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ABSTRACT. Our aim in this paper is to study the well-posedness and the dissipativity
of higher-order Cahn-Hilliard equations with dynamic boundary conditions. More pre-
cisely, we prove the existence and uniqueness of solutions and the existence of the global
attractor.

1. INTRODUCTION
The Cahn-Hilliard system,

(1.1) % =Aw, w=—Au+ f(u),

plays an essential role in materials science as it describes important qualitative features
of two-phase systems related with phase separation processes. This can be observed, e.g.,
when a binary alloy is cooled down sufficiently. One then observes a partial nucleation
(i.e., the apparition of nucleides in the material) or a total nucleation, the so-called spin-
odal decomposition: the material quickly becomes inhomogeneous, forming a fine-grained
structure in which each of the two components appears more or less alternatively. In
a second stage, which is called coarsening, occurs at a slower time scale and is less un-
derstood, these microstructures coarsen. We refer the reader to, e.g., [4], [5], [28], [31],
[32], [33], [43] and [44] for more details. Here, u is the order parameter (it corresponds
to a (rescaled) density of atoms) and w is the chemical potential. Furthermore, f is the
derivative of a double-well potential.

This system, endowed with Neumann boundary conditions for both u and w (meaning
that the interface is orthogonal to the boundary and that there is no mass flux at the
boundary) or with periodic boundary conditions, has been extensively studied and one
now has a rather complete picture as far as the existence, uniqueness and regularity of
solutions and the asymptotic behavior of the solutions are concerned. We refer the reader
to the review paper [8] and the references therein.

Recently, dynamic boundary conditions, which take into account the interactions with
the walls in confined systems, were proposed in [14], [15], [16], [17], [21] and [27]; these
boundary conditions also yield a dynamic contact angle with the walls. The Cahn-Hilliard
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equation, together with such boundary conditions, was studied in, e.g., [11], [17], [19], [20],
[21], [38], [40], [49] and [57]; see also [9], [10], [41] and [42] for the numerical analysis and
simulations.

We consider in this paper the higher-order Cahn-Hilliard system

ou
ot
where P(s) = 328 a8t ap > 0, k > 2.

Such higher-order equations follow from higher-order (anisotropic) phase-field models
recently proposed by G. Caginalp and E. Esenturk in [3] in the context of phase-field
systems. Assuming isotropy and a constant temperature, one finds (1.2). Furthermore,
(1.2) was studied studied in [7], with Dirichlet-Navier boundary conditions.

These models also contain sixth-order Cahn-Hilliard models. We can note that there
is currently a strong interest in the study of sixth-order Cahn-Hilliard equations. These
equations arise in situations such as strong anisotropy effects being taken into account
in phase separation processes (see [53]), atomistic models of crystal growth (see [1], [2],
[13] and [18]), the description of growing crystalline surfaces with small slopes which
undergo faceting (see [50]), oil-water-surfactant mixtures (see [22] and [23]) and mixtures
of polymer molecules (see [12]). We refer the reader to [6], [24], [25], [26], [29], [30], [34],
[35], [36], [37], [45], [46], [47], [48], [54], [55] and [56] for the mathematical and numerical
analysis of such models. In particular, dynamic boundary conditions for several sixth-
order Cahn-Hilliard equations were proposed in [37].

Our aim in this paper is to propose dynamic boundary conditions for the more general
higher-order model (1.2). To do so, we follow the approach proposed in [21], i.e., we start
with the total (in the bulk and on the boundary) mass conservation

(1.3) %(/ﬂudm%—/rudE) =0,

instead of the sole bulk mass conservation

d
%/ﬂud:ﬁ—(),

as in the previous approaches. Here, € is the domain occupied by the system (we assume
that it is a bounded and regular domain of RY, N = 2 or 3) and I' = 9Q. We further
assume that f is regular enough.

Following [21], a first dynamic boundary condition, which is compatible with the mass
conservation (1.3), reads

(1.2) = Aw, w= P(—=A)u+ f(u),

ou ow
14 — =7pA - — r >
( ) ot narw v onl, n-~= 07

where Ar denotes the Laplace-Beltrami operator (n = 0 corresponds to the case where
there is no diffusion on the boundary). Indeed, integrating (formally) the first of (1.2)
over €}, we obtain
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d ow

— de = | —dX

dt /Qu v /F ov
hence the result, owing to (1.4).

Next, we rewrite (1.2) in the form

wy = —Awi_1 + f(u),

Wi—1 = —Awk,g + au,
Wy—2 = —Awi_3 + agu,
Wy = —Aw1 + Qp_2U,
w, = —apAu + ap_u.

Following again [21], we can then consider the following dynamic boundary conditions:

Owp,—
wy, = —0Arwy_; + —2— + g(u) on T,
ov
Owp,_
Wr—1 = —O'prkfg + - + a;u on F,
Owy,—
Wy—2 = —O’prk_g + i + asu on F,
ow
wy = —oArwy + 1 ap_ou on I,
ov
ou
wy = —apoAru + W + ap_qu on I,
v

where 0 > 0 (again, when o = 0, there is no diffusion on the boundary) and g is regular

enough.
U U W, w; Q1o
ulp )’ wilr ) ’ T

We now set

and
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A7) = k>0,
(so\r) (<—mw+%§>|r) "=

We thus have, in view of (1.4) and the above,

oU
E - —Aan,
fu) )
W — AO'W — M
¢ k1t <g<u>|r

Wi—1 = AcWi—o + a1 U,

Wi—o = AeWi_3 + asU,

W2 = AUW1 + Clkng,

Wl - AO'U + ak*an
so that

W, = P(A,)U + (gf(cul)?r) .

Setting W = (wu|1 ), we are thus lead to the study of the boundary value problem
r

oU
(1.5) o =4,
(1.6) W= P(A)U + (g{gfp) |

Remark 1.1. The Cahn-Hilliard system (1.2) follows from the bulk (Ginzburg-Landau
type) free energy

o = / (> al(-a)kupP + F(u)dr,

where we keep the operator (—A)2 formal when i is odd and F' = f. We then introduce
the surface free energy

Wy = / (3 bil(=Ar)5uf? + Glw) s,

where G’ = g. We define the total free energy as the sum
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VU =Vg+ Ur.
Equations (1.5)-(1.6) are then related to ¥ in the sense that

ow
W=
ou
where 2 denotes a variational derivative with respect to u (see [21]), in the particular
case

bi:O'CLZ', Z:]_, MR ]{?

Of course, it is also important to consider general b;’s. In that case, however, the corre-
sponding higher-order Cahn-Hilliard system can no longer be rewritten in the compact
form (1.5)-(1.6) and is more difficult to study; this will be considered elsewhere.

Our aim in this paper is to study the higher-order model (1.5)-(1.6). In particular, we
obtain the existence and uniqueness of solutions, as well as the existence of the global
attractor.

We will focus here on the case 1, ¢ > 0 only (actually, for simplicity, we will take
n =0 = 1), i.e., we assume diffusion on the walls. The case n = 0 and/or ¢ = 0 will be
studied elsewhere.

Notation. Throughout the paper, the same letters ¢, ¢/, ¢’ and ¢” denote (generally
positive) constants which may vary from line to line. Similarly, the same letter ) denotes

(positive) monotone increasing and continuous functions which may vary from line to line.

2. SETTING OF THE PROBLEM

We first introduce the following spaces.
1) H=L*Q), Hr = L*(T'), H = H x Hr. Here, H and Hr are endowed with their usual

scalar products and associated norms, denoted by ((-,-)), || - ||, ((,-))r and || - ||r, and H
is endowed with its usual scalar product and associated norm, denoted by ((+,-)) and
| - [[%. More generally, || - || x denotes the norm on the Banach space X.

2)V=HY(Q), Vo =H'(T), V= {(5) €V x Vr, ¢|r = ¢} which we again endow with

their usual scalar products and associated norms.

3) We set, for ¢ = (‘P) € H x Hy,

(0
1
@) = oL e et [vam)
We then set

V={¢= (2‘;) €V, (¢) =0}
We have the
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Lemma 2.1. The norm |||}, = [|[V-[?+|Vr-||* is equivalent to the usual H'(Q)x H'(T)-
norm on V. Here, Vr denotes the surface gradient.

Proof. 1t suffices to prove that there exists a positive constant ¢ such that

el + Ielelr < ol vo = (5 ) < v

For the sake of simplicity, we omit the symbol |r in what follows.

Suppose not. Then, for any n € N, there exists ¢, = (:i") € V\{0} such that

n

1
3 < E(H%H?{l(m + [lenllF(ry)-

We set
o _ (§> I S
n) " UlpalZigy + loalgy)?

so that
(2.1) ||QTLH§{1(Q) + ||9nH%{1(r) =1,

9 1
(22) Ol < -
It then follows from (2.2) that
(2.3) V0, — 0in L*(Q) and Vi, — 0in L*(T).

Furthermore, it follows from (2.1) and the compact embeddings H'(Q2) C L?*(Q2) and
H'(Q) c L*(T") that, up to a subsequence which we do not relabel,

(2.4) 0,, — 60 in L*(Q) and L*(T")

and

(2.5) O:/Gndx+/9nd2—>/9dx+/9d2,
Q r 0 r

for some © = (z) Next, it follows from (2.4) that

0, — 0 in D'(Q),
so that

V6, — V6 in D'(Q),

whence, in view of (2.3),
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0 = ¢ (constant).

We finally deduce from (2.5) that ¢ = 0, so that ® = 0, hence a contradiction, since,
passing to the limit in (2.1), there holds

HQH%H(Q) + HGH?{lm =1
This finishes the proof.

Next, we introduce the bilinear form

a:VxV =R, (6,0)— ((Ve,V0) + ((Vre, Vid))r,

()0

P 0)
It follows from Lemma 2.1 that a is symmetric, densely defined, continuous and coercive
in V. This allows us to define the linear operator

AV =V
by

<A¢a @>V’,V = a(¢7 @)7 ¢7 ©cV.
The operator A is a strictly positive, densely defined, selfadjoint and unbounded lin-
ear operator with compact inverse with domain D(A) = {¢ € V, 3= € H, (E,0) =
a($,0), YO € V}. This allows us to define the powers A%, s € R (see, e.g., [51]). In
particular, there holds

Proposition 2.2. For k € N, D(A*) = VN (H?*(Q) x H*(T")) and the norm || A* - || is
equivalent to the usual H*(Q) x H*(T)-one on D(AF).

Proof. We proceed by induction.

First case: k=1. Let ¢ = (g) € V be the solution to
(26) a(¢7 @) = ((‘Fa @))HJ VO e Vv

fa

(2.7) a(¢,0) = ((F,0))n, VO € V.
Let us first assume that ¢ € H?(Q) x H*(T'). Then, integrating by parts, we have

where F = (f1> € H, (F) =0. Then, it is easy to see that

_/S2A¢9d$+/r(—Ap<,0+ g—f)edz = ((f1,0)+ ((f2,0))r, ¥ (z) c H'(Q) x HY(T).

Taking 6 € D(2), this yields that
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(2.8) ~Ap = f1 in D'(Q), L*(Q) and a.e..

There thus remains

0
/(-Aw +22)045 = (o, 0)r, VO € H'(D)
I
which yields that

(2.9) —Arp + g—f = fo in L*(T') and a.e..

We thus deduce that VN (H?(Q) x H*(T')) € D(A) and, if ¢ = (gﬁ) belongs to this space,

then
_ —Ap
A¢ = (—Arso + %f) '

Let now ¢ € V and F € H, (F) = 0, be such that (2.6) and, thus, (2.7) are satisfied.
Then, taking © = (g), 0 € D(R), in (2.7), we can see that (2.8) still holds. Furthermore,

since p € H'(2) and Ay € L?*(Q), the trace g—f can be defined in H~2(I') and a generalized
form of Green’s formula is valid for every 6 € H*(2) (see [52]; see also [51], Chapter II,
Example 2.5), yielding

(8. 0) = ~(02 o)

whence, in view of (2.7) and (2.8),

+ ((Vp,V0)), VO € H'(Q),

1 1
H 2(I'),H2(I")

(2.10) < + ((Vre, Vid))r =0, VO € HY(Q2), § € HY(T).

—fa >H*7 (1), H3 ()

Actually, (2.10) also holds for any 6 € H'(I') (take 6 € H?(2) and note that © is regular
enough) and we see that

(- AF@‘*‘——fz, 0) -1y, mry =0, VO € H'(T),

so that (2.9) is again valid, in a weak form.
Next, it follows from Lemma 2.1 and the beginning of the proof of [38], Lemma A.1,

that, if ¢ = (Z‘;) € D(A),

el @) + llellznm < cllAgls,.
Rewriting then our elliptic problem in the form

0
(2.11) —Ap = f1, —Ars0+a—f+so=fz+s0,
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it follows from [38], Lemma A.1, that

lellrz() + lelizey < clAllF +lIgly) < 143,
which completes the proof in the case k = 1.

Second case: k > 2. We assume that

(2.12) 61| pr206-1) (@) r2e-1 ry < el A Bll9g, Vb € D(A).
Let ¢ belong to D(AF). Noting that A*¢ = F, F € H, (F) = 0, is equivalent to

AL Ag = F, Ap € D(AF ),
we deduce from (2.12) that

(2.13) [ AB]| prae—1 (0 x 2=y < Cll AT

On the other hand, it follows from the elliptic regularity result given in [38], Corollary
A1 (once more applied to the slightly modified elliptic system (2.11)), and (2.12)-(2.13)
that

H¢||?{2’“(Q)><H2’€(F) < C(HAQbH?{2(’9*1)(Q)><H2<kf1)(r) + H¢H§{2<k71>(9)XH2(k71>(r))
< c(lAM5, + 14" ¢l13,),

whence

Dl mr2e () x 200y < c|| A¥ ||,
noting that D(AF) is continuously embedded into D(A*~!). This finishes the proof.
U

Noting that, by definition, D(A%) — V and proceeding in a similar way (writing, in
particular, that Ab+s = Ak’%A, k > 1), we can also prove the

Proposition 2.3. For k € NU{0}, D(A*2) = v (H2(Q) x H*HT)) and the norm
|ART2 ||y, s equivalent to the usual H* Q) x H2Y(T)-one on D(AF2).

We finally note that D(A~2) = V' and, since the norm ||Az - || is equivalent to the
V-one, it follows that the norm || - |3 = ||A™2 - || is equivalent to the usual V'-one.

Remark 2.4. We can note that the bilinear form a can also be defined on V x V; in that
case however, it is still continuous, but not coercive. This allows us to also consider the
operator A as an operator from V onto V'.

We now consider the following initial and boundary value problem:

(2.14) %—(t] — —AW in V,
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(2.15) W = P(A)U + F(U) in V',

(2.16) Uli=o0 = Uy,
where U = (Z), W= (z) and F(U) = (g((Z;) Furthermore,

k
P(s) = Zaisi, ar >0, k> 2.
i=1
As far as the functions f and g are concerned, we assume that

(2.17) f. g€ C(R),
(218) f, Z —Co, g/ Z —C1, Co, C1 Z 07
(2.19) f(s)(s =m) > caF(s) — c3(m) > —ca(m), cg >0, c3, ¢4 >0, s, m €R,

(2.20) g(s)(s —m) > csG(s) — cg(m) > —c7(m), ¢5 >0, ¢, ¢z >0, s, m €R,

where F(s) = fos f(&)d¢, G(s) = fos g(&) d¢ and the constants cs, ¢4, ¢g and ¢; depend
continuously on m;

(2.21) F(s) > cgs* — cg, G(8) > 108" —c11, s, 10 >0, ¢y, c11 >0, s €R.

Remark 2.5. In particular, the above assumptions are satisfied by the usual cubic bulk
nonlinear term f(s) = s* — s. However, it was proposed in [14], [15] and [16] that g be
affine, g(s) = as+b. Such surface "nonlinear” terms do not satisfy the above assumptions.

Setting, whenever it makes sense,

T <¢>)
so that (¢) = 0, we can rewrite (2.14) in the following equivalent form

(2.22) Alg—(tj — WiV,

noting that (2%) = 0. Furthermore, it follows from (2.15) that

(2.23) (W)Y = (F(U)).
We finally note that A¢ = A (see Remark 2.4).
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3. A PRIORI ESTIMATES

The estimates derived in this section are formal. They can however easily be justified
within, e.g., a Galerkin scheme.
We multiply (2.14) by W, scalarly in H, and have

ou
((Ea
We then multiply (2.15) by BU to obtain

(3.1) W)+ W3 =0

(3.2) (G W)l = (P, S+ (F(O), S
We note that
k: .
(3.3 (P, G = 5y Dl 44T
and
(3.4) (FW), Dy = & | Fwar+ [ G

It then follows from (3.2)-(3.4) that

k .
(3.5) ((%—Z,W))H _ %%(ZaiﬂA;UH%pLQ/QF(u) dx—l-Z/FG(u) ix).

We finally deduce from (3.1) and (3.5) that

k

(3.6) jt(ZalHA U||H+2/F(u) dx+2/FG(u) ) +2|W )% =0

=1

We further note that it follows from the interpolation inequality

. iz 1— &
(3.7) 1@l i) xmiry < C(Z)”(b“ﬁnm(g)me(r)H¢||7—L B
pe H"(Q) x H™(T), ie{l, ---, m—1}, meN, m > 2,
and Propositions 2.2 and 2.3 that

k
a/k - _— e J—
(3.8) S MUy = el U1 < Y aill AT < €T ko ey

i=1

Next, we multiply (2.22) by U to find
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(3.9 L NI, = (WD)

We then multiply (2.15) by U and have

(3.10) (W0 = > all ARUI3, + (F(U), U))a.

i=1

It follows from (3.9)-(3.10) that

k
d,— i _
(3.11) ST, +2) ail AT + 2((F(U), U))w = 0.
=1

We assume from now on that

(3.12) |(Up)| < M, M > 0 given.
Therefore,
(3.13) KU())| < M, Vit > 0.

We thus deduce from (2.19)-(2.20) and (3.13) that

(3.14) (FU),0))y > c(/Q F(u)dx + /FG(u) d¥) —dy, ¢>0, ¢y > 0.

For simplicity, we omit the dependence of the constants on M in what follows.
Summing (3.6) and (3.11), we deduce from (3.14) a differential inequality of the form

dE
(3.15) — B+ W) <, e >0,
dt
where
k .
(3.16) Ey =T, + ) aill A2T)5, + 2/ F(u) dz + 2 / G(u) d.
i=1 Q r

Furthermore, it follows from (2.21) and (3.8) that

Ey > C(HUH%k(mka(r) + /Q F(u) dz + /r G(u) dX) + C/”UH4L4(Q)><L4(F) — U5, =",

so that

(3.17) By 2 (T i + [ Pl do+ [ Gluyaz) =,
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noting that

(318) HU”?_[ < EHUH%/“(Q)XL‘*(F) + Ce, Ve > 0.
Moreover,

In particular, it follows from (3.13), (3.15), (3.17), (3.19) and Gronwall’s lemma that

(3.20) [ G] e

< e ([ Uol iy ey +/QF(uo) daH—/FG(uO) 05) 4 d >0, >0,

and

t+r U
(3.21) [0 i ds
t

S Ce_dt(HUOH?{k(Q)XH’“(F) + /Q F(UO) dr +/FCJ(UO) dZ) + Cﬁv C/ > 07 t Z 07

Uog

r > 0 given, where U, = (u ) Note indeed that it follows from (2.14) that
0

ou
22 U= -
(3:22) 1510 = Wl

We now rewrite (2.14)-(2.15) in the equivalent form

(3.23) A—I%—(tj + P(A)T + F(U) — (F(U)) =0 in V.

We multiply (3.23) by A*U, scalarly in H, and have, owing to the interpolation in-
equality (3.7),
d . k=1 —
(3.24) ZNAZ U + ell Ul e oy < cUlU e + £ @I + llg(w)[2)-
Recalling that k& > 2, it follows from the continuous embeddings H*(Q) C C(Q2) and
H*(') c C(T") and the continuity of f and g that

(3.25) U5 + 1F @I + lg@)llF < QUIU N aw @y ry),
whence, owing to (3.20),

(3:26) UG+ If @ + llg@)IF < e QUIToll @< mrary) + ¢, >0, t >0,
and (3.24) and (3.26) yield
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d, oy .
(327) EHA 2 (]H2 + CHUH%I%(Q)XH%(F) <e tQ(HUOHH’“(Q)XH’“(F)) + Cl, c > O, t> 0.

Summing (3.15) and (3.27), we obtain a differential inequality of the form

dEs o
(3.28) - T c(Ey + H H2 + W% < e " QUIUoll @y xmx(ry) +¢"5 ¢ >0, >0,
where
(3.29) By =By + AT T
satisfies
(3.30) dW%mmmm+Amew[ﬁwmm—ds&

< C”(“UH?{}C(Q)XHk(F) +/QF(u) dx + / G(u)dX)+ ", ¢>0.

r
In a next step, we differentiate (3.23) with respect to time to find

(3.31) A 29 e Y L rany. Yy Y

ot ot ot Sr) = omV,

where

FU)- 38_2] _ (f'(“)a__z) .

We multiply (3.31) by %—lt], scalarly in H, and have, owing to (2.18) and the interpolation
inequality (3.7) (also recall that (27) = 0),

d oU oU
(3.32) || ||2 cll—- 5 ey ey < € ||§||'2Hy c>0.

Noting that

10U 10U
1900 = (A1 i,
we see that
oU
(3.33) || ”H < H@Hq\l@l!m(mxmm
and (3.32)-(3.33) yield

d (9UH2 ou ., 8UH2

(3:34) SIS+ el S Bapermsy < €5 I ¢ >0
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We thus deduce from (3.21), (3.34) and the uniform Gronwall’s lemma (see, e.g., [51],
Chapter III, Lemma 1.1) that

(3.35) =111 < e " QUUollaryxmrry) + ¢, ¢>0, t >,

r > 0 given.
We finally rewrite (3.23) as an elliptic system, for ¢ > 0 fixed,

(3.36) P(A)U = h(t) in V',
where h(t) = =A% (¢) — F(U(t)) satisfies, owing to (3.26) and (3.35),
(3.37) 1Rl < e QU r@yxrry) + ¢ ¢ >0, t >,

r > 0 given. Multiplying (3.36) by A*U, scalarly in H, we obtain, owing to (3.13), (3.20),
(3.37) and the interpolation inequality (3.7),

(3.38) U ()| 52ty rzery < €~ CQUIU| @y xmn(ry) +¢/5 ¢ >0, t >,
r > 0 given.
Remark 3.1. If we further assume that Uy € H*1(Q) x H**+!(T'), then 27(0) € H and

ou
(3.39) 1= O)ll-1 = QU w10y x r241))-

In that case, it follows from (3.34) and Gronwall’s lemma that

ou
(3.40) =7 D121 < QUITsI s @y aqry)s ¢ € [0, 1],
which, combined with (3.38) (for r = 1), yields

(3.41) HU(t)HHQk(Q)XHQk(F) < €7CtQ(HU0HH2IQ+1(Q)XH21€+1(F)) + Cl, c> O, t>0.

4. THE DISSIPATIVE SEMIGROUP
We first give the definition of a weak solution to (2.14)-(2.16).

Definition 4.1. We assume that Uy € V'. A weak solution to (2.14)-(2.16) is a pair
(U, W) such that, for any given T' > 0,

U € C([0,T]; (Up) + V') N L*(0,T; H*(Q) x H*(T)),
W e L*0,T; V),

U(0) = Uy
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and

_<(A71U7 (b))'H = _((Wa ¢)7‘l7 V(b € vu

k
(W, 0)n =Y ai((A2T, A20))y + (F(U),0))y, ¥O € VN (H*(Q) x HHI)),
in the sense of distributions, with

U=U+(Up),

(W) = (FU)).

Here, it is understood that (Uy) = Up, 1)y,

Ve
We have the
Theorem 4.2. (i) We assume that Uy € H*(Q) x H¥(T') and [(Uy)| < M, M > 0 given.
Then, (2.14)-(2.16) possesses a unique weak solution (U, W) such that, for any T > 0,
U € L>®(RY; HY(Q) x H*T)) N L*(0,T; H*(Q) x H**(I"))

and

ou
ot

(ii) If we further assume that Uy € H*(Q) x H*(T), then, for any T > 0,

e L*(0,T; V).

U e L=[R"; H"(Q) x H*(T))

and

ou
ot
Proof. The proofs of existence and regularity in (i) and (ii) follow from the a priori esti-

mates derived in the previous section and, e.g., a standard Galerkin scheme. In particular,
we can consider a Galerkin basis based on the spectrum of the operator A (see, e.g., [51]).

Let then (Uy, W1) and (Us, W) be two weak solutions to (2.14)-(2.15) such that

€ L>(0,T;V') N LAR*; H*(Q) x H¥T)).

(U1(0)) = (U2(0)).
We set U = Uy — Uy and W = Wy — W, and have, noting that (U(0)) = 0,

d

(41) (A

AT 0D = ~((W, ), Yo €V,
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(42) ((W,0))n = Y a:((A2U, A26))y + (F(U), ©))w, YO €V (H* () x HA(T)),
(4.3) (W) = (F(Uh) = F(Us)).
Taking ¢ = U in (4.1), we obtain

(4.4 LN, = ~(7, U

Taking then © = U in (4.2), we find

(45) (W, 0))n =3 aill AU + (F(UL) = F(Ua), V)
Noting that

(F(U1) = F(U2),U))a = ((f (w1) = fluz),u) + ((g(u1) — g(uz), w))r,
it follows from (2.18), (3.7) and (4.5) that

= ag k
(W, U))n = S A2 Ul = U3,
Qg 13 E
> S 142Ul = Ul 142Ul

> cllUN e (@ywmery = CNUN, ¢ >0,
which, combined with (4.4), yields

d
(4.6) ZIUIZL < U2,

Gronwall’s lemma finally gives

(4.7) Jur (t) — ua(t)]| -1 < e*[Jur(0) — uz(0)|| -1, £ >0,

whence the uniqueness, as well as the continuous dependence with respect to the initial
data in the V'-norm.

0

It follows from Theorem 4.2 that we can define the family of solving operators

S(t) : (I)M—>(I)M, UoHU(t), t>0,

where

) = {0 € H*(Q) x H*T), (0) = M},
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M € R given. This family of solving operators forms a semigroup, i.e., S(0) = I and
S(t+71)=5(t)oS(r), Vt, 7 > 0, which is continuous with respect to the V'-topology
(more precisely, one writes S(t) = M+ S(t), where S(t) : Uy +— U(t), t > 0, is continuous
with respect to the V' -topology).

Remark 4.3. It follows from (4.7) that we can extend S(¢) (by continuity and in a unique
way) to M + V.

It follows from (3.20) that we have the

Theorem 4.4. The semigroup S(t) is dissipative in @y, in the sense that it possesses a
bounded absorbing set By C ®y; (i.e., VB C ®y bounded, Ity = to(B) such that t > t
implies S(t)B C By).

Remark 4.5. (i) The dissipativity is a first step in view of the study of the (temporal) as-
ymptotic behavior of the associated dynamical system. In particular, an important issue
is to prove the existence of finite-dimensional attractors: such objects describe all possi-
ble dynamics of the system; furthermore, the finite-dimensionality means, very roughly
speaking, that, even though the initial phase space ®,; has infinite dimension, the reduced
dynamics can be described by a finite number of parameters (we refer the interested reader
to, e.g., [39] and [51] for discussions on this subject).

(ii) Actually, it follows from (3.38) that we have a bounded absorbing set B; which is
compact in ® and bounded in H?*(Q2) x H*(T'). This yields the existence of the global
attractor Ay, which is compact in ®, bounded in H?*(Q) x H*(Q) and attracts the
bounded sets of ®y; in the topology of V' (see [39] and [51] for more details).

(iii) We recall that the global attractor A, is the smallest (for the inclusion) compact
set of the phase space which is invariant by the flow (i.e., S(¢)Ay = Ay, VE > 0) and
attracts all bounded sets of initial data as time goes to infinity; it thus appears as a
suitable object in view of the study of the asymptotic behavior of the system. We refer
the reader to, e.g., [39] and [51] for more details and discussions on this.

(iv) We can also prove, based on standard arguments (see, e.g., [39] and [51]) that Ay,
has finite dimension, in the sense of covering dimensions such as the Hausdorff and the
fractal dimensions.
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