reasons for confusion
accordingly to developers are related to developers themselves and to the link
between developer and artifact: propagation of confusion, language issues in
the communication, lack of programming skills, and lack of knowledge about
the development or code review process.

We conjecture that the most frequent reasons for confusion are top ranked
because they are related to processing a large amount of information which is
spread across different places. For example, long or complex code change can be
related to many different files (or many places in the same file); organization
of work can refer to the same code change addressing multiple issues; and
dependency between different code changes is related to different changes. As
for the least frequent reasons for confusion, we conjecture that they are related
to self admission of confusion by developers themselves as they pertain to the
dimensions related to the developer (and the link between developers and
the artifact), such as lack of knowledge about the development or code review
process, lack of programming skills, language issues in the communication, and
propagation of confusion.

RQ4 Summary - Most frequent reasons for confusion: The most
frequent reasons for confusion experienced by developers are related to
the artifact and the review process. According to the rank based on the
developers’ answer, the top five reasons are: long or complex code change,
organization of work, dependency between different code changes, lack of
documentation, and missing code change rationale. The least frequent rea-
sons for confusion are related to the developer and the link between the
developer and the artifact.

An Exploratory Study on Confusion in Code Reviews 25

GroupReason for Confusion Mean Median Dimension
1 Long or complex code change 2.40 2 Artifact

Organization of work 2.33 2 Review Process
Dependency between different code
changes

2.24 2 Review Process

Lack of documentation 2.20 2 Artifact
Missing code change rationale 2.19 2 Artifact

2 Lack of tests 2.14 2 Artifact
Lack of familiarity with the existing code 2.11 2 Link
Lack of understanding of the system be-
havior

2.08 2 Artifact

Not having enough time 2.03 2 Review Process
Disagreement with the strategy proposed
in the code change

2.01 2 Artifact

The impact of code change 2.00 2 Artifact
Lack of understanding of the correctness
of the code change

1.96 2 Artifact

3 Lack of context 1.93 2 Artifact
Discussion of the solution related to non-
functional aspects

1.83 2 Artifact

Lack of understanding of the code change 1.82 2 Link
Fatigue 1.80 2 Developer
Lack of understanding of the intention of
peers’ comments

1.77 2 Developer

Lack of understanding of the problem 1.77 2 Link
4 Lack of understanding of how to repro-

duce the bug
1.64 1 Artifact

Disagreement with the peers 1.61 1 Developer
A change which is unnecessary for the
project

1.59 2 Review Process

5 Noisy work environment 1.41 1 Developer
Lack of familiarity with the technology 1.38 1 Link
Any development related tool 1.22 1 Review Process

6 Propagation of confusion 1.08 1 Developer
Language issues in the communication 1.06 0.5 Developer
Lack of programming skills 0.96 1 Link

7 Lack knowledge about the development
or code review process

0.79 0 Link

Table 4 The 28 reasons for confusion ranked according to the Scott-Knott Effect Size
Difference test in terms of frequency, and the mean and median Likert scores.

4.3 Threats to Validity

Similarly to our first study (see Section 3), this survey is subject to three kind
of threats of validity:

Internal validity relates to how conclusions are inferred from the data
analyzed. This threat in our survey relates to how developers recollect past
events, i.e., when and how they feel confused in code reviews. We acknowledge
that the frequency of confusion might also depend on how often the survey
respondents perform code review activities (e.g., on a daily basis, weekly, and
so on). However, we believe that there is no reason for assuming that some

26 Felipe Ebert et al.

reasons for confusion might be remembered more easily than others, which
mitigate such a threat.

Construct validity relates the concept being studied and its operational-
isation, i.e., the degree to which we actually measure what we intend to. One
threat to the validity of this study is that survey respondents can misinter-
pret the questions. We followed the same approach presented in Section 3.3 to
reduce this threat. Specifically, we presented our definition of confusion and
requested the respondents to confirm whether they understood it. Addition-
ally, we designed our survey based on well-known recommendations (Groves
et al., 2009; Kitchenham and Pfleeger, 2008; Singer and Vinson, 2002; Steele
and Aronson, 1995). Another threat to construct validity pertains to the mea-
sure we employed to rank the reasons for confusion in terms of their fre-
quency. In order to reduce such threat, we used a specific test, Scott-Knott
ESD test (Tantithamthavorn et al., 2017), for measuring, comparing, and clus-
tering the frequency of the responses for the reasons for confusion. One last
threat to construct validity is the use of a survey itself, since it relies on devel-
opers’ perceptions. Our reason for adopting this approach is the possibility to
scale it up, since we can gather information about all the reasons for confusion
described in Section 3.2.4 from many developers.

External validity is related to the generalizability of the conclusions
of the study. The first group of population of our survey targeted Android
developers. The second group targeted a more general software developer pop-
ulation. Thus, we used statistical analysis to verify similarity between these
different populations. The results suggests no difference between the first and
the second group, indicating that the responses can be treated as one group.

Another external threat is related to volunteer bias, i.e., when the subjects
who volunteered to participate in a research project might differ in some ways
from the target population. We tried to reduce such a threat by recruiting
participants both by personal invitations and via social media. Furthermore,
since the likelihood of volunteer bias increases with the refusal increases, we
ensured anonymity and confidentiality of volunteers in order to try to increase
participation, and thus, to decrease volunteer bias.

5 A Systematic Mapping Study of Solutions and Impacts of
Confusion in Code Reviews

The main contribution of the preliminary study, as reported in the previous
section, is an ordered list of the most frequent reasons for confusion accord-
ing to developers (cf. Table 4). As mentioned before, many of the factors we
have identified as possible reasons for confusion have been studied in software
engineering literature (Bacchelli and Bird, 2013; Tao et al., 2012; Kononenko
et al., 2015). To contextualize our findings, we perform a literature review.
Based on the results of our survey presented in Section 4, we selected the top
five most frequently occurring reasons for confusion, as a starting point to
conduct a systematic mapping study of the scientific literature. Our goal is to

An Exploratory Study on Confusion in Code Reviews 27

identify their impacts on code reviews, beyond confusion, and the solutions
and mitigation strategies researchers have proposed to cope with them. Such
strategies might be beneficial for developers facing confusion and complement
the currently employed coping mechanisms.

As such, we designed and ran a systematic mapping study aims to answer
the following research questions:

– RQ5. What are the solutions proposed by researchers for the most frequent
reasons for confusion?

– RQ6. What relationships has previous research established between the
most frequent reasons for confusion and their impacts?

The results of this mapping study allow us to complement the framework
presented in Section 3 in three ways:

i. by identifying new coping strategies to address confusion;
ii. by establishing links between the reasons for confusion and the coping

strategies proposed by researchers and employed by developers, as identi-
fied by previous studies; and

iii. by determining how the reasons for confusion and impacts of confusion are
connected.

Section 5.1 describes the methodology of the systematic mapping study. In
Section 5.2, we present the results this study, and threats to the validity are
discussed in Section 5.3.

5.1 Methodology

The goal of the mapping study is to identify, classify, and understand what are
the solutions proposed by the research community to the most frequent reasons
for confusion in code reviews (RQ5), according to the survey described in
Section 4. Furthermore, we aim to identify the link between the most frequent
reasons of confusion and their impacts in the code review process (RQ6).
Based on the results of RQ4, we chose the most frequent reasons for confusion
on the mapping study. Then, we conduct the mapping study, following the
guidelines by Petersen et al. (2008, 2015).

To perform the systematic mapping study, we used Parsifal17, an online
tool supporting systematic literature reviews and mapping studies within the
context of software engineering. It provides support for all the phases of the
mapping studies: planning, conducting, and reporting the mapping.

Kitchenham and Charters (2007) developed PICO (Population, Interven-
tion, Comparison, and Outcomes): a guideline to identify keywords and for-
mulate search strings from research questions in systematic literature reviews.
The guidelines of Petersen et al. (2015) suggest that only P (population) and I
(intervention) should be used for systematic mapping studies. In our context,

17 https://parsif.al

28 Felipe Ebert et al.

the population are code reviewers, and the intervention are the most frequent
reasons for confusion. Due to the large number of reasons for confusion in our
framework (30), on the one hand, and the estimated effort required for the
mapping study, on the other hand, we consider the most frequent reasons,
i.e., the five topics from the first group in Table 4:

– Reason #1: Long or complex code change;
– Reason #2: Organization of work (e.g., an unclear commit message, the

status of the code review, or a change addressing multiple issues);
– Reason #3: Dependency between different code changes;
– Reason #4: Lack of documentation;
– Reason #5: Missing code change rationale (e.g., in the commit message,

or in code comments).

Since we have five different reasons for confusion, we created five different
search strings to simplify the process. Firstly, we defined the string related
to code reviews by including several synonyms to it: code review OR code in-
spection OR ((peer code review OR peer review) AND software. After a few
queries, we decided to add the term software as a way to exclude secondary
studies of different areas, since the string peer review is also related to sys-
tematic literature reviews. Then, we combined this string with terms related
to the specific reason for confusion, e.g., the reason missing code change ratio-
nale resulted in the search string ((lack OR missing OR omission OR absence
OR absent OR unclear OR “not clear” OR bad OR misunderstanding) AND
(documentation OR comment OR license)). We did this for each one of the
reasons. Tables 5 show all five search strings:

We search for articles in IEEE Xplore18, ACM DL19, Scopus20, and
SpringerLink21. All the searches were conducted on September 3, 2019. The
searches also include plural forms of the words. For the libraries ACM DL,
Scopus and SpringerLink, we could group all five search strings into one
to run it once. For the IEEE Xplore, there is a size limit of the string,
hence, we needed to run eight search strings (as the search string related
to the organization of work needed to be split into three). SpringerLink
allow us to filter the articles by discipline, e.g., only computer science related
articles. However, we decided not to do so because we wanted to include as
many scientific papers as possible during this step and could not trust the
disciplines as recorded by SpringerLink. Additionally, in the ACM DL query
we used the ACM DL Guide to Computing Literature option, which is the
“most comprehensive bibliographic database focused exclusively on the field of
computing” and it “includes all of the content from The ACM DL Full-Text
Collection along with citations, and links where possible, to all other publishers
in computing”. Table 6 shows the number of articles returned by each library.

18 https://ieeexplore.ieee.org
19 https://dl.acm.org
20 https://www.scopus.com
21 https://link.springer.com

An Exploratory Study on Confusion in Code Reviews 29

Long or complex code change
(“code review” OR “code inspection” OR ((“peer code review” OR “peer review”) AND
software))

#1 AND
((long OR large OR huge OR big OR complex OR decompose OR composite OR cumbersome
OR tricky OR intricate OR complicate OR tangled) AND (“code change” OR changeset OR
commit OR “patch set” OR patch OR “pull request”))

Organization of work (e.g., an unclear commit message, the status of the code review, or
a change addressing multiple issues
(“code review” OR “code inspection” OR ((“peer code review” OR “peer review”) AND
software))
AND
(

#2 ((lack OR missing OR omission OR absence OR absent OR unclear OR “not clear” OR bad
OR misunderstanding) AND (commit OR description OR details))
OR
((status OR rejected OR accepted OR parallel) AND (“code change” OR “changeset” OR
“commit” OR “patch set” OR “patch” OR “pull request”))
OR
((mixed OR tangential OR multiple OR composite) AND (“code change” OR “changeset”
OR “commit” OR “patch set” OR “patch” OR “pull request”))
)

Dependency between different code changes
(“code review” OR “code inspection” OR ((“peer code review” OR “peer review”) AND
software))

#3 AND
((dependency OR dependence OR upstream OR depends OR dependent OR parallel OR
concurrent) AND (“code change” OR “changeset” OR “commit” OR “patch set” OR “patch”
OR “pull request”))

Lack of documentation
(“code review” OR “code inspection” OR ((“peer code review” OR “peer review”) AND
software))

#4 AND
((lack OR missing OR omission OR absence OR absent OR unclear OR “not clear” OR bad
OR misunderstanding) AND (documentation OR comment OR license))

Missing code change rationale
(“code review” OR “code inspection” OR ((“peer code review” OR “peer review”) AND
software))

#5 AND
((lack OR missing OR omission OR absence OR absent OR unclear OR “not clear” OR bad
OR misunderstanding) AND (rationale OR reason OR goal OR purpose OR intention OR
motivation))

Table 5 The search strings for all the five reasons for confusion.

Digital library Search results
IEEE Xplore 100
ACM 149
Scopus 159
SpringerLink 19
Total 427

Table 6 Number of articles per library.

In all digital libraries, except for SpringerLink, the search was conducted
on the title, abstract, and keywords. Since SpringerLink does not allow one
to restrict the search to title, abstract and keywords only, we have initially
performed a full-text search. However, the full-text search retrieved 30,128 ar-
ticles. Thus, we created a script to query the html pages of each of the 30,128

30 Felipe Ebert et al.

articles to identify the title, abstract, and keywords. Then, we conducted an-
other search round on those fields only. This step resulted in 19 articles. Next,
the 427 identified articles were reviewed based on the following criteria:

– Inclusion criteria:
– Articles available in full-text;
– Articles discussing code reviews;
– Articles subject to peer-review.

– Exclusion criteria:
– Books, chapters, proceedings, and gray literature;
– Duplicate articles;
– Articles not in the field of software engineering;
– Articles not written in English;
– Secondary studies (e.g., systematic literature reviews).

The first author started with applying the exclusion criteria by removing
the duplicate articles with the aid of the Parsifal tool. In total, we found 155
duplicated articles. Next, the same author applied the remaining exclusion
criteria and removed 95 additional articles. To determine whether the article
belonged to the field of software engineering, was written in English, or con-
stituted a secondary study, titles and abstracts have been used. In order to
diminish research bias, the 95 articles excluded at this stage were reviewed and
confirmed by the remaining authors. Hence, by applying the exclusion criteria
250 (= 155 - 95) articles have been removed, leaving 177 (= 427 - 250). Then,
the first author verified the inclusion criteria on the remaining articles: 49 of
them did not pass the inclusion criteria, leaving 128 (= 177 - 49) articles for
the last step, the full-text reading. Once again, the remaining authors reviewed
and confirmed those excluded by the inclusion criteria. For the full-text read-
ing step, we looked for any of the five reasons for confusion being mentioned
in the articles. We split the 128 articles among the four authors in a way that
each paper was reviewed by two authors, i.e., each author reviewed 64 papers.
All the disagreements were resolved with online meetings between the authors.
Finally, a total of 38 articles have been identified as discussing at least one
of the five reasons. The number of included and excluded articles is shown in
Figure 4.

We developed a simple template to extract data from the articles, as shown
in Table 7. Each data extraction field has a data item and a value. The extrac-
tion was performed by each author during the selection phase. The items ID,
title, publication year, and venue were extracted automatically by the Parsifal
tool. The remaining items were extracted manually by the authors.

5.2 Results

In this section, we present the results of the our systematic mapping study,
which aimed at answering RQ5 and RQ6. Firstly, we provide some general
data about the articles selected by the mapping study (Section 5.2.1). Then

An Exploratory Study on Confusion in Code Reviews 31

Apply search on
databases

Results = 427

Apply inclusion /
exlcusion

Results = 128

Full-text reading Results = 38

Fig. 4 Number of included articles during the study selection process.

Data item Value
ID Bibtex ID
Title Article’s title
Publication year Calendar year
Venue Name of publication venue
Reasons for confusion Any of the five reasons for confusion
Solutions for the reasons Any solutions proposed by the article

for the reasons
Relationships between reasons and impacts Any relations the article established between

the reasons for confusion and their impacts?

Table 7 Data extraction form.

we discuss the results of RQ5 (Section 5.2.2) and RQ6 (Section 5.2.3), re-
spectively.

5.2.1 General Information about the Selected Articles

In Figure 5 we show the distribution of the 38 articles per year and kind of
venue, respectively. We can observe a trend showing an increase of studies
related to the most frequent reasons for confusion in code reviews (the size
and the color gradient of the circles increases with the number of articles).
The data for 2019 is incomplete because the study only considered articles
published until September.

We also see that the papers investigating the reasons for confusion cover
a broad spectrum of venues including journals (e.g., TSE, EMSE, and JSS),
magazines (e.g., IEEE Software), conferences (e.g., ICSE, SANER, MSR, FSE,
and ICSME), workshops (e.g., CSD, and MUD). Moreover, we see that these
reasons have been discussed at broad-spectrum venues targeting the entire
domain of software engineering (e.g., ICSE, APSEC, and FSE), focused events
targeting specific activities within software engineering such as maintenance
(e.g., ICSME, and SANER), and those dedicated to specific techniques used
to analyze software data (e.g., MSR, MUD, and PROMISE). Table 8 provides
the complete list of the 38 articles resulting of the mapping study, grouping
them by venue.

32 Felipe Ebert et al.

1 2 1

1

2

1

5

1

1

1

5

1

8

3

2

3

Workshop

Conference

Journal

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Fig. 5 Distribution of the articles per year according the kind of venue. The data for 2019
is incomplete.

Venue Articles
ICSE Gousios et al. (2014); Huang et al. (2018); Barnett et al. (2015)

Zhang et al. (2015); Sadowski et al. (2018); Rigby and Storey (2011)
SANER Zhang et al. (2012); Norikane et al. (2017); Baysal et al. (2013)
FSE Tao et al. (2012); Huang et al. (2018); Bosu et al. (2014)
APSEC Wang et al. (2017); An et al. (2018); Mohamed et al. (2018)
EMSE Baum et al. (2019); Baysal et al. (2016)
ICSME Kononenko et al. (2015); Baum et al. (2017)
MSR Tao and Kim (2015); Hellendoorn et al. (2015)
Others Baum et al. (2016); Luna Freire et al. (2018); MacLeod et al. (2018)

Thompson and Wagner (2017); Zanaty et al. (2018); Guo et al. (2019)
Norikane et al. (2018); Kovalenko et al. (2018); Begel and Vrzakova (2018)
Pascarella et al. (2019); Guo and Song (2017); Mishra and Sureka (2014)
Konopka and Navrat (2015); Izquierdo-Cortazar et al. (2017); Faragó (2015)
Yang et al. (2017); Gerede and Mazan (2018)

Table 8 Articles included in the literature study

5.2.2 RQ5. What are the solutions proposed by researchers for the most
frequent reasons for confusion in code reviews?

In Figure 6, we present the number of articles which address any of the five
reasons for confusion. The most common reason is long or complex code change
with almost all, i.e., a total of 31, articles discussing it. The remaining reasons
for confusion were addressed by a much lower number of articles: organiza-
tion of work with eight, lack of documentation with five, dependency between
different code changes with four, and missing code change rationale with 3.

In the remainder of this section, we discuss the solutions found in the
scientific literature for each one of the five reasons for confusion. It is worth
noting that not all articles presented solutions for the reasons for confusion
they address.

Long or complex code change: We found a total of five solutions for
this reason for confusion proposed by eight different articles in the literature:

1. Make the change short and simple: This is the most commonly repeated
advice to deal with code changes which are long or complex (Gousios et al.,

An Exploratory Study on Confusion in Code Reviews 33

lo
ng

−
co

m
pl

ex

or
ga

ni
za

tio
n−

of
−

w
or

k

la
ck

−
do

cu
m

en
ta

tio
n

de
pe

nd
en

cy
−

di
ffe

re
nt

−
ch

an
ge

s

m
is

si
ng

−
ra

tio
na

le

Reasons for Confusion

F
re

qu
en

cy

0

5

10

15

20

25

30

35
31

8
5 4 3

Fig. 6 Number of articles that mentioned each of reason for confusion.

2014; MacLeod et al., 2018; Sadowski et al., 2018). In fact, Gerrit, a
popular code review system, has an option “Show Change Sizes As Colored
Bars”: when this option is enabled, the size of the bar indicates the number
of changed lines.

2. Make use of salient files: Not all files affected by a complex change are
equally important and automatic identification of the most important files
might reduce the reviewers’ effort. Pascarella et al. (2019) propose an au-
tomatic just-in-time identification of defective files in a complex change,
while the work of Huang et al. (2018) introduces the notion of “salient
classes”, i.e., the most important class in and the main reason for the code
change, and builds a classification model to automatically identify them.

3. Improve code review tools: Code review tools could be expanded to provide
functionality that is already present in modern IDEs, such as jumping to
definition of an identifier, finding a reference, or exploring a caller/callee
tree (Tao et al., 2012).

4. Make the use of “super reviews”: To allocate the task of reviewing long or
complex code changes to the most experienced developers in the team (Kononenko
et al., 2015).

5. Ordering the changes within the code change: Another way to support
developers reviewing long or complex changes is to provide a suggested
order of the code change parts in order to reduce the overall cognitive
load (Baum et al., 2017).

Organization of work: This is the second most often discussed reason for
confusion in the literature. It is a broad topic that gathers different situations
related to how work is organized and conducted in a software development

34 Felipe Ebert et al.

project. Even though, we only found two solutions proposed by seven articles
in the literature for different aspects of organization of work that may lead to
confusion, described below:

1. Describe the code change: A reviewer may have a hard time attempting to
understand an unclear commit message. It may be unclear for a number
of reasons: because it is too short, because it does not include rationale,
or because it is poorly written. One of the confusing aspects of the orga-
nization of work is lack of clarity in the commit message. To address this
problem MacLeod et al. (2018) stress the importance of describing code
changes in an informative way, particularly emphasizing the motivation for
the change and the tests associated with it.

2. Decompose composite code changes: This is also a common solution pro-
posed for situations when confusion is related to how the code change
is organized, i.e., changes addressing multiple issues. Several tools have
been proposed to automatically split composite code changes in different
changes (Luna Freire et al., 2018; Guo et al., 2019; Barnett et al., 2015;
Guo and Song, 2017; Tao and Kim, 2015; Konopka and Navrat, 2015), e.g.,
a change that implements a new functionality and fixes a bug is split into
two changes, one for the new functionality and one for the bug fix.

Lack of documentation: From the five articles discussing this reason for
confusion, three of them proposed two solutions for it:

1. Document well the change: Developers should properly describe their changes
and ensure that all decisions made during the implementation and review
are also well-documented (MacLeod et al., 2018).

2. Support for the placement of code comments: Code review tools could be
expanded to assist developers by suggesting for appropriate locations to
place comments in the source code. Huang et al. (2018) proposes such ap-
proach to help developers to decide where to add code comments in the
source code by analyzing code context information. Gousios et al. (2014)
also suggested that code review tools should provide automated improve-
ment of documentation.

Dependency between different code changes: We identified three
solutions to address this reason for confusion on three articles, the third most
frequently mentioned in our survey:

1. Cluster related code changes: Clustering code changes which are related to
each other is a simple solution, however, developers need to be careful to
avoid submitting different issues in the same code change (MacLeod et al.,
2018). This is the trade-off between clustering changes and making them
composite.

2. Create tools to summarize similar code changes: Code review tools could
be expanded to find similar changes and detect potential mistakes (based
on previous changes) to support reviewers in understanding the impact
of related changes. Zhang et al. (2015) developed a tool that summarizes

An Exploratory Study on Confusion in Code Reviews 35

similar code changes and detects potential mistakes to support reviewers’
understanding of the impact of related changes.

3. Use commit-then-review: In order to avoid longer cycle times when there
are dependencies between different code changes so that one has to be
committed before another can be started, Baum et al. (2016) suggests to
use commit-the-review process, instead of review-then-commit.

Missing code change rationale: This reason for confusion was addressed
in three different papers. From those papers, only one proposes a solution for
the absence of rationale:

1. Provide the motivation for the code change: This is the most basic solution
to solve confusion due to missing rationale (MacLeod et al., 2018) in code
reviews.

RQ5 Summary - Solutions for most frequent reasons for confu-
sion: We found a total of 13 solutions to five different reasons for con-
fusion in code reviews in the literature. Several solutions are or can be
implemented in code review tools. The reasons with the most solutions
are long or complex code change (5), dependency between different code
changes (3), organization of work (2), and lack of documentation (2). We
found only one solution proposed in the literature for missing code change
rationale.

5.2.3 RQ6. What relationships has previous research established between the
reasons for confusion and their impacts?

The results of RQ6 are shown in Table 9. We can observe that long or com-
plex code change and organization of work have the largest number of impacts
described in the literature (4). For the remaining reasons for confusion (de-
pendency between different code changes, lack of documentation, and missing
code change rationale) we found they are related to only one impact each in
the literature. It is also worth noting that all impacts found in the literature
are related to the review process dimension of our framework, exception for
frustration, which is related to the developer.

We believe that the discrepancy between the number of relationships be-
tween reasons for confusion and their impacts can be explained by the number
of articles addressing the reasons in the literature: long or complex code change
and organization of work have the largest number of articles. Below we discuss
each of the impacts.

– Delaying of the code review, i.e., the merge decision, is one of the impacts
with the largest number of reasons related to it: long or complex code
change (Zhang et al., 2012; Gousios et al., 2014; Pascarella et al., 2019;
Baysal et al., 2016; Sadowski et al., 2018; Tao and Kim, 2015; Huang
et al., 2018; Baysal et al., 2013), organization of work (Guo and Song,

36 Felipe Ebert et al.

Reasons for confusion vs Impacts D
el

ay
in

g
D

ec
re

as
ed

re
vi

ew
qu

al
it
y

In
cr

ea
se

d
d
ev

el
op

m
en

t
eff

or
t

R
ev

ie
w

re
je

ct
io

n
F
ru

st
ra

ti
on

Long or complex change x x x x
Organization of work x x x x

Dependency between changes x
Lack of documentation x

Missing rationale x

Table 9 Relationships between reasons for confusion and their impacts.

2017), and dependency between different code changes (Baum et al., 2016;
Zhang et al., 2015; Izquierdo-Cortazar et al., 2017);

– Decreased review quality is related to the number of problems identified
in the code change during the review, i.e., the review is less effective and
potentially identifies less bugs or non-adherences to project guidelines. The
literature shows this is caused by long or complex code change (Baum et al.,
2019; Pascarella et al., 2019; Barnett et al., 2015; Kononenko et al., 2015;
Faragó, 2015; An et al., 2018; Bosu et al., 2014; Yang et al., 2017), and
organization of work (Barnett et al., 2015). Some studies also reported that
long or complex code change can cause the introduction of vulnerabilities
issues (Bosu et al., 2014; Yang et al., 2017);

– Increased development effort is related to long or complex code change
and organization of work, i.e., the reviewer will have to invest more effort to
finish the review (Mishra and Sureka, 2014; Huang et al., 2018; Baysal et al.,
2013) , the code change author will need to submit additional revisions if
their code change is long or complex (Baysal et al., 2013), as well as the
reviewer will not know from which part of the code change they should
begin the review in case of long or complex code changes (Huang et al.,
2018);

– Review rejection was related to three different reasons for confusion:
long or complex code change (Rigby and Storey, 2011; Norikane et al.,
2017; Gerede and Mazan, 2018; Hellendoorn et al., 2015), organization of
work (Tao and Kim, 2015), and lack of documentation (Norikane et al.,
2017);

– Frustration of the developer is reported in literature as related to missing
code change rationale (Sadowski et al., 2018).

An Exploratory Study on Confusion in Code Reviews 37

RQ6 Summary - Impacts of most frequent reasons for confusion:
We found that the literature has established the relationship between the
five reasons for confusion and five impacts. The reasons for confusion long
or complex code change and organization of work have the largest number
of related impacts. Four impacts are related to the review process, while
only one is related to the developer (frustration).

5.3 Threats to Validity

Following Petersen et al. (2015), the following types of validity should be
considered for systematic mapping studies: descriptive validity, theoretical va-
lidity, and generalizability.

Descriptive validity is related to the extent to which the observations
are described accurately and objectively. We designed a data collection form
to support the recording of data, and hence, reduce this threat. We used a
spreadsheet to record the data, from which some of the data points were
automatically extracted with the aid of the Parsifal tool.

Theoretical validity is related to the ability of the authors capture what
they intend to capture during the study. Researcher biases might appear during
the application of inclusion and exclusion criteria, the selection phase, and
extraction of data. Application of the inclusion and exclusion criteria was
conducted by the first author, and all excluded articles were reviewed by the
remaining authors. The articles remaining for the selection and extraction
data phases were split among the four authors in a way that each paper was
reviewed by two authors. The authors checked and resolved all disagreements
with online meetings. Furthermore, to reduce the bias of the data extraction
phase, all the extracted data was reported in a spreadsheet with pre-established
fields. The first author reviewed all the data extracted by the other authors
and, when necessary, the extracted data was discussed by two or more authors.

External validity concerns the generalizability of the study conclusions.
Our results may not apply for to systematic literature reviews as they are
different in their goals.

6 Discussion and Implications

The main contribution of this study is fourfold:

i. a improved framework for confusion in code reviews (Section 6.1),
ii. a guideline for developers on how to cope with confusion during code re-

views (Section 6.2),
iii. actionable implications for the tool builders (Section 6.3), and
iv. a research agenda for researchers to provide support for confusion (Sec-

tion 6.4).

38 Felipe Ebert et al.

6.1 Improved Framework for Confusion in Code Reviews

In this section, we revise the framework for confusion in code reviews presented
in Section 3 and augment it with the results of the systematic mapping study
(from Section 5). The results of the RQ6 did not show any new impact related
to the most frequent reasons for confusion. The five impacts we found in the
literature review are already described in the original framework. From those,
all except one are related to the review process. This result suggests literature
should also aim at investigating the remaining impacts identified in our first
study (Section 3).

Based on the results of the RQ5, we could improve our framework as we
found new solutions in the literature. From the 13 solutions for confusion we
identified in the literature, eight of them are new to our framework. The final
improved framework for confusion in code reviews is presented in Table 10 (the
new solutions are presented in italics font). We can observe that all new solu-
tions are either related to the review process or to the artifact itself, i.e., the
code change. We believe these results highlight the need for more research on
the other dimensions related to the developer and the link between developer
and artifact.

6.2 Implications for Developers

We found that long or complex code change is the most frequently experi-
enced reason for confusion in code reviews according to developers, followed
by a change addressing multiple issues. These results highlight that to avoid
confusion patch authors should aim for changes that are simpler, smaller, and
non-composite. Based on the preceding discussion we propose the following
guideline for developers on how to deal with confusion in code reviews.

1. Before submitting different commits, developers should check and cluster
related code changes to diminish the chances of creating dependency
between different code changes (MacLeod et al., 2018), which is the third
most frequent reason for confusion.

2. Long or complex code changes is the most frequent reason for confusion in
code reviews. Even though this is fairly obvious, developers should keep in
mind that making the changes short and simple will be beneficial for
reviewers and also for them, as it improves the chances of their changes
being accepted (Gousios et al., 2014; MacLeod et al., 2018; Sadowski et al.,
2018). One twist to this formula is that, if changes are simple and strongly
related, they should probably be committed together, to reduce reviewing
overhead.

3. Developers should also provide the motivation for the code changes,
as it is important to avoid confusion due to missing rationale (MacLeod
et al., 2018).

4. Developers should describe the code changes to avoid submitting un-
clear commit messages (MacLeod et al., 2018). This will ease the job of

An Exploratory Study on Confusion in Code Reviews 39

Table 10 The improved framework for confusion in code reviews.

Reasons Impacts Coping strategies
30 topics 14 topics 21 topics

Process
Organization of work Delaying Improved organization
Issue tracker, version control Decreased review quality of work
Unnecessary change Additional discussions Delaying
Not enough time Blind approval Assignment to
Dependency between changes Review rejection other reviewers
Code ownership Increased development effort Blind approval
Community norms Assignment to Improve code review tools

other reviewers Make the use of super reviews
Use commit-then-review
Cluster related code changes
Create tools to summarize

similar code changes
Artifact

Missing rationale Better solution Small, clear changes
Discussion of the solution: Incorrect solution Improved documentation

non-functional Make use of salient files
Unsure about system behavior Ordering of the changes
Lack of documentation within code change
Discussion of the solution: Support for the placement

strategy of code comments
Long, complex change
Lack of context
Discussion of the solution:

correctness
Impact of change
Irreproducible bug
Lack of tests

Developer
Disagreement Decreased confidence Information requests
Communicative intention Abandonment Off-line discussions
Language issues Frustration Providing or accepting
Propagation of confusion Anger suggestions
Fatigue Propagation of confusion Disagreement resolution
Noisy work environment

Link
Lack of familiarity with Improved familiarity with

the existing code the existing code
Lack of programming skills Testing the change
Lack of understanding of Improved familiarity with

the problem the technology
the change

Lack of familiarity with
the technology

Lack of knowledge about
the development process

reviewers and avoid unnecessary, frustrating, and time consuming requests
for additional information.

We believe that our guidelines are complementary to the guidelines pro-
posed by Rigby et al. (2008) as our results derive from different developers
of different projects (Android and others) and add new specific instructions
on documentation. For instance, Rigby et al. (2008) described Apache code
reviews as: “(a) early, frequent reviews (b) of small, independent, complete
contributions (c) conducted asynchronously by a potentially large, but actually
small, group of self-selected experts (d) leading to an efficient and effective peer
review technique”. Thus, we can observe that their guideline on (b) relates to

40 Felipe Ebert et al.

two of our guidelines: making the changes short and simple and cluster
related code changes. While the remaining we can say are complementary
to each other.

6.3 Implications for Tool Builders

Code reviews are supported by tools such as Gerrit. Currently the only fea-
ture of Gerrit that we can relate to confusion reduction is flagging large code
changes. Indeed, long or complex code changes are among the most popular
reasons for confusion in our framework.

Several changes related to organization of work can also be addressed by
the tools supporting code reviews. For instance, Collaborator22 supports
custom templates and checklists that, if properly configured, might require the
change authors to indicate rationale of their change. Similarly, decomposition
of composite code changes (Luna Freire et al., 2018; Guo et al., 2019; Barnett
et al., 2015; Guo and Song, 2017; Tao and Kim, 2015; Konopka and Navrat,
2015) can be integrated in code review tools: e.g., we envision a bot checking
the pull request suggested by a developer, decomposing it when necessary
and submitting several pull requests on the developer’s behalf. If such an
intervention will prove not to be acceptable for developers, functionality of
the bot can be restricted to automatic identification of composite changes.
Another possibility for code review tools is to provide the code change parts
in a specific order to reduce the overall cognitive load of reviewers (Baum
et al., 2017). Finally, Upsource code review tool of JetBtrains is capable
of automatically recommending code reviewers for a given change (Kovalenko
et al., 2018). Similar techniques might be integrated in other code review tools.
On the same vein, different heuristics to find the best group of reviewers can
be integrated into these tools.

6.4 Implications for Researchers

The first item in the agenda for researchers is to invest more on the least
addressed reasons for confusion in code reviews: organization of work, depen-
dency between different changes, missing code change rationale, and lack of
documentation. These are all important reasons for confusion. For example,
in the study of Section 3, where we investigated real code reviews and also
obtained responses from developers, missing rationale was the most common
reason for confusion. Notwithstanding, it is rarely addressed in the scientific
literature. These four reasons are in the top five most frequent according to
developers. Researchers should aim at exploring more these topics related to
code reviews, e.g., by creating automatic approaches to extract the rationale
of the change based on code comments or on source code elements.

22 https://smartbear.com/product/collaborator/overview/

An Exploratory Study on Confusion in Code Reviews 41

One the one hand, our findings make it clear that developers should not
compose different issues (such as a bug fix and a refactoring) in the same
code change, i.e., decompose composite code changes (Luna Freire et al., 2018;
Guo et al., 2019; Barnett et al., 2015; Guo and Song, 2017; Tao and Kim,
2015; Konopka and Navrat, 2015), since long or composite changes are one
of the most frequent reasons for confusion. On the other hand, developers
should cluster related changes into a simple solution (MacLeod et al., 2018) to
avoid dependency between different code changes. This is not an easy trade-off
to balance. There has been much investigation into how to break composite
changes. However, to the best of our knowledge, there are no papers proposing
solutions to balance simple, related changes being clustered together and a
change addressing multiple issues being too complex to understand.

Since we found several studies focusing on decomposition of code changes
and only one about dependency between different code changes (MacLeod et al.,
2018), we believe more research is needed to help developers on clustering re-
lated changes. For instance, researchers can investigate approaches that ana-
lyze code changes before they are integrated and suggest combinations of re-
lated commits, thus freeing developers from having to commit multiple small,
strongly-connected changes in separate commits.

Another avenue for researchers we see is related to the solution making use
of salient files, which aims to solve long or complex code changes. We found
two articles (Huang et al., 2018; Pascarella et al., 2019) arguing that the use
of important files within the code change can help reviewers in the process of
conducting reviews by indicating where they should start and how to proceed
when reviewing long or complex code changes. In a similar vein, we envision
the use of the task context (LaToza et al., 2006) of the code change author.
This context consists of the set of changed files and also the files and methods
the author accessed during the implementation. This information elements
can be presented together with the file diffs to the reviewer. This approach
reduces the need for navigation by providing the reviewer with information
that is likely to be necessary to understand the code change.

7 Related Work

In this section, we discuss the related work. Studies related to code reviews
are presented in Section 7.1, while studies related to confusion are discussed
in Section 7.2.

7.1 Code Review

Code review has been the focus of a plethora of studies (Bavota and Russo,
2015; Bacchelli and Bird, 2013; Tao et al., 2012; Kononenko et al., 2015;
Hentschel et al., 2016; Mukadam et al., 2013; Hamasaki et al., 2013; Thong-
tanunam et al., 2014; Yang et al., 2016; van Wesel et al., 2017).

42 Felipe Ebert et al.

Bacchelli and Bird (2013) introduced the term modern code review which is
supported by tools, is informal, and which happens frequently. They explored
the motivations, challenges, and outcomes of code reviews by observing, in-
terviewing, and surveying software developers. Their study shows that finding
defects is not the only benefit of code reviews, knowledge transfer and team
awareness are also advantages coming from reviews. They also show that the
main challenge of code review is understanding the code change and its con-
text.

Tao et al. (2012) investigated how the understanding of code changes af-
fects the development process. They conducted surveys and follow-up emails
with software designers, testers, and software managers at Microsoft. They
shown that rationale is the most important information for understanding a
code change. However, respondents mentioned that code changes can be easily
understood if a good description is provided. They discovered that reviewers
could benefit more from the code-exploration features provided by common
IDEs (e.g., call hierarchy from Eclipse) when they are exploring the change
context and estimating its risk.

Bavota and Russo (2015) investigated how code reviews influence the chance
of inducing bug fixes, and the quality measured by code coupling, complexity,
and readability of the code changes. They showed that commits not reviewed
are twice as likely to introduce defects than reviewed commits. Furthermore,
the reviewed code changes have a substantially higher readability as compared
to unreviewed code changes.

Kononenko et al. (2015) investigate the quality of code reviews in an OSS
project by exploring the factors that might affect the reviews. They use the
SZZ algorithm to find code changes that introduce defects and then relate them
to the code review information. They show that 54% of the code changes that
went through the review process introduced defects into the system. Further-
more, personal metrics (reviewer experience and workload) and participation
metrics (number of reviewers) are associated with the quality of the code re-
view process. Another interesting result is that the technical properties of the
code change (the size, number of files changed, etc.) have a significant impact
on the chance of inducing defects in the system.

Pascarella et al. (2018) investigated, by analysing code review comments,
what information reviewers need to perform a proper code review. They anal-
ysed threads of comments which started from a reviewer’s question from a
total of 900 code reviews. Additionally, semi-structured interviews and one fo-
cus group with developers were conducted to understand the perceptions of the
code review needs from developers. They found seven high-level information
needs, such as the suitability of an alternative solution, the correct under-
standing of the code change, rationale, and the context of the code change.

Paixão and Maia (2019) conducted an empirical study to understand the
frequency of rebasing operations and their impacts in the code review process
by performing a large-scale investigation of more than 28,000 code reviews of
11 systems. They found that rebasing operations happens in about 75.35% of
code reviews, and from those, about 34.21% of rebasing operations tend to

An Exploratory Study on Confusion in Code Reviews 43

tamper with the reviewing process. The authors also propose a methodology
to handle rebasing operations in empirical studies that employ code review
data.

As for the work related to secondary studies, i.e., systematic literature re-
views and systematic mapping studies, we found two articles focused on code
reviews. Coelho et al. (2019) focused on refactoring-aware code reviews, in
which the reviewers are informed that code change being reviewed contains a
refactoring. They conducted a systematic mapping study in order to investi-
gate gather evidence of the studies related to refactoring-aware code reviews
in terms of actual support, research trends, and open research topics. Their
findings show a lack of proper support when reviewing code change with dif-
ferent types of refactorings and a need for more empirical investigation of the
effectiveness of the refactoring-aware solution for code reviews (both in open
source and industrial scenarios).

Schettino et al. (2019) conducted a systematic mapping study focusing on
code reviewer recommendation, with emphasis on application contexts, the
input data, and the empirical validations. They found that several researchers
try to validate their work with open source datasets, with GitHub being the
most used. Furthermore, the literature proposed the following data as input
for the recommendation systems: social relationships, revision expertize and
development. These input were evaluated with Top-k and review activeness
metrics.

7.2 Confusion

Confusion has been studied before, also in relation with complex cognitive
tasks (D’Mello and Graesser, 2014; D’Mello et al., 2014). Approaches to au-
tomatic identification of confusion have been recently developed, based on
natural language processing (Yang et al., 2015; Jean et al., 2016; Ebert et al.,
2017). Yang et al. (2015) used textual content of comments from a forum and
its clickstream data to automatically identify posts that express confusion.
Their model to identify confusion comprises questions, users’ click patterns,
and users’ linguistic features based on LIWC23 words. They tried to iden-
tify the reasons why users are confused by looking at the recent click behav-
ior. Jean et al. (2016) proposed an approach to detect uncertain expressions
based on the statistical analysis of syntactic and lexical features. Ebert et al.
(2017) assessed the feasibility of automatic recognition of confusion in code
review comments based on linguistic features. They assessed the performance
of several classifiers based on supervised training, using a gold standard of 800
comments manually labeled as indicating or not a developer’s confusion.

Confusion-related phenomena have been recently investigated in code re-
views. Uwano et al. (2006) proposed the use of eye tracking to characterise the
performance of developers performing code reviews. They developed a system

23 https://liwc.wpengine.com

44 Felipe Ebert et al.

which captures the source code line number the reviewer’s eye is looking at.
It is also able to record the transition from a line to another when the re-
viewer’s eyes move, as well as the time spent at each line. Their system was
used to perform an experiment with five students reviewing code changes. As
result, they identified a specific pattern in reviewer’s eyes: “scan”. This pat-
tern is characterised by the reviewer’s action of reading the entire code before
investigating in details each line. Furthermore, reviewers who did not spend
sufficient time for the scan tend to take more time for finding defects.

Ram et al. (2018) aimed to obtain an empirical understanding of what
makes a code change easier to review. They empirically defined reviewability
as how the code change is: i) explained (e.g., in the change description), ii)
properly sized and self-contained (e.g., small changes), and iii) aligned with the
coding style of the project. They researched academic literature papers, and
also blogs and white papers, interviewed professional developers, and evaluated
a tool to rate the reviewability of code changes. They found that reviewability
is affected by several factors, such as the change description, size, and coherent
commit history.

Barik et al. (2017) conducted an eye tracking study to understand how
developers use compiler error messages. They found that the difficulty expe-
rienced by developers while reading error messages is a significant predictor
of task correctness and it also increases the overall hardness of resolving a
compiler error

Gopstein et al. (2017) introduced the term atom of confusion which is
the smallest code pattern that can reliably cause confusion in a developer.
Through a controlled experiment with developers, they studied the prevalence
and significance of the atoms of confusion in real projects. They shown that the
15 known atoms of confusing occur millions of times in programs like the Linux
kernel and GCC, appearing on average once every 23 lines. They reported a
strong correlation between these confusing patterns and bug-fix commits, as
well as a tendency for confusing patterns to be eventually commented.

The work presented in this paper is complementary with respect to the ones
discussed so far. To the best of our knowledge, these two studies are the first
that aim at building a framework of what make developers confused during
code reviews, their impacts and what strategies do developers implement to
overcome confusion. Additionally, we conducted the first systematic mapping
study focused on the reasons for confusion in code reviews.

8 Conclusion

The omnipresence of code reviews calls for a careful attention for obstacles
and problems developers experience when reviewing source code or authoring
code being reviewed. In this paper, we describe two empirical studies that
we conducted to understand the reasons for confusion, its impacts, and the
strategies available to deal with it.

An Exploratory Study on Confusion in Code Reviews 45

We built a confusion framework with 30 reasons for confusion, 14 impacts,
and 13 coping strategies adopted by developers. To this aim, we used a con-
current triangulation strategy combining a developer’s survey and the content
analysis of code review comments in Gerrit. Furthermore, we surveyed devel-
opers and identified which ones of the 30 reasons for confusion are experienced
most frequently. We found that the five most frequent reasons for confusion
are: the presence of long or complex code change, poor organization of work, de-
pendency between different code changes, lack of documentation, missing code
change rationale, and lack of tests.

We conducted a systematic mapping study of the scientific literature, which
revealed 19 solutions to the most frequent reasons for confusion in code re-
views. Moreover, we found that the literature has established the relationship
between such reasons for confusion and nine impacts in our framework.

Based on our findings we formulated guidelines for developers on how to
deal with confusion, suggestions for tool builders on how to support the code
review, as well as an agenda for researchers interested in studying code re-
views.

References

An L, Khomh F, Mcintosh S, Castelluccio M (2018) Why did this re-
viewed code crash? an empirical study of mozilla firefox. In: 2018 25th
Asia-Pacific Software Engineering Conference (APSEC), pp 396–405, DOI
10.1109/APSEC.2018.00054

Anderson MJ (2001) A new method for non-parametric multivariate analysis
of variance. Austral Ecology 26(1):32–46, DOI 10.1111/j.1442-9993.2001.
01070.pp.x, URL https://onlinelibrary.wiley.com/doi/abs/10.1111/

j.1442-9993.2001.01070.pp.x

Armour PG (2000) The five orders of ignorance. Commun ACM 43(10):17–
20, DOI 10.1145/352183.352194, URL http://doi.acm.org/10.1145/

352183.352194

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern
code review. In: ICSE, IEEE, pp 712–721

Barik T, Smith J, Lubick K, Holmes E, Feng J, Murphy-Hill E, Parnin C (2017)
Do developers read compiler error messages? In: Proceedings of the 39th
International Conference on Software Engineering, IEEE Press, Piscataway,
NJ, USA, ICSE ’17, pp 575–585, DOI 10.1109/ICSE.2017.59, URL https:

//doi.org/10.1109/ICSE.2017.59

Barnett M, Bird C, Brunet J, Lahiri SK (2015) Helping developers help
themselves: Automatic decomposition of code review changesets. In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering,
vol 1, pp 134–144, DOI 10.1109/ICSE.2015.35

Baum T, Kortum F, Schneider K, Brack A, Schauder J (2016) Comparing pre
commit reviews and post commit reviews using process simulation. In: 2016

46 Felipe Ebert et al.

IEEE/ACM International Conference on Software and System Processes
(ICSSP), pp 26–35

Baum T, Schneider K, Bacchelli A (2017) On the optimal order of reading
source code changes for review. In: 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp 329–340, DOI 10.1109/
ICSME.2017.28

Baum T, Schneider K, Bacchelli A (2019) Associating working memory capac-
ity and code change ordering with code review performance. Empirical Soft-
ware Engineering 24(4):1762–1798, DOI 10.1007/s10664-018-9676-8, URL
https://doi.org/10.1007/s10664-018-9676-8

Bavota G, Russo B (2015) Four eyes are better than two: On the impact of
code reviews on software quality. In: ICSME, pp 81–90

Baysal O, Kononenko O, Holmes R, Godfrey MW (2013) The influence of
non-technical factors on code review. In: 2013 20th Working Conference
on Reverse Engineering (WCRE), pp 122–131, DOI 10.1109/WCRE.2013.
6671287

Baysal O, Kononenko O, Holmes R, Godfrey MW (2016) Investigating tech-
nical and non-technical factors influencing modern code review. Empirical
Software Engineering 21(3):932–959, DOI 10.1007/s10664-015-9366-8, URL
https://doi.org/10.1007/s10664-015-9366-8

Begel A, Vrzakova H (2018) Eye movements in code review. In: Proceedings
of the Workshop on Eye Movements in Programming, Association for Com-
puting Machinery, New York, NY, USA, EMIP ’18, DOI 10.1145/3216723.
3216727, URL https://doi.org/10.1145/3216723.3216727

Begel A, Zimmermann T (2014) Analyze this! 145 questions for data scientists
in software engineering. In: Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pp 12–23

Boehm B, Basili VR (2001) Top 10 list [software development]. Computer
34(1):135–137

Bosu A, Carver JC, Hafiz M, Hilley P, Janni D (2014) Identifying the char-
acteristics of vulnerable code changes: An empirical study. In: Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, Association for Computing Machinery, New
York, NY, USA, FSE 2014, p 257–268, DOI 10.1145/2635868.2635880, URL
https://doi.org/10.1145/2635868.2635880

Bosu A, Carver JC, Bird C, Orbeck J, Chockley C (2017) Process aspects and
social dynamics of contemporary code review: Insights from open source
development and industrial practice at microsoft. IEEE Transactions on
Software Engineering 43(1):56–75

Calefato F, Lanubile F, Novielli N (2019) An empirical assessment of best-
answer prediction models in technical q&a sites. Empirical Software En-
gineering 24(2):854–901, DOI 10.1007/s10664-018-9642-5, URL https://

doi.org/10.1007/s10664-018-9642-5

Catolino G, Ferrucci F (2019) An extensive evaluation of ensem-
ble techniques for software change prediction. Journal of Soft-
ware: Evolution and Process 31(9):e2156, DOI 10.1002/smr.2156,

An Exploratory Study on Confusion in Code Reviews 47

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2156,
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2156

Clarke KR (1993) Non-parametric multivariate analysis of changes in commu-
nity structure. Australian Journal of Ecology 18:117–143

Coelho F, Massoni T, LG Alves E (2019) Refactoring-aware code review: A
systematic mapping study. In: 2019 IEEE/ACM 3rd International Workshop
on Refactoring (IWoR), pp 63–66, DOI 10.1109/IWoR.2019.00019

Cohen J, Teleki S, Brown E (2006) Best Kept Secrets of Peer Code Review.
Smart Bear Inc.

D’Mello S, Graesser A (2014) Confusion and its dynamics during device com-
prehension with breakdown scenarios. Acta Psychologica 151:106–116

D’Mello S, Lehman B, Pekrun R, Graesser A (2014) Confusion can be ben-
eficial for learning. Learning and Instruction 29:153 – 170, DOI 10.1016/j.
learninstruc.2012.05.003

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical
methods for software engineering research. In: Shull F, Singer J, Sjøberg DIK
(eds) Guide to Advanced Empirical Software Engineering, Springer London,
London, pp 285–311, DOI 10.1007/978-1-84800-044-5 11, URL https://

doi.org/10.1007/978-1-84800-044-5_11

Ebert F, Castor F, Novielli N, Serebrenik A (2017) Confusion detection in
code reviews. In: ICSME, pp 549–553

Ebert F, Castor F, Novielli N, Serebrenik A (2018) Communicative intention
in code review questions. In: ICSME

Ebert F, Castor F, Novielli N, Serebrenik A (2019) Confusion in code reviews:
Reasons, impacts, and coping strategies. In: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pp 49–60, DOI 10.1109/SANER.2019.8668024

Fagan ME (1976) Design and code inspections to reduce errors in program
development. IBM Syst J 15(3):182–211, DOI 10.1147/sj.153.0182, URL
http://dx.doi.org/10.1147/sj.153.0182

Faragó C (2015) Variance of source code quality change caused by version
control operations. Acta Cybern 22(1):35–56, DOI 10.14232/actacyb.22.1.
2015.4, URL https://doi.org/10.14232/actacyb.22.1.2015.4

Finfgeld-Connett D (2014) Use of content analysis to conduct knowledge-
building and theory-generating qualitative systematic reviews. Quali-
tative Research 14(3):341–352, DOI 10.1177/1468794113481790, URL
https://doi.org/10.1177/1468794113481790, https://doi.org/10.

1177/1468794113481790

Foddy WH (1993) Constructing questions for interviews and questionnaires:
theory and practice in social research. Cambridge University Press Cam-
bridge, UK ; New York, NY, USA

Gerede E, Mazan Z (2018) Will it pass? predicting the outcome of
a source code review. Turkish Journal of Electrical Engineering
and Computer Sciences 26(3):1343–1353, DOI 10.3906/elk-1707-173,
URL https://www.scopus.com/inward/record.uri?eid=2-s2.

0-85048211876&doi=10.3906%2felk-1707-173&partnerID=40&md5=

48 Felipe Ebert et al.

2f33438aef1c6bf7ca60ccd95c8cb036, cited By 0
German DM, Robles G, Poo-Caamaño G, Yang X, Iida H, Inoue K (2018)

“Was my contribution fairly reviewed?”: A framework to study the per-
ception of fairness in modern code reviews. In: Proceedings of the 40th
International Conference on Software Engineering, ACM, New York, NY,
USA, ICSE ’18, pp 523–534, DOI 10.1145/3180155.3180217, URL http:

//doi.acm.org/10.1145/3180155.3180217

Glaser BG, Strauss AL (1967) The Discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine de Gruyter, New York, NY

Gopstein D, Iannacone J, Yan Y, DeLong L, Zhuang Y, Yeh MKC, Cappos
J (2017) Understanding misunderstandings in source code. In: ESEC/FSE,
ACM, New York, NY, USA, pp 129–139

Gousios G, Pinzger M, Deursen Av (2014) An exploratory study of the pull-
based software development model. In: Proceedings of the 36th International
Conference on Software Engineering, ACM, New York, NY, USA, ICSE
2014, pp 345–355, DOI 10.1145/2568225.2568260, URL http://doi.acm.

org/10.1145/2568225.2568260

Greiler M (2016) On to code review: Lessons learned @
microsoft. URL https://pt.slideshare.net/mgreiler/

on-to-code-review-lessons-learned-at-microsoft, keynote for
QUATIC 2016 - the 10th International Conference on the Quality of
Information and Communication Technology

Groves RM, Fowler FJ, Couper MP, Lepkowski JM, Singer E, Tourangeau R
(2009) Survey Methodology, 2nd edn. Wiley

Guo B, Song M (2017) Interactively decomposing composite changes to sup-
port code review and regression testing. In: 2017 IEEE 41st Annual Com-
puter Software and Applications Conference (COMPSAC), vol 1, pp 118–
127, DOI 10.1109/COMPSAC.2017.153

Guo B, Kwon YW, Song M (2019) Decomposing composite changes for code re-
view and regression test selection in evolving software. Journal of Computer
Science and Technology 34(2):416–436, DOI 10.1007/s11390-019-1917-9,
URL https://doi.org/10.1007/s11390-019-1917-9

Hamasaki K, Kula RG, Yoshida N, Cruz AEC, Fujiwara K, Iida H (2013) Who
does what during a code review? datasets of oss peer review repositories.
In: MSR, IEEE, pp 49–52

Hellendoorn VJ, Devanbu PT, Bacchelli A (2015) Will they like this? evalu-
ating code contributions with language models. In: 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, pp 157–167

Hentschel M, Hähnle R, Bubel R (2016) Can formal methods improve the
efficiency of code reviews? In: IFM, Springer, pp 3–19

Huang Y, Jia N, Chen X, Hong K, Zheng Z (2018) Salient-class location:
Help developers understand code change in code review. In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ACM, New York, NY, USA, ESEC/FSE 2018, pp 770–774, DOI 10.1145/
3236024.3264841, URL http://doi.acm.org/10.1145/3236024.3264841

An Exploratory Study on Confusion in Code Reviews 49

Huang Y, Jia N, Zhou Q, Chen X, Yingfei X, Luo X (2018) Guiding devel-
opers to make informative commenting decisions in source code. In: 2018
IEEE/ACM 40th International Conference on Software Engineering: Com-
panion (ICSE-Companion), pp 260–261

Izquierdo-Cortazar D, Sekitoleko N, Gonzalez-Barahona JM, Kurth L (2017)
Using metrics to track code review performance. In: Proceedings of the 21st
International Conference on Evaluation and Assessment in Software Engi-
neering, ACM, New York, NY, USA, EASE’17, pp 214–223, DOI 10.1145/
3084226.3084247, URL http://doi.acm.org/10.1145/3084226.3084247

Jean PA, Harispe S, Ranwez S, Bellot P, Montmain J (2016) Uncertainty
detection in natural language: A probabilistic model. In: International Con-
ference on Web Intelligence, Mining and Semantics, ACM, New York, NY,
USA, pp 10:1–10:10

Jordan ME, Schallert DL, Park Y, Lee S, hui Vanessa Chiang Y, Cheng
ACJ, Song K, Chu HNR, Kim T, Lee H (2012) Expressing uncertainty
in computer-mediated discourse: Language as a marker of intellectual work.
Discourse Processes 49(8):660–692

Kitchenham B, Charters S (2007) Guidelines for performing systematic lit-
erature reviews in software engineering. Tech. Rep. EBSE 2007-001, Keele
University and Durham University Joint Report

Kitchenham B, Pfleeger SL (2008) Personal opinion surveys. In: Shull F, Singer
J, Sjoberg DIK (eds) Guide to Advanced Empirical Software Engineering,
pp 63–92

Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey MW (2015) Investigating
code review quality: Do people and participation matter? In: 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME),
pp 111–120, DOI 10.1109/ICSM.2015.7332457

Kononenko O, Rose T, Baysal O, Godfrey M, Theisen D, de Water B (2018)
Studying pull request merges: A case study of shopify’s active merchant.
In: Proceedings of the 40th International Conference on Software Engi-
neering: Software Engineering in Practice, ACM, New York, NY, USA,
ICSE-SEIP ’18, pp 124–133, DOI 10.1145/3183519.3183542, URL http:

//doi.acm.org/10.1145/3183519.3183542

Konopka M, Navrat P (2015) Untangling development tasks with software
developer’s activity. In: 2015 IEEE/ACM 2nd International Workshop on
Context for Software Development, pp 13–14, DOI 10.1109/CSD.2015.10

Kovalenko V, Tintarev N, Pasynkov E, Bird C, Bacchelli A (2018) Does re-
viewer recommendation help developers? IEEE Transactions on Software
Engineering pp 1–1

LaToza TD, Venolia G, DeLine R (2006) Maintaining mental models: A study
of developer work habits. In: ICSE, ACM, New York, NY, USA, pp 492–501

Lee A, Carver JC, Bosu A (2017) Understanding the impressions, motivations,
and barriers of one time code contributors to FLOSS projects: a survey. In:
Uchitel S, Orso A, Robillard MP (eds) Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina,
May 20-28, 2017, IEEE / ACM, pp 187–197

50 Felipe Ebert et al.

Lenberg P, Feldt R, Tengberg LGW, Tidefors I, Graziotin D (2017) Be-
havioral software engineering - guidelines for qualitative studies. CoRR
abs/1712.08341, URL http://arxiv.org/abs/1712.08341, 1712.08341

Luna Freire VdC, Brunet J, de Figueiredo JCA (2018) Automatic decompo-
sition of java open source pull requests: A replication study. In: Tjoa AM,
Bellatreche L, Biffl S, van Leeuwen J, Wiedermann J (eds) SOFSEM 2018:
Theory and Practice of Computer Science, Springer International Publish-
ing, Cham, pp 255–268

MacLeod L, Greiler M, Storey MA, Bird C, Czerwonka J (2018) Code review-
ing in the trenches: Challenges and best practices. IEEE Software 35(4):34–
42, DOI 10.1109/MS.2017.265100500

Mäntylä MV, Lassenius C (2009) What types of defects are really discovered
in code reviews? TSE 35(3):430–448

Martin RC (2003) Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall PTR, Upper Saddle River, NJ, USA

McArdle BH, Anderson MJ (2001) Fitting multivariate models to commu-
nity data: A comment on distance-based redundancy analysis. Ecology
82(1):290–297, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2

McIntosh S, Kamei Y, Adams B, Hassan AE (2015) An empirical study of the
impact of modern code review practices on software quality. ESE pp 1–44

Mishra R, Sureka A (2014) Mining peer code review system for computing ef-
fort and contribution metrics for patch reviewers. In: 2014 IEEE 4th Work-
shop on Mining Unstructured Data, pp 11–15, DOI 10.1109/MUD.2014.11

Mohamed A, Zhang L, Jiang J, Ktob A (2018) Predicting which pull requests
will get reopened in github. In: 2018 25th Asia-Pacific Software Engineering
Conference (APSEC), pp 375–385, DOI 10.1109/APSEC.2018.00052

Morales R, McIntosh S, Khomh F (2015) Do code review practices impact
design quality? a case study of the qt, vtk, and itk projects. In: 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), pp 171–180, DOI 10.1109/SANER.2015.7081827

Mukadam M, Bird C, Rigby PC (2013) Gerrit software code review data from
android. In: MSR, IEEE, pp 45–48

Norikane T, Ihara A, Matsumoto K (2017) Which review feedback did long-
term contributors get on oss projects? In: 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pp 571–572, DOI 10.1109/SANER.2017.7884682

Norikane T, Ihara A, Matsumoto K (2018) Do review feedbacks influence to a
contributor’s time spent on oss projects? In: 2018 IEEE International Con-
ference on Big Data, Cloud Computing, Data Science Engineering (BCD),
pp 109–113

Paixão M, Maia PH (2019) Rebasing considered harmful: A large-scale inves-
tigation in modern code review. In: 2019 IEEE 19th International Working
Conference on Source Code Analysis and Manipulation (SCAM)

Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia A
(2015) Mining version histories for detecting code smells. IEEE Transactions
on Software Engineering 41(5):462–489, DOI 10.1109/TSE.2014.2372760

An Exploratory Study on Confusion in Code Reviews 51

Palomba F, Tamburri DA, Serebrenik A, Zaidman A, Fontana FA, Oliveto
R (2018) How do community smells influence code smells? In: Proceedings
of the 40th International Conference on Software Engineering: Companion
Proceeedings, ACM, New York, NY, USA, ICSE ’18, pp 240–241, DOI
10.1145/3183440.3194950, URL http://doi.acm.org/10.1145/3183440.

3194950

Pangsakulyanont T, Thongtanunam P, Port D, Iida H (2014) Assessing MCR
discussion usefulness using semantic similarity. In: Empirical Software En-
gineering in Practice (IWESEP), 2014 6th International Workshop on, pp
49–54, DOI 10.1109/IWESEP.2014.11

Pascarella L, Spadini D, Palomba F, Bruntik M, Bacchelli A (2018) Infor-
mation needs in contemporary code review. In: Proceedings of the ACM
Conference on Computer Supported Cooperative Work, CSCW ’18

Pascarella L, Palomba F, Bacchelli A (2019) Fine-grained just-in-time de-
fect prediction. Journal of Systems and Software 150:22 – 36, DOI https://
doi.org/10.1016/j.jss.2018.12.001, URL http://www.sciencedirect.com/

science/article/pii/S0164121218302656

Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping
studies in software engineering. In: Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering, BCS
Learning & Development Ltd., Swindon, UK, EASE’08, pp 68–77, URL
http://dl.acm.org/citation.cfm?id=2227115.2227123

Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting sys-
tematic mapping studies in software engineering: An update. Information
and Software Technology 64:1 – 18, DOI https://doi.org/10.1016/j.infsof.
2015.03.007, URL http://www.sciencedirect.com/science/article/

pii/S0950584915000646

Qiu HS, Nolte A, Brown A, Serebrenik A, Vasilescu B (2019) Going farther
together: The impact of social capital on sustained participation in open
source. In: ICSE, IEEE

Ram A, Ashok Sawant A, Marco C, Bacchelli A (2018) What makes a code
change easier to review? an empirical investigation on code change reviewa-
bility. In: 26th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE ’18

Rigby PC (2011) Understanding open source software peer review: Review pro-
cesses, parameters and statistical models, and underlying behaviours and
mechanisms. PhD thesis, University of Victoria, Victoria, B.C., Canada,
Canada, URL https://books.google.com.br/books?id=d87VtwEACAAJ,
aAINR80365

Rigby PC, Bird C (2013) Convergent contemporary software peer review prac-
tices. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Soft-
ware Engineering, ACM, New York, NY, USA, ESEC/FSE 2013, pp 202–
212, DOI 10.1145/2491411.2491444, URL http://doi.acm.org/10.1145/

2491411.2491444

Rigby PC, Storey MD (2011) Understanding broadcast based peer review on
open source software projects. In: Taylor RN, Gall HC, Medvidovic N (eds)

52 Felipe Ebert et al.

2011 33rd International Conference on Software Engineering (ICSE), ACM,
pp 541–550

Rigby PC, German DM, Storey MA (2008) Open source software peer review
practices: A case study of the apache server. In: Proceedings of the 30th
International Conference on Software Engineering, Association for Comput-
ing Machinery, New York, NY, USA, ICSE ’08, p 541–550, DOI 10.1145/
1368088.1368162, URL https://doi.org/10.1145/1368088.1368162

Sadowski C, Söderberg E, Church L, Sipko M, Bacchelli A (2018) Modern
code review: A case study at google. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering: Software Engineering in Prac-
tice, ACM, New York, NY, USA, ICSE-SEIP ’18, pp 181–190, DOI 10.1145/
3183519.3183525, URL http://doi.acm.org/10.1145/3183519.3183525

Schettino VJ, Araújo MAP, David JMN, Braga RMM (2019) Towards code
reviewer recommendation: a systematic review and mapping of the litera-
ture. In: Proceedings of the XXII Iberoamerican Conference on Software
Engineering, CIbSE 2019, La Habana, Cuba, April 22-26, 2019, pp 558–571

Scott AJ, Knott M (1974) A cluster analysis method for grouping means in the
analysis of variance. Biometrics 30(3):507–512, URL http://www.jstor.

org/stable/2529204

Singer J, Vinson NG (2002) Ethical issues in empirical studies of software
engineering. IEEE Transactions on Software Engineering 28(12):1171–1180,
DOI 10.1109/TSE.2002.1158289

Steele CM, Aronson J (1995) Stereotype threat and the intellectual test per-
formance of african americans. Journal of personality and social psychology
69 5:797–811

Stol KJ, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering
research: A critical review and guidelines. In: ICSE, pp 120–131, DOI 10.
1145/2884781.2884833

Sutherland A, Venolia G (2009) Can peer code reviews be exploited for later
information needs? In: ICSE-Companion, pp 259–262

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empir-
ical comparison of model validation techniques for defect prediction models.
IEEE Transactions on Software Engineering (TSE) 43(1):1–18

Tao Y, Kim S (2015) Partitioning composite code changes to facilitate code
review. In: 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pp 180–190, DOI 10.1109/MSR.2015.24

Tao Y, Dang Y, Xie T, Zhang D, Kim S (2012) How do software engineers
understand code changes?: An exploratory study in industry. In: Proceed-
ings of the ACM SIGSOFT 20th International Symposium on the Foun-
dations of Software Engineering, ACM, New York, NY, USA, FSE ’12, pp
51:1–51:11, DOI 10.1145/2393596.2393656, URL http://doi.acm.org/10.

1145/2393596.2393656

Thompson C, Wagner D (2017) A large-scale study of modern code review
and security in open source projects. In: Proceedings of the 13th Interna-
tional Conference on Predictive Models and Data Analytics in Software En-
gineering, ACM, New York, NY, USA, PROMISE, pp 83–92, DOI 10.1145/

An Exploratory Study on Confusion in Code Reviews 53

3127005.3127014, URL http://doi.acm.org/10.1145/3127005.3127014

Thongtanunam P, Yang X, Yoshida N, Kula RG, Cruz AEC, Fujiwara K, Iida
H (2014) Reda: A web-based visualization tool for analyzing modern code
review dataset. In: ICSME, pp 605–608

Tichy WF (1985) Rcs - a system for version control. Software: Practice and
Experience 15:637–654

Uwano H, Nakamura M, Monden A, Matsumoto Ki (2006) Analyzing indi-
vidual performance of source code review using reviewers’ eye movement.
In: Proceedings of the 2006 Symposium on Eye Tracking Research &Amp;
Applications, ACM, New York, NY, USA, ETRA ’06, pp 133–140, DOI
10.1145/1117309.1117357, URL http://doi.acm.org/10.1145/1117309.

1117357

Vasilescu B, Filkov V, Serebrenik A (2015a) Perceptions of diversity on git
hub: A user survey. In: 2015 IEEE/ACM 8th International Workshop on
Cooperative and Human Aspects of Software Engineering, pp 50–56, DOI
10.1109/CHASE.2015.14

Vasilescu B, Posnett D, Ray B, van den Brand MGJ, Serebrenik A, Devanbu P,
Filkov V (2015b) Gender and tenure diversity in github teams. In: Proceed-
ings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, ACM, New York, NY, USA, CHI ’15, pp 3789–3798, DOI 10.1145/
2702123.2702549, URL http://doi.acm.org/10.1145/2702123.2702549

Wang C, Xie X, Liang P, Xuan J (2017) Multi-perspective visualization to
assist code change review. In: 2017 24th Asia-Pacific Software Engineering
Conference (APSEC), pp 564–569, DOI 10.1109/APSEC.2017.66

Wang J, Shih PC, Wu Y, Carroll JM (2015) Comparative case studies of open
source software peer review practices. Inf Softw Technol 67(C):1–12, DOI
10.1016/j.infsof.2015.06.002, URL https://doi.org/10.1016/j.infsof.

2015.06.002

van Wesel P, Lin B, Robles G, Serebrenik A (2017) Reviewing career paths of
the openstack developers. In: ICSME, IEEE Computer Society, pp 544–548

Wiegers KE (2002) Peer Reviews in Software: A Practical Guide. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA

Yang D, Wen M, Howley I, Kraut R, Rose C (2015) Exploring the effect of
confusion in discussion forums of massive open online courses. In: ACM
Conference on Learning @ Scale, ACM, pp 121–130

Yang L, Li X, Yu Y (2017) Vuldigger: A just-in-time and cost-aware tool for
digging vulnerability-contributing changes. In: GLOBECOM 2017 - 2017
IEEE Global Communications Conference, pp 1–7

Yang X, Kula RG, Yoshida N, Iida H (2016) Mining the modern code review
repositories: A dataset of people, process and product. In: MSR, ACM, pp
460–463

Zanaty FE, Hirao T, McIntosh S, Ihara A, Matsumoto K (2018) An em-
pirical study of design discussions in code review. In: Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, Association for Computing Machinery, New
York, NY, USA, ESEM ’18, DOI 10.1145/3239235.3239525, URL https:

54 Felipe Ebert et al.

//doi.org/10.1145/3239235.3239525

Zhang F, Khomh F, Zou Y, Hassan AE (2012) An empirical study on factors
impacting bug fixing time. In: 2012 19th Working Conference on Reverse
Engineering, pp 225–234

Zhang T, Song M, Pinedo J, Kim M (2015) Interactive code review for sys-
tematic changes. In: Proceedings of the 37th International Conference on
Software Engineering - Volume 1, IEEE Press, Piscataway, NJ, USA, ICSE
’15, pp 111–122, URL http://dl.acm.org/citation.cfm?id=2818754.

2818771

Zimmermann T (2016) Card-sorting: From text to themes. In: Menzies
T, Williams L, Zimmermann T (eds) Perspectives on Data Science for
Software Engineering, Morgan Kaufmann, Boston, pp 137 – 141, DOI
https://doi.org/10.1016/B978-0-12-804206-9.00027-1, URL https://www.

sciencedirect.com/science/article/pii/B9780128042069000271

