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a b s t r a c t

The growing availability of large collections of digitized artworks has disclosed new opportunities to
develop intelligent systems for the automatic analysis of fine arts. Among other benefits, these tools
can foster a deeper understanding of fine arts, ultimately supporting the spread of culture. However,
most of the systems proposed in the literature are only based on visual features of digitized artwork
images, which are sometimes only integrated with some metadata and textual comments. A Knowledge
Graph (KG) that integrates a rich body of information about artworks, artists, painting schools, etc.,
in a unified structured framework, can provide a valuable resource for more powerful information
retrieval and knowledge discovery tools in the artistic domain. To this end, in this paper we present
ArtGraph:1 an artistic KG based on WikiArt and DBpedia. The graph already provides knowledge
discovery capabilities without having to train a learning system. In addition, we propose a novel KG-
enabled fine art classification method based on ArtGraph, which is used to perform artwork attribute
prediction tasks. The method extracts embeddings from ArtGraph and injects them as ‘‘contextual’’
knowledge into a Deep Learning model. Compared to the state-of-the-art, the proposed model provides
encouraging results, suggesting that the exploitation of KGs in combination with Deep Learning can
pave the way for bridging the gap between the Humanities and Computer Science communities.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, Knowledge Graphs (KGs), and their under-
ying semantic technology, have emerged as a powerful tool
or describing real-world entities and their relationships [1].
hey are increasingly used for many practical tasks, from rec-
mmendations [2] to query answering [3], and many KGs have
een constructed and made publicly available, such as Google
nowledge Graph and Facebook Entity Graph. At the same time,
he last decade has seen remarkable advances in Deep Learning
pproaches based on neural networks [4], which have led to
uilding ever more accurate systems in a wide range of areas,
specially Computer Vision and Natural Language Processing.
ombining the expressiveness of KGs with the learning ability of
eep neural networks promises to develop even more effective
lgorithms for many downstream tasks.
One of the many domains that can benefit from combining

Gs and Deep Learning is the artistic one. Leveraging Deep Learn-
ng algorithms in this domain, particularly Convolutional Neural
etwork (CNN) models, has already proven effective in tackling

∗ Corresponding author.
E-mail address: gennaro.vessio@uniba.it (G. Vessio).

1 ArtGraph and associated code are publicly available on https://doi.org/10.
281/zenodo.6337958.
ttps://doi.org/10.1016/j.knosys.2022.108859
950-7051/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
several challenging tasks, from object detection in paintings to
style classification [5]. And this success is mainly due to the
growing availability of large digitized fine art collections, such as
WikiArt. However, while promising, most of the existing solutions
rely solely on the visual features that a CNN can automatically
extract from digital images of paintings, drawings, etc. (e.g., [6–
8]), and these features are rarely integrated with some metadata
and textual comments to address multi-modal retrieval tasks
(e.g., [9,10]). In other words, the dominant approach is mainly
one based on perception and recognition. This inevitably leads to
ignoring an enormous amount of knowledge – already available
from disparate sources – relating to the ‘‘context’’ of each art-
work. An artwork, in fact, is characterized not only by its visual
appearance but also by various historical, social, and contextual
factors that allow us to frame the artwork in a richer and more
multifaceted scenario.

A promising way to harness this knowledge and improve the
accuracy of art-based analytic systems is to encode the contextual
information of the artworks into a KG and use representations
learned from the graph as an additional input to a Deep Learn-
ing model. Indeed, having a knowledge base in which not only
artworks but also a rich plethora of metadata, contextual in-
formation, textual descriptions, etc., are unified in a structured

framework can provide a valuable resource for more powerful
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nformation retrieval and knowledge discovery tools in the artis-
ic domain. Such a framework would be beneficial not only for
nthusiastic users, who can exploit the encoded information to
avigate the knowledge base, but also especially for art experts,
nterested in finding new relationships between artists and/or
rtworks for a better understanding of the past and modern art.
To this end, in this paper we present ArtGraph: an artis-

ic Knowledge Graph. The proposed KG integrates information
ollected by WikiArt and DBpedia, and encodes a broad repre-
entation of the artistic domain, with multiple metadata and rela-
ionships between artists and artworks. Furthermore, we propose
novel approach to inject contextual knowledge into a deep neu-
al network to perform fine art classification. The method jointly
everages visual features and Knowledge Graph embeddings, and
heir combined exploitation improves performance over using
isual features alone. This paper extends our preliminary work
n this direction reported in [11].

The rest of this paper is structured as follows. Section 2 re-
iews related work. Section 3 presents ArtGraph. Section 4 de-
cribes the proposed classification method. Section 5 presents and
iscusses the experimental setup and the results obtained. Sec-
ion 6 concludes the paper and describes the future developments
f our research.

. Related work

Traditionally, automatic art analysis has been performed us-
ng hand-crafted features fed into traditional Machine Learning
lgorithms, e.g. [12–14]. Unfortunately, despite the encouraging
esults of feature engineering techniques, early attempts soon
talled due to the difficulty of gaining explicit knowledge of the
ttributes to associate with a particular artist or artwork. This
ifficulty arises because this knowledge typically depends on an
mplicit and subjective experience that a human expert might
ind difficult to verbalize [15,16].

In contrast, several successful applications in a range of Com-
uter Vision tasks have demonstrated the effectiveness of rep-
esentation learning versus feature engineering techniques in
xtracting meaningful patterns from complex raw data. One of
he first successful attempts to apply deep neural networks in
his context was the research presented by Karayev et al. [17],
hich showed how a pre-trained CNN can be quite effective in at-
ributing the correct school of painting to an artwork. Since then,
any works have focused on using Deep Learning techniques
ased on single-input [18,19] or multi-input models [8] to solve
rtwork attribute prediction tasks based on visual features. Other
irections that have attracted the interest of the community
orking on this domain are visual link retrieval [20,21], object
etection [22–24], and near-duplicate detection [25].
However, the problem of predicting the attributes of an art-

ork using only visual information is very challenging. For this
eason, researchers felt the need to use contextual information
long with visual features. Some attempts have been made to
xpress contextual information using Knowledge Graphs and in-
ect this information into Deep Learning models. One of the first
orks, which inspired our research, is the ContextNet framework
roposed by Garcia et al. [26]. They combined a multi-output CNN
rained to solve attribute prediction tasks based on visual fea-
ures with a second model, which is a simple encoder, based on
on-visual information extracted from artistic metadata encoded
sing a KG. To encode the KG information into a vector represen-
ation, the popular node2vec [27] was adopted. The KG was built
sing only the information provided by the previously proposed
emArt dataset [10]. To do this, the authors defined a node
or each artwork and connected each artwork to its attributes.
hey used some metadata, including artist, title, technique, etc.
2

lso, by applying an n-gram model to the title, its keywords
ere extracted and added to the graph. Despite its richness, the
raph constructed by Garcia et al. has two limitations. Metadata
s only available for artworks in the dataset, so adding a new
rtwork would result in a lack of domain information about it. In
ddition, the proposed graph connects artworks with the same
rtist, but does not consider the relationships between artists,
uch as artistic influence. Our work is framed in the direction of
vercoming these limitations. In particular, we propose the use
f a source of knowledge external to the dataset, i.e. Wikipedia,
hich provides an enormous amount of information, even in a
tructured form.
Finally, to perform fine art classification, the most recent

orks [28–30] make use of KGs as input for Graph Neural Net-
ork models [31]. However, these works either use the entire
raph before splitting the dataset, or generate pseudo-labels for
he test instances so that an ‘‘extended’’ graph is obtained at test
ime. This strategy can improve performance, but we observe that
t suffers from some drawbacks. First of all, the generation of
seudo-labels requires a re-training of the overall model, which
revents its use in real-time. Secondly, the construction of an
xtended graph based on pseudo-labels strongly depends on
he distribution of the test data and, more precisely, to what
xtent they are linked to each other and the existing KG. This
roblem is taken to the extreme if the model is asked to predict
he attributes of a single test instance one at a time. In other
ords, while successful, they adopt a transductive rather than an

nductive approach. In this paper, we take an inductive approach
nd propose a model suitable for real-time scenarios, where noth-
ng is known about a new artwork beyond what is ‘‘perceived’’
isually.

. ArtGraph

Artworks cannot be studied based only on their visual appear-
nce, but also considering other historical, social, and contextual
actors. For example, it may be useful to know that the au-
hor of an artwork was a pupil of another artist, or that two
rtists adhered to the same artistic current. Such knowledge can
e provided either through data in a structured form, such as
etadata on authors or styles, but also in unstructured form,
uch as the description provided by an art expert or available
n Wikipedia. In this view, a comprehensive KG would provide a
ore expressive and flexible representation of the relationships
etween entities relating to art, which cannot be obtained by
onsidering only the visual content. To this aim, we developed
rtGraph as a KG in the art domain capable of representing and
escribing concepts related to artworks. A comparison between
ur proposed KG and the one presented by Garcia et al. [26] is
rovided in Table 1.
The starting point for the construction of ArtGraph was
ikiArt, which contains more than 250,000 artworks. For each

rtwork, if available, WikiArt provides metadata such as the
uthor, the date of creation, the gallery in which it is exhibited,
he style, and so on. To download artwork images and meta-
ata, we used the freely available API. WikiArt also provides
nformation about the authors such as birth date, biography, and
ikipedia link. Since WikiArt does not provide rich information

bout the artists, the Wikipedia link was exploited to obtain
rtist metadata from DBpedia. To query DBpedia we used SPARQL,
hich is a query language capable of retrieving and manipulating
ata stored in the Resource Descriptive Framework. The meta-
ata retrieved from WikiArt and DBpedia were placed in several
nterconnected comma separated value files, which have been
rocessed for data cleaning and preparation using the Python
andas library.
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Table 1
Comparison between our KG and the one proposed by Garcia et al. [26].
KG # Nodes # Edges # Artists # Artworks # Relations

btw artworks
# Relations
btw artists

ContextNet 33,148 125,506 3166 19,244 7 0
ArtGraph 135,038 875,416 2501 116,475 10 7
Fig. 1. Scheme of ArtGraph. The nodes correspond to relevant entities in the artistic domain, while the edges represent existing relationships between them.
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Then, the KG was created using Neo4j (but many other graph
atabases could have been used the same way) and we modeled
he graph as a labeled property graph. The conceptual scheme of
rtGraph is represented in Fig. 1. Each node type has the property
ame, which identifies the node instance. The artwork and artist
odes, which are more informative and contain more attributes,
lso contain some properties like the WikiArt url and the image
rl. Each artwork has only one associated digitized image, taken
rom WikiArt. The artwork node is connected to the nodes: tags
e.g., sea, birds), genre (e.g., portrait), style, period, serie (e.g., ‘‘The
oly Family’’), media (e.g., canvas, oil), and the gallery, city and
ountry where the artwork is located. The artist node is con-
ected to the nodes: field (e.g., painting, illustration), movement
e.g., Art Déco, Surrealism), subject (e.g., people from Florence),
he training school associated with the artist (e.g., Accademia di
elle Arti di Bologna), people, i.e. non-artist persons linked to the
rtist (e.g., Cosimo de’ Medici), and other artists, who exerted an

influence. Of course, there is finally a relation between artworks
and artists. More details can be found on the publicly available
repository.

This structure allows the creation of a network between
artists, which is useful for further analysis even without explicitly
training a learning system. In fact, it is possible to run queries
that can be particularly useful for art analysis, such as: retrieving
the direct and indirect influencing connection between artists
with different degrees of separation; identifying artworks that are
stored in a country other than those in which they were com-
pleted; retrieving all the works that are stored in a specific place;
and so on (Fig. 2). In total, the resulting KG contains 135,038
nodes and 875,416 edges, with 2501 artists, 116,475 artworks, 18
genres, 32 styles, and many other metadata characterizing them.

4. Proposed classification method

ArtGraph encodes a valuable source of contextual knowledge
that can be integrated with visual features automatically learned
by deep neural networks to develop more powerful learning
3

models in the art domain. Several tasks, in fact, could be ad-
dressed, such as artwork attribute prediction, multi-modal re-
trieval, and artwork captioning, which are attracting increasing
interest in this domain [5]. Taking advantage of the developed
artistic KG, we propose a new classification model that is used in
this paper to predict the style and genre of a given artwork. The
model, as shown in Fig. 3, is inspired by multi-modal and multi-
ask learning. In the following, we describe the three main steps
f our proposed method:

• The multi-modal learning strategy adopted, i.e. the embed-
ding generation;

• The multi-task strategy used to classify both style and genre
at the same time;

• The specific approach taken at testing time, based on the
projection of the visual features in the multidimensional
space of the context features, i.e. the graph embeddings.

.1. Embedding generation

Multi-modal learning aims to build models that can process
nd relate information from multiple modalities [32]. The under-
ying principle is that multiple modalities can provide different
iews of the same input which, when processed simultaneously,
an help increase predictive accuracy. The most common method
n practice is to combine several high-level embeddings from
he same input by concatenating them and then applying a soft-
ax, with the aim of transferring knowledge between modalities
nd their representations. In our case, we can exploit both the
isual embedding obtained from a deep neural network aimed
t extracting visual features from the digitized artwork and the
orresponding graph embedding obtained from the KG.
As for the visual embeddings, the three-channel artwork im-

ges are resized to 224 × 224 and propagated through a Vision
ransformer (ViT) [33] pre-trained on ImageNet and fine-tuned
n our image dataset. We take the final output features after
inear transformation which result in a visual embedding hv ∈
768. ViT uses a Transformer-like architecture that represents
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Fig. 2. From left to right, examples of query results: retrieving direct and indirect influences between artists; identifying artworks that are stored in a country other
than those in which they were completed; retrieving all the works that are kept in particular places. The colors are automatically set by the Neovis.js visualization
tool to reflect some properties of the sub-graph.
Fig. 3. Schema of the proposed multi-task multi-modal model. A concatenation layer receives both the contribution of visual embeddings, extracted from ViT, and
graph embeddings extracted from the information encoded in the KG. The overall network learns to minimize the error made to predict the correct style and genre
of a given artwork. At testing time, a projection function is used to project visual features in the same multidimensional space as contextual features, thus creating
graph embeddings for unseen artworks.
an input image as a series of patches. These patches are then
linearly embedded, added to position embeddings, and the re-
sulting features are fed into a standard Transformer encoder.
To perform classification, an additional learnable ‘‘classification
token’’ is used.

As for the graph embeddings, these are extracted from
rtGraph using a Graph Attention Network (GAT) [34], which

provides the context information for each artwork, aimed at
improving the representativeness of the visual features. GATs use
weights associated with each node in the neighborhood which
tell how much ‘‘attention’’ should be paid to a message from that
neighbor. The attention weights are learned during training. In
particular, a GAT consisting of two layers with 128 hidden units
each was used, with batch normalization, an attention head, and
the ReLU activation function.

The motivation for using GATs instead of other node embed-
ing algorithms, such as node2vec [27], was to take advantage of
he heterogeneity of ArtGraph and the semantics of its relations.
lso, with Graph Neural Networks, features can be assigned to
odes. Each artwork node was assigned the visual feature vector
v . The other nodes (e.g., media and movement) have been as-
igned an identity feature, specifically a one-hot indicator feature,
4

which uniquely identifies that node. However, GATs cannot be
trivially applied to heterogeneous graphs, since node and edge
features of different types cannot be processed by the same
functions. To get around this, and then be able to apply GAT to
ArtGraph, we implemented the message and update functions
individually for each edge type. Finally, to generate node embed-
dings, GAT was pre-trained to solve a node classification task,
and the last hidden layer output was used as a node embed-
ding hg ∈ R128. In other words, unlike node2vec, a supervised
approach can be used. Since the attributes of interest are genre
and style, each artwork will be assigned two node embeddings,
one obtained from a genre classification task and the other from
a style classification task. In the following, we describe how the
overall architecture works.

4.2. Multi-task learning

As for the classification stage, instead of adding a single output
layer and learning each classification task separately, we adopt
a multi-task solution [35]. In particular, both visual and contex-
tual features are combined by concatenation,

(
h ,h

)
, and fed
v g
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Table 2
Single-task classification results.
Method Style Genre

Top-1 Top-2 Macro F1 Top-1 Top-2 Macro F1

ResNet 52.48% 70.91% 50.53% 65.76% 82.49% 58.61%
ViT 52.37% 70.46% 52.97% 65.92% 82.98% 61.62%
ContextNet [26] (ResNet+node2vec) 44.81% 64.16% 43.95% 60.44% 79.60% 55.80%
Our previous method [11] (ResNet+node2vec) 48.94% 67.83% 48.10% 63.64% 81.58% 58.24%
This work (ResNet+GAT) 54.80% 72.39% 52.02% 69.73% 84.25% 61.84%
This work (ViT+GAT) 58.31% 75.37% 56.32% 71.23% 85.70% 64.06%
Table 3
Multi-task classification results.
Method Style Genre

Top-1 Top-2 Macro F1 Top-1 Top-2 Macro F1

ResNet 48.46% 66.72% 47.23% 62.51% 81.12% 57.37%
ViT 53.09% 71.57% 52.58% 67.03% 84.96% 61.97%
ContextNet [26] (ResNet+node2vec) 42.61% 61.91% 41.42% 61.77% 79.87% 56.70%
Our previous method [11] (ResNet+node2vec) 48.20% 67.41% 47.86% 64.15% 82.35% 59.64%
This work (ResNet+GAT) 53.70% 71.90% 50.43% 70.13% 84.47% 61.73%
This work (ViT+GAT) 58.58% 76.13% 56.58% 72.29% 86.45% 65.29%
w

to a fully-connected head, one for each task (style and genre
classification), with as many output units as there are classes
to predict. In this way, features are shared between the tasks
allowing the model to simultaneously exploit the semantic cor-
relation between them. This strategy forces the model to learn
visual features that share common elements between different
contextual attributes of the artworks, so that the information
about the style is useful for the classification of the genre, and
vice versa. Furthermore, by propagating the error back to ViT,
the model is forced to learn ‘‘context-aware’’ visual features that
encapsulate some of the contextual knowledge in the graph.

Given a number of tasks T (two in our work, corresponding to
he style and genre classification), and a number of classes C for
ach task, the loss function is:

=

T∑
i=1

λi

C∑
j=1

wjℓc(yj, ŷj),

where λi is a hyper-parameter that weights the contribution of
each task i, while ℓc is the cross-entropy loss function defined as:

ℓc(yj, ŷj) = −yj log
(
ŷj

)
,

where, for a given artwork, ŷj is the softmax predicted output and
yj is the corresponding ground truth.

Finally, to counter the problem of class imbalance, each class
in the loss function has been associated with a weight inversely
proportional to its frequency. The aim was to penalize the mis-
classification made on the minority classes by setting higher class
weights. The weight for the jth class was calculated as follows:

wj =
N

C ∗ nj
,

here N is the total number of artworks, C the number of classes
nd nj the fraction of artworks belonging to class j.

.3. Embedding projection

At testing time, it must be assumed that, for any new artwork,
o knowledge is available other than its visual content, so it is not
ossible to know in advance the nodes of the graph to which the
rtwork can be linked. This is essential for simulating a real-time
pplication of the model where the only information available
s the digitized representation of the artwork in form of pixels.
o help the model implicitly consider contextual knowledge, the
ain idea is to learn how to project the visual embeddings into
5

the ‘‘context space’’ provided by the graph embeddings. This is
done by learning a projection function f : R768

→ R128 separately
and using the projected features hĝ = f (hv) as test graph
embedding. The function f is found by training a simple encoder
hich is asked to minimize a smooth-ℓ1 loss function between

the projected features hĝ and the graph embedding hg :

ℓ1
(
hĝ ,hg

)
=

{
0.5

(
hĝ − hg

)
if

⏐⏐hĝ − hg
⏐⏐ ⩽ 1,⏐⏐hĝ − hg

⏐⏐ − 0.5 otherwise.

The projected features are then combined, by concatenation,
with the visual features emitted directly by ViT.

5. Experiment

To evaluate the effectiveness of the proposed multi-task multi-
modal classification method, some experiments were performed:
the experimental setting and the results obtained are described
and discussed below. The experiments were performed on a
Desktop PC with an Intel i7-10700k CPU, 64 GB of RAM, and an
NVIDIA RTX 3080 GPU. All models were implemented in Python
using the popular PyTorch library.

5.1. Setting

We compared the proposed model with the following three
baselines:

• ViT, as the backbone of our method: this is a version of
ViT pre-trained on ImageNet and fine-tuned on our image
data. This model uses only visual features. Similarly, we also
experimented with ResNet50 [36];

• ContextNet: this is the method proposed by Garcia et al. [26].
The model is based on ResNet50 and uses node2vec to help
the CNN learn context-aware features, even if these are not
used as an additional input modality during training. For a
fair comparison, we replicated ContextNet and trained it on
our KG rather than the original KG based on SemArt;

• Our previous preliminary method [11]: the previous version
of our current method, in which the visual embeddings, ob-
tained with ResNet, are projected into the multidimensional
feature space of graph embeddings obtained with node2vec
and are concatenated before the output layer. It is worth
noting that a smaller KG was used in our previous work;
therefore, for a fair comparison, the method was retrained.
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Fig. 4. Confusion matrices obtained with the proposed method for the style (left) and genre (right) classification task.
Fig. 5. Examples of misclassifications made with the proposed method.

We have not compared our method with recent works using
raph Neural Networks because, as previously mentioned, they
dopt a transductive rather than an inductive approach.
For all models, the artwork images were resized to 224 × 224,

nd normalized using the mean and standard deviation of Ima-
eNet. As an optimizer, we used Adam with a learning rate of
× 10−5 and a batch size of 32; in addition, a dropout with
ropout rate of 0.4 was applied to the final hidden layer. As
or the training of GAT in our proposed method, a dropout with
ropout rate of 0.4 was applied to the hidden layer and the Adam
ptimization algorithm was used with a learning rate of 0.01.
It is worth noting that graph embeddings should not be

earned on the entire graph, otherwise a bias would be introduced
o that the model has already seen the test entities and their
onnections with the rest of the graph. In fact, the context
nformation learned during training has already served to allow
he model to generalize beyond just the visual features and so we
ssume that at test time only the visual appearance of the artwork
s known to the model. To this aim, we randomly divided our
raph (and consequently the image set) into three sets: 70% for
6

training, 15% for validation, and 15% for testing. The splitting was
done in a stratified way, preserving the percentage of artworks
for each genre and style class. The validation set was used to
tweak the hyper-parameters and to implement an early stopping
criterion. Embeddings were only learned from the ‘‘training’’
graph. It is worth pointing out that while this does not happen
with our data because even rare classes are well represented,
the weighted loss we used to mitigate the class imbalance would
result in biased results if multiple single-membered classes exist.
Therefore, we warm the reader to use caution when adopting
such a method.

For each experiment, we measured the top-1 and top-2 accu-
racy, which computes the number of times the correct class was
among the top-2 predicted classes, and the macro F1-score, which
calculates the F1-score for each class and then their average.

5.2. Results

Tables 2 and 3 show the results obtained by the compared
methods for the single-task and multi-task learning, respectively.
The tables also show the results obtained with ResNet, alone or in
place of ViT as the backbone for extracting visual features in the
proposed method. A first observation that can be drawn is that
ViT is generally preferable to ResNet. This is true when they are
considered alone, but it is also reflected in the results obtained
with the method proposed in this work, when one or the other
is used as a backbone.

Another consideration is that the proposed method, which
uses a GAT to extract the context features, generally shows su-
perior performance to all other methods both when using ResNet
or ViT. In particular, the best results over all metrics are obtained
with ViT. This confirms, as already noted in [26], that the joint
exploitation of visual and contextual features improves perfor-
mance compared to using visual features alone. This is not always
true when considering ContextNet or our previous preliminary
work, which use node2vec, but this was expected. The GAT-
based approach, in fact, takes advantage of the heterogeneity of
ArtGraph, while node2vec neglects this property of the graph.

As a third observation, we can see from the results that
multi-task learning is generally preferable to single-task learn-
ing, i.e. optimizing the two tasks simultaneously is better than
optimizing them independently of each other. This confirms the
findings already reported in [8]. This superiority is not exhibited
by all methods for all metrics; however, the best overall results
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or style and genre classification were obtained with the proposed
ethod when they were optimized simultaneously.
Finally, one aspect that makes the task of predicting the at-

ributes of an artwork challenging is the fact that it is very
ifficult to distinguish artworks with very similar genres or styles.
his is confirmed by the confusion matrices obtained by the
roposed method when used in multi-task mode, shown in Fig. 4.
s can be seen, the model often confuses self-portraits with
ortraits, mythological paintings with religious paintings, or neo-
xpressionism with expressionism. As found in other works, such
s [7], this is a well-known difficulty in this domain. A qualitative
nalysis of the misclassifications, in fact, as shown in Fig. 5,
eveals that the model makes mistakes that would be difficult
o classify even for humans. Another proof of the difficulties
ncountered with ambiguous class memberships is finally given
y the results shown by the top-2 accuracy, which is significantly
igher in all cases than the top-1 accuracy.

. Conclusion

In this paper, we have addressed the problem of automatic art
nalysis by proposing a method that jointly exploits visual and
nowledge Graph embeddings with the aim of improving perfor-
ance compared to using only visual features. The method lever-
ges the increasingly popular paradigms of Graph Neural Net-
orks and Vision Transformers and, contrary to previous meth-
ds, it works in a completely inductive way. This allows the model
o work even in real-time when the only information available on
novel artwork is only its visual aspect.
To achieve this, in this paper we have also presentedArtGraph,

an artistic Knowledge Graph, which can provide art historians
with a rich and easy-to-use tool to perform fine art analysis.
An art historian, in fact, rarely analyzes artworks as isolated
creations, but typically studies how different paintings, even from
different periods, relate to each other, how artists from different
countries and/or periods have exercised a influence on their
works, how artworks completed in one place migrated to other
places, and so on. This effort can foster the dialogue between
computer scientists and humanists that is currently sometimes
lacking [37]. In addition, we believe that ArtGraph, which we
have made publicly available, will provide the Pattern Recog-
nition and Computer Vision community with a good basis for
further research on automatic art analysis.

As future work, we want to tackle other significant tasks, such
as multi-modal retrieval [38] and artwork captioning [39]. In
addition, we observe that ArtGraph can be extended in several
ways. First of all, it can be easily extended with new data re-
lating to both public and private data. More data means more
knowledge is encoded in the graph and this can improve the gen-
eralizability of predictive models. Secondly, the proposed multi-
modal classification method is intrinsically extensible as new
input modalities can be used and concatenated to existing ones to
provide the model with different perspectives on the same input.
For example, a natural extension is the use of word embeddings
obtained from textual descriptions of the artworks. Finally, the
model can be used for link prediction in order to infer new
relations and thus build a more complete Knowledge Graph. This
strategy could allow ArtGraph to evolve over time, including con-
temporary art, and suggests its use in semi-supervised learning
settings [40].
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