
On a class of
supercritical N -Laplacian problems ?

Anna Maria Candelaa, Kanishka Pererab,∗, Caterina Sportellia
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Abstract

We derive a new existence result for a class of N–Laplacian problems where the classical N–Laplacian is

replaced by an operator which admits some coefficients depending on the solution itself. Even if such coeffi-

cients make the variational approach more difficult, a suitable supercritical growth for the nonlinear term is

allowed. Our proof, which exploits the interaction between two different norms, is based on a weak version

of the Cerami–Palais–Smale condition and a proper decomposition of the ambient space. Then, a suitable

generalization of the Ambrosetti–Rabinowitz Mountain Pass Theorem allows us to establish the existence of

at least one nontrivial bounded solution.
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1. Introduction

A classical N–Laplacian problem is
−∆Nu = h(u) eα|u|

γ

in Ω,

u = 0 on ∂Ω,

(1.1)

with Ω open bounded domain in RN , N ≥ 2 and ∆Nu = div(|∇u|N−2∇u) standard N–Laplacian operator,

where α, γ > 0 are given constants and h : R → R is a continuous function which has a “subexponential”

growth at infinity, i.e., which is so that

lim
|t|→+∞

h(t)

eδ|t|γ
= 0 ∀δ > 0.

It is well known that this problem is governed by the Trudinger–Moser inequality

sup
u∈W 1,N

0 (Ω)

‖u‖N≤1

∫
Ω

eαN |u|
N′

dx < +∞, (1.2)
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where W 1,N
0 (Ω) is the usual Sobolev space with norm ‖u‖N =

(∫
Ω
|∇u|N dx

)1/N
, αN = Nω

1/(N−1)
N−1 , ωN−1

is the area of the unit sphere in RN and N ′ = N/(N − 1) is the Hölder conjugate of N (see Trudinger [15]

and Moser [14]), so (1.1) has a subcritical growth if γ < N ′ while critical if γ = N ′.

Existence of solutions of problem (1.1) in both the subcritical and the critical case has been widely studied

in the literature (see, e.g., [1, 2, 5, 6, 7, 8, 9, 10, 16] and references therein). On the other hand, several

physical phenomena, for example in the theory of superfluid film and in dissipative quantum mechanics, are

described by equations where the principal part is a model of −div
[
(A0(x) +A(x) |u|ps) |∇u|p−2 ∇u

]
(for

more details, see [13] and references therein) and some existence results have been obtained for nonlinear

terms with a suitable supercritical growth when such a coefficient appears (see [4]).

Thus, in the present paper, we prove the existence of weak bounded solutions to the quasilinear problem
−div

[(
A0(x) +A(x) |u|Ns

)
|∇u|N−2 ∇u

]
+ s A(x) |u|Ns−2 u |∇u|N

= h(u) eα|u|
γ

in Ω,

u = 0 on ∂Ω,

(1.3)

where s > 1/N is a constant and the coefficients A0, A ∈ L∞(Ω) are strictly positive and far away from zero,

while the continuous function h(u) has a subexponential growth at infinity and satisfies suitable estimates

together with the primitive of the nonlinear term (for the complete statement, see Theorem 2.5).

In our proof, we use a variational approach which is strongly affected by the presence of the coefficient

A0(x) + A(x) |u|Ns. In fact, in order to find weak solutions of (1.3), the “natural” functional E(u), defined

in (2.8), is not smooth in the classical Sobolev space W 1,N
0 (Ω) and, in order to overcome such a problem, a

suitable variational principle is stated but in the intersection space X = W 1,N
0 (Ω) ∩ L∞(Ω) (see Proposition

2.6). Unluckily, in such a setting we cannot apply directly an existence result such as the classical Ambrosetti–

Rabinowitz theorem. Indeed, X is not reflexive and our functional may not satisfy the Palais–Smale condition,

or its Cerami’s variant, as some of its Palais–Smale sequences may converge in W 1,N
0 (Ω) but not in L∞(Ω).

These problems are solved by considering the interplay of two different norms on the Banach space X: we

have to weaken the definition of Palais–Smale condition (see Definition 2.1), which can be proved for our

functional E(u) in X just making use of the reflexivity of W 1,N
0 (Ω) (see Proposition 3.4), and use it for

stating a generalized version of the Mountain Pass Theorem (see Theorem 2.2) .

Anyway, even if the term |u|Ns in the coefficient makes the variational approach more difficult, it can

allow the nonlinear term to be supercritical as it makes “stronger” the principal part.

Thus, here, the novelty with respect to previous papers, is not only the presence of a coefficient but also

that problem (1.3) has weak solutions for 0 < γ < (s + 1)N ′, which includes also the supercritical range

N ′ < γ < (s+ 1)N ′.

2. Preliminaries

Firstly, let us point out the abstract setting we deal with.
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Let (X, ‖·‖X) be a Banach space with dual space (X ′, ‖·‖X′) and consider another Banach space (W, ‖·‖W )

such that X ↪→W continuously, i.e. X ⊂W and a constant σ0 > 0 exists such that

‖u‖W ≤ σ0 ‖u‖X for all u ∈ X.

Let J : X ⊂ W → R be a C1 functional and, taking c ∈ R, we recall that a sequence (un)n ⊂ X is a

Cerami–Palais–Smale sequence for J at level c, briefly (CPS)c–sequence, if

lim
n→+∞

J(un) = c and lim
n→+∞

‖dJ(un)‖X′(1 + ‖un‖X) = 0.

As (CPS)c sequences may exist which are unbounded in ‖ · ‖X but converge with respect to ‖ · ‖W , we

have to weaken the classical Cerami–Palais–Smale condition in a suitable way according to the ideas already

developed in previous papers (see, e.g., [3]).

Definition 2.1. The functional J satisfies the weak Cerami–Palais–Smale condition at level c (c ∈ R), briefly

(wCPS)c condition, if for every (CPS)c–sequence (un)n, a point u ∈ X exists, such that

(i) lim
n→+∞

‖un − u‖W = 0 (up to subsequences),

(ii) J(u) = c, dJ(u) = 0.

If J satisfies the (wCPS)c condition at each level c ∈ I, I real interval, we say that J satisfies the (wCPS)

condition in I.

Definition 2.1 allows us to state the following generalization of the Ambrosetti–Rabinowitz Mountain Pass

Theorem (see [4, Theorem 2.3]).

Theorem 2.2. Let J ∈ C1(X,R) be such that J(0) = 0 and the (wCPS) condition holds in R+. Moreover,

assume that there exist a continuous map ` : X → R, some constants r0, %0 > 0, and a point ū ∈ X such that

(i) `(0) = 0 and `(u) ≥ ‖u‖W for all u ∈ X;

(ii) u ∈ X, `(u) = r0 =⇒ J(u) ≥ %0;

(iii) ‖ū‖W > r0 and J(ū) < %0.

Then, J has a Mountain Pass critical point u∗ ∈ X such that J(u∗) ≥ %0.

Now, we are able to give the set of hypotheses we need for our problem. In particular, from now on we

assume that Ω ⊂ RN is an open bounded domain, N ≥ 2, and we denote by:

• Lr(Ω) the Lebesgue space with norm |u|r =
(∫

Ω
|u|rdx

)1/r
if 1 ≤ r < +∞;

• L∞(Ω) the space of Lebesgue–measurable and essentially bounded functions u : Ω → R with norm

|u|∞ = ess sup
Ω
|u|;
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• W 1,N
0 (Ω) the classical Sobolev space with norm

‖u‖N := |∇u|N =

(∫
Ω

|∇u|Ndx
) 1
N

;

• |D| the usual N–dimensional Lebesgue measure of a measurable set D ⊂ RN ;

• ci any strictly positive constant arising during computations.

Furthermore, as pointed out in Section 1, we denote by:

• ωN−1 the area of the unit sphere in RN ;

• αN = Nω
1/(N−1)
N−1 the best constant for the Trudinger–Moser inequality;

• N ′ = N/(N − 1) the Hölder conjugate of N .

In problem (1.3), let us suppose that the exponents s, α and γ are such that

s >
1

N
(2.1)

and also

α > 0, 0 < γ < (s+ 1)N ′. (2.2)

Moreover, assume that the coefficients A0 : Ω→ R and A : Ω→ R are such that:

(h1) A0, A ∈ L∞(Ω) and a constant α0 > 0 exists such that

A0(x) ≥ α0 and A(x) ≥ α0 for a.a. x ∈ Ω.

On the other hand, for function h : R→ R and the related primitive

G(t) =

∫ t

0

h(v)eα|v|
γ

dv, (2.3)

which is well defined if h(t) is continuous and γ ≥ 0, we consider the following conditions:

(h2) h ∈ C(R,R) is such that

lim
|t|→+∞

h(t)

eδ|t|γ
= 0 ∀δ > 0, (2.4)

and some constants δ̄, σ1, σ2 > 0 and a power 0 ≤ q < N(s+ 1) exist such that

N(s+ 1)(1 + δ̄)G(t) − t h(t) eα|t|
γ

≤ σ1|t|q + σ2 for all t ∈ R; (2.5)

(g1) some constants σ3, σ4 > 0 and a power τ > N(s+ 1) exist such that

G(t) ≥ σ3|t|τ − σ4 for all t ∈ R;

(g2) some constants σ, ν > 0 exist such that

G(t) ≤
(
λ1 α0

N
− σ

)
|t|N if |t| ≤ ν,

where λ1 denotes the first eigenvalue of −∆N in W 1,N
0 (Ω) and α0 is as in (h1).
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Remark 2.3. If conditions (2.1) and (h1) are verified, then

A(x, t, ξ) =
1

N
(A0(x) +A(x)|t|Ns)|ξ|N

is a C1–Carathéodory function on Ω× R× RN such that for a.e. x ∈ Ω and all (t, ξ) ∈ R× RN we have that

∂A
∂t

(x, t, ξ) = sA(x)|t|Ns−2t|ξ|N and ∇ξA(x, t, ξ) · ξ = NA(x, t, ξ)

with also

∇ξA(x, t, ξ) · ξ ≥ α0(1 + |t|Ns)|ξ|N and
∂A
∂t

(x, t, ξ) t = sA(x)|t|Ns|ξ|N ≥ 0.

Hence, the hypotheses (H0)–(H5) and (H7) in [4] are all satisfied.

Example 2.4. Possible examples of function h(t) which satisfy all the previous assumptions are

hr(t) =

 |t|r−2t if r > N

β0|t|N−2t if r = N but with 0 < β0 < λ1α0.

In fact, taking Gr(t) as in (2.3) with h(t) = hr(t), in both cases assumption (h2) is satisfied as γ > 0 and

direct computations imply that

lim
|t|→+∞

Gr(t)

thr(t)eα|t|
γ = 0,

while (g1) follows from well known properties of the exponential map and (g2) is a direct consequence of

lim
|t|→0

Gr(t)

|t|N
= 0 if r > N, lim

|t|→0

GN (t)

|t|N
=
β0

N
with β0 < λ1α0.

Now, we are ready to state our main existence result.

Theorem 2.5. Let us suppose that the exponents s, α and γ are such that (2.1) and (2.2) hold and assume

that the hypotheses (h1), (h2), (g1) and (g2) are satisfied, too. Then, problem (1.3) possesses at least one

bounded nontrivial weak solution.

Our aim is investigating the existence of weak solutions of problem (1.3) by means of the abstract varia-

tional tools introduced at the beginning of this section and which involve two different Banach spaces. Thus,

as first Banach space we consider

X = W 1,N
0 (Ω) ∩ L∞(Ω) (2.6)

endowed with the intersection norm

‖u‖X = ‖u‖N + |u|∞, u ∈ X,

while as second Banach space we consider

W = W 1,N
0 (Ω) with ‖u‖W = ‖u‖N .

Clearly, it is X ↪→W 1,N
0 (Ω) continuously with ‖u‖N ≤ ‖u‖X for all u ∈ X. Moreover, since

|∇(|u|su)|N = (s+ 1)N |u|Ns |∇u|N a.e. in Ω, (2.7)
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for every u ∈ X we have that∫
Ω

|∇(|u|su)|Ndx = (s+ 1)N
∫

Ω

|u|Ns |∇u|Ndx ≤ (s+ 1)N |u|Ns∞ ‖u‖NN ≤ (s+ 1)N ‖u‖N(s+1)
X

which implies

‖|u|su‖N ≤ (s+ 1) ‖u‖s+1
X

and |u|s u ∈W 1,N
0 (Ω), too.

So, if conditions (2.1) and (h1) are verified and if γ > 0 and h(t) is a continuous map, then the functional

E(u) =
1

N

∫
Ω

(A0(x) +A(x)|u|Ns)|∇u|Ndx −
∫

Ω

G(u)dx (2.8)

is well defined for all u ∈ X with G(u) as in (2.3). Or better, if taking any u, v ∈ X, we consider the Gateaux

derivative of the functional E in u along the direction v given by

〈dE(u), v〉 =

∫
Ω

(A0(x) +A(x)|u|Ns)|∇u|N−2∇u · ∇v dx

+ s

∫
Ω

A(x)|u|Ns−2u v |∇u|Ndx −
∫

Ω

h(u)eα|u|
γ

v dx,

(2.9)

the following regularity result holds.

Proposition 2.6. Assume that (2.1) and (h1) are verified and let γ > 0 and h ∈ C(R,R). Then, if (un)n ⊂ X,

u ∈ X are such that

‖un − u‖W → 0, un → u a.e. in Ω if n→ +∞

and M > 0 exists so that |un|∞ ≤M for all n ∈ N,

then

E(un)→ E(u) and ‖dE(un)− dE(u)‖X′ → 0 if n→ +∞.

Hence, E : X → R is a C1 functional with Fréchet derivative defined as in (2.9).

Proof. The proof follows from [4, Proposition 3.2] by means of Remark (2.3) and the Lebesgue’s Dominated

Convergence Theorem.

3. The weak Cerami–Palais–Smale condition

The main purpose of this section is showing that the functional E(u), defined as in (2.8), complies with

Definition 2.1 on the Banach space X in (2.6). To this aim, we introduce some crucial lemmas.

Firstly, we note that from the classical Trudinger–Moser inequality (1.2) and equality (2.7) in X we obtain

a variant of Trudinger–Moser inequality but dealing with the Banach space X:

KN := sup
u∈X

‖|u|su‖N≤1

∫
Ω

eαN |u|
(s+1)N′

dx < +∞. (3.1)

Such an estimate allows us to obtain the following lemma which is useful in our setting.
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Lemma 3.1. If power γ is such that (2.2) holds, then

Kβ := sup
u∈X

‖|u|su‖N≤1

∫
Ω

eβ|u|
γ

dx < +∞ for every β > 0. (3.2)

Moreover, if (un)n ⊂ X is such that

‖|un|sun‖N ≤ c∗ for all n ∈ N (3.3)

for some constant c∗ > 0, then for every β > 0 a constant k∗β = k∗β(c∗) > 0 exists such that∫
Ω

eβ|un|
γ

dx ≤ k∗β for all n ∈ N. (3.4)

Proof. Let β > 0 be fixed. Then, since (2.2) implies p = (s+1)N ′

γ > 1, from the Young inequality applied to

such a power, for any ε > 0 a constant Cε = Cε(β) > 0 exists such that

β|t|γ ≤ ε|t|(s+1)N ′ + Cε for all t ∈ R. (3.5)

Thus, if u ∈ X is such that ‖|u|su‖N ≤ 1, taking ε = αN in (3.5), from (3.1) we obtain that∫
Ω

eβ|u|
γ

dx ≤
∫

Ω

eαN |u|
(s+1)N′+CαN dx ≤ eCαN KN

which implies (3.2).

Now, let (un)n ⊂ X be such that (3.3) holds and, without loss of generality, we assume that un 6= 0 for all

n ∈ N, so that we can put

wn =
|un|sun
‖|un|sun‖N

with ‖wn‖N = 1. Thus, denoting

εN :=
αN
cN ′∗

and taking ε = εN in (3.5), from (3.3) and direct computations it follows that∫
Ω

eβ|un|
γ

dx ≤
∫

Ω

eεN‖|un|
sun‖N

′
N |wn|N

′
+CεN dx ≤ eCεN

∫
Ω

eαN |wn|
N′

dx

which, together with (1.2), implies (3.4).

Now, in order to consider the supercritical growth, we need the following application of the Rellich Em-

bedding Theorem.

Lemma 3.2. Taking p = N and s > 0, let (un)n ⊂ X be a sequence such that(∫
Ω

(1 + |un|Ns) |∇un|Ndx
)
n

is bounded.

Then, u ∈W 1,N
0 (Ω) exists such that |u|su ∈W 1,N

0 (Ω), too, and, up to subsequences, if n→ +∞ we have

un ⇀ u weakly in W 1,N
0 (Ω), (3.6)

|un|sun ⇀ |u|su weakly in W 1,N
0 (Ω), (3.7)

un → u a.e. in Ω, (3.8)

un → u strongly in Lr(Ω) for 1 ≤ r < +∞. (3.9)
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Proof. For the proof, it is enough reasoning as in [4, Lemma 3.8] but with p∗ = +∞.

The last technical lemma we recall is necessary for proving the boundedness of the weak limit in W 1,N
0 (Ω)

of a (CPS)-sequence (for the proof, see [11, Theorem II.5.1]).

Lemma 3.3. Take v ∈W 1,N
0 (Ω) and assume that L0 > 0 and k0 ∈ N exist such that

∫
Ω+
k

|∇v|Ndx ≤ L0

(∫
Ω+
k

(v − k̃)rdx

)N/r
+ L0

m∑
i=1

k̃li |Ω+
k |
εi for all k̃ ≥ k0,

with Ω+

k̃
= {x ∈ Ω : v(x) > k̃}, where r, m, li, εi (i ∈ {1, . . . ,m}), are such that

1 ≤ r < +∞, εi > 0, N ≤ li < +∞.

Then, ess supΩ v is bounded from above by a positive constant which can be chosen so that it depends only on

|Ω|, N , r, L0, k0, m, εi, li and |v|L1(Ω+
k0

).

Now, we are able to prove that our functional E(u) satisfies the weak Cerami–Palais–Smale condition.

Proposition 3.4. Under assumptions (2.1), (2.2), (h1), (h2) and (g1), the functional E : X → R as in (2.8)

satisfies the (wCPS) condition in R.

Proof. Let c ∈ R and let (un)n ⊂ X be a (CPS)c sequence, i.e.

E(un)→ c and ‖dE(un)‖X′(1 + ‖un‖X)→ 0 as n→ +∞. (3.10)

For simplicity, our proof is divided in several steps; more precisely, we will prove that:

1. (un)n is bounded in W 1,N
0 (Ω), or to be more precise, that(∫

Ω

(1 + |un|Ns)|∇un|Ndx
)
n

is bounded; (3.11)

hence, also (‖|un|sun‖N )n is bounded in W 1,N
0 (Ω) and u ∈W 1,N

0 (Ω) exists such that |u|su ∈W 1,N
0 (Ω),

too, and, up to subsequences, the limits (3.6)–(3.9) hold;

2. u ∈ L∞(Ω);

3. if k > |u|∞ + 1 is large enough, then (Tk(un))n is a Palais–Smale sequence at level c, that is

‖dE(Tk(un))‖X′ → 0 (3.12)

and

E(Tk(un))→ c, (3.13)

where Tk : R→ R is defined as

Tkt :=

t if |t| ≤ k

k t
|t| if |t| > k

; (3.14)
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4. ‖Tkun − u‖N → 0, and then ‖un − u‖N → 0, too;

5. E(u) = c and dE(u) = 0.

We use the notation (εn)n for any infinitesimal sequence depending only on (un)n and (εk,n)n when the

infinitesimal sequence depends also on a constant k.

Step 1. Taking δ̄ > 0 as in (2.5), from (2.8), (2.9), (3.10), (h1), (2.5) and direct computations it follows that

N(s+ 1)(1 + δ̄)c+ εn =N(s+ 1)(1 + δ̄)E(un)− 〈dE(un), un〉

≥(s+ 1)δ̄ α0

∫
Ω

(1 + |un|Ns)|∇un|Ndx

+

∫
Ω

(
unh(un)eα|un|

γ

−N(s+ 1)(1 + δ̄)G(un)
)
dx

≥(s+ 1)δ̄ α0

∫
Ω

(1 + |un|Ns)|∇un|Ndx− σ1

∫
Ω

|un|qdx − σ2|Ω|.

(3.15)

Then, if without loss of generality we suppose q ≥ 1 + s, from the Sobolev Embedding Theorem and direct

computations we have that ∫
Ω

|un|qdx ≤ c1‖|un|sun‖
q
s+1

N ;

hence, since q < N(s + 1), from (3.15) we conclude that (3.11) is satisfied and then, from Lemma 3.2, a

function u ∈W 1,N
0 (Ω) exists which satisfies all the requirements in Step 1.

Step 2. Arguing by contradiction, assume that u /∈ L∞(Ω); hence, either

ess sup
Ω

u = +∞ (3.16)

or

ess sup
Ω

(−u) = +∞. (3.17)

For example, suppose that (3.16) holds and for any fixed k̃ ∈ N we define the function

R+

k̃
t =

0 if t ≤ k̃

t− k̃ if t > k̃

. (3.18)

Now, taking any δ > 0 such that the limit in (2.4) is verified, a radius R1 > 0 exists such that

|h(t)| ≤ eδ|t|
γ

if |t| ≥ R1. (3.19)

Thus, taking any integer k ≥ R1, from (3.16) we have that

|Ω+
k | > 0, with Ω+

k := {x ∈ Ω : u(x) > k} . (3.20)

So, if we take k̃ = ks+1 in definition (3.18), from (3.7) it follows that

R+
ks+1(|un|sun) ⇀ R+

ks+1(|u|su) weakly in W 1,N
0 (Ω)
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which implies, by the sequentially weakly lower semicontinuity of ‖ · ‖N , that∫
Ω+
k

|∇us+1|Ndx ≤ lim inf
n→+∞

∫
Ω+
n,k

|∇us+1
n |Ndx, (3.21)

where the set Ω+
k defined in (3.20) is such that

Ω+
k = {x ∈ Ω : |u|su > ks+1} (3.22)

and also

Ω+
n,k := {x ∈ Ω : un(x) > k} is such that Ω+

n,k = {x ∈ Ω : |un|sun > ks+1}.

On the other hand, from definition (3.18) with k̃ = k, we have that (R+
k un)n ⊂ X and ‖R+

k un‖X ≤ ‖un‖X ,

while from (3.9) we obtain

R+
k un → R+

k u strongly in L2(Ω); (3.23)

hence, (3.10) gives

|〈dE(un), R+
k un〉| → 0. (3.24)

From (3.24) together with (3.20), it follows that nk ∈ N exists such that

|〈dE(un), R+
k un〉| ≤ |Ω

+
k | for all n ≥ nk. (3.25)

We note that, from (2.3), (2.9), definition (3.18) and hypothesis (h1) we have that (2.7) and direct computa-

tions give

〈dE(un), R+
k un〉 =

∫
Ω+
n,k

(A0(x) +A(x)|un|Ns)|∇un|Ndx

+ s

∫
Ω+
n,k

A(x)|un|Ns−2un(un − k)|∇un|Ndx −
∫

Ω

h(un)eα|un|
γ

R+
k undx

≥ α0

∫
Ω+
n,k

|un|Ns|∇u|Ndx −
∫

Ω

h(un)eα|un|
γ

R+
k undx

=
α0

(s+ 1)N

∫
Ω+
n,k

|∇(us+1
n )|Ndx −

∫
Ω

h(un)eα|un|
γ

R+
k undx,

which, together with (3.25), gives∫
Ω+
n,k

|∇(us+1
n )|Ndx ≤ (s+ 1)N

α0

(
|Ω+
k |+

∫
Ω

h(un)eα|un|
γ

R+
k undx

)
for all n ≥ nk. (3.26)

From definition (3.18) with k̃ = k ≥ R1 which implies R+
k un = 0 a.e. in Ω \ Ω+

n,k, we have that estimate

(3.19) and Cauchy–Schwarz inequality imply∣∣∣∣∫
Ω

h(un)eα|un|
γ

R+
k undx

∣∣∣∣ ≤ ∫
Ω+
n,k

|h(un)| |R+
k un| e

α|un|γdx ≤
∫

Ω+
n,k

e(α+δ)|un|γ |R+
k un|dx

≤

(∫
Ω+
n,k

|R+
k un|

2dx

)1/2(∫
Ω

e2(α+δ)|un|γdx

)1/2

≤ c2

(∫
Ω

|R+
k un|

2dx

)1/2

,
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as
(∫

Ω
e2(α+δ)|un|γdx

)
n

is bounded by the statement in Step 1 and Lemma 3.1 with β = 2(α+ δ). Thus, back

to (3.26), we obtain∫
Ω+
n,k

|∇(us+1
n )|Ndx ≤ c3

(
|Ω+
k |+

(∫
Ω

|R+
k un|

2dx

)1/2
)

for all n ≥ nk. (3.27)

Passing to the limit in (3.27), from (3.21) and (3.23) we have that∫
Ω+
k

|∇(us+1)|Ndx ≤ c3

(
|Ω+
k |+

(∫
Ω

|R+
k un|

2dx

)1/2
)
, (3.28)

where again from definition (3.18) with k̃ = k and direct computations it results(∫
Ω

|R+
k un|

2dx

)1/2

≤

(∫
Ω+
k

|u|2dx

)1/2

+ k |Ω+
k |

1/2. (3.29)

Therefore, as in Ω+
k it is 1 ≤ k < u, then u2 ≤ u2N(s+1) in Ω+

k and from (3.29) it follows that (3.28) turns

into ∫
Ω+
k

|∇(us+1)|Ndx ≤ c3

|Ω+
k |+ k |Ω+

k |
1/2 +

(∫
Ω+
k

(us+1)2Ndx

)1/2
 . (3.30)

At last, if we set v = |u|su, with v ∈ W 1,N
0 (Ω), since (3.22) implies Ω+

k = {x ∈ Ω : v(x) > ks+1}, then from

(3.30) we obtain that

∫
Ω+
k

|∇v|Ndx ≤ c3

|Ω+
k |+ k |Ω+

k |
1/2 +

(∫
Ω+
k

v2Ndx

)1/2
 ,

where, by direct computations, it is(∫
Ω+
k

v2Ndx

)1/2

≤ c4

(∫
Ω+
k

(v − ks+1)2Ndx+ k2N(s+1)|Ω+
k |

)1/2

≤ c4

(∫
Ω+
k

(v − ks+1)2N

)N/2N
+ k(s+1)N |Ω+

k |
1/2

 .

Hence, summing up, since 1 ≤ k ≤ k(s+1)N , we obtain∫
Ω+
k

|∇v|Ndx ≤ c5

(∫
Ω+
k

(v − ks+1)2N

)N/2N
+ k(s+1)N |Ω+

k |+ k(s+1)N |Ω+
k |

1/2

 ,

and then Lemma 3.3 applies to function v but taking any k̃ ≥ Rs+1
1 and then in all the previous computations

k such that k̃ = ks+1, and r = 2N , m = 2, l1 = l2 = N , ε1 = 1 and ε2 = 1/2.

Similar arguments allow us to exclude also (3.17) and then it has to be u ∈ L∞(Ω).

Step 3. The proof of this step is essentially as in Step 3 of [3, Proposition 4.6], but, for completeness and

also for pointing out the different assumptions we need, here we give some details.

Firstly, consider R1 > 0 so that (3.19) holds, and from assumption (g1) a radius R2 > 0 exists such that

G(t) ≥ 0 if |t| ≥ R2. (3.31)

11



Then, fix any integer k such that k ≥ max{R1, R2, |u|∞}+ 1 and define the “remainder” of the truncation

function in (3.14) as

Rkt = t− Tkt =

0 if |t| ≤ k

t− k t
|t| if |t| > k

. (3.32)

For the choice of k we have that it is

Tku = u and Rku = 0 a.e. in Ω,

then from (3.6), (3.8) and (3.9) it follows that Tkun ⇀ u weakly in W 1,N
0 (Ω),

Rkun → 0 strongly in L2(Ω), (3.33)

|Ωn,k| → 0 with Ωn,k := {x ∈ Ω : |un(x)| > k} . (3.34)

Furthermore, by definition, it is ‖Rkun‖X ≤ ‖un‖X , then (3.10) implies

〈dE(un), Rkun〉 → 0

which gives

εn = 〈dE(un), Rkun〉 =

∫
Ωn,k

(A0(x) +A(x)|un|Ns)|∇un|Ndx

+ s

∫
Ωn,k

A(x)|un|Ns
(

1− k

|un|

)
|∇un|Ndx −

∫
Ω

h(un)eα|un|
γ

Rkundx,

where from the definition in (3.34) and assumption (h1) it is∫
Ωn,k

A(x)|un|Ns
(

1− k

|un|

)
|∇un|Ndx ≥ 0,

while from definition (3.32), estimate (3.19) and Cauchy–Schwarz inequality we obtain that∣∣∣∣∫
Ω

h(un)eα|un|
γ

Rkundx

∣∣∣∣ ≤ ∫
Ωn,k

|h(un)|eα|un|
γ

|Rkun|dx ≤
∫

Ωn,k

e(δ+α)|un|γ |Rkun|dx

≤
(∫

Ω

e2(δ+α)|un|γdx

) 1
2
(∫

Ω

|Rkun|2dx
) 1

2

≤ c6

(∫
Ω

|Rkun|2dx
) 1

2

by the statement in Step 1 and Lemma 3.1 with β = 2(α + δ). Thus, summing up, from (3.33) and (h1) we

have that

εn ≥
∫

Ωn,k

(A0(x) +A(x)|un|Ns)|∇un|Ndx ≥ α0

∫
Ωn,k

(1 + |un|Ns)|∇un|Ndx ≥ 0

which implies ∫
Ωn,k

(A0(x) +A(x)|un|Ns)|∇un|Ndx → 0, (3.35)

and also ∫
Ωn,k

|∇un|Ndx → 0, i.e., ‖Rkun‖N → 0, (3.36)
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and ∫
Ωn,k

|un|Ns|∇un|Ndx → 0. (3.37)

Now, in order to prove (3.12), take v ∈ X such that ‖v‖X = 1, whence, |v|∞ ≤ 1, ‖v‖N ≤ 1. Direct

computations and definition (3.14) allow us to prove that

〈dE(Tkun), v〉 = 〈dE(un), v〉 −
∫

Ωn,k

(A0(x) +A(x)|un|Ns)|∇un|N−2∇un · ∇v dx

− s
∫

Ωn,k

A(x)|un|Ns−2un v |∇un|Ndx+

∫
Ωn,k

h(un)veα|un|
γ

dx− eαk
γ

∫
Ωn,k

h(un)v dx,

where from (3.10) we have that

|〈dE(un), v〉| ≤ ‖dE(un)‖X′ = εn uniformly with respect to v ∈ X such that ‖v‖X = 1,

while, since |v|∞ ≤ 1, from (3.19), Cauchy–Schwarz inequality and, again, Lemma 3.1 we obtain∣∣∣∣∣
∫

Ωn,k

h(un)veα|un|
γ

dx

∣∣∣∣∣ ≤
∫

Ωn,k

|h(un)|eα|un|
γ

dx ≤
∫

Ωn,k

e(δ+α)|un|γdx

≤ |Ωn,k|1/2
(∫

Ω

e2(δ+α)|un|γdx

)1/2

≤ c7|Ωn,k|1/2

and also from (h2) it results ∣∣∣∣∣
∫

Ωn,k

h(un)v dx

∣∣∣∣∣ ≤ c8|Ωn,k|.

Moreover, since for a.e. x ∈ Ωn,k it is 1 ≤ k ≤ |un|, being |v|∞ ≤ 1, from (h1) it follows that∣∣∣∣∣
∫

Ωn,k

A(x)|un|Ns−2un v |∇un|Ndx

∣∣∣∣∣ ≤ |A|∞
∫

Ωn,k

|un|Ns |∇un|Ndx,

while, being ‖v‖N ≤ 1, from (h1) and Hölder inequality we have that∣∣∣∣∣
∫

Ωn,k

A0(x) |∇un|N−2∇un · ∇v dx

∣∣∣∣∣ ≤ |A0|∞
∫

Ωn,k

|∇un|N−1|∇v| dx

≤ |A0|∞

(∫
Ωn,k

|∇un|Ndx

)N−1
N

;

hence, summing up, from (3.34), (3.36) and (3.37) we obtain that

|〈dE(Tkun), v〉| ≤ εk,n +

∣∣∣∣∣
∫

Ωn,k

A(x)|un|Ns|∇un|N−2∇un · ∇v dx

∣∣∣∣∣
with εk,n → 0 uniformly with respect to v ∈ X such that ‖v‖X = 1.

At last, reasoning as in the proof of Step 3 in [3, Proposition 4.6], by means of the test functions ϕ+
k,n = vR+

k un,

with R+
k t as in (3.18) with k̃ = k, and ϕ−k,n = vR−k un, where we define

R−k t =

0 if t ≥ −k

t+ k if t < −k
,
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and with careful estimates based on (3.19) and Lemma 3.1, we are able to prove also that∣∣∣∣∣
∫

Ωn,k

A(x)|un|Ns|∇un|N−2∇un · ∇v dx

∣∣∣∣∣ ≤ εk,n,

with εk,n → 0 uniformly with respect to v ∈ X such that ‖v‖X = 1, which completes the proof of (3.12).

Now, in order to prove (3.13), from direct computations we have that

E(Tkun) = E(un)− 1

N

∫
Ωn,k

(A0(x) +A(x)|un|Ns)|∇un|Ndx+

∫
Ωn,k

G(un)dx−
∫

Ωn,k

G(Tkun)dx,

where (3.35) implies

E(Tkun) = E(un) + εk,n +

∫
Ωn,k

G(un)dx−
∫

Ωn,k

G(Tkun)dx. (3.38)

We note that |Tkun|∞ ≤ k for all n ∈ N and the continuity of G(t) implies that∣∣∣∣∣
∫

Ωn,k

G(Tkun)dx

∣∣∣∣∣ ≤ c9 |Ωn,k|,

while, being k > R2, from (3.31) and assumption (2.5) it follows that

0 ≤ G(un) ≤ c10

(
un h(un) eα|un|

γ

+ σ1|un|q + σ2

)
for a.e. x ∈ Ωn,k,

where, again, from (3.19), Cauchy–Schwarz inequality, Lemma 3.1, (3.9) and direct computations we obtain∫
Ωn,k

|un| |h(un)|eα|un|
γ

dx ≤
(∫

Ω

e2(δ+α)|un|γdx

)1/2
(∫

Ωn,k

|un|2dx

)1/2

≤ c11|Ωn,k|1/2

and also ∫
Ωn,k

|un|qdx ≤ c12 |Ωn,k|1/2.

Thus, (3.13) follows by using all the previous estimates in (3.38) together with (3.10) and (3.34).

Step 4. It is enough arguing as in the proof of the corresponding step in [3, Proposition 4.6].

Step 5. The proof follows from the previous steps by applying Proposition 2.6 to the uniformly bounded

sequence (Tkun)n as we obtain that

E(Tkun)→ E(u), ‖dE(Tkun)− dE(u)‖X′ → 0

and (3.12) and (3.13) hold.

4. The Mountain Pass geometry

In this section we show that the functional E defined in (2.8) satisfies the Mountain Pass geometry which

is required for applying the abstract Theorem 2.2.

Firstly, let us recall that λ1 > 0, the first eigenvalue of −∆N in W 1,N
0 (Ω), is achieved by a unique (up to

constants) function ϕ1 ∈W 1,N
0 (Ω) such that

ϕ1 > 0,

∫
Ω

|ϕ1|Ndx = 1 and

∫
Ω

|∇ϕ1|Ndx = λ1 (4.1)
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(see, e.g., [12]); furthermore, it is also ϕ1 ∈ L∞(Ω), hence ϕ1 ∈ X, and∫
Ω

|u|Ndx ≤ 1

λ1

∫
Ω

|∇u|Ndx for all u ∈W 1,N
0 (Ω). (4.2)

Now, we define

`s(u) :=

(∫
Ω

(1 + |u|Ns)|∇u|Ndx
) 1
N

for all u ∈ X. (4.3)

Clearly, the map `s : X → R is continuous with `s(0) = 0 and from (2.7) it is such that

`s(u) ≥ ‖u‖N , `s(u) ≥ 1

s+ 1
‖|u|su‖N for all u ∈ X. (4.4)

Proposition 4.1. If the hypotheses of Theorem 2.5 hold, then a constant r0 > 0 exists such that

inf
`s(u)=r0

E(u) > 0.

Proof. From assumption (2.4) a radius R1 > 0 exists such that (3.19) holds. Without loss of generaly, we

can suppose R1 ≥ max{ν, 1} with ν so that condition (g2) holds. Then, by applying the estimates (2.5) and

(3.19) and choosing a power β1 ≥ 0 so that q + β1 ≥ N + 1, we have that

G(t) ≤ c1 |t| |h(t)| eα|t|
γ

+ c2|t|q + c3 ≤ c1 |t|N+1e(δ+α)|t|γ + c2|t|q+β1 + c3|t|N+1 if |t| ≥ R1, (4.5)

while the continuity of G(t) and direct computations imply that

G(t) ≤ max
|t|≤R1

|G(t)| ≤ c4 |t|N+1 if ν ≤ |t| ≤ R1. (4.6)

Hence, without loss of generality assuming λ1α0

N − σ > 0 in (g2), summing up estimates (4.5), (4.6) and

hypothesis (g2) it follows that

G(t) ≤
(
λ1α0

N
− σ

)
|t|N + c1 |t|N+1e(δ+α)|t|γ + c2|t|q+β1 + c5|t|N+1 for all t ∈ R

which implies∫
Ω

G(u)dx ≤
(
λ1α0

N
− σ

) ∫
Ω

|u|Ndx+ c1

∫
Ω

|u|N+1e(δ+α)|u|γdx+ c2

∫
Ω

|u|q+β1dx+ c5

∫
Ω

|u|N+1dx (4.7)

for all u ∈ X.

We note that, for all u ∈ X such that `s(u) ≤ 1
s+1 , from Cauchy–Schwarz inequality, (3.2) with β = 2(δ+α),

Sobolev Embedding Theorem and (4.4), we obtain∫
Ω

|u|N+1e(δ+α)|u|γdx ≤
(∫

Ω

|u|2(N+1)dx

)1/2(∫
Ω

e2(δ+α)|u|γdx

)1/2

≤ c6‖u‖N+1
N ,

so, by using (4.2) and (4.4) in (4.7), from direct computations it follows that∫
Ω

G(u)dx ≤
(
α0

N
− σ

λ1

)
[`s(u)]N + c7 [`s(u)]N+1 + c8[`s(u)]q+β1 . (4.8)

Thus, combining (4.8) with definitions (2.8) and (4.3) and hypothesis (h1), and taking `s(u) = r0 with

r0 ≤ 1
s+1 , we have that

E(u) ≥ σ

λ1
rN0 − c7 rN+1

0 − c8rq+β1

0

and, as q + β1 > N , the desired result follows from taking r0 > 0 sufficiently small.
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Proposition 4.2. If ϕ1 ∈ X is as in (4.1), then we have that

E(tϕ1)→ −∞ as t→ +∞.

Proof. From (2.8), hypotheses (h1) and (g1), the properties of ϕ1 in (4.1) and also (2.7), for all t > 0 we have

that

E(tϕ1) =
1

N

∫
Ω

(A0(x) +A(x)|tϕ1|Ns)|∇tϕ1|Ndx−
∫

Ω

G(tϕ1)dx

≤ c1tNλ1 + c2t
N(s+1)‖|ϕ1|sϕ1‖NN − σ3t

τ

∫
Ω

ϕτ1dx+ c3.

Thus, since by assumption τ > N(s+ 1), as t→ +∞ we obtain the desired result.

Theorem 2.5. By considering the function `s(u) as in (4.3), from Propositions 3.4, 4.1 and 4.2 we have that

Theorem 2.2 applies to functional E in (2.8) and a mountain pass nontrivial critical point of E on X exists.
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