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Abstract
In the Honalilar area (Denizli Basin, Turkey), the occurrence of banded Ca-carbonate veins and travertine 
deposits, represented by a dismantled fissure ridge-type depositional system, are the evidence of a Middle-
Late Pleistocene exhumed, shallow, hydrothermal system. Their occurrence offers the best opportunity to: 
(i) reconstruct the fluid paths from the underground to the palaeo-surface, and (ii) analyse the role of fault 
zones in controlling the permeability and fluids circulation. Permeability developed in overstepping regional 
scale normal faults, with a slight left-lateral oblique-slip component. At the surface, faults favored the 
localization and development of a fissure ridge-type travertine deposit. At depth, the root of the 
hydrothermal system consists of W-E oriented fractures filled of up to 6.5 m thick Ca-carbonate veins, 
developed in a high dilatation zone. It corresponds to the step-over determined by the oblique-slip 
kinematics of the NW-striking main faults. The high dilatation step-over zone hindered the progressive 
sealing induced by the concomitant Ca-carbonate deposition within the fractures, thus favoring 
permeability maintenance and fluids circulation for at least 200 ka. This evidence adds key inputs for 
predicting permeable volumes during geothermal exploration in areas affected by extensional tectonics. The 
main NW-oriented faults remained active even after the hydrothermal fluid flow, causing the 
dismantlement and progressive exhumation of the upper part of the hydrothermal system.

Key words
Geothermal systems, extensional tectonics, relay zones, banded Ca-carbonate veins, travertine, western 
Anatolia

1. Introduction
In scarcely permeable rock volumes, migration of geothermal fluids is strictly controlled by fault damage 
zones (Caine et al., 1996; Barbier, 2002; Rowland and Sibson, 2004; Zucchi, 2020) where fracture-array (Caine 
et al., 1996; Cox et al., 2001; Liotta et al., 2018) is consequence of fault kinematics (Sibson, 2000; Kim et al., 
2003; Brogi, 2011a). Laboratory experiments, numerical simulations and fieldwork analyses demonstrated 
that the permeability of the fault damaged rocks is enhanced by orders of magnitude with respect to the 
host rock (i.e. protolith, in: Bruhn et al., 1990; Sibson, 1996; Evans et al., 1997; Caine and Forster, 1999; Jourde 
et al., 2002). Nevertheless, permeability of fault zones is not homogeneously distributed (Stober and Bucher, 
2007; Zucchi et al., 2017) and, in addition, it changes through time during fault evolution (Sibson, 1987; Cox, 
1999; Rowland and Sibson, 2004; Uysal et al., 2009; Bense et al., 2013) with modifications in the fault zone 
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architecture (Fyfe, 1987; Hancock et al., 1999; Polak et al., 2003; Uysal et al., 2009; Alt-Epping et al., 2013). 
Moreover, if saline fluids are permeating fractures, mineralization can develop (Bons et al., 2012) providing 
reduction of permeability. This latter effect is contrasted by new tectonic pulses, reopening previously sealed 
fractures (Curewitz and Karson, 1997; Uysal et al. 2007; Liotta et al., 2010). Consequently, permeability of a 
fault zone is extremely variable through time, and difficult to be predicted. 
Permeability is considerably enhanced if two (or more) fault segments are interacting, as it is the case of 
the linkage zones and faults intersection areas (Curewitz and Carson, 1997; Brogi, 2004; Camanni et al., 
2019; Liotta and Brogi, 2020). Interaction of fault segments generate multiple, commonly overlapping, minor 
structures, increasing the fracture density in limited rock volumes, where consequently, permeability is 
enhanced, from depth to surface (Curewitz and Carson, 1997; Hancock et al., 1999; Brogi et al., 2016a; 
Olvera-García et al., 2020). In this framework, step-over zones (or relay ramps) in normal fault settings are 

considered as among the most favorable structural conditions (Fossen and Rotevatn, 2016) to host 
geothermal fluid flow (James et al., 2011). For this reason, fault zones are considered of strategic interest for 
geothermal exploration. Furthermore, the knowledge of faults geometry, their timing and kinematics, as 
well as the understanding of the relationships between geological structures and fluid flow, are crucial for 
reducing the mining risk and for a responsible use of the geothermal resources. However, since exploration 
targets are at depth, information obtained by the study of exhumed geothermal systems represents the key 
to investigate the process linking permeability and fracture development. 
Areas with travertine deposits (Ford and Pedley, 1996; Pentecost, 2005) offer the best opportunity to analyse 
how the deformation associated to a fault zone impacts on fluid circulation, favoring geothermal fluid 
migration from the deep reservoir up to the surface. Travertine (sensu Capezzuoli et al., 2014) is a terrestrial 
carbonate, formed from thermal springs discharging mainly Ca2 + and HCO3

− saline fluids deriving from the 
interaction between fluids and deep, highly fractured, carbonate bodies (Brogi et al., 2016a and references 
therein). Basically, travertine deposits are considered indicators of tectonic activity (Hancock et al., 1999) 
and their analyses can contribute to define geometry, age and kinematics of the structures to which 
travertine deposits are associated (Altunel and Hancock, 1993a, 1993b; Çakır, 1999; Martinez-Diaz and 
Hernandez-Enrile, 2001; Brogi, 2004; Mesci et al., 2008; Brogi and Capezzuoli, 2009; Temiz and Eikenberg, 
2011). Travertine are also suitable for accurate dating analyses through 14C and 230Th/238U methods 
(Martinez-Diaz and Hernandez-Enrile, 2001, Altunel and Karabacak, 2005; Piper et al., 2007; Mesci et al., 
2008; Temiz and Eikenberg, 2011; Nishikawa et al., 2012), thus permitting to date faults activity (cf. Muir-
Wood, 1993; Çakır, 1999; Altunel and Karabacak, 2005; Uysal et al., 2007; Brogi et al., 2010; 2017; 2020). 
When exhumation determined the exposition of the root of an hydrothermal system, the effects of the 
interplay between fractures and fluids circulation are measurable by studying the evolution of banded Ca-
carbonate veins (banded travertine, in: Altunel and Hancock, 1993a, 1993b), representing the main 
mineralization in the fractures defining the fault zone. Chemical-physical variations of fluids properties 
(e.g., pressure, temperature and/or pH) trigger the filling fractures Ca-carbonate deposition (Uysal et al., 
2009). Renewed tectonic activity can (re-)open the veins, therefore restoring the fluids circulation from 
which the growth of banded veins restart (crack-and-seal mechanism, Sibson, 1977, Ramsay, 1980). It follows 
that analysing banded Ca-carbonate veins in exhumed geothermal systems provides important inputs for 
understanding how fluids circulate within fault zones.
In this paper we describe the geometry of a well-exposed, Middle-Late Pleistocene exhumed geothermal 
system, from its palaeo-surface down to 100 m, i.e. from the dismantled travertine deposits to their feeding 
conduits, represented by banded Ca-carbonate veins. 
This exhumed system is located in the northeastern part of the Denizli Basin (western Anatolia, Fig. 1) and 
consists of a “christmas tree-like” carbonate volume (about 25000 m2 in plain view and 100 m in section), 
concentrated in a system of permeable damage fault zones where geothermal fluids were channeled. The 
peculiarity of this system is that fluid circulation was controlled by fractures of which width is up to 6.5 m, 
as determined by repeated crack-and-seal events. At the same time, these veins developed in a confined 
area where normal faults of regional relevance overlapped. Fluids reaching the surface formed a fissure 
ridge-type travertine deposit, progressively deformed during faulting, hence confirming the syn-tectonic 
travertine deposition. 
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We interpret the study area as a step-over zone between fault segments, developed in an extensional setting. 
Our results describe how such a zone represents a favorable volume to channel geothermal fluids toward 
the surface, giving inputs for geothermal exploration.

2. Geological outline
After the Alpine collisional stage, western Anatolia has been affecting by extensional tectonics since 
Neogene (Şengör & Yılmaz 1981). Extensional tectonics resulted in early-middle Miocene low-angle normal 
faults, determining core complex structures and supra-detachment basins, and subsequent late Miocene-
Present faults, cross-cutting all the previous structures and defining an interplay of transfer and normal 
faults (Alçiçek et al., 2013) and related tectonic depressions, where continental sedimentation took place 
(e.g., Şengör and Yılmaz, 1981; Bozkurt, 2003; ten Veen et al., 2009; Alçiçek et al., 2013). 
The Denizli Basin (Fig.1) is 50 km wide and 70 km long and is delimited by NW- and SE-trending faults, 
developing since late Miocene and accommodating about 1300 m of continental sediments, at least (Şimşek, 
1984; Sun, 1990; Konak and Şenel, 2002; Konak, 2002; Koçyiğit, 2005; Kaymakçı, 2006; Alçiçek et al., 2007). 
The pre-Neogene bedrock consists of: (i) pre-Oligocene metamorphic rocks belonging to the Menderes 
Massif, and (ii) phyllite, metacarbonate and ophiolite-bearing carbonate-terrigenous succession of the 
Lycian Nappes. The Menderes Massif is the structurally deepest outcropping unit; it is formed by HP–LT 
marble, quartzite and garnet-bearing micaschist hosting Palaeozoic-Cenozoic granitoids (Pamir and 
Erentöz, 1974; Şengör and Yılmaz, 1981; Okay, 1989; Sun, 1990; Bozkurt, 2001; ten Veen et al., 2009; van 
Hinsbergen, 2010; van Hinsbergen and Schmid, 2012). This unit is tectonically overlain by the Lycian Nappes 
(Collins and Robertson, 1997), through a regional extensional detachment as described in the surroundings 
areas (Okay, 1989; Sun, 1990; Gündoğan et al., 2008; ten Veen et al. 2009, van Hinsbergen et al. 2010). 

Extension is accompanied by magmatism and hydrothermalism, as it is testified by the diffuse 
hydrothermal mineralization and travertine deposits characterising western Anatolia (Ozkul et al., 2013; 
Brogi et al., 2016b). 
The Neogene and Quaternary Denizli Basin succession, referred to as the Denizli Group, is subdivided into 
four lithostratigraphic units and consists of alluvial-fan, fluvial, and lacustrine deposits (Şimşek, 1984). From 
early Miocene, the Denizli Basin was controlled by the fault system located to its SW part whereas, from 
early Quaternary, such a Basin enlarged due to the activation of the NE fault system referred to as the 
Pamukkale, Akköy and Tripolis fault segments (Altunel and Hancock, 1993a,b; Altunel, 1994; Hancock et al., 
1999; Alçiçek et al., 2007; Brogi et al., 2014a). These latter controlled the location of the major travertine/tufa 
deposits (Ozkul et al., 2013; Capezzuoli et al., 2018; Alçiçek et al., 2019), presently characterising this sector 
of the Basin (Fig. 1).
The Gölemezli travertine (Çakır, 1999) was described as an isolated deposit consisting of two fissure ridges 
(around 100 m long) developed in a relay ramp connecting two fault segments named as the Tripolis and 
Akköy faults (Fig. 2). The volume of travertine deposit, about ~35 m thick over an area of <1 km2, is estimated 
to be ~0.035 km3 (Sun, 1990; Alçiçek et al., 2018). The deposit result dominantly formed by multigenerational 
and multicoloured Ca-carbonate veins (Özkul et al., 2013; Capezzuoli et al., 2018). These developed along 
vertical/subvertical fault zones and extensional fissures affecting both the metamorphic substrate and the 
overlying bedded travertine. The age of the Ca-carbonate veins is encompassed between 504.232 ±72.608 
and 310.677± 5.764 ka (Capezzuoli et al., 2018).

2.1 The Pamukkale fault system
The northeastern shoulder of the Denizli Basin is delimited by NW-striking, SW-dipping, normal faults 
affecting  the Neogene–Quaternary continental sediments (Fig. 2), juxtaposing these sediments to the 
Palaeozoic and Mesozoic metamorphic units (Menderes Units and Lycian Nappe) (Şaroğlu et al., 1987, 

1992; Çakır, 1999; Hancock et al., 1999; Koçyiğit, 2005; Kaymakçı, 2006; Alcicek et al., 2007). This normal 

fault system cuts, and is crosscut, by almost orthogonal faults (NE-striking) interpreted as transfer faults 
active during extensional tectonics (Kaymakçı, 2006; Brogi et al. 2014; 2016b; Alcicek et al., 2018).
Activity of such a fault system is encompassed between early Miocene and Holocene, on the basis of the 
age of the sediments involved in the deformation and on the relationships between faulting and travertine 
deposition (Altunel and Karabacak, 2005; Brogi et al., 2016b; Capezzuoli et al., 2018). Present deformation is 
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indicated by: i) the location of the historical and recent earthquakes (Utku, 2009; Irmak, 2013); ii) the 
alignments of active geothermal manifestations; iii) the on-going deposition of travertine (Lebatard et al., 
2014; Boulbes et al., 2014). 
Kinematic data on the NW-striking fault segments indicate a main normal dip-slip component during 
Quaternary (Altunel and Hancock, 1993a; Çakir, 1999). This is also supported by the offset of the Roman 
artefacts along the fault segment passing through Hierapolis archaeological site (Altunel and Hancock, 
1996; Piccardi, 2007). Nevertheless, a left-lateral strike- to oblique-slip kinematics characterises the older 
fault activity as indicated by Altunel and Hancock (1993a) and Çakir (1999). 
A different kinematics characterises the NE-striking faults, on which right- and left-lateral oblique-slip 
movements superimposed the older normal ones (Kaymakci, 2006; Brogi et al., 2014; Brogi et al., 2016b; Van 
Noten et al., 2013). 
However, both the NW- and NE-striking fault systems, played a fundamental role for the overall 
hydrothermal circulation and fluid upwelling (Alçiçek et al., 2013). Thermal springs (up to 57 °C, Bülbül, 
2000; Bülbül et al., 2005; Alçiçek et al., 2016) and travertine deposits (Altunel and Hancock, 1993a, b, c; 
Altunel, 1994) are aligned along the main fault segments, thus indicating a close relation between these 
structures and fluid pathways. Furthermore, the hydrothermal circulation is mainly concentrated in those 
areas nearby the intersection between the NE- and NW-trending faults, where the rock volumes are deeply 
damaged. 
In this context, the syn-tectonic fissure ridge-type travertine deposits (Bargar, 1978) are developing along 
the traces of both NE- and NW-trending structures belonging to the Pamukkale system. As examples, the 
NW-trending Çukurbag and Kamara fissure ridges have been described in details by several authors (De 
Filippis et al., 2012 with references therein; Brogi et al., 2014, Brogi et al. 2016b), being key morpho-tectonic 
features and showing clear syn-tectonic hydrothermal fluid flow with the related travertine deposition 
(Altunel and Hancock, 1993a, 1996; Altunel, 1994; Hancock et al., 1999). The hydrothermal circulation along 
fault zones is however occurring since Pleistocene, as testified by the mineralised, partly exhumed, damaged 
rock volumes associated to NE- and NW-trending fault zones. Mineralization consists of centimeter to meter 
thick syn-tectonic banded Ca-carbonate veins with minor content of Fe-hydroxides. These Middle 
Pleistocene to Holocene veins (Altunel and Karabacak, 2005; Özkul et al., 2013, De Filippis et al., 2012; Brogi 
et al., 2016b) crosscut the metamorphic rocks of the Menderes Massif and the Neogene sedimentary layers. 
The Ca-carbonate veins include cm-to-dm thick fragments of the host rocks, although altered by 
hydrothermal circulation and cemented by calcite. In particular, up to meters-sized Ca-carbonate veins can 
occasionally develop parallel to bedding and/or schistosity surfaces. Independently of their attitude and 
thickness, Ca-carbonate veins are always filled of banded onyx-like fibrous calcite/aragonite crystals, with 
symmetric, mm-thick laminae of different colors (reddish, yellowish, whitish and grey- greenish) formed 
during repeated crack-and-seal episodes (Uysal et al., 2007).

3. Data analysis
Field mapping and structural analyses were carried out along a tract of the northeastern margin of the 
Denizli Basin, in the Honalilar area, in the surrounding of the travertine exposure and within the quarry, 
where travertine deposits and Ca-carbonate veins were exploited (Figs 2 and 3). The morphological scarp 
and quarry location permitted us to collect data from the paleo-surface, now at top-hill, to the deep part of 
the hydrothermal system, now at the base of the scarp, for a total  exposed height of about 100 m. Outcrop 
conditions were optimal in the quarry (where the saw-cuts exposed about 100 m of travertine and feeder 
conduits). Differently, due to alteration and vegetation only spotted outcrops were visible at the base of the 
hill, along its flanks, and at top-hill (Fig. 3). 
In the following, for sake of clarity, the presentation of data is separated in two different sections addressed 
to the description of the fault system and its impact on the travertine and Ca-carbonate veins deposition.

3.1 The faults system in the Honalilar area
The Honalilar area is located along the Pamukkale fault system, delimiting the Denizli Basin to the NE (Fig. 
2). In this area the faults lose their lateral continuity to form a step just centered in the area where travertine 
deposits and associated banded Ca-carbonate veins are located (Fig. 3). 
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The slip surfaces of the major faults are not exposed, although forming well pronounced morphological 
slope (Fig. 3). These faults juxtapose the metamorphic rocks (marble, quartzite and micaschist) of the 
Menderes Unit with the Neogene terrigenous and carbonate successions filling the Denizli Basin (fault 
segment 3, in: Figs 2 and 3). Nevertheless, minor faults (including fault segment 2 in: Figs 2 and 3) and 
fractures are exposed in the footwall damage zone of the main faults (Fig. 4). The bulk of the minor faults 
is characterized by vertical offsets of few meters and by core zones ranging from 0.5 to 10 cm. Their damage 
zones can reach up to 10 m. These faults exhibit kinematic indicators, consisting of slickenlines with steps 
(Fig. 5) or, in some cases, calcite/quartz fiber-steps and chatter marks. 
Kinematic data have been collected in 16 structural stations distributed along the main fault segments and 
in the step-over zone (Fig. 6), nearby the quarry area.
Outside the step-over zone, the two interacting NW-SE striking fault zones (eastern and western fault zones, 
Fig. 7 and 8) are instead characterised by a slight left-lateral oblique-slip kinematics, with pitches ranging 
from 65° to 84° with an average pitch of about 75°. It implies a 0.26 average ratio between the vertical and 
horizontal off-set components (Fig. 9a). The horizontal component gave rise to the high dilation component 
within the step-over zone (Fig. 9b-c) and favored the the normal kinematics of the faults (Fig. 8), which was 
also induced by the vertical component of the fault segments 1 and 3. 

3.2 The epigean and hypogean travertine depositional system 
This is described in two parts: the first is about the epigean (upper) part, characterized by bedded travertine 
deposits (i.e., Ca-carbonate deposition occurred at the ground-air boundary), also described in Capezzuoli 
et al. (2018); the second part is addressed to describe the hypogean part (the upper root of the hydrothermal 
system), defined by the feeder conduits, now highlighted by banded Ca-carbonate veins grown within the 
damage zones of the main faults, and in lateral pre-existing discontinuities.

The epigean part
Travertine deposits, up to 15 m thick, are formed by bedded/laminated continental limestone. These 
deposits were dissected by normal faults and are now exposed (i) at the top of the hill (ca. 520 m a.s.l.) in 
the footwall of the faults system, (ii) on the fault hanging wall, overlying unconformably Neogene sediments 
and (iii) on the slope, in the fault zone (Figs 3 and 6). 
At the top of the hill, a partly dismantled travertine fissure ridge-type deposit, up to 50 m long, NW-SE 
trending, has been reconstructed. Such a morpho-structural element overlies a matrix-supported polygenic 
breccia, directly resting on the metamorphic units (Fig. 10a-b), locally containing rounded cobbles and 
pebbles that progressively passed to microbial carbonate laminites and abiotic crystalline crusts (Fig. 10c-
e). The microbial laminites, typical of low-energy environment, consist of subparallel sets, up to 20 cm thick, 
of porous crust made up of spongy bindstone mats with peloidal fabric. Many pores show an elongated 
oblong shape, which can be ascribed to gas-escaped bubbles entrapped, or bound, by microbial mats. Blocky 
sparite cement is locally present with equant crystals sized 150–300 μm. Microbial laminae in places encrust 
the components of the basal breccia, although, in some cases such laminae are alternated with (or pass 
laterally to) crystalline crusts. The crystalline crusts, generated by laminar flux along medium to steep slopes 
are made up of 1–10 cm thick, linear to curvilinear, calcite laminae formed of rows of densely crowded 
feather-like/ dendritic crystals (Fig. 10). 
These beds, made up of crystalline crusts and microbial laminites, are tens of centimeters thick in average, 
and show variable primary dipping attitudes (from almost vertical to sub-horizontal), although, on the 
whole, dipping away from the NW-SE oriented axial zone. 
NW-SE striking sub-vertical banded calcite veins, up to 90 cm thick (Fig. 10c), crosscut the bedded travertine 
in the slopes of the fissure ridge. The fissure ridge occurrence, as well as its orientation (Fig. 6), indicate the 
distribution of structurally controlled palaeo-thermal springs from which the travertine deposit took place. 
Such fissure ridge represents the proximal part of this depositional system, while its distal part is partially 
exposed in the slope and hanging wall of the fault system. In these sectors, travertine is strongly deformed 
by E-W striking faults and cut by numerous cm- to dm-thick, NW-SE and E-W oriented banded calcite 
veins. Travertine consists of sub-horizontal or gently inclined (5°-10°) cm-to-m thick beds of microbialite 

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

Cross-Out
they are reflected in

Inserted Text
s

Inserted Text
a

Cross-Out
This

Cross-Out
However, the left-lateral component helped to accentuate dilation

Cross-Out

Cross-Out

Cross-Out
normal slip on

Cross-Out

Cross-Out
epigene and hypogene

Cross-Out
epigene

Cross-Out

Inserted Text
surface

Cross-Out
addresses the hypogene

Cross-Out

Cross-Out

Inserted Text
ene

Cross-Out

Inserted Text
NW-trending

Cross-Out

Cross-Out

Cross-Out

Cross-Out
was derived

Cross-Out
The

Cross-Out
strike-slip and normal



6

(laminite and lime-mudstone/peloidal micrite facies). Meter-thick layers of well-bedded crystalline crusts 
show lateral correlation with microbial lithofacies. Lime mudstone occurs in planar to wavy layers up to 4 
m thick (on average 20–30 cm), of a grey, dense homogeneous micritic/ microsparitic, sometimes slightly 
argillaceous carbonate made up of unfossiliferous, clotted/peloidal and/or structureless micrite (Fig. 10d-e). 
The layers locally alternate with, or laterally pass to, crystalline crusts and microbialites. Such facies 
association deposited in low-energy flat/wetland settings (palustrine, distal pools), corresponding to the 
bottom of slope terraces and/or shallow lakes. 

The hypogean part
This is visible, in vertical sections, from the palaeosurface down to about 100 m due to the saw-cuts of the 
quarry. It consists of a network of onyx-like crystalline veins (banded Ca-carbonate veins) crossing the 
metamorphic rocks and isolating cm- to m-thick volumes of brecciated hosting rocks (Fig. 11). These veins 
coincide with the feeder conduits that channeled the hydrothermal fluids up to the surface, where travertine 
deposited (Fig. 10). The Ca-carbonate veins veins are concentrated in an area of about 400 x 600 m (quarry 
area) and are only occasionally present outside. In the quarried area, veins are thicker (up to 6 m, Fig. 12a-
c), and closely spaced: up to 8 veins per 10 m (Fig. 12d). Their concentration and overall size rapidly decreases 
from the quarry area toward the surroundings, while veins pinch out west- and eastwards in a short distance 
(Fig. 6).
The Ca-carbonate veins are W-E trending and steeply dipping toward S - SW (Fig. 12e). In some places these 
are locally sheared with a normal movement, as affected by faulting during and after their development 
(Fig. 12f). The veins texture is characterized by mm-to-cm thick, parallel and/or subparallel vertical bands 
of different colors: white, light-transparent and more rarely brownish bands (Fig. 13a).
The contact between veins and host rock is sharp; occasionally, centimeter-scale breccia fragments of Ca-
carbonate veins veins are embedded in the same vein (intraclastic breccia), thus suggesting continuous 
deformation through time (Fig, 13a). Furthermore, the same microcrystalline coat locally encrusts/cements 
the clasts of small lenses (up to 1.50 m) of extraclastic breccia derived from the metamorphic (Menderes 
Massif) and Neogene substrate (Fig. 13b): this indicates an enlargement of the deformation volume and the 
syn-tectonic development of calcite veins that, in some cases, show internal cross-cutting relationships 
(from sinuous to orthogonal; Fig. 13c), suggesting repeated crack-and-seal events.
Vein crystals grew normal to the wall-rock toward the central part of fractures, thus forming symmetrical, 
isopachous or, less frequently, botryoidal mm-to-cm thick crusts (Fig. 13b). Banded veins are commonly 
completely sealed, although discontinuous voids rimmed by festoons can locally be observed in the central 
part of the vein, where their suture occurs.
Scan lines have been measured in order to reconstruct veins distribution and their geometrical setting in 
the whole quarry (Fig. 3). Scan lines, settled orthogonally to the veins, were subdivided in several segments 
to be adapted to the morphological setting and to the quarry cuts. By this, a total of 135 m was measured 
in detail (Fig. 12). The location of the scan lines does not correspond with their progressive numbering 
which, instead, followed the temporal criterion of acquisition.
Describing the scan lines starting from north (Fig. 12), scan line 1 is characterised by WNW-ESE trending 
cm- to dm-size banded veins, for about 15 m from its beginning. These veins are syntaxial and subvertical, 
crossing micaschist and quartzite of the Menderes Massif (Fig. 14a-b), and correspond to fault zones (Fig. 
14a). From 40 to 58 m, the metamorphic rocks are cataclastic, displaying a quartzite and micaschist 
brecciated texture, with clasts cemented by yellowish carbonate and crossed by cm-size calcite veins (Fig. 
14c-d). This cataclastic level is part of the damaged volume of the fault segment 1 delimiting the step-over 
zone (Fig. 3 and 12), of which slip surface is covered by the debris as indicated in Fig. 12a.
Differently, the next scan line (scan line 10) begins with a 70 cm thick W-E trending banded vein, followed 
by a 6 m thick breccia, made up of quartzite clasts, cemented by a yellowish calcite, mostly (Fig. 15a-b). This 
breccia is locally crossed by W-E trending, sub-vertical banded veins (Fig. 15c). At the end of the scan line, 
for at least 1.5 m, a thick banded vein occurs. This latter has its extension in the next scan line (scan line 9), 
passing through an at least 10 m thick, W-E trending, sub-vertical vein, locally embedding lenses of up to 
40 cm thick tectonic breccia (Fig. 12). 
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Scan line 8 displays a 6 m thick lithon of quartzite and micaschist. Such a lithon maintained almost intact 
its primary fabrics, although brecciated volumes characterise portions at the contact with the banded veins. 
A c. 80 cm thick vein trends W-E and steeply dips southwards. It passes to a 2.6 m thick breccia delimiting 
a cataclasite volume of metamorphic rock, embedded within the vein, of which width is 6 m, up to the end 
of scan line 8. The extension of such a vein is displayed in scan lines 7 and 6, where it comprehends 4 main 
lenses of a tectonic breccia cemented by yellowish carbonate and made up of quartzite and micaschist 
elements.  
Scan line 2 begins with a micaschist lithon preserving its primary fabrics. It is followed by 1 m thick tectonic 
breccia and a very continuous banded Ca-carbonate veins, detected for other 6 meters. Such a vein 
characterises completely the scan line 3 (only 3 m long). Here, a 50 cm tectonic breccia lens is also 
recognized. 
Scan line 5 starts with about 10 m thick breccia, made up of quartzite, locally cemented by yellowish calcite 
and crossed by a 40 cm thick Ca-carbonate veins vein. It follows about 3.5 m thick lithon, made up of 
quartzite and micaschist with their primary fabrics, although brecciated for about 3 m where a c. 80 cm 
thick banded vein affects the lithon.
In some cases, banded veins are crossed by slip surfaces with clear kinematic indicators. These faults dissect 
the veins producing localized cataclasite levels. Kinematic indicators consist of mechanical striations and 
calcite fiber-steps, thus suggesting a fluid assisted faulting process (Fig. 16a-b). In other cases, the vein 
formation is accompanied by development of cm- to dm-thick extensional jogs (Fig. 16d). Banded Ca-
carbonate veins veins and faults have a common W-E orientation (Fig. 12e-f). 
Outside the quarry yard, outcrops are discontinuous and it was no longer possible to take measurements 
by scan lines. Nevertheless, a fault zone injected by cm- to m-thick banded calcite veins juxtapose the 
travertine deposits to the metamorphic rocks. Travertine results strongly fractured, and each fracture is 
filled by banded Ca-carbonate veins. In some cases, banded veins form a network with mainly sub-vertical 
and sub-horizontal veins, these latter following the travertine beds. 
The kinematic indicators collected in the step-over zone indicate W-E striking faults with a dominant 
normal component (Figs 8 and 12) and, in part, dissecting the W-E oriented banded veins. These latter 
developed within the fault zones, therefore suggesting a continuous faulting activity assisted by 
hydrothermal fluids circulation during earlier stages. 
The different kinematics between faults hosting the banded veins in the quarry area and the 
eastern/western faults (i.e. fault segments 1 and 2, Fig. 7) is framed in the step-over zone setting as discussed 
in the next paragraph.

4. Discussion
The Honalilar area was firstly investigated by Çakir (1999) who considered the banded Ca-carbonate veins 
as travertine deposits associated to faults. At the top of the hill, this author documented two fissure ridges 
(about 100 m long) and slope-facies travertine deposits. In the same area, we recognised only one fissure 
ridge, partly dismantled (Fig. 10c), and a parallel banded Ca-carbonate vein cutting the travertine deposit 
(Fig. 6), which probably corresponds to the second fissure ridge reported by Çakir (1999). Contrarily, Özkul 
et al. (2013) described multicolored Ca-carbonate veins crossing the metamorphic substratum and bedded 
travertine deposits. According to Özkul et al. (2013), travertine deposits are exposed at the top of the hill 
and in the southern part of the quarry, where travertine deposits were offset by NW-SE and W-E striking 
faults (Fig. 6).
Although the broad exposures favored by the quarry cuts, the transition and relationships between the 
banded Ca-carbonate veins and the bedded travertine is not visible (i.e., how the carbonate deposition 
changed from depth to ground-air boundary). Nevertheless, their link is clear as also documented by 
Capezzuoli et al. (2018). We therefore assume that the described Ca-carbonate veins developed within 
fractures that channeled fluids to the surface, where the related fault-controlled travertine deposits (i.e. 
fissure ridges) were located. These latter are today eroded and dismantled due to erosion and progressive 
faulting.
Noteworthy, banded Ca-carbonate veins and travertine deposits occur only in a restricted area of about 400 
x 600 m, delimited by two main NW-SE striking fault segments, SW-dipping (Fig. 6) and forming a fault 
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step-over zone (Peacock and Sanderson, 1991, 1994; Childs et al., 1995). This accounts for a close relationship 
between such deformational zone and circulation of Ca-enriched geothermal fluids.
The main faults defining the step-over zone are characterised by a dominant normal component (Figs 7 and 
8). Nevertheless, the banded veins show a different orientation with respect to the fault segments delimiting 
the step-over zone: they form angles ranging from 34° to 52° (Fig. 6). On the other hand, overstepping zones 
are characterised by fault/fracture segments with a geometrical pattern resulting from the local stress 
(Sibson 1985, 1996), where tensile and shear failure independently and locally developed to link fault 
segments with different orientation and kinematics (Childs et al., 1995; Camanni et al., 2019). The unusual 
thickness of the banded Ca-carbonate veins (Fig. 11) accounts for an important dilatational component 
affecting the step-over rock-volume. This feature, coupled with their angular relation with the main faults, 
accounts for a strike-slip component of the faults parallel to the basin, accommodated by the step-over zone 
(i.e. releasing step over zone, in: Kim et al., 2004 and references therein). It implies two left-lateral strike-slip 
faults bounding the area, as it was already hypothesised by Çakir (1999) for the study area. Nevertheless, 
our kinematic data indicate a different scenario: the main faults show a dominant normal kinematics with 
a very minor left-lateral component (Fig. 7). This kinematic setting account for a relay zone linking normal 
faults instead of strike-slip faults. In this view, the fault length - relay width ratio is fitting with several step-
over zones in extensional settings, as documented around the world (Fig. 17). 
In addition, according to Mayolle et al. (2019) and Childs et al. (2019), fractures linking normal fault 
segments are not purely dilatational in extensional settings, as it is the case of the Honaliar area. This 
apparent incongruence could be explained by analysing the configuration of the step-over zone that is not 
deriving from adjacent parallel and en-echelon fault segments, as described for most cases by several 
authors (Larsen, 1988; Peacock and Sanderson, 1991, 1994; Childs et al., 1995; Cartwright et al., 1996; Crider 
and Pollard, 1998; Brogi, 2011; Peacock, 2002; Fossen and Rotevatn, 2016; Nixon et al., 2018). In our case, the 
overlapping faults (fault segments 1 and 3, Figs 3 and 7) diverge just in correspondence of the overlapping 
zone: in fact, the south-eastern fault segment (fault segment 1, named Pamukkale Fault by Çakir, 1999) 
abruptly changes its strike, passing from N130° to about N160° (Fig. 7). This configuration excludes a pure 
strike-slip dilatation step-over zone linking fault segments with an en-echelon configuration and accounts 
for a step-over zone linking two diverging faults segments, with a dominant normal component (pitches 
ranging from 65° to 80°, 75° on average). This setting guaranties dilatation and consequent high permeability.
This adds new inputs for predicting targets during geothermal exploration in extensional settings. Fluid 
paths are, in fact, controlled by the orientation of the intermediate stress axis (Sibson 2000): closer to the 
vertical, easier to channel deep fluids, increasing the hydraulic conductivity. It derives that at least an 
oblique kinematics is crucial to easily channel geothermal fluids from depth to the surface. At the same 
time, the high dilatation within the step over zone contrasts the sealing process deriving by the progressive 
Ca-carbonate deposition from the geothermal fluids, related to the CO2 degassing (Mancini et al., 2019). At 
the surface, the effect of the CO2 degassing from structurally controlled thermal springs consists of sinter 
deposits: travertine (i.e. carbonate sinter deposit) is the most widespread deposit forming nearby thermal 
springs, if the hydrothermal fluids have suited salinity (Pentecost, 1995). If this is the case, geothermal fluids 
are characterised by high sealing capacity when CO2 degassing occurs. This process contrasts permeability 
in the bedrock, inhibiting fluids circulation although new fractures, induced by faulting, can reopen the  
existing conduits enhancing again fluids flow (Curewitz and Karson, 1997), during fault-valve behavior (cf. 
Sibson, 1981; Shelly et al. 2015; Ruhl et al., 2016). It follows that faulting and fluids flow are contemporaneous 
to travertine deposition and the Ca-carbonate mineralization within the fault zone becomes indicative of 
the age of the tectonic activity (Hancock et al. 1999) and hydrothermal circulation (Fouke et al., 2000; Simsek 
et al., 2000). In this case, we can refer the age of faults and the geothermal circulation to the time interval 
between about 504 and 310 ka (Capezzuoli et al. 2018) at least. In this view, during Middle Pleistocene, the 
step-over zone developed together with hydrothermal fluids flow, lasting for about 200 ka. It implies that 
the present hydrothermal circulation occurring in the Pamukkale area (Alçiçek et al., 2019 with refereces 
therein) could be controlled by same structural configurations, migrated through time toward the 
depocenter of the Denizli Basin, where active faults occur. 
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All these circumstances make the Honalilar exhumed hydrothermal system a site that offers the best 
conditions for getting inputs to understand the present geothermal circulation in the Denizli Basin and all 
areas around the world, showing similar geological settings.  

5. Conclusions
Combining data from the mineralization occurred in the fossil, exhumed hydrothermal system with 
structural and kinematic settings, we reconstructed the structural control on the about 200 ka long-living 
geothermal system, controlled by interacting faults in the extensional setting characterizing western 
Anatolia. Hydrothermal fluids rose up from a deep reservoir to surface, through the damage fault zones 
developed in the step-over linking regional normal faults. 
The structural and kinematic setting highlights a step-over zone, derived by the interaction of aligned faults, 
with dominant normal component and slight left-lateral movement (Fig. 18a). The master faults 
configuration, coupled with their reconstructed kinematics, favored dilatational volumes within the step-
over zone, where mode I and mode II fractures developed in response to the orientation of the regional and 
local stress field (Fig. 18b). Within the step over zone, the developing fractures and normal faults, steeply 
dipping toward south, formed in a high dilatation environment offering the best opportunity to generate 
permeability and circulation of large volumes of geothermal fluids. The crack-and-seal mechanism 
controlled fluids circulation within the fault zones and favored the formation of a widespread network of 
Ca-carbonate banded calcite veins, up to 6.5m thick, as result of the competition between extension and 
sealing process (Fig. 18c). At the surface, the Ca-carbonate banded veins should correspond to fissure ridge-
type travertine deposits with a geometric configuration as illustrated in Fig. 19. It derives that Ca-carbonate 
banded veins and travertine deposits are primary features to be analysed for reconstructing the tectonic 
control on the geothermal fluids flow in the upper crustal levels. This result adds key inputs for predicting 
permeable volumes during geothermal exploration in areas affected by extensional tectonics.
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Figure Captions

Fig. 1 - Geological sketch-map of the Denizli Basin (modified after Sun, 1990 and Alçiçek et al., 2007) and 
location of the study area. 

Fig. 2 - Geological map of the north-eastern margin of the Denizli Basin, where the Honalilar area (study 
area) is indicated.

Fig. 3 - a) Panoramic view of the Honalirar quarry with the main faults highlighted; b) Google Earth 
photograph showing the Honalilar quarry and the surroundings hills; the location of the scan lines 
measured and described in the text and illustrated in the Figure 12 is also indicated. 

Fig. 4 - Panoramic view of the fault zone to the south of the quarry juxtaposing the Neogene sediments to 
the metamorphic units, where the hydrothermal altered footwall damage zone is highlighted.

Fig. 5 - a) The fault scarp in the southern prolongation of the eastern fault delimiting the step-over zone 
(see the text for more explanation). Panoramic view of the fault zone; c-d) particular of the damage 
volumes related to the fault zone.
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Fig. 6 - Tectonic sketch-map of the study area showing the main structures associated with the step over 
zone. Main faults, travertine deposits, banded Ca-carbonate veins and the station of the structural 
analyses are also indicated. b) Geological map of the same area.

Fig. 7 - Cartoon showing the main structures, the banded Ca-carbonate veins and the stereographic 
diagrams (lower hemisphere, equiareal projections) indicating fault and striae for each station of 
structural analysis. 

Fig. 8 - Fault plane solutions diagrams with fault-trends and striae, reconstructed from the inversion of 
kinematic data collected on fault-slip surfaces and divided per structural domains of the step-over zone.

Fig. 9 - a) The faults delimiting the step-over zone have an oblique-slip left-lateral kinematics (average pitch 
75°), implying a ratio = 0.26 between the horizontal and vertical offset. b) Fault plane solution for the 
average strike, deep and pitch values calculated for the fault segments 1 and 3; furthermore, the angular 
relation between the average fault and the associated theoretical T-fracture (mode I fracture) is shown. 
c) Relationships between the main fault and vein trends in the study area coupled with the direction of 
the theoretical T-fractures as calculated in (b).

Fig. 10 - Photographs illustrating the travertine deposits at the top of the quarry area: a) bedded travertine 
forming the eastern flank of the travertine fissure ridge reported in the Fig.  6; b) particular of the contact 
of the travertine deposit on the pre-Neogene metamorphic substratum. The basal part of the succession 
is characterised by a breccia cemented by carbonate; c) detail of the banded calcite vein filling the 
internal part of the fissure ridge; d) detail of planar-to-wavy layers of lime mudstone; e) example of well-
bedded, cm-thick layers of clotted/peloidal microbial mats.  

Fig- 11 - Photographs illustrating the banded Ca-carbonate veins exposed in the quarry and developed 
within W-E fault zones of the step-over zone. 

Fig. 12 - a) Scan lines measured in the quarry; their location is shown in the Fig. 3; b) diagram illustrating 
the vein width variation along the scan line: the maximum value of 6 m has been measured; c) diagram 
illustrating the number of veins each 10 m along the scan line; d) diagram illustrating the number of 
veins with the indicated width; e) Stereographic (lower hemisphere, Schmidt diagram) and rose diagrams 
of the measured veins along the scan line; f) Fault and striae of the faults affecting the banded Ca-
carbonate veins; g) location of the single scan lines with respect to the vein exposed in the quarry. 

Fig. 13 - a) Photograph illustrating the fabric of the banded Ca-carbonate veins, often characterised by 
centimeter-scale breccia fragments of the calcite veins; b) Detail of the sharp contact separating the 
banded vein and host (metamorphic) rocks; c) crosscutting relationships of different generation of 
banded Ca-carbonate veins. 

Fig. 14 - a) Photograph showing a banded Ca-carbonate vein developed within a fault zone affecting 
micaschist in the footwall of the eastern fault delimiting the step-over zone; b) detail of a minor vein 
highlighting the symmetry of the bands; c-d) details of the hydrofractured metamorphic rocks nearby 
the fault zones.

Fig. 15 - a-b) Photograph illustrating cataclasites associated to W-E faults within the step over zone and 
cemented by yellowish carbonate; c) Photograph illustrating a cataclasite level formed at the contact 
with the banded Ca-carbonate vein.
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Fig. 16 - a-b) Photographs of the kinematic indicators (calcite fiber steps) characterising slip surfaces 
affecting the banded Ca-carbonate veins; c) example of dm-scale shear band localised within a banded 
Ca-carbonate vein and developed parallel to the banding.  

Fig. 17 - Diagram of the relationship between relay-width and relay-length in step-over zones; data from 
the study area is compared with a broad dataset reported in Fossen and Rotevatn (2016). 

Fig. 18 – Conceptual geometrical model of the study area, where the main veins and faults developed within 
the step-over zone are considered structures formed within an highly dilatational volume.  

Fig. 19 - Cartoon showing the orientation of the fissure ridge-type travertine deposits developing in a 
releasing step-over zone bridging faults characterised by a dominant normal kinematics with a slight 
oblique-slip component (in this case the ratio between horizontal and vertical components has been 
calculated at 0.26).
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