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Abstract

The liberalization of electricity markets gave rise to new patterns of futures
prices and the need of models that could efficiently describe price dynamics grew
exponentially, in order to improve decision making for all of the agents involved
in energy issues. Although there are papers focused on modelling electricity as
a flow commodity by using the Heath et al. (1992) approach in order to price
futures contracts, the literature is scarce on attempts to consider a seasonal
volatility as input to models. In this paper, we propose a futures price model
that allows looking into observed stylized facts in the electricity market, in
particular stochastic price variability, and periodic behavior. We consider a
seasonal path-dependent volatility for futures returns that are modelled in the
Heath et al. (1992) framework and we obtain the dynamics of futures prices.
We use these series to price the underlying asset of a call option in a risk
management perspective. We test the model on the German electricity market,
and we find that it is accurate in futures and option value estimates. In addition,
the obtained results and the proposed methodology can be useful as a starting
point for risk management or portfolio optimization under uncertainty in the
current context of energy markets.

Keywords: electricity futures price, forecast, seasonal path-dependent
volatility, Heath-Jarrow-Morton model, option pricing

1. Introduction1

During the past two decades we have seen comprehensive electricity sector2

liberalization and deregulation in all EU countries. The electricity market, once3

monopolistic, has become a competitive market where electricity prices are de-4

rived by the interaction of supply and demand. This new context, joined with5

the physical characteristics of electrical power, has generated new price patterns,6
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never seen before, neither in financial markets, nor in commodity markets. Elec-7

tricity is a flow commodity characterized by its very limited storability. The lack8

of economic storage opportunity makes the supply completely inelastic to price9

changes. Prices show extremely high volatility and sudden consistent jumps10

in their levels, called “spikes”. Market participants, both producers and con-11

sumers, are dramatically exposed to uncertainties in electrical power prices,12

and risk management techniques play a fundamental role in quantifying and13

mitigating price risk. Several studies have been addressed to the analysis of14

electricity prices, because they are generally used as reference for decisions done15

in energy trading. Therefore, well-performing forecast methods for day-ahead16

electricity prices are essential for energy traders and supply companies. In Keles17

et al. (2016), a methodology based on artificial neuronal networks is presented18

to forecast electricity prices. The forecasting reveals being an important instru-19

ment for dealer generally in all the commodity markets: Baruńık and Malinska20

(2016) explain the term structure of crude oil prices using the dynamic Nelson-21

Siegel model and propose to forecast oil prices using a generalized regression22

framework based on neural networks.23

Garćıa-Martos et al. (2013) extract common features in the volatilities of24

the prices of several commodity prices: the common volatility factors obtained25

are useful for improving the forecasting intervals and the results obtained and26

methodology proposed can be useful as a starting point for risk management27

or portfolio optimization under uncertainty in the current context of energy28

markets.29

Since the beginning of liberalization, researchers and practitioners have been30

focusing their attention on studying electricity price evolution by setting up31

mathematical models able to capture the main features of price behaviour, in32

order to allow both derivative pricing and risk hedging. With the emerging33

of the electricity wholesale, a lot of interest has grown in electricity financial34

instruments in order to manage price risks: most of electricity futures and op-35

tions on futures are traded on the New York Mercantile Exchange (NYMEX),36

while a large variety of electricity derivatives is traded in the OTC markets.37

Call and put options are the most effective tools available to merchant electrical38

power plants or power marketers for hedging price risk because electrical power39

generation capacities can be essentially viewed as call options on electricity, in40

particular when generation costs are fixed. Electricity is referred to as a flow41

commodity: all contracts guarantee the delivery of an established amount of42

electricity (MWh) continuously over a specific future time period (1 hour, 143

month, 1 quarter, 1 year). It can be settled with physical delivery or simply fi-44

nancially. The energy market is made of two segments: a market for spot trading45

and a derivative market. In the spot market, electricity is traded in an auction46

system for standardized contracts, and every day hourly contracts for each of47

the 24 hours of the coming day are evaluated. This is called the day-ahead48

market, characterized by physical delivery. In the derivative market, electricity49

forward contracts and futures contracts are settled either financially or with50

physical delivery. They usually have a monthly, quarterly, or yearly delivery51

period. Recently, European and Asian options with electricity futures as under-52
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lying have been launched in the more developed Electricity Markets (Nord Pool,53

Scandinavia and NYMEX, New York) and are becoming extremely important54

in the commodities markets, offering advantages to both the consumer (buyer)55

and the producer. The literature on electricity price modelling has rapidly de-56

veloped in the last few years because of the growing need for obtaining models57

that describe electricity price behaviour in a realistic and accurate way. Indeed,58

from a risk management point of view, robust forecasts for electricity prices59

lead to proper hedging strategies being defined through the accurate pricing of60

financial derivatives, like options. According to Weron (2014), there are various61

approaches that have been developed to analyse and predict electricity prices,62

and in particular we can distinguish five groups of models: i) Multi-agent mod-63

els, that consider the interaction among heterogeneous agents and build the64

price process by matching demand and supply in the market; ii) Fundamental65

(structural) methods, which model the impact of important physical and eco-66

nomic factors in order to determine electricity price dynamics; iii) Reduced-form67

(quantitative, stochastic) models, which investigate the statistical properties of68

electricity prices over time in order to describe their dynamics with the ulti-69

mate objective of derivatives evaluation and risk management; iv) Statistical70

approaches, which consist in applying statistical techniques of load forecasting71

or implementing econometric models; v) Computational intelligence techniques,72

which use the neural network approach to study the complex dynamic system.73

Obviously, there can be models that contemplate hybrid solutions, combining74

techniques from two or more of the groups. Although the classification of Weron75

allows us to characterize the research field according to the modelling approach,76

we can identify two macro-areas of research: a) the traditional one that concen-77

trates on modelling electricity spot price dynamics; b) the alternative approach78

that describes and represents directly electricity futures prices. According to79

this partition, we have reviewed some of the existing literature.80

With regard to the spot price modelling, Lucia and Schwartz (2002) model81

the natural logarithm of the spot price by assuming a mean reverting process82

estimated by using spot price data in the Nordic market. The price evolution83

of a futures contract is then determined by applying expected value under an84

appropriate martingale measure equivalent to the objective one. Other authors,85

such as Pilipovic (2007) and Eydeland and Wolyniec (2003) suggest a two factor86

model, in order to take into account the influence on the spot price given both87

by a short term and a long term source of randomness. According to Clewlow88

and Strickland (2000), and Eydeland and Wolyniec (2003), the introduction of89

a jump diffusion process appears the natural way to account for spikes, even if90

market incompleteness is introduced. Skantze et al. (2000) develop a model of91

electricity prices taking into account the important characteristic of seasonal-92

ity, by studying the load and supply behaviour. Other papers focus directly on93

peak price dynamics by specific volatility settings: in particular regime switch-94

ing models are used in order to predict price spikes (Mount et al. (2006)),95

by switching between the high-price regime and the low-price regime, accord-96

ing to the two transition probability functions. Huisman and Mahieu (2003)97

and Deng (2000), among others, suggest Markovian regime switching models98
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for electricity price, characterized by the occurrence of stable and turbulent99

periods. Cuaresma et al. (2004) investigate the forecasting abilities of a bat-100

tery of univariate models on hourly electricity spot prices, using data from the101

Leipzig Power Exchange. They find that an hour-by-hour modelling strategy102

for electricity spot prices improves significantly the forecasting abilities of whole103

time-series models, and that the inclusion of simple probabilistic processes for104

the arrival of extreme price events can also lead to better forecasts. Diongue105

et al. (2009) propose an approach based on the k-factor GIGARCH process for106

investigating conditional mean and conditional variance forecasts and modelling107

electricity spot market prices. They apply the proposed method to the German108

electricity prices market providing forecasting prices up to one month ahead.109

Higgs and Worthington (2008) propose a mean-reverting model and a regime-110

switching model to capture some features of the Australian national electricity111

market: high price volatility, strong mean-reversion and frequent extreme price112

spikes. Tan et al. (2010) define a day-ahead electricity price forecasting method113

based on wavelet transform combined with ARIMA and GARCH models. This114

method is examined for MCP prediction in the Spanish market and LMP pre-115

diction in the PJM market. Huisman and Kiliç (2013) examine the development116

of day-ahead prices in five European markets through a regime switching model.117

In particular, they distinguish between prices under normal market conditions118

and under non-normal market conditions. Aid et al. (2013) develop a struc-119

tural risk-neutral model for electricity spot price that is particularly well-suited120

for spread options on the spot price since it is based on the economic relation121

that holds between fuel prices and electricity spot prices. Finally, an interest-122

ing approach is used by Nowotarski et al. (2013) for estimating the seasonal123

components of electricity. They show that wavelet-based models outperform124

sine-based and monthly dummy models. The major disadvantage of spot price125

models is that forward/futures prices are given endogenously from spot price126

dynamics. Therefore, the obtained dynamics of futures prices are most of the127

time not consistent with the observed market prices.128

Regarding the futures prices modelling literature, Clewlow and Strickland129

(2000) have been among the first researchers to introduce the futures price130

curve modelling approach to the energy market in the framework of Heath et al.131

(1992). They use only few stochastic factors and the initial price curve as given132

in order to model futures prices under some equivalent martingale measure in133

a no-arbitrage environment. Koekebakker and Ollmar (2005), and Bjerksund134

et al. (2010) model a continuum of instantaneous-delivery forward contracts135

under risk neutral probability measure. Benth et al. (2008) proposes a model136

for electricity forwards that are frequently referred to as swaps since they rep-137

resent an exchange of a fixed for floating electricity price. They model these138

swaps using the Heath-Jarrow-Morton (hereafter HJM) model. Hinz and Wil-139

helm (2006) face the not trivial problem of evaluating energy-related financial140

contracts written on prices of flow commodities. Starting from Gaussian HJM141

interest rate models, and following an axiomatic approach, which provides a con-142

nection to interest rate theory, flow commodity markets have been canonically143

constructed. With futures price models described, explicit formulae for caps,144

4



floors, collars, and cross commodity spreads are deduced by applying change-145

of-numeraire techniques. Barth and Benth (2014) model energy forward prices146

according to an infinite-dimensional approach. Similar to the HJM framework147

in interest-rate modelling, a first-order hyperbolic stochastic partial differential148

equation is used to model the dynamics of the forward price curves.149

All of the authors in the literature on futures price models summarized above150

try to provide pricing models that address electricity features, and the Heath151

et al. (1992) framework is widely used to describe flow commodity dynamics.152

However, to the best of our knowledge, and to date, there is no published paper153

that deals with numerical price simulation which uses the main advantage of154

the Heath et al. (1992) model, i.e. the possibility of a customized volatility155

function. In fact, this approach gives the opportunity to simulate the daily156

electricity price taking into account the current precise calendar day, the part157

of the year and the obtained return level. In Table 1 we refer to the existing158

literature concerning the electricity futures modelling in the HJM framework159

and we highlight our main contributions in comparison with previous works.160

Table 1: Futures price modeling literature in the HJM framework

Authors Season. Path Stochastic Calendar Derivative

dependence volatility day forecast pricing

Clewlow and Strickland (2000) - - X - X
Koekebakker and Ollmar (2005) - - - - -

Hinz and Wilhelm (2006) - - - - X
Benth and Koekebakker (2008) - X - - X

Bjerksund et al. (2010) - - - - X
Barth and Benth (2014) - - - X -

Fanelli et al. (2015) X X X X X

In this paper, our purpose is to fill this literature gap by providing a futures161

price model which allows looking into observed stylized facts in the electricity162

market, in particular stochastic price volatility, and periodic behavior. This163

paper is part of the group of the reduced-form models, developed for risk man-164

agement. The contribution to the existing literature is twofold. Firstly, we focus165

on seasonality by observing prices and obtaining the calendar-varying volatility166

parameters for each month of the year. The Heath et al. (1992) model gives167

us the opportunity to simulate the daily evolution of the forward curve in the168

free-arbitrage environment and therefore determine the daily futures price ac-169

cording to the volatility seasonal parameter of each specific day (see Chiarella170

et al. (2011), Fanelli (2016), Fanelli et al. (2016)). Secondly, the volatility we171

set has also a contingent component depending also on the spot return level. In172

this way the futures price is affected by the spot market realization, reflecting173

the fact that during turbulent periods high spot prices are more likely to occur,174

enhancing even futures price volatility. We build on the existing literature and175

propose a forecasting method that, by assuming a seasonal, path-dependent176

price volatility in the HJM framework (Heath et al. (1992)), provides a futures177

price estimation. This price is then used as underlying of a call option in a risk178

hedging perspective. We test the model on the German electricity market, and179
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we find that it is accurate in futures and option value estimates. The referring180

framework of our model is given by Hinz and Wilhelm (2006). The electrical181

energy is not economically storable and, therefore, hedging by commodity stor-182

age is impossible (Hinz et al. (2005)). It is important to take into account the183

electricity production process: although electrical energy cannot be stored, a184

hedging is still possible by production capacity investments. This perspective185

allows us to use a pricing methodology in which the underlying is assumed to186

be storable Hinz and Wilhelm (2006). The producer always has the ability to187

produce electricity, creating a sort of “electricity storability”. From this point188

of view, the true underlying of contracts becomes the physical ability to produce189

electrical power. According to this perspective, the electricity market becomes190

more complex and has to be considered as composed of both power electric-191

ity and agreements on power production capacities. The market reaches the192

equilibrium and determines the price process for all tradable assets that are193

both physical (production capacity agreements) and financial (forward/futures194

prices). There is a probability measure Q, equivalent to the market probability195

measure P , such that equilibrium asset prices are given by their future revenues,196

expected with respect to Q. By using the production portfolios, it is possible to197

replicate any financial contracts. By considering the market in this more general198

perspective, electricity cannot be stored, but hedging is still possible by using199

production capacity investments. We can consider the market as composed of200

an infinite number of futures contracts with instantaneous delivery period, and201

it makes sense to transform the futures price to a bond price and apply interest202

rate theory. The equilibrium in the production capacity market guarantees the203

existence of the measure Q, such that electricity asset prices are given by the204

expected value of future revenues of certain production portfolios. The equi-205

librium concept represents a way to price all contracts by the same measure206

“chosen by the market”. The asset dynamics is therefore described directly207

under Q.208

In this paper we model the future price dynamics assuming a virtual fixed209

income market linked to the real electrical power market, following the Hinz210

and Wilhelm (2006) approach. Our original contribution is given by assuming a211

seasonal path dependent volatility for futures returns that we model according212

to the Hinz (2003). The implementation of the model gives us the opportu-213

nity to simulate the daily evolution of the forward curve in the free-arbitrage214

environment and therefore determine the daily futures price according to the215

volatility seasonal parameters of each specific day. The chosen volatility has216

a seasonal component and a contingent component, so that, implementing the217

model, each specific day volatility is affected both by the part of the year the218

day is in, and the spot return level realized in that particular moment. We es-219

timate option values according to different strike prices by applying the Monte220

Carlo approach, and comparing them with the EEX observed prices.221

An interesting possible evolution of this research could be the comparison of222

the model performance in different EU/US electrical power markets. Besides,223

it would be interesting to investigate the opportunity of using the seasonal224

volatility model for futures prices in order to estimate spot price long term225
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components, as in Conejo et al. (2010).226

The remainder of the paper is organized as follows: Section 2 outlines the227

proposed model, Section 3 presents numerical results of the simulations, in Sec-228

tion 4 we describe a practical application of the proposed model, and finally229

Section 5 provides some relevant conclusions.230

2. Futures Price Model231

We consider the Electricity Market (hereafter EM) given on the time hori-232

zon [0, T ]. Let (Ω,F , P ) be a filtered probability space where the filtration233

F = (Ft)t∈[0,T ] is generated by a Brownian motion (Wt)t∈[0,T ]. All processes234

are assumed to be progressively measurable. At each time t ∈ [0, T ], price dy-235

namics of a futures contract supplying 1 MWh at a time τ ∈ [0, T ] are given by236

(Ft(τ))t∈[0,τ ], which is a positive valued adapted stochastic process3. At time237

t = 0 we observe prices (F ∗0 (τ))τ∈[0,T ] for all future delivery times. According238

to Hinz and Wilhelm (2006), we assume that in the model the following axioms239

are valid:240

(a) (Ft(τ))t∈[0,τ ] is almost surely continuous for each τ ∈ [0, T ];241

(b) There is a risk neutral measure QF equivalent to P such that for each242

τ ∈ [0, T ], (Ft(τ))t∈[0,τ ] is a QF -martingale;243

(c) Futures prices start at observed values F0(τ) = (F ∗0 (τ))τ∈[0,T ];244

(d) Terminal prices (Ft(t))t∈[0,T ] form a continuous spot price process.245

A currency change is the key instrument making this model similar to a fixed246

income market model: the electricity futures price is expressed in units of the247

electricity price just in front of the delivery. In this new currency, the electricity248

price, (pt(τ))t∈[0,τ ], τ ∈ [0, T ], behaves like a zero coupon bond, in the sense249

that its value converges to 1 when t coincides with τ :250

pt(τ) =
Ft(τ)

Ft(t)
, t ∈ [0, τ ], τ ∈ [0, T ]. (1)

If we introduce the risky process (Nt)t∈[0,T ], given by the reciprocal of the251

electricity price at delivery,252

Nt =
1

Ft(t)
, t ∈ [0, T ], (2)

we call Currency Change Electricity Market (hereafter CCEM) the market253

consisting of the following processes:254

• (pt(τ))t∈[0,τ ], 0 ≤ t ≤ τ ≤ T ,255

• (Nt)t∈[0,T ].256

3A complete list of the used symbols is in the Appendix A.
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As we have already said, in the CCEM the two processes behave respectively257

like a zero coupon bond and a risky asset. Note that this base market has a258

structure similar to a money market. In fact, pt(t) = 1 for every t ∈ [0, T ] and,259

if we define the compounding process (Bt)t∈[0,T ] as the price at time t of the260

zero coupon bond with delivery T261

Bt = pt(T ), (3)

it can be proved (see Hinz (2006) and Hinz and Wilhelm (2006)) that in the262

CCEM there exists a risk neutral measure QM equivalent to P , under which263

the model is arbitrage-free. Thus, processes264 (
Nt
Bt

)
t∈[0,T ]

and

(
pt(τ)

Bt

)
t∈[0,τ ]

(4)

are QM -martingales, and QF is obtained from QM by using the change of265

numeraire266

dQF =
NT
BT

B0

N0
dQM . (5)

Finally, the initial values of processes are267

p∗0(τ) :=
F ∗0 (τ)

F ∗0 (0)
, N∗0 :=

1

F ∗0 (0)
, (6)

so that F ∗0 (τ) =
p∗0(τ)
N∗

0
. Moreover, in the CCEM the following reverse cur-268

rency change holds269

Ft(τ) =
pt(τ)

Nt
0 ≤ t ≤ τ ≤ T, (7)

and it is applied to determine the electricity price. The CCEM is a vir-270

tual market, allowing for its characteristics to be modelled with instruments271

usually used for the fixed income market. In particular, we aim at modelling272

the futures return curve in order to obtain price dynamics. So, we model the273

price (pt(τ))0≤t≤τ≤T , that by construction is modelled like a bond, in the HJM274

framework, and use relation (7) to obtain the risk-neutral electricity futures275

prices. According to the HJM model, we assume that futures rate dynamics276

ft(T ), t ≤ T , are given by the stochastic differential equation277

dft(T ) = α(t, T, ·)dt+ σ(t, T, ·)dW (t), (8)

where α(t, T, ·) represents is the instantaneous futures rate drift function,278

and σ(t, T, ·) is the instantaneous futures rate volatility function. The process279

is driven by a one-dimensional Brownian motion. The third argument in the280

brackets (t, T, ·) indicates the possible dependence of the futures rate on other281
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path-dependent quantities, such as the spot rate or the futures rate itself. In or-282

der to avoid arbitrage opportunities, function α(t, T, ·) is determined in function283

of σ(t, T, ·):284

α(t, T ) = σ(t, T )

∫ T

t

σ(s, T )ds, (9)

so that the integral equation for the futures rate process assumes the follow-285

ing form:286

ft(T ) = f0(T ) +

∫ t

0

σ(s, T )

∫ T

s

σ(s, u)duds+

∫ t

0

σ(s, T )dW (s). (10)

The zero coupon bond price for all τ ∈ [0, T ] is given by287

pt(τ) = e−
∫ τ
t
ft(s)ds, (11)

so that the stochastic differential equation is288

dpt(τ) = pt(τ)ft(t)dt−
(∫ τ

t

σ(t, s)ds

)
dWt, (12)

with p0(τ) = F0(τ)/F0(0).289

Let the additional risky asset Nt have the following dynamics:290

dNt = Nt[ft(t)dt+ v(t)dWt], (13)

where v(t) is a deterministic volatility and we can notice that the drift is291

also deterministic, being the spot rate ft(t) available on the market. One of the292

HJM approach advantages is that the fundamental inputs of the forward curve293

model are the initial curve futures rate curve, f0(T ), and the volatility function294

σ(t, T ). Initial futures rates are obtained by using the initial futures price curve295

observed in the market, such that296

f0(t) = − ∂

∂t
logF0(t) for all t ∈ [0, T ]. (14)

With regard to the volatility function, the Heat-Jarrow-Morton model gives297

the opportunity to choose a functional form suitable for capturing main features298

of price behaviour. As we observe in Figure 1, where we plot the Phelix EEX299

4one month futures time series (German market), apart from the anomalous300

price level during the year 2008 caused by macroeconomic factors (financial301

crisis, renewable supply, drop in demand, etc.), two main characteristics of302

electricity prices are evident: the stochastic variability and the seasonality.303

4https://www.eex.com
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Figure 1: Phelix EEX 1 month Futures Time Series

Our contribution to the existing literature, above reviewed, is to implement304

the model by considering a seasonal path-dependent volatility function. There-305

fore, the following function is defined:306

σ(t, T ) = S(t, T ) +X(t, T ), (15)

where S(t, T ) is the seasonal term and we assume X(t, T ) = [ft(t)]
u, with307

u ∈ R, as the path-dependent term. The seasonal term has the following form308

S(t, T ) =

12∑
i=1

(σi2 + σi1e
−λi(T−t))Di, (16)

where dummy variables Di, i = 1..., 12, allow estimation of the coefficients309

σi1 and σi2 for every month of the year. Parameter σ1 represents the short310

term volatility coefficient, σ2 the long term volatility coefficient, and λ the time311

decay. Thereby, the volatility function describes the monthly seasonality. In312

the present work we use a Reuters data-set on Phelix EEX futures contracts313

(e/MWh), consisting of daily futures closing prices spanning from 01.01.2008314

to 12.31.2013, to estimate parameters of function (15) by using OLS non-linear315

regression. For each day we have a futures price term structure consisting of316

6 prices, representing the future price of 1 MWh continuously delivered over317

the following periods (maturities): first month (M1), second month (M2), third318

month (M3), second quarter (Q2), third quarter (Q3) and one year (Y). In order319

to estimate the parameters referred to each month we form 12 panels, one for320
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each month, consisting of a sequence of time series from year 2008 to 2013. So,321

the price observed at the i− th day of the j− th month of the year, for a futures322

contract delivering over the period k, called maturity, is323

pkij i = 1, 2, ..., 30 j = 1, 2, ..., 12 k = M1,M2,M3, Q2, Q3, Y. (17)

Then return levels are obtained as324

rkij = log
pkij

pk(i−1)j

. (18)

If we consider the panel referring to a specific month, we calculate the time325

series of the return volatility term structure according to different years and326

maturities. Therefore, we can estimate the short term volatility coefficient,327

σ1, the long term volatility coefficient, σ2, the time decay, λ, and the path-328

dependent coefficient u according to (15). By calibrating the volatility model,329

we find a common value for the path-dependent coefficient, that is u = 3
2 . Table330

2 contains the other estimated coefficients.331

Table 2: Volatility Parameter Estimation

Volatility Parameters

Month σ1 σ2 λ St.Err.

January 0.00964956 0.0151517 2.72024 0.012600
February 0.00497714 0.00608459 2.74608 0.003762
March 0.00 0.0102933 0.9381311 0.005041
April 0.00432978 0.00873531 4.76766 0.003838
May 0.00178587 0.0116556 2.18629 0.004218
June 0.00 0.0115167 0.277421 0.005896
July 0.00380614 0.0122640 3.00701 0.003597
August 0.00374202 0.0134820 4.73199 0.003547
September 0.00 0.00900843 0.270790 0.005218
October 0.00722492 0.0114431 7.33136 0.007515
November 0.00480292 0.0122898 3.59743 0.005174
December 0.00954558 0.00261133 9.04186 0.005532

In order to show some empirical evidences of the volatility behaviour, we plot,332

as example, the volatility term structure of three months, February, August, and333

October, in Figures 2, 3 and 4.334

11



0,01

0,015

0,02

0,025

Vol
atil

ity 2008
2009
2010
2011
2012

0

0,005

0 2 4 6 8 10 12Maturity (months)

2013
Estimated Volatility

Figure 2: February volatility term structure
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Figure 3: August volatility term structure
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Figure 4: October volatility term structure

On one side, it is possible to notice a quite similar shape as short term futures335

prices are more volatile than the long ones. On the other side, looking at the336

scale on the y axis, it is evident how curve levels vary considerably through337

months.338

3. The Numerical Implementation339

In this Section, first we develop the numerical implementation of the de-340

scribed model in order to simulate the evolution of the futures rate curve over341

the time horizon of one year, [0, T ], given the initial futures rate curve f0(T ).342

Then, we obtain the electricity futures price as a function of the return curve.343

Finally, we apply the Monte Carlo simulation approach in order to estimate the344

price of a European call option on the electricity futures price. The numerical345

scheme requires the approximation in discrete time of all the formulas defined346

in the previous section.347

We divide the time horizon [0, T ] into N intervals of length ∆t = T/N , so348

that any time t, 0 ≤ t ≤ T , can be expressed as t = n∆t, n ∈ N, any time349

τ , t ≤ τ ≤ T , can be expressed as τ = h∆t, h ∈ N, and f(n∆t,N∆t) is the350

discretized form of ft(T ). We consider the values that, at time zero, the futures351

rate curve f0(T ) assumes at the extremities of each interval, i.e. f(0, 0), f(0,∆t),352

f(0, 2∆t), ..., f(0, N∆t). We approximate the stochastic integral equation (10)353

according to the Euler-Maruyama scheme. Hence we obtain the generic recursive354

scheme for the futures curve evolution355

13



f((n+ 1)∆t,m∆t) = f(n∆t,m∆t) + σ(n∆t,m∆t, ·)
∑m−1
i=n σ(n∆t, i∆t)∆t

+σ(n∆t,m∆t, ·)∆W (n+ 1) n < m,(19)

where ∆W (n) = ξ
√

∆t, with ξ as a standard normal random draw, repre-356

sents the discrete time form of a Brownian motion. The evolution covers one357

year time, and we obtain the futures rate curve for each day, using different358

volatility coefficients according to the different months. The volatility function359

(15) becomes in its dicretized form360

σ(n∆t,m∆t) =

k∑
i=1

(σi2 + σi1e
−λi(m∆t−n∆t))Di

+[f(n∆t,m∆t)]u i = 1, 2, ..., 12.

(20)

The futures rate curve at time t, ft(s), t ≤ s ≤ τ , is used to calculate the361

bond value, pt(τ), according to formula (11). The discretized form of (11) is362

given by applying the Euler approximation of the integral363 ∫ τ

t

ft(s) ds =

h−1∑
k=n

f(n∆t, k∆t) ∆t, (21)

so that364

p(n∆t, h∆t) = e−
∑h−1
k=n f(n∆t,k∆t) ∆t. (22)

Finally, the electricity futures price is365

F (n∆t, h∆t) =
p(n∆t, h∆t)

N(n∆t)
, (23)

where N(n∆t) is obtained applying the recursive formulation of (13) and366

considering a constant diffusion term v = 0.2:367

N((n+1)∆t) = N(n∆t)+N(n∆t) [f((n)∆t, (n+ 1)∆t) + v∆W (n+ 1)] , (24)

where ∆W (n) = ξ
√

∆t, with ξ as a standard normal random draw.368

In electricity markets, for risk management purposes, an option on futures369

price is usually combined with other assets in financial portfolios in order to370

hedge price risk. In this context, the described model for futures prices, imple-371

mented through the discussed numerical scheme, is used to price a European372

call option in an accurate and proper way.373

Let us consider, at time t = 0, a European call option with the futures price374

Ft(τ), 0 ≤ t ≤ τ ≤ T , as underlying, and payoff at maturity s, 0 ≤ s ≤ τ ≤ T ,375

given by Φs = (Fs(τ) − E)+, where E is the strike price. The call price is376
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obtained by discounting, at a risk free rate δ, the expectation of the payoff at377

maturity with respect to the risk-neutral measure as follows:378

C(0, s, τ) = e−δsEQ [Φs |F0] , (25)

where EQ [· |F0] represents the expectation under Q and conditional to the379

information available at time t = 0, F0. The option value (25) is estimated by380

applying the Monte Carlo approach. We made Π simulations, with Π = 100.000,381

such that for each path we simulate the term structure of futures rates over the382

year according to equation (19), and we obtain the bond price (22) and the risky383

asset price (24). Consequently, putting prices (22) and (24) into (23) we obtain384

the electricity futures price. We use the Π futures prices to calculate Π call385

payoffs, Φj(H∆t), j = 1, ...,Π, at maturity s = H∆t. These payoffs are used in386

the following formula in order to evaluate the call option CMC according to the387

Monte Carlo method:388

CMC(0, n∆t,H∆t) = e−δH∆t 1

Π
ΣΠ
j=1Φj(H∆t). (26)

In Table 3we show simulated prices of a call option with maturity one year,389

on an electricity futures contract with one month delivery. For each strike price390

E we indicate in the second column the quoted price as resulting on the web site391

www.eex.com on August 26th, 2014. In the third and fourth columns we show392

respectively the price obtained with Monte Carlo simulations and its Standard393

Error. The initial electricity futures price observed on August 26th, 2014, is394

34.2 e/MWh.395

15



Table 3: Actual Prices vs. Simulated Prices

Call Option Prices

10.000 paths 50.000 paths 100.000 paths

Strike EEX MC St. MC St. MC St.
price E price price Err. price Err. price Err.

26 8.250 7.819 0.012 7.613 0.007 7.762 0.004
27 7.250 6.734 0.012 6.803 0.005 6.721 0.004
28 6.250 5.781 0.010 5.786 0.004 5.756 0.003
29 5.250 4.778 0.009 4.849 0.004 4.828 0.003
30 4.250 3.861 0.008 3.868 0.003 3.827 0.003
31 3.250 2.839 0.007 2.889 0.003 2.892 0.002
32 2.250 2.010 0.006 1.932 0.003 1.907 0.002
33 1.250 0.942 0.006 0.942 0.002 0.960 0.001
34 0.333 0.217 0.003 0.232 0.001 0.229 0.001
35 0.001 0.012 0.000 0.012 0.000 0.001 0.000

In Table 3 we report the option prices obtained with 10.000 (column 3 and396

4), 50.000 (column 5 and 6) and 100.000 paths (column 7 and 8). As we can ob-397

serve, simulated prices in all cases underestimate the EEX price: in our opinion398

these results reveal an overestimate of the established derivative EEX prices.399

Our most precise estimates are obtained with 100.000 paths, revealing the good400

performance of the model in its Monte Carlo implementation. Results are pre-401

cise even with the lower number of simulations, because the error we make is402

significant at worst at the third decimal place, already with 50.000 simulations.403

In order to verify the seasonality hypothesis, we have implemented the model404

by using the volatility parameters of Table 2 in a “flat”mode, i.e. by averag-405

ing the monthly volatility estimates. In Figures (5), (6) and (7) are visualized406

the simulated prices: EEX market prices, the prices obtained with the seasonal407

volatilities (MC seasonal) and the prices obtained with the “flat”volatility (MC408

flat). In all cases the seasonal volatility estimates reveals to be a valid instru-409

ment for the derivative pricing, because the prices obtained are more accurate410

in respect to the ones obtained with a flat volatility (Figures 5a, 6a and 7a).411

The seasonal model allows us to reach a better accuracy in the estimates, as we412

can observe in Figures 5b, 6b and 7b: these pictures represent the percentage413

differences, for the various strike prices, by comparing the EEX price both with414

the seasonal volatility price estimates (MC seasonal), and with the flat volatility415
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Figure 5: Monte Carlo simulation with 10.000 paths.
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Figure 6: Monte Carlo simulation with 50.000 paths.

price estimates (MC flat). If we focus on the seasonal volatility model, the sim-416

ulated prices have a percentage difference lower than 10% for strike prices from417

26 e/MWh to 30 e/MWh, and lower than 20% for the strike price 32 e/MWh,418

while for the flat volatility model, the percentage difference results to always be419

greater, and for exercise prices greater than 31 e/MWh, the percentage error in420

the simulated price is more than 20%. The best accuracy of the estimated prices421

reveals that the seasonal model is a more adequate method for pricing deriva-422

tives on electricity futures, in comparison with a model that doesn’t take into423

account the seasonality of volatilities. Results demonstrate that the developed424

model can be a valid tool for risk management,because it allows us to simulate425

and forecast futures prices and financial derivatives in an accurate way.426

4. Hedging strategy427

In this section, we show with an example how the developed model finds428

very relevant and useful applications in the risk management field. Trading429
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Figure 7: Monte Carlo simulation with 100.000 paths.

companies in electricity markets are among the most active users of financial430

derivatives. This is mostly due to the high volatility of electricity prices that431

leads companies to require rigorous hedging, but it is also due to the fact that432

increased competition within the industry forces companies to find new sources433

of profit, such as arbitrage and speculation. A great deal of recent literature434

discusses the role of financial derivatives in risk management strategies in elec-435

tricity sector (see Brown and Toft (2002), Bruno and Fanelli (2016), Sanda et al.436

(2013), Stulz (1996)). Trading companies are used to assume a position on elec-437

tricity futures contracts that can be adjusted with an option position in order438

to capture futures price features and to achieve an optimal risk exposure.439

A natural candidate for selective hedging strategies in electricity markets is440

a covered call. This strategy assumes a short position on a European call option441

and a long forward position on the underlying of the call, that in our case is the442

futures contract. Trading companies could use a covered call strategy when they443

believe that the futures price will not rise much during the investment period,444

and it is therefore willing to sell the upside potential of the forward contract for445

the premium of the call option.446

The trading company can choose how much upside potential it is willing to447

sell by selecting a suitable strike price for the call option. Thus, the strike price448

of the option is chosen according to company risk aversion or perceived return449

potential. It is known that higher strike prices allow the investor to hold more450

upside potential for itself, but, on the other hand, it receives a lower premium451

from the sale of the option.452

We implement a covered call strategy that consists of a long forward position453

on one month futures price that has forward price F and maturity s, and a short454

position on a European call option on the same futures with the same maturity455

s and strike price E. The cash flows of the strategy are summarized in Table 4.456
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Table 4: Covered call strategy cash flows.
The strategy consists of a long forward position on a futures contract with maturity one year
and forward price F and a short position on a European call option with the same maturity
s. V0 indicates the call premium and E the strike price. Fs(τ) is the futures price at maturity
s. Φs = (Fs(τ) − E)+ is the call payoff at maturity s.

Time Forward Call Option
0 0 +V0

s Fs(τ)− F −Φs

As we show in Table 4, at inception, the value of the forward contract is457

null, whereas the call option value is V0, that represents the premium, given by458

formula (25). At maturity s the value of position on the forward is given by the459

difference between the market actual futures price Fs(τ) and F , whereas the460

payoff of the call is Φs = (Fs(τ)− E)+.461

We implement the trading company strategy by assuming that F is equal462

to 32 e/MWh, s is one year, and that company believes that the futures price463

will not rise much during the investment period, so that it sells a call with464

33 e/MWh strike price. According to Table 3, the estimated call premium is465

V0 = 0.96 e.466

The net profit structure of the strategy at maturity is given by Figure 8.467
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Figure 8: Net profit strategy at maturity as function of the electricity futures price at maturity.

Looking at Figures 8, we observe that the company has a low risk profile and468

it expects a decrease of futures prices because it prefers to limit its potential469

gains in the case of price increase in order to reduce losses in the event of price470

decrease.471

5. Conclusions472

In this paper, we have presented a futures price model which allows us to473

look into observed stylized facts in the electricity market, in particular stochastic474
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price variability, and periodic behaviour. We have built on the existing literature475

(Hinz and Wilhelm (2006)) and we have modelled the futures price assuming476

a virtual fixed income market linked to the real electricity market. We have477

considered a seasonal path-dependent volatility for futures returns that have478

been modelled according to the Heath et al. (1992) approach. On the one479

hand, we have focused on seasonality by observing prices and obtaining the480

calendar-varying volatility parameters for each month of the year. The Heath481

et al. (1992) model gives us the opportunity to simulate the daily evolution of482

the forward curve in the free-arbitrage environment and therefore determine the483

daily futures price according to the volatility seasonal parameter of each specific484

day. On the other hand, the chosen volatility has even a contingent component485

depending also on the spot return level. In this way the behaviour of the spot486

price affects the futures price allowing to distinguish between a normal market487

and a turbulent one.488

We have calibrated the model and estimated volatility parameters on one489

month futures prices in German electricity markets, in order to forecast futures490

prices. These prices have been used as underlying of a call option in a risk491

management perspective. We have therefore estimated option values according492

to different strike prices by applying the Monte Carlo approach and we have493

obtained results that are very accurate and coherent with the actual quotations.494

We have implemented an algorithm which is able to capture one of the main495

characteristics of the electricity market, i.e. the seasonality, interpreting it as the496

accurate study of the volatility patterns along historical data: our contribution497

to the existing literature is to allow past observation to definitely model the498

price forecasting, affecting it with the daily definition of the volatility level,499

according to the calendar day (calendar day forecast), the reached spot level500

(stochastic volatility), and the developed price path (path dependence).501

We are confident that this approach could be a valid instrument for support-502

ing risk management in the electricity field, because it gives us the opportunity503

to study the price evolution obtainable with different volatility parameters over504

different time periods, letting the model adequately reflect the electricity market505

seasonality.506
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Appendix A. Nomenclature507

(Ω,F , P ) Filtered probability space

(Wt)t≥0 Brownian motion

(Ft)t≥0 Electricity futures price

QF Risk neutral measure in the electricity market

QM Risk neutral measure in the CCEM

(pt)t≥0 Electricity price in the CCEM

(Nt)t≥0 Risky asset in the CCEM

(Bt)t≥0 Spot zero coupon bond in the CCEM

(ft)t≥0 Futures interest rate in the CCEM

α(t, T, ·) Instantaneous futures rate drift function

σ(t, T, ·) Instantaneous futures rate volatility function

v(t) Volatility of Nt

S(t, T ) Seasonal term of the futures interest rate volatility

X(t, T ) Path-dependent term of the futures interest rate volatility

σ1 Short term futures interest rate volatility coefficient

σ2 Long term futures interest rate volatility coefficient

λ Time decay futures interest rate volatility coefficient

Di Dummy variable

rkij Return level of the futures contract pkij

pkij The futures price observed at the i− th day of the j − th
month of the year with delivery period k

C(0, t, T ) Time-zero price of a European call
on the electricity futures price F (t, T )

CMC(0, t, T ) Monte Carlo price of a European call on
the electricity futures price F (t, T )

ΦT Time-T payoff of a European call on
the electricity futures price F (t, T )

E Strike price of a European call on
the electricity futures price F (t, T )

Π Simulation number
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Appendix B. The Heath-Jarrow-Morton model508

In the Heath et al. (1992) model instantaneous forward rates for fixed ma-509

turity T are modelled by the stochastic process510

df(t, T ) = α(t, T ) dt+ σf (t, T ) dW (t) (B.1)

where511

f(t, T ) is the forward rate at time t applicable to time T , t < T ;512

f(0, T ) is the initial forward rate curve observable at time t = 0;513

α(t, T, ·) is the instantaneous drift function;514

σ(t, T, ·) is the instantaneous volatility function;515

W (t) is a Brownian motion generated by the probability measure P .516

The symbol “·” as third argument in the drift and volatility function rep-517

resents the possible dependence on path dependent quantities as the spot rate518

r(t) or the forward rate f(t, T ). Integrating B.1 we obtain the instantaneous519

forward rate expressed in integral form:520

f(t, T ) = f(0, T ) +

∫ t

0

α(v, T, ·) dv +

∫ t

0

σf (v, T, ·) dW (v). (B.2)

From the integral form we can obtain the spot rate process, simply by sub-521

stituting T = t522

r(t) = f(0, t) +

∫ t

0

α(v, t, ·) dv +

∫ t

0

σf (v, t, ·) dW (v). (B.3)

The price of a pure discount bond maturing at time T results therefore523

defined as:524

P (t, T ) = exp

(
−
∫ T

t

f(t, s) ds

)
. (B.4)

By applying the natural logarithm:525

lnP (t, T ) = −
∫ T

t

f(t, s) ds.

By the use of the Fubini’s Theorem and rearranging, we have:526
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lnP (t, T ) = lnP (0, T ) +

∫ t

0

[
r(v)−

∫ T

v

α(v, s) ds

]
dv

−
∫ t

0

∫ T

v

σf (v, s) ds dW (v).

By defining527

a(v, t) := −
∫ t

v

σf (v, s) ds,

b(v, t) := −
∫ t

v

α(v, s) ds+
1

2
a2(v, t), (B.5)

applying Ito’s Lemma, the stochastic differential equation for the bond price528

stochastic process is derived:529

dP (t, T ) = [r(t) + b(t, T )]P (t, T ) dt+ a(t, T )P (t, T ) dW (t)

Applying the no arbitrage condition, the following relation has to hold:530

b(t, T ) + a(t, T )Φ(t) = 0, (B.6)

where Φ(t) is the market price of interest rate risk. By substituting B.6 in531

B.5 we obtain:532

α(t, T ) = σf (t, T )

∫ T

t

σf (t, s) ds− σf (t, T )Φ(t)

= −σf (t, T )

[
Φ(t)−

∫ T

t

σf (t, s) ds

]
.

(B.7)

This is the celebrate forward rate drift restriction obtained by HJM. We533

define a new Brownian motion:534

W̃ = W (t) +

∫ t

0

(−Φ(s)) ds (B.8)

and535

dW̃ (t) = dW (t)− Φ(t) dt⇒ dW (t) = dW̃ + Φ(t) dt. (B.9)
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By substituting B.7 and B.9 in B.1 we obtain:536

df(t, T ) = α(t, T ) dt+ σf (t, T ) dW (t)

=

[
σf (t, T )

∫ T

t

σf (t, s) ds− σf (t, T )Φ(t)

]
dt

+ σf (t, T )
[
dW̃ (t) + Φ(t) dt

]
= σf (t, T )

∫ T

t

σf (t, s) ds dt− σf (t, T )Φ(t) dt+ σf (t, T )dW̃ (t)

+ σf (t, T )Φ(t) dt

= σf (t, T )

∫ T

t

σf (t, s) ds dt+ σf (t, T )dW̃ (t)

which expressed in its integral form is:537

f(t, T ) = f(0, T ) +

∫ t

0

σf (v, T )

∫ T

v

σf (v, s) ds dv +

∫ t

0

σf (v, T )dW̃ (v) (B.10)

From B.10 we derive the spot rate process r(t) = f(t, t):538

r(t) = f(0, t) +

∫ t

0

σf (v, t)

∫ t

v

σf (v, s) ds dv +

∫ t

0

σf (v, t)dW̃ (v). (B.11)

Choosing the money market account:539

B(t, T ) = e
∫ t
0
r(s) ds

as numerarire, relative bond prices are given by:540

Z(t, T ) =
P (t, T )

B(t)
= P (t, T ) e−

∫ t
0
r(s) ds. (B.12)

Application of Ito’s Lemma to B.12 gives:541

dZ(t, T ) =
[
−r(t)Z(t, T ) + (r(t) + b(t, T ))P (t, T ) e−

∫ t
0
r(s) ds

]
dt

+ a(t, T )P (t, T )e−
∫ t
0
r(s) ds dW (t)

= [−r(t)Z(t, T ) + r(t)Z(t, T ) + b(t, T )Z(t, T )] dt

+ a(t, T )Z(t, T ) dW (t)

= b(t, T )Z(t, T ) dt+ a(t, T )Z(t, T ) dW (t).

(B.13)
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By Girsanov’s Theorem the process B.13 can be written in terms of the542

Brownian motion B.8 resulting generated by an equivalent martingale probabil-543

ity measure P̃ :544

dZ(t, T ) = −Φ(t)a(t, T )Z(t, T ) dt+ a(t, T )Z(t, T )
[
dW̃ (t) + Φ(t) dt

]
= −Φ(t)a(t, T )Z(t, T ) dt+ Φ(t)a(t, T )Z(t, T ) dt+ a(t, T )Z(t, T ) dW̃ (t)

= a(t, T )Z(t, T ) dW̃ (t).

The principal characteristic of the HJM model is that in this new formula-545

tion in both the bond price process B.14 and the spot rate process B.11, the546

market price of risk drops out. Thus derivative securities can be calculated in-547

dependently of the market price of risk. Equation B.14 shows that under the548

probability measure P̃ , Z(t, T ) is a martingale and the bond value at any time549

t can be calculated simply as expected value which respect to the probability550

measure P̃ :551

P (t, T ) = EP̃
[
e−

∫ T
t
r(s) ds |Ft

]
. (B.14)

(B.15)

Analogously the value of the option on the bond can be obtained by taking552

the expectation with respect to the risk adjusted measure P̃ of the discounted553

payoff. Suppose we wish to price at time 0 a European call option with maturity554

time Tc, 0 ≤ TC ≤ T and exercise price E, its value is given by555

C(0, TC , T ) = EP̃
[
e−

∫ TC
0 r(s) ds(P (Tc, T )− E)+ |F0

]
. (B.16)

If the model has a Markovian representation, by applying of the Feynman-556

Kac Theorem, the derivative prices can be obtained by solving the partial dif-557

ferential equation. Otherwise numerical simulations as Monte Carlo simulation558

are used to evaluate derivatives.559

References560
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