
IEEE TRANSACTIONS ON SERVICES COMPUTING 1

STARDUST: a novel process mining approach to
discover evolving models from trace streams

Vincenzo Pasquadibisceglie, and Annalisa Appice, and Giovanna Castellano, Senior Member, IEEE and

Nicola Fiorentino and Donato Malerba, Member, IEEE

Abstract—In this paper we introduce STARDUST (event STream Analysis for pRocess Discovery Using Sampling sTragies), a process

discovery approach that analyses a trace stream, in order to discover a process model that may change over time. The basic idea is to

adopt a sampling technique to select the most representative trace variants to be considered for the process discovery, then to alert a

concept drift as the trace variants to be sampled change over time and, finally, to trigger the discovery of a new process model as a

drift is alerted. We formulate the proposed approach under the assumption that the trace distribution commonly follows the Pareto’s

principle (i.e., a few trace variants covers the majority of cases) which is commonly satisfied in several business processes.

Experimental results on various benchmark event logs handled as streams show the effectiveness of the proposed approach also

compared to a state-of-the- art concept drift detection approach.

Index Terms—Process discovery, Stream data mining, Concept drift, Sampling, Pareto’s principle

✦

1 INTRODUCTION

MAny of today’s process mining tools are predomi-
nantly based on the assumption that, when discover-

ing a process model from event logs, the process is in steady
state, i.e., the process at the beginning of the recorded period
is the same as the process at the end of the recorded period.
Conversely, real business processes are commonly charac-
terized by complexity, variability, and lack of steady-state.
Due to changing conditions, a business process may evolve
and increase its variability during time. Hence, a business
process model is a complex object that produces continuous
event data which may change over time. In other words it
can be seen as a data source that produces a continuous
stream of events that evolve in time. Given this dynamic
definition of business process, stream mining-based process
discovery approach can be successfully applied to track how
event data vary over time and change the process model to
possibly adapt it to the emergence of new data.

Traditional machine learning methods, working in static
contexts, where data are immediately available and stored,
can not be directly applied in the context of stream mining,
where data arrive as a continuous stream and can be volatile
and transient [1]. Indeed, in a streaming scenario the data
arrive online and the system does not have control over
the order in which the data arrive and when data will be
processed. In addition, data streams can have potentially
unlimited size and, once processed, data are no longer
available. The processed data can only be retrieved if they

• V. Pasquadibisceglie, A. Appice, G. Castellano and D. Malerba
are with the Dipartimento di Informatica, Università degli Studi
Aldo Moro di Bari, via Orabona 4 - 70125 Bari, Italy and also
with the Consorzio Interuniversitario Nazionale per l’Informatica
- CINI, via Orabona 4 - 70125 Bari, Italy. N. Fiorentino is
with the Dipartimento di Informatica, Università degli Studi
Aldo Moro di Bari, via Orabona 4 - 70125 Bari, Italy E-
mail: vincenzo.pasquadibisceglie@uniba.it, annalisa.appice@uniba.it,
giovanna.castellano@uniba.it, n.fiorentino3@studenti.uniba.it,
donato.malerba@uniba.it

are explicitly stored in a memory whose size is smaller than
the entire data stream. Another key aspect of stream mining
is the change in distribution over time, better known as
Concept Drift [2]. While in the static scenario the underlying
distribution of the data does not change over time, guaran-
teeing a consistency between data features and their labels,
in the streaming scenario data features have a strong time
dependency. Any process discovery model operating in the
streaming context needs solutions to identify and handle
concept drifts so as to keep the performance of the model
stable, by updating it with the arrival of new data or by
completely replacing it when a drift occurs.

Despite the intrinsic dynamic nature of business pro-
cesses, most of the literature about process discovery has
seen the proliferation of solutions that fall into a static
context by discovering a process model from a finite amount
of traces (sequences of activities executed in a process case)
recorded in an event log. Only recent studies have begun to
explore the importance of repeating process discovery over
time to keep a process model constantly updated, in order
to capture the evolving nature of the behaviour of business
processes and maintain good performance over time (i.e.,
high conformance1 of upcoming traces to discovered pro-
cess models). In this paper we present a stream mining ap-
proach to perform the process discovery task in a dynamic
setting, i.e., in trace streams that may change over time.
The proposed approach, called STARDUST (event STream
Analysis for pRocess Discovery Using Sampling sTragies)
analyses a trace stream and identifies possible changes
(concept drifts) in the sequence of activities observed in the
recorded traces. As soon as a drift is alerted, the discovery
of a new process model is triggered.

The main goal of this study is the definition of an online

1. Conformance checking relates the sequence of activities in a trace
to the control-flow of activities in the process model and compares both
to indicate where a trace and a model agree or disagree [3].

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This manuscript is the accepted version of the article submitted to IEEE Transaction on Services Computing. Published version: https://ieeexplore.ieee.org/document/9925089

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

process discovery approach to update a process model over
time, in order to improve conformance of upcoming traces
to the discovered process model. Hence concept drift detec-
tion is explored as a means to understand when a process
model needs to be updated so as to accurately conform to
the control flow of activities of the upcoming traces.

The approach described in this study is formulated for
business processes whose trace distribution roughly follows
the Pareto’s principle i.e., a small fraction of trace variants
explains most of the traces observed. Actually, most busi-
ness process traces recorded in event logs follow such a
Pareto’s distribution [3], also referred to as the “80/20 rule”
(i.e., around 20% of all trace variants cover around 80% of all
observed cases), although the values 80 and 20 may be arbi-
trary. For example, in the event log “Reference Alignment”
published in the BPIC 2018 Challenge [4], 80% of traces
recorded in the event log are covered by about 1% of distinct
trace variants. Foundations of process discovery literature
[3] account for the Pareto’s distribution of event logs, by
advocating the importance of creating process models based
on the prevalent behaviors. Various activity-based filtering
approaches have been integrated in process discovery algo-
rithms to simplify activity traces and exclude exceptional
trace behaviours that may proliferate if the distribution of
traces over variants does not follow a Pareto’s distribution
[3]. On the other hand, sampling approaches are commonly
used as a preprocessing step to identify important traces to
be used for the process discovery [5].

Based upon considerations on the expected Pareto’s dis-
tribution of traces recorded executing a business process,
STARDUST adopts a frequency-based sampling technique
to select the most representative (i.e., frequent) trace vari-
ants to be considered for the process discovery. It alerts
a concept drift when selected variants change over time
and updates the process model accordingly. In this way,
STARDUST keeps a process model that changes over time
preserving the ability to accurately describe the upcoming
traces produced according to the drifted behaviours. Vari-
ous approaches (e.g., random, frequency, length, similarity,
structure, cluster-based) are formulated in process mining
to identify representative traces for process discovery (see
[5] for a recent survey). In this study, we chose to adopt
frequency-based sampling leveraging results in [5], which
show the higher conformance of process models discov-
ered from traces sampled with frequency-based sampling
in event logs with Pareto’s distribution. In addition, [6]
has recently shown that the process discovery performed
with traces selected with frequency-based sampling outper-
forms the process discovery with traces generated with an
abstraction-based approach in event logs following Pareto’s
distribution of traces. In this study, experimental results on
various benchmark event logs handled as streams show the
effectiveness of the proposed approach also compared to a
state-of-the- art concept drift detection approach.

The paper is organized as follows. Section 2 overviews
recent advances of literature in the stream learning of busi-
ness processes. Section 3 reports preliminary concepts, while
Section 4 describes the proposed STARDUST approach. In
Section 5 we present the benchmark data collections consid-
ered for the empirical evaluation, describe the experimental
setting and discuss the relevant results. Finally, Section 6

draws conclusions and sketches the future work.

2 RELATED WORK

The topic of concept drift has been widely investigated in
the field of stream data mining [7], so that process min-
ing research may, in principle, take advantage of amazing
achievements in stream data mining to handle concept drifts
in event data. However, the complexity of business pro-
cesses working in real environments demands for specific
methods to deal with concept drifts in process mining [8].

The topic of detecting concept drifts in event data was
originally investigated in [8], where an event log is trans-
formed into a stream of traces ordered on their arrival time,
and hypothesis tests are performed on sliding windows to
identify if a significant difference has occurred between a
feature set extracted on consecutive windows. This study
introduces a feature extraction step, thus the effectiveness of
the concept drift detector may depend on the quality of the
feature extraction. In addition, this study performs an offline
analysis that needs a complete event log for consumption
and only supports drift detection after the business process
has been executed. However, the investigation of the use
of hypothesis tests for concept drift detection is continued
in [9], where tests are performed over distributions of be-
havioral relations between events observed in two adjacent
sliding windows with adaptive size.

Inspired by these initial studies, a few recent studies
have continued the exploration of concept drift detection
methods operating in the process mining field [10]. In
particular, the cluster analysis has recently emerged as a
prominent approach for concept drift detection in event
data. In [2], clusters discovered on the transformed feature
space of an event stream are tracked over time to detect
concept drifts occurring as anomalous cases. In [11], case
distances are calculated by comparing streamed cases to
a graph global model that represents the current state of
the process. These distances are subsequently processed
through clustering, while the emergence of new clusters is
alerted as the occurrence of a concept drift. In [12], concepts
of the theory of regions and state similarity are adopted
to perform online conformance checking and quantify the
non-conforming behaviour of running cases with a constant
time complexity per analysed event. In [13], Sliding Win-
dow, Lossy Counting and Lossy Counting with Budget are
investigated to cope with concept drift and realize online
the discovery of a declarative process model, i.e., a set
of constraints that should hold in conjunction during the
process execution. In addition, the performance of several
approaches (.g., hypothesis test-based, clustering-based) for-
mulated for concept drift detection in process mining is
experimentally compared in [14], while the root causes of
concept drifts are initially investigated in [15], in order to
react to change or anticipate future change.

Previous studies reported above mainly focus on detect-
ing and visualizing concept drift points to perform confor-
mance checking. The work in [13] is similar to the method
proposed in our study, as it couples concept drift detection
to declarative process model discovery. Our study also cou-
ples concept drift detection to process model discovery, but
we focus on procedural process model discovery in place of

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

declarative process model discovery. We highlight that the
attention of the current study to the discovery procedural
process models is validated by the absence of a conclusive
assessment of the superiority of either procedural or declar-
ative process models [16]. Both these modelling languages
continue engaging equal interest in process mining.

On the other hand, the discovery of procedural process
models with online data has been recently investigated in
[17]. However, this previous study mainly focuses on incre-
mentally handling large amounts of data using finite mem-
ory within several procedural process discovery techniques
without explicitly alerting concept drift events. In fact, the
proposed architecture continuously updates a procedural
process model as new events are recorded. In principle,
concept drifts may be possibly recognized a-posteriori in the
root-cause analysis of the changes observed in the process
models updated as new events are processed. Our study
works in a different perspective as it explicitly detects con-
cept drifts, in order to restart the process model discovery
in correspondence of the detected drifts only. In addition,
we introduce a concept drift detector that is different from
prior methods for concept drift detection based on either
clustering or hypothesis tests. Our proposed method checks
significant changes in the frequency of distinct behaviours
observed in event data and identifies a few behaviours that
gain relevance for the process discovery after a concept drift.

To complete this overview, we note that concept drift
detection starts being a crucial topic also in predictive
process monitoring. Despite that the state-of-the-art process
monitoring approaches [18], [19], [20], [21] first construct a
predictive model based on past process cases, and then use
it to predict the unfolding (e.g., next activity, case outcome,
completion time) of running cases, without the possibility
of updating it with new cases when they complete their
execution, this can make predictive process monitoring too
rigid to deal with the variability of real processes that
continuously evolve or exhibit new variant behaviors over
time. In [22], an incremental learning strategy is explored
to update a predictive process model whenever new cases
become available so that the predictive model evolves over
time to fit current circumstances. In [23] various incremental
learning strategies (based on re-training or fine-tuning with
full data or windowed data collected starting from the last
drift point up to the current drift point) are analysed to
update predictive process models trained as simple neural
networks or dynamic Bayesian networks. In this study,
concept drifts are detected with the approach based on
hypothesis tests described in [8]. Similarly to our method,
these studies do not limit to detect and visualize concept
drifts, but they try to bridge the gap between concept drift
detection and online discovery. However, the focus of these
previous studies is on handling concept drifts in discovering
models for predictive process monitoring, while the focus of
this study is on discovering procedural process models.

3 PRELIMINARIES

In this section we introduce preliminary concepts referred
to event streams and process discovery.

3.1 Event and trace streams

Let A be the set of all activity names, C be the set of all case
identifiers and T be the set of all timestamps. Let ⊥ denote
the name of the completion activity (i.e., the activity that
denotes the completion of a business case execution).

Definition 1 (Event). An event e is a triple e = (c, a, t) ∈
C × A × T that represents the occurrence of the activity
a in the case c at timestamp t.

Let E = C × A × T be the event universe. To iden-
tify case, activity and timestamp components of an event
e = (c, a, t) ∈ E , we introduce the functions: πcase(e) = c,
πactivity(e) = a and πtime(e) = t, respectively. An event
e with πcase(e) = c and πactivity(e) = ⊥ denotes the
completion of a case c. 2

Definition 2 (Event stream). An event stream Σ is an un-
bounded sequence Σ = e1, e2, . . . of events defined on
the event universe E , such that ei ∈ E and πtime(ei) ≤
πtime(ei+1) for each i ∈ N

+

By resorting to a case perspective, the case identifier can
be used to group events already recorded in Σ into finite
event sequences sorted by timestamps.

Definition 3 (Case). A case c is an event sequence c =
⟨e1, e2, . . . , en⟩, such that ei ∈ Σ and πcase(ei) = c for
each i = 1, 2, . . . , n, and πtime(ei) ≤ πtime(ei+1) for
each i = 1, 2, . . . , n− 1.

Let c(i) be the i-th event of a case c and |c| be the
number of events recorded in c. The case c is a full case
if πactivity(c(|c|)) = ⊥; a running case otherwise.

For simplicity, in the remaining of this paper, we con-
sider a case through its activity trace.

Definition 4 (Activity trace). The activity trace σc of a case
c is the activity sequence σc = ⟨a1, . . . , an⟩, such that
ei = c(i) and πactivity(ei) = ai for each i = 1, 2, . . . , n
with n = |c|.

A trace stream is an unbounded sequence of activity
traces associated with cases fully recorded in an event
stream and sorted by the completion timestamp of cases.

Definition 5 (Trace stream). A trace stream Σ∗ is a sequence
of activity traces associated with full cases recorded in
an event stream Σ and sorted by the timestamp of the
completion event of each case, that is, Σ∗ = σ1, σ2, . . .,
where, for each i ∈ N

+, σi denotes the activity trace of
the case ci, πactivity(ci, |ci|) = ⊥ and πtime(ci, |ci|) ≤
πtime(ci+1, |ci+1|).

Figure 1 shows an example of a trace stream Σ∗ associ-
ated with an event stream Σ. Notice that Σ∗ is populated
with the activity traces σ1, σ2, σ3 and σ4 that correspond
to the full cases 1, 2, 3 and 4, respectively. The trace σ5 will
be added to Σ∗ as the completion event of the running case
5 will be recorded in Σ. Hence, as shown in this example,
an event stream Σ can be mapped into a trace stream Σ∗

and a list R of activity traces associated with running cases

2. The completion of a case is commonly declared in a multitude of
business processes, e.g., ticket resolution in help desk processes. In any
case, we are aware that business processes where the completion of a
case may not be explicitly declared are not handled in this study and
require further investigation in future works.

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

Figure 1: An example of trace stream

Table 1: An example of a multiset of activity traces, where
each superscript number denotes the number of times
(frequency) the distinct trace variant appears in the trace
stream. The trace stream is shown in Figure 1.

timestamp BΣ∗

2021-09-20 11:35:01 {⟨A,B,C,D,E⟩1}
2021-09-21 10:10:11 {⟨A,B,C,D,E⟩1, ⟨A,B,C,D⟩1}
2021-09-21 11:30:43 {⟨A,B,C,D,E⟩1, ⟨A,B,C,D⟩2}
2021-09-21 11:32:45 {⟨A,B,C,D,E⟩1, ⟨A,B,C,D⟩2, ⟨A,D⟩1}

whose completion event has not been recorded in Σ. The
trace stream Σ∗ is a multiset of full activity traces BΣ∗ , since
multiple traces recorded in Σ∗ may share the same activity
sequences. In Figure 1, both σ2 and σ3 share the same
activity sequence ⟨A,B,C,D⟩. Distinct activity sequences
are called trace variants. The number of times a distinct
trace variant σ appears into Σ∗ represents the frequency
with which σ is repeated into BΣ∗ . For example, the trace
variant ⟨A,B,C,D⟩ occurs twice in Figure 1.

Definition 6 (Behavior of a multiset). The behavior of BΣ∗

is the set of distinct trace variants recorded in BΣ∗ .

The function β(BΣ∗) selects the behavior of BΣ∗ .
Due to the streaming setting, BΣ∗ changes each time a

completion event is recorded in Σ. Let σ be the activity trace
whose case has been just completed in Σ, σ is removed
from R and added to BΣ∗ . We distinguish two cases. If
σ represents a trace variant never seen before in Σ∗ (i.e.,
σ /∈ β(BΣ∗)) then a new set is put into BΣ∗ to represent
σ with frequency equal to 1. Otherwise the frequency of σ
is incremented by 1 into BΣ∗ . Table 1 shows an example of
how BΣ∗ may change over time as new traces are completed
in Σ∗. At the timestamp 2021-09-21 11:32:45, BΣ∗ is a multi-
set that comprises: ⟨A,B,C,D,E⟩ with frequency equal to
1, ⟨A,B,C,D⟩ with frequency equal to 2, and ⟨A,D⟩ with
frequency equal to 1. β(BΣ∗) is the set of the three distinct
trace variants: ⟨A,B,C,D,E⟩, ⟨A,B,C,D⟩ and ⟨A,D⟩.

Notice that the size of R is expected to fluctuate over
time since an activity trace stays in R as long as its case is
running, and it is removed from R as the completion of its
case is recorded in Σ. Instead, the size of BΣ∗ is expected
to grow over time. So, a pruning strategy can be used to
limit the size of BΣ∗ over time. To this aim, we introduce
a forgetting mechanism that prunes trace variants that are
unobserved for long time in Σ∗ (inactive trace variants).

Definition 7 (Inactive trace variant). Let w be the forgetting
size, a trace variant σ is marked as inactive in Σ∗ if it has
not occurred in the w newest traces observed in Σ∗.

Figure 2: Example of forgetting mechanism with w = 5

Figure 2 shows an example of the forgetting-based prun-
ing strategy. It removes σ4 from BΣ∗ as it disappears for
w = 5 consecutive activity traces recorded in Σ∗. Using this
pruning strategy we record an approximation of Σ∗ in BΣ∗ ,
which forgets behaviours that have disappeared for a long
time. This bases on the idea that trace variants becoming
inactive can disappear from the online process model.

3.2 Process discovery

Starting from a multiset of activity traces, we can perform a
process discovery task, in order to discover a process model,
that is, a generative representation of the activity traces
recorded in the processed multiset. As described in [14], this
representation can generate multiple activity traces based
on the optional paths it describes. Specifically, we can refer
to the process model behavior as the set of trace variants
that can be generated from the process model. So, a process
discovery algorithm commonly constructs a process model
from a multiset of activity traces.

Definition 8 (Process model discovery). Let us consider a
multiset of activity traces BΣ∗ , a generative representa-
tion M of BΣ∗ and a set of activity traces BM that can
be generated by the execution of the model M , a process
discovery algorithm is a function δ : BΣ∗ 7→ BM .

Various robust process discovery algorithms have been
formulated in the recent literature to generate Petri nets (.g.,
Hybrid ILP Miner [24], Inductive Miner [25], Split Miner
[26]). They focus on the discovery of procedural process
models, that is, the process model perspective of this study.
The ability of these algorithms to discover effective process
models is commonly measured in terms of ability to (1)
parse the traces in the multiset of real activity traces, (2)
not parse other traces and (3) be as simple as possible. The
first property is called fitness, the second precision and the
last one simplicity. Most of these algorithms may suffer for
the presence of many infrequent behaviors [27] that can lead
to spaghetti-like models. A straightforward solution to over-
come this problem is to down-size the amount of event data
to be processed with a process discovery algorithm by pos-
sibly removing infrequent behaviors. To this aim, various
filtering [28], [29] and sampling [5], [30] methods have been
proposed in the recent literature as a preprocessing step for
process discovery. In particular, as business processes often
produce activity traces that follow the Pareto’s distribution
traces [3], frequency-based sampling is commonly used in
several real processes to filter-out infrequent trace variants.

Definition 9 (Frequency-based sampling). Let BΣ∗ be a
multiset of activity traces and µ be the sampling rate
(0 < µ < 100%). The frequency-based sampling algo-
rithm sorts the trace variants of BΣ∗ in a descending

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

Table 2: An example of concept drift occurring between ti and ti+1

timestamp BΣ∗ B′

Σ∗ with µ = 0.8 β(B′

Σ∗)

ti−1 {⟨A,B,C,D,E⟩7, ⟨A,B,C,D⟩6, ⟨A,D⟩2} {⟨A,B,C,D,E⟩7, ⟨A,B,C,D⟩6} {⟨A,B,C,D,E⟩, ⟨A,B,C,D⟩}
ti {⟨A,B,C,D,E⟩7, ⟨A,B,C,D⟩6, ⟨A,D⟩3} {⟨A,B,C,D,E⟩7, ⟨A,B,C,D⟩6} {⟨A,B,C,D,E⟩, ⟨A,B,C,D⟩}

ti+1 {⟨A,B,C,D,E⟩7, ⟨A,B,C,D⟩6, ⟨A,D⟩4} {⟨A,B,C,D,E⟩7, ⟨A,B,C,D⟩6, ⟨A,D⟩4} {⟨A,B,C,D,E⟩, ⟨A,B,C,D⟩, ⟨A,D⟩}

discovery that monitors the stream to re-train the process
model every time a concept drift is detected; (3) Evaluation
that measures the conformance of the current process model
at the completion of each new activity trace. Both step (1)
and (2) wrap a process discovery algorithm δ and integrate
the frequency-based sampling algorithm with sampling rate
µ to extract the top-frequent trace variants. During both
steps, the event stream Σ is processed at the trace level and
recorded in two data synopses: R (i.e., the list of activity
traces of current running cases) and BΣ∗ (i.e., the multi-set
of active trace variants of full cases). These synopses are
updated each time a new event is recorded in Σ.

4.1 Data synopses

The number of activity traces of full cases already observed
in the stream is registered into the trace enumerator i.

The list of activity traces associated with observed run-
ning cases is recorded into a data synopsis R composed
of an header table H and a prefix tree T . This synopsis is
inspired to the data structure introduced in [33]. H is a Hash
table, where each cell represents the identifier c of a running
case. H[c] contains the link to a node of T so that the tree
path from the root to the pointed node records the activity
trace of c. T is a tree that consists of one root labeled as
null (denoted as root) and a set of prefix activity sub-trees
as the children of root. Each node n in the activity prefix
sub-tree consists of three fields: activity-name that contains
the activity registered in the event that n represents, father-
link that contains the link to the father node of n (null in
root) and child-link that collects the links to the child nodes
of n sorted by activity-name (null in leaf nodes). The size of

T is
m∑

j=1

(c+ ↑ N) +

#N∑

j=1

a+

#N−1∑

j=1

(2∗ ↑ N), where m is the

number of cases registered in H, c is the memory used to
record a case identifier, #N is the number of nodes in T , a
is the memory used to register an activity in a node, ↑ N is
the memory used to register the link (pointer) to a node.

The multi-set of active trace variants associated with
observed full cases is recorded into a data synopsis BΣ∗

that is a Hash table, where each cell registers a trace vari-
ant σ. BΣ∗ [σ] denotes the tabular entry which stores the
couple (frequency, enum) with frequency that represents
the frequency of σ in the stream and enum the value of
trace enumerator index at which the last occurrence of σ
has been observed. The one-to-one association between the
trace variant (key) and the table cell is made by means of a

Hash function. The size of BΣ∗ is
b∑

j=1

(lja+ f + t), where b

is the number of trace variants, lj is the length of the j trace
variant recorded in BΣ∗ , a is the memory used to register an
activity, f is the memory used to register the frequency of a

trace variant and t is the memory used to register the trace
enumerator value associated to the trace variant.

Initially, i = 0, H is an empty Hash table and T contains
the root node root. As an event e with πcase(e) = c and
πactivity(e) = a is observed in Σ, we distinguish three cases.

1) c is a new running case. It is registered in H. If
there exists a child of root, denoted as n, such
that n.activity-name=a, the link to n is recorded into
H[c]. Otherwise a new child node, denoted as n, is
added to root in T with n.activity-name=a, n.father-
link=root and n.child-link=null. The link to n is
added to root.child-link.

2) c exists in H and a = ⊥. Let n be the node
pointed by H[c], the activity trace σ of c is extracted
traversing T from n to root. Notice that σ, that is
read in the reverse order, is ready to be added to
BΣ∗ . The cell H[c] is dropped from H. If n is a leaf
and there is no further cell of H pointing to n, then
n is dropped from T . This node dropping operation
is recursively applied to T by traversing bottom-up
all ancestors of n in T .

3) c exists in H and a ̸= ⊥. Let n be the node pointed
by H[c]. If there exists n′ that is a child of n such
that n′activity-name= a, the link to n′ is recorded
into H[c]. Otherwise a new child n′ of of n is added
to T so that n′.activity-name=a, n′.father-link=n and
n′.children-link=null, while the link to n′ is added to
n.child-link.

As the completion event of a case c is recorded in Σ, i is
incremented by 1, the trace σ associated with c is removed
from R, and σ is added to BΣ∗ . We distinguish two cases:

1) σ corresponds to a trace variant already registered
in a cell of BΣ∗ . In this case, BΣ∗ [σ].frequency is
incremented by 1 and BΣ∗ [σ].enum is set equal to i

2) σ is a new trace variant. In this case, BΣ∗ [σ] is
registered into BΣ∗ with BΣ∗ [σ].frequency = 1 and
BΣ∗ [σ].enum is set equal to i.

Finally, the pruning mechanism with forgetting size w is
performed. So, trace variants with BΣ∗ [σ].enum+w ≤ i are
labeled as inactive and dropped from BΣ∗ .

4.2 Initialization step

In the initialization step, STARDUST sets i = 0 (i.e., trace
counter) and starts monitoring the event stream Σ to dis-
cover an initial process model M . When a new case c starts
its execution, its activity trace is recorded in R where it stays
until the completion event of the case has been recorded in
Σ. When c has been completed, the trace σ associated with c
feeds Σ∗, so i is incremented by one and σ is removed from
R to be recorded into BΣ∗ . As η activity traces have been
recorded in BΣ∗ (i.e., i = η), the frequency-based sampling

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

Algorithm 1: STARDUST algorithm

Data: Σ (event stream), η(number of traces for the initialization), µ
(sampling rate), δ (process discovery algorithm), w (forgetting
size)

Result: M (evolving process model), Eval (measurements of the
conformance of streamed traces to the online process model)

1 begin
/* Initialization */

2 i = 0
3 R = ({}, {root})
4 BΣ∗ = {}
5 for i < η do
6 e=observe(Σ)
7 if πactivity(e) = ⊥ then
8 i = i + 1
9 Let σ be the activity trace associate with case

c = πcase(e). Remove σ from R
10 Record σ in BΣ∗

11 else
12 Record e in R

13 B = β(BΣ∗)
14 B′

Σ∗=frequentSampling(β(BΣ∗), µ)
15 M=processdiscovery(B′

Σ∗ , δ)
/* Process discovery and evaluation */

16 for e=observe(Σ) do
17 if πactivity(e) = ⊥ then
18 i = i + 1
19 Let σ be the activity trace associate with case

c = πcase(e). Remove σ from R
20 Add conformance(M,σ) to Eval
21 Record σ in BΣ∗

22 B′

Σ∗ =frequentSampling(β(BΣ∗), µ)
23 if B ̸= β(B′

Σ∗) then
24 B = β(B′

Σ∗)
25 M=processDiscovery(B′

Σ∗ , δ)

26 else
27 Record e in R

28 return M , Eval

algorithm is run with sampling rate µ, in order to extract
B′
Σ∗ from BΣ∗ . Subsequently, STARDUST both runs δ to

discover the process model M as a generative representation
of B′

Σ∗ and saves a copy of B = β(B′
Σ∗). M will be used in

the evaluation step, while B will be used in the behaviour
concept drift detection of the process model discovery step.

4.3 Process model discovery step

As the initialization step has been completed, the process
model discovery step continues monitoring the event stream
Σ and triggering the behaviour concept drift detection
and possibly the process discovery as each new incoming
activity trace has been completed. This step is performed
continuously to discover behavior concept drifts and re-run
δ to train a new process model M as a concept drift is alerted
on the monitored traces. Let σ be the new activity trace
registered in BΣ∗ . The frequency-based sampling algorithm
is performed with sampling rate µ, in order to extract
B′
Σ∗ from BΣ∗ . If B ̸= β(B′

Σ∗), then STARDUST updates
B = β(B′

Σ∗) and runs δ to discover a new process model M
from the current B′

Σ∗ . Otherwise, the old M is kept without
triggering any re-training step for the process discovery.

4.4 Evaluation step

The evaluation step is performed online in parallel to the
process discovery step to monitor the conformance of up-
coming traces to the online process model. Let σ be an

activity trace recorded in B′
Σ∗ , the conformance of σ to the

current process model M is evaluated in terms of Fmeasure
(i.e., harmonic mean) of fitness and precision [3]. According
to the foundations of conformance checking [3], fitness is
derived based on the number of satisfied and violated
process model rules. Precision is quantified by the number
of possible continuations in the process model not observed
in the trace.3 Notice that the evaluation of the conformance
of σ is done with the process model M that was kept
(or discovered) after completing the process discovery step
before the observation of σ.

5 EXPERIMENTS

We evaluated the performance of STARDUST by perform-
ing experiments on seven event logs handled as streams.

5.1 Implementation details

STARDUST was implemented in Python 3.9 – 64 bit version.
This implementation is available via the public GitHub
repository.4 We used three state-of-the-art process discovery
algorithms: Hybrid ILP Miner [24] (ver 6-10.154) and Induc-
tive Miner [25] imported from PM4PY, Split Miner [26] im-
ported from Apromore5. We integrated the implementation
of the Cost-based fitness [34] and the Align-ETConformance
[35] from PM4PY. Both metrics are measured with align-
ments computed with the algorithm A∗ [36]. In addition,
we implemented the Extedend Cardoso Metrics module [37]
to compute the extended Cardoso index that measures the
complexity of a process model by its complex structures,
i.e., Xor, Or and And components. The subprocess module6

present in Python 3.6.9 was adopted to run the Java plug-in
of Hybrid ILP Miner and Split Miner through the Python
code by creating new processes. A pre-processing step was
performed to simplify the self-loop events that may appear
in an activity trace. A self-loop is a sub-sequence of a trace
where an activity is repeated on n consecutive events with
n ≥ 2. A self-loop with n repetitions is called a n-repetition.
We removed every n-repetition of the same event with a
2-repetition by performing an activity dropping operation.
This simplification is introduced to reduce the risk that led
to handle a huge number of similar trace variants showing
the same loop repeated on a different number of times.
This simplification of repetitions was implemented when
an event was registered in the prefix tree data synopsis. A
node is not added to the tree if it registers the same activity
already registered in both its father and grand-father node.

5.2 Event logs and experimental setting

We processed trace streams generated from seven bench-
mark event logs provided by the 4TU Centre for Research.7

These event logs record executions of business processes
in healthcare, assistance, tourism and traffic management.

3. Any other conformance metric can be used in the evaluation step.
4. https://github.com/vinspdb/STARDUST
5. https://apromore.org/platform/tools/
6. https://docs.python.org/3/library/subprocess.html
7. https://data.4tu.nl/portal

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

Table 3: Event stream description: number of activities (#a), events (#e), traces (#t), trace variants (#v), trace variants
(and percentage of trace variants) that cover the 80% of all the traces recorded in the event log (#t(80%)), average trace
length (avg.length(σ)), event log size (size(Σ) in KBytes with 2 bytes used to record an activity name and 4 bytes used to
record a case identifier, stream duration in days (time(Σ)), average trace duration in days (avg.time(σ))

event stream (Σ) #a #σ #e #v #v (80%) avg.length(σ) size(Σ) time(Σ) avg.time(σ)
BPIC13Incidents (BPIC13I) 13 7554 65533 2278 770 (33.8%) 9 438.5 783 12.1
BPIC18ReferenceAlignment (BPIC18R) 6 43802 128554 515 5 (0.97%) 3 1034.1 909 78.5
BPIC20DomesticDeclarations (BPIC20D) 17 10500 56437 99 3 (3.03%) 5 401.6 889 11.5
BPIC20PrepaiedTravelCost (BPIC20P) 29 2099 18246 202 26 (12.8%) 9 122.1 772 36.8
BPIC20RequestForPayments (BPIC20R) 19 6886 36796 89 4 (4.49%) 5 262.1 941 12
Road 11 150370 561470 231 4 (1.73%) 4 4271.1 4917 3416
Hospital 18 100000 451359 1020 10 (0.98%) 5 3308.2 1131 130.9

Table 4: Experimental process discovery configurations. Dy-
namic configurations (d) are referred to STARDUST, while
static configurations (s) are referred to the static counterpart
of STARDUST. fl refers to running a process discovery algo-
rithm by using the embedded filtering mechanism. fr refers
to running a process discovery algorithm my accounting for
the frequency of trace variants.

conf fl fr mode conf fl fr mode
nfl nfr d no no dynamic nfl nfr s no no static
nfl ufr d no yes dynamic nfl ufr s no yes static
ufl nfr d yes no dynamic ufl nfr s yes no static
ufl ufr d yes yes dynamic ufl ufr s yes yes static

Table 3 reports the characteristics of these event logs. Un-
fortunately there is no description of concept drifts occur-
ring in these benchmark real event logs. However, starting
from [38], various studies (also discussed in Section 2)
have repeatedly assessed the lack of steady-state in real
business processes and the need of discovering evolving
process models. The main goal of this experimentation is
showing that the proposed approach can actually improve
the conformance of upcoming traces to a process model
by updating the model over time. This ability is explored
orthogonally to both the time spent processing the stream
and the memory used to keep a summary of the stream in
memory during the processing time, in order to account for
the data stream processing constraints.

For each event stream, we conducted experiments by
using 10% of the total number of activity traces recorded in
the original event log for the initialized step (η = 10%). We
set the sampling rate of the frequency-based sampling algo-
rithm equal to 0.8 (µ = 0.8). This sampling rate set-up was
decided according to the Pareto’s principle. In addition, we
set the forgetting size equal to the size of the initialization
window (w = η). We ran Hybrid ILP Miner (ILP), Inductive
Miner (IMi) and Split Miner (SM) as process discovery
algorithms. Each process discovery algorithm was run by
either enabling the embedded filtering technique of the al-
gorithm (ufl) or disabling filtering (nfl). Filtering techniques
are commonly used in process discovery to drop infrequent
activities, infrequent variants and infrequent arcs, in order to
remove infrequent behaviours and discover simpler process
models [3]. They are integrated in all the process discovery
algorithms used in this study. In particular, IMi and SM
integrate a filtering technique that removes infrequent nodes
and edges of the created direct-follow-graphs. ILP integrates
a sequence encoding filtering technique that filters excep-
tional behaviours within the integer linear programming

formulation of the discovery process [39]. In this experi-
mentation, filtering techniques were run with the default
parameter set-up in the corresponding process discovery
algorithms. So, the process discovery was completed by
processing either the multi-set of sampled activity traces
(repeated according to their frequency) (ufr) or the set of
distinct sampled trace variants (considered without their
frequency) (nfr). In ufr, the process discovery algorithm δ
takes the multi-set B′

Σ∗ as input for the process discovery. In
nfr, δ takes the set β(B′

Σ∗) as input for the process discovery.
Examples of both B′

Σ∗ and β(B′
Σ∗) are shown in Table 2.

For all these configurations of the process discovery
algorithm, we compared the performance of the dynamic
setting (d) realized by STARDUST to the performance of
the static counterpart (s) that keeps the process model
discovered in the initialization step without updating it on
concept drifts. A summary of the experimented configu-
rations is reported in Table 4. In addition, we compared
the performance of STARDUST to the performance of the
related method detecting concept drifts with the cluster-
based approach presented in [40].8

To measure the performance of discovered process mod-
els, we adopted the Prequential Evaluation strategy com-
monly used in stream data mining [32]. We measured the
conformance of upcoming traces to the newer discovered
process model. The conformance was measured in terms
of Fmeasure of fitness and precision. This metric was com-
puted on all the activity traces acquired as the initialization
step was completed. The average metric measured on all
the test activity traces is reported in this study. In addi-
tion, we measured the complexity of discovered process
models in terms of Extended Cardoso index. We measured
the memory used (in KBytes) to keep streamed data in
memory during the online process. Finally, we measured
the computation time spent in seconds to process the entire
trace stream. The computation times were collected running
the experiments on Intel(R) Core(TM) i7-9700 CPU, GeForce
RTX 2080 GPU, 32GB Ram Memory, Windows 10 Home.

5.3 Results and discussion

5.3.1 Dynamic versus static setting analysis

We start this analysis comparing the performance of various
configurations of STARDUST (see Table 4) to that of their
static counterparts. This analysis is conducted to explore
how the use of the behavior concept drift detection ap-
proach integrated in STARDUST may be an opportunity to

8. We used the implementation of the cluster-based approach avail-
able at https://github.com/gbrltv/cdesf2

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

Table 5: Performance of process models discovered by run-
ning ILP, IMi and SM in both STARDUST (d) and its static
counterpart (s): number of drifts (#d) average Fmeasure
(of fitness and precision) and total computation time (in
seconds). The best results are in bold.

stream conf #d
Fmeasure time (s)

ILP IMi SM ILP IMi SM

BPIC13I

nfl nfr d

63

0.50 0.57 0.58 73 87 76
nfl ufr d 0.50 0.57 0.58 83 88 80
ufl nfr d 0.52 0.58 0.52 71 77 69
ufl ufr d 0.52 0.58 0.52 62 96 73
nfl nfr s

0

0.44 0.50 0.50 46 50 49
nfl ufr s 0.44 0.50 0.50 46 50 49
ufl nfr s 0.44 0.50 0.50 46 50 50
ufl ufr s 0.44 0.50 0.50 46 50 49

BPIC18R

nfl nfr d

11

0.96 0.96 0.96 133 123 127
nfl ufr d 0.96 0.96 0.96 136 124 128
ufl nfr d 0.96 0.96 0.95 133 123 122
ufl ufr d 0.94 0.96 0.96 132 130 126
nfl nfr s

0

0.94 0.94 0.94 129 110 111
nfl ufr s 0.94 0.94 0.94 129 109 111
ufl nfr s 0.94 0.94 0.94 129 110 109
ufl ufr s 0.94 0.94 0.94 128 109 110

BPIC20D

nfl nfr d

4

0.80 0.83 0.83 48 47 48
nfl ufr d 0.80 0.83 0.83 49 47 48
ufl nfr d 0.80 0.83 0.83 49 47 48
ufl ufr d 0.83 0.83 0.83 47 47 48
nfl nfr s

0

0.51 0.51 0.51 44 43 44
nfl ufr s 0.51 0.51 0.51 46 43 44
ufl nfr s 0.51 0.51 0.51 47 43 44
ufl ufr s 0.64 0.51 0.51 43 43 44

BPIC20P

nfl nfr d

68

0.64 0.53 0.70 20 24 25
nfl ufr d 0.64 0.53 0.70 21 24 25
ufl nfr d 0.68 0.53 0.69 20 24 22
ufl ufr d 0.69 0.62 0.66 18 25 21
nfl nfr s

0

0.29 0.21 0.29 20 26 25
nfl ufr s 0.29 0.21 0.29 19 26 25
ufl nfr s 0.25 0.29 0.29 19 24 25
ufl ufr s 0.50 0.26 0.29 16 24 25

BPIC20R

nfl nfr d

5

0.78 0.82 0.82 32 31 31
nfl ufr d 0.78 0.82 0.82 32 31 31
ufl nfr d 0.80 0.82 0.82 33 31 31
ufl ufr d 0.81 0.82 0.82 30 31 31
nfl nfr s

0

0.48 0.48 0.48 29 28 28
nfl ufr s 0.48 0.48 0.48 29 28 28
ufl nfr s 0.48 0.48 0.48 31 28 28
ufl ufr s 0.61 0.48 0.48 27 28 28

Road

nfl nfr d

7

0.73 0.63 0.80 744 740 740
nfl ufr d 0.73 0.63 0.80 745 741 747
ufl nfr d 0.78 0.63 0.81 734 742 715
ufl ufr d 0.65 0.65 0.79 659 727 719
nfl nfr s

0

0.53 0.50 0.74 969 1053 871
nfl ufr s 0.53 0.50 0.74 817 1051 875
ufl nfr s 0.72 0.50 0.74 837 1058 880
ufl ufr s 0.79 0.50 0.79 704 1062 672

Hospital

nfl nfr d

4

0.83 0.61 0.85 591 661 597
nfl ufr d 0.83 0.61 0.85 596 659 599
ufl nfr d 0.83 0.61 0.85 612 661 597
ufl ufr d 0.67 0.61 0.72 570 674 544
nfl nfr s

0

0.78 0.60 0.82 638 666 607
nfl ufr s 0.78 0.60 0.82 627 665 603
ufl nfr s 0.78 0.60 0.82 630 666 608
ufl ufr s 0.60 0.60 0.76 434 705 574

improve the performance of a traditional process discovery
algorithm independently of the configuration adopted to
run the algorithm (i.e., possible use of filtering mechanisms,
as well as possible consideration of trace variants with their
frequency). Table 5 reports the number of concept drifts
detected with STARDUST, as well as the conformance and
time metrics measured for all the tested configurations of
both STARDUST and its static counterpart. Figure 4 shows
how the complexity of process models discovered with the
tested configurations of STARDUST changes over time in
correspondence of concept drifts when the process model
discovery step is repeated.

Results on the conformance (Fmeasure of fitness and

precision) show that the behavior concept drift detector
approach integrated in STARDUST is decisive for discov-
ering process models that allow us to measure higher con-
formance of upcoming activity traces to the lastly discov-
ered process model. This is confirmed by the results of
statistical tests performed to verify whether the improve-
ment of conformance of the process models discovered
with STARDUST configurations is significant over the var-
ious trace streams. To this aim, we used Friedman’s test
that is a non-parametric test commonly used to compare
multiple methods over multiple data collections. The null-
hypothesis states that all the methods are equivalent. Under
this hypothesis, the ranks of compared methods should be
equal. In this study, we rejected the null hypothesis with
p-value ≤ 0.05. As the null-hypothesis was rejected, that is,
no method was singled out, we used a post-hoc test—the
Nemenyi test—for pairwise comparisons.

Results of Nemenyi tests reported in Figure 5 confirm
that all the configurations of the static counterpart of STAR-

DUST rank lower than the dynamic configurations of STAR-

DUST independently of the process discovery algorithm
considered. This analysis also provides specific insights
about the behavior of the compared process discovery al-
gorithms in terms of conformance of the discovered process
models with respect to the use of filtering mechanisms and
frequency information in the process discovery. For exam-
ple, both ILP and IMi take advantage of their embedded
filtering mechanism, while SM performs better when the
filtering mechanism has been disabled. Interestingly, this be-
haviour of filtering on ILP and IMi is shown independently
of the process discovery setting tested (dynamic or static).
On the other hand, exploring the effect of the frequency
information, we note that SM and ILP perform better by
neglecting the frequency information (i.e., by considering
only one repetition of each sampled trace variant in the
process discovery) in the dynamic setting, while they take
advantage of accounting for repetitions of trace variants in
the process discovery performed in the static setting. Dif-
ferently, in IMi, the frequency information, that is neglected
into the top-ranked static configuration (ufl nfr s), is rele-
vant into the top-ranked dynamic configuration (ufl ufr d).

Results on the total computation time show that dynamic
configurations of STARDUST were commonly slower than
configurations of the static counterpart. The more computa-
tion time of dynamic configurations was spent monitoring
concept drifts and repeating the process discovery as con-
cept drifts were detected. In any case, the gap between the
computation time spent in both the dynamic setting and the
static setting is small in all the tested streams independently
of the process discovery algorithms considered.

Interestingly, in Road, the static setting commonly spent
more computation time than the dynamic setting. In fact,
the only exception of this behavior is observed with ufl ufr
with SM. This can be explained by analysing the complexity
(extended Cardoso index) of the process models discovered
in the dynamic setting (Figure 4). In fact, the process models
of Road discovered in correspondence of concept drifts are
commonly simpler than the process model discovered in
the initialization step. This is also shown in the Petri net
representation of these process models. As an example,
Figure 6 shows the Petri nets of the process models of Road

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

drifts detected. As shown in Figure 6, the process models
discovered in Road suggest the existence of recurrent drifts.
A sensitive forgetting mechanism leads to a local overfitting
phenomenon in the process model adaptation to short-term
local drifts since the model is updated frequently missing
the global behaviour of the traces. In general, the experiment
shows that the forgetting mechanism may save memory and
contribute to improve Fmeasure, although the set-up of (a
possible adaptive) w deserves further investigation in future
works especially in presence of frequent recurrent drifts.

5.3.4 Frequency-based sampling analysis

We explored the performance of STARDUST by varying the
sampling rate µ among 0.7, 0.8 (default), 0.9 and 1.0. Note
that frequency-based sampling is disabled when µ = 1.0.
Figure 9 shows Fmeasure, computation time (s), total mem-
ory usage (Kbytes) and number of drifts of STARDUST run
with IMi in both BPIC20R and Road. Results show that the
worst performance of STARDUST (the lowest Fmeasure, the
highest computation time and the most memory used) is
achieved when µ = 0.9 and µ = 1.0, and the number of
detected drifts increases. In these cases, less frequent trace
variants were taken into account for both the concept drift
detection and the process discovery by leading to overfit the
process model kept online to local drifts occurring on infre-
quent behaviours. In general, this experimentation shows
the advantage of neglecting infrequent trace behaviours
through sampling, although the set-up of the sampling rate
may depend on specific characteristic of streams. Investigat-
ing characteristics of streams that may affect the set-up of µ
deserves further investigations in the future.

5.3.5 Concept drift analysis

We complete this analysis by comparing the performance of
the behavior concept drift detector integrated in the default
dynamic configuration of STARDUST to the related concept
drift detector based on the cluster analysis, called CDESF,
and introduced in [40]. CDESF is run with the default
parameter setup suggested by the authors in the github
repository (i.e., time horizion=259200, λ=0.05, ϵ = 0.2,
µ = 4, stream speed=100). Results of the conformance of the
process models updated on the concept drifts discovered
with the two approaches are reported in Table 6. These
results show that, except for BPIC20D and BPIC20R, the
behavior concept drift detector identifies a higher number of
concept drifts than the cluster-based approach. CDESF does
not identify any concept drift in Hospital, while STARDUST

detects four concept drifts. On the other hand, updating the
process model in correspondence of the detected concept
drifts allows STARDUST to keep an updated process model
of Hospital that outperforms the one maintained by CDESF

in terms of conformance to the upcoming traces. In general,
the use of the proposed behavior concept drift detector
provides process models that keep higher conformance over
time than the counterpart process models discovered inte-
grating the cluster-based concept drift detector. This con-
clusion can be commonly drawn independently of the pro-
cess discovery algorithm, as well as its configuration. The
only exceptions are observed in various configurations of
BPIC13I and Road, where the CDESF allows us to achieve,
in some cases, higher conformance in process discovery than

Table 6: Fmeasure of process models discovered with ILP,
IMi and SM using both the behavior concept drift detector
of STARDUST (S) and the cluster-based approach CDESF

[40] (C). The best results are in bold.

stream conf
#drift

Fmeasure
ILP IMi SM

S C S C S C S C

BPIC13I

nfl nfr

63 7

0.50 0.51 0.57 0.60 0.58 0.60
nfl ufr 0.50 0.51 0.57 0.57 0.58 0.60
ufl nfr 0.52 0.51 0.58 0.60 0.52 0.53
ufl ufr 0.52 0.49 0.58 0.60 0.52 0.53

BPIC18R

nfl nfr

11 2

0.96 0.94 0.96 0.94 0.96 0.94
nfl ufr 0.96 0.94 0.96 0.94 0.96 0.94
ufl nfr 0.96 0.94 0.96 0.94 0.95 0.94
ufl ufr 0.94 0.94 0.96 0.94 0.96 0.94

BPIC20D

nfl nfr

4 5

0.80 0.60 0.83 0.68 0.83 0.68
nfl ufr 0.80 0.60 0.83 0.68 0.83 0.68
ufl nfr 0.80 0.60 0.83 0.68 0.83 0.68
ufl ufr 0.83 0.64 0.83 0.68 0.83 0.68

BPIC20P

nfl nfr

68 3

0.64 0.26 0.53 0.24 0.70 0.33
nfl ufr 0.64 0.26 0.53 0.24 0.70 0.33
ufl nfr 0.68 0.50 0.53 0.24 0.69 0.33
ufl ufr 0.69 0.50 0.62 0.21 0.66 0.33

BPIC20R

nfl nfr

5 6

0.78 0.78 0.82 0.81 0.82 0.81
nfl ufr 0.78 0.78 0.82 0.81 0.82 0.81
ufl nfr 0.80 0.79 0.82 0.81 0.82 0.81
ufl ufr 0.81 0.81 0.82 0.81 0.82 0.81

Road

nfl nfr

7 1

0.73 0.64 0.63 0.66 0.80 0.77
nfl ufr 0.73 0.64 0.63 0.66 0.80 0.77
ufl nfr 0.78 0.79 0.63 0.66 0.81 0.77
ufl ufr 0.65 0.73 0.65 0.65 0.79 0.79

Hospital

nfl nfr

4 0

0.83 0.78 0.61 0.60 0.85 0.82
nfl ufr 0.83 0.78 0.61 0.60 0.85 0.82
ufl nfr 0.83 0.78 0.61 0.60 0.85 0.82
ufl ufr 0.67 0.60 0.61 0.60 0.72 0.82

the behaviour concept drift detector proposed in this study.
In any case, the best conformance is still achieved with
STARDUST in the experiments on Road when SM is used
as process discovery algorithm.

6 CONCLUSION

In this paper, we have presented a process discovery ap-
proach, called STARDUST, that deploys traditional process
mining algorithms in a dynamic (streaming) setting. It dis-
covers an initial process model from an initial batch of
activity traces, integrates a concept drift detection approach
that monitors relevant changes in the behavior of acquired
activity traces, in order to alert concept drifts, and discovers
a new process model as a concept drift is detected in the
stream. The experiments show the effectiveness of the pro-
posed approach also compared to a state-of-the- art concept
drift detection approach.

One limitation of the proposed approach is the lack of
root-cause analysis to identify sources of concept drifts that
may condition performance of process models (e.g., root
cause of periodicity of specific concept drifts). To over-
come this limitation, we plan to integrate the proposed
approach in a pipeline able to explore process deviations
along their root causes. On the other hand, STARDUST

does not provide any information on the drift type (sudden
or gradual). We plan to explore the possible integration of
techniques for drift categorization [31]. Another limitation
is that STARDUST is formulated for business processes that
declare the completion activity of their full cases. This is
expected in several business processes, e.g., ticket resolution
in help desk processes. However, a future research direction

IEEE TRANSACTIONS ON SERVICES COMPUTING 15

Donato Malerba is a Full Professor in the De-
partment of Computer Science, University of
Bari Aldo Moro, Italy. He is IEEE member. He
has been responsible for the local unit of several
research projects. He received an IBM Faculty
Award in 2004. He is in the editorial board of sev-
eral international journals. His research interests
include machine learning, data mining, big data
analytic and their applications. He is member of
the IEEE Task Force on Process Mining.

