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Abstract

Learning approaches rely on hyperparameters that impact the algorithm’s
performance and affect the knowledge extraction process from data. Recently,
Nonnegative Matrix Factorization (NMF) has attracted a growing interest as a
learning algorithm. This technique captures the latent information embedded
in large datasets while preserving feature properties. NMF can be formalized as
a penalized optimization task in which tuning the penalty hyperparameters is
an open issue. The current literature does not provide any general framework
addressing this task. This study proposes to express the penalty hyperparam-
eters problem in NMF in terms of a bi-level optimization. We design a novel
algorithm, named Alternating Bi-level (AltBi), which incorporates the hyper-
parameters tuning procedure into the updates of NMF factors. Results of the
existence and convergence of numerical solutions, under appropriate assump-
tions, are studied, and numerical experiments are provided.
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1. Introduction

All learning models require setting some hyperparameters (HPs)– variables
governing the learning approach – before starting the learning process from
data. HPs tuning requires a substantial effort, depending on the user, and
affects the learner’s performance [1]. Automatic Hyperparameter Optimization
(HPO) would bring a solution to these problems [2].
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HPO strategies commonly used in the literature range from simple methods,
such as the grid or random search, to more complex ones, such as the Bayesian
optimization or the Genetic Algorithms (GAs) [3–8]. Grid search explores a
prescribed set of HPs in a given search space, while random search defines a
random sampling of HPs without any assumption on the search space. Both
these strategies are time-consuming since they are driven by some performance
metrics, commonly measured by cross-validation. Moreover, they require do-
main experts to justify a search space that is meaningful for the application
domain. Bayesian optimization attempts to predict how unseen combinations
of HPs will perform based on a so-called surrogate model that approximates
the HPO problem. GAs are based on stochastic optimization and are inspired
by the biological phenomena of natural evolution. Recently, some works proved
that Gradient-Based (GB) approaches can obtain great results in HPO for large-
scale problems, using only local information and at least one HP (learning rate)
[9, 10]. GB methods reduce the validation error, computing or approximating
the gradient with respect to HPs [11–13]. One of the ways to go through GB
methods for HPO is to formalize the problem as a bi-level task [14–16]. Bi-level
programming solves an outer optimization problem subject to the optimality of
an inner optimization one [17].

Formally, let A be a learner with hyperparameter vector λ ∈ R
p, parameter

vector2 w ∈ R
q, with p, q ∈ N, and X ∈ R

n×m with n,m ∈ N an assigned data
matrix. For learning model A, the HPO can be written as:

λ
∗ = arg min

λ∈Λ
F (A(w(λ),λ),X) s. t. w(λ) = arg min

w

L (λ,X), (1)

where F evaluates how good is w gained by learner A tuned with hyperpa-
rameter λ on X, and L is an empirical loss. Typically, the inner problem aims
to minimize empirical loss L ; the outer problem is related to HPs. Because of
the implicit dependence of the outer problem on λ, equation (1) is challenging
to solve. Recently, first order bi-level optimization techniques based on estimat-

ing Jacobian dw(λ)
dλ via implicit or iterative differentiation have been proposed

to solve (1) [13, 15, 18].
However, there are still no effective results of using GB methods for HPO

in the unsupervised field. This study aims to use these techniques to revise
problem (1) in an unsupervised learning context, to automatically achieve HPs.
We consider Nonnegative Matrix Factorization (NMF) and its constrained vari-
ants (in particular sparseness constraint) [19–27]. We regard these problems
as penalized optimization tasks in which penalty coefficients are HPs, focusing
on their proper choice via HPO. Taking advantage of the bi-level HPO prob-
lem formulation, we construct an alternating bi-level approach that includes the
HPs choices as a part of the algorithm that computes the factors in the NMF
data approximation task under study. The rest of this section reviews prelimi-
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w can be a scalar, a vector or a matrix.
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nary concepts on NMF and its sparsity constraints with the importance of the
penalty HPs for sparse NMF. Section 2 describes the novel bi-level formulation
of the penalized NMF and its treatment via an alternating methodology. We
prove the existence of the solution to this problem, and we use convergence
results to design a new algorithm, named Alternating Bi-level (AltBi), which is
described in Section 3. It is our numerical proposal to solve the HPO issue in
NMF models with additional sparsity constraints. Section 4 illustrates the nu-
merical results obtained using the AltBi algorithm on synthetic and real signal
datasets. Section 5 sketches some conclusive remarks and future works.

1.1. Preliminaries

NMF groups some methodologies aiming to approximate nonnegative data
matrix X ∈ R

n×m
+ as X ≈ WH, where W ∈ R

n×r
+ is the basis matrix, and

H ∈ R
r×m
+ is the encoding (or coefficient) matrix. The choice of parameter r,

which determines the number of rows of H (respectively, columns of W) and
r << min(n,m), is problem-dependent and user-specified; and it represents an
example of HP connected with NMF. A general NMF problem can be formulated
as an optimization task

min
W≥0,H≥0

Dβ(X,WH) = min
W≥0,H≥0

n
∑

i=1

m
∑

j=1

dβ(xij ,

r
∑

k=1

wikhkj), (2)

where the objective function Dβ(·, ·) is a β-divergence assessing how well its
reconstruction WH fits X, where dβ is generally defined for each x, y ∈ R as

dβ(x, y) =











1
β(β−1)(x

β + (β − 1)yβ − βxyβ−1) β ∈ R \ {0, 1};

x log(xy )− x + y β = 1;
x
y − log(xy )− 1 β = 0.

Either data properties and specific application domain influence the partic-
ular choice of Dβ (popular measures are for β = 2, 1, 0, i.e., the Frobenius norm,
the generalized Kullback-Leibler (KL) and the Itakura-Saito (IS) divergences,
respectively).
The NMF model in (2) can also be enriched with additional constraints by
introducing penalty terms

min
W≥0,H≥0

Dβ(X,WH) + λWR1(W) + λHR2(H), (3)

where R1 : R
n×r → R and R2 : R

r×m → R are some penalty functions en-
forcing specific properties on the factor matrices; λW, λH ∈ R+ are the penalty
coefficients (i.e., HPs), that balance the bias-variance trade-off in approximat-
ing X and preserving the additional constraints. It is assumed that at least
one of the two HPs is non-null for the penalty to make sense, and (3) allows to
penalize simultaneously one or both factors. The problem of properly selecting
the penalty HPs is still an unsolved issue in constrained NMF.
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One example of a suitable constraint to impose on NMF factors is sparsity.
Sparseness leads to several advantages; it allows obtaining some form of com-
pression, improves the computational cost and gives us better interpretability
when many features (the columns in X) are present, and the model becomes
very large. Several zeros avoid over-fitting, allow a way for feature extraction,
and elude modeling the noise implicitly embedded in the data. Nonnegativity
in the NMF algorithms naturally produces sparse factors. Nonetheless, be-
cause the factor sparseness degree is uncontrollable, it is preferable to use direct
constraints that can enforce this property [28]. Various penalty terms enforce
sparsity in NMF: an example is to apply ℓ0 “norm” on W and H [29]. However,
this penalization makes the associated objective function non-smooth, globally
non-differentiable, and non-convex, resulting in an NP-hard optimization prob-
lem (3). Conversely, due to their analytical proprieties, ℓ1 and ℓ2 norms are
valid alternatives to ℓ0 [30]. In particular, ℓ1 norm originates from the Lasso
problem [31] and addresses several computational issues in machine learning
and pattern recognition. Sparsity can also be imposed via ℓ1,2 norm which
is used either as a penalty function or as an objective function [32–34]. The
Hoyer’s sparse NMF optimization task uses the normalized ratio of ℓ1 and ℓ2
norm computed on the columns of W and rows of H [35]. Section 3 illustrates
our algorithm proposal to tune HPs using an objective function based on the
KL-divergence and ℓ1 norm.

1.2. The penalty HP in NMF

Usually, static optimization mechanisms, such as the grid or random search,
perform HPs tuning in constrained NMF (3). These approaches solve several
variants of the same problem associated with a predefined discrete set of HPs
and then choose the best one according to empirical criteria, (an example can
be found in the context of gene expression analysis [36]). Other approaches
are based on the Discrepancy Principle (DP) and the L-curve criterion which
are empirical methods used to tune the penalty value in Tikhonov regulariza-
tion [37, 38]. Active-set approaches for the NMF model, which are based on the
Frobenius norm and the Tikhonov regularization on W, are other sophisticated
strategies for tuning penalty HPs, and they usually choose the best penalty HP
according to clustering performance [39]. Bayesian optimization methodologies
are exploited to solve the problem

min
H≥0

1

2
||X−WH||2F +

λ

2
R(H), (4)

where R(H) = Tr (H⊤EH) =
∑

i

||hi||
2
1 = ||H||22,1, hi is the i-th row of H,

E ∈ R
r×r is the all-ones matrix that enforces sparsity on H’s columns using the

squared norm ℓ2,1, and λ ∈ R is the penalty HP [40]. In the associated mini-
mization problem, the choice of λ is made according to the following exponential
rule

λ(k) = λ0 exp (−τk), (5)
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where k is the number of iteration in the algorithm, λ0 is the initial value of
the HP and τ is a parameter controlling the results.
In this study, we want to automate the choice of HPs through GB methods and
bi-level approach in order to free the HPs tuning from the domain expert and
any empirical or cross-validation related techniques.

2. New Formulation

Several approaches can tackle HPO in model (3), even though a uniform
theory applicable to general objectives and penalty functions is still lacking.
The results reported in this study aim to fill this void.
This section presents the main contribution of the work. We reformulate the
model (3) as:

min
H≥0,W≥0

Dβ(X,WH) + R1(LWW) + R2(HLH), (6)

where LW ∈ R
n×n and LH ∈ R

m×m are diagonal matrices of HPs associated
with each row of W and each column of H, respectively, and R1 : R

n×r → R

and R2 : R
r×m → R are the penalty functions being continuous and such that

Ri(0) = 0 for each i = 1, 2, where 0 is the zero element in R
n×r and R

r×m,
respectively. In this way, each row and each column are penalized independently.
Although the problem can be written for both factors W and H, we, for now,
focus on the case where LH = 0Rm×m and LW = L ∈ R

n×n, diagonal and
non-null matrix (because the penalty makes sense) so that (6) is reduced to

min
H≥0,W≥0

Dβ(X,WH) + R(LW). (7)

A symmetric extension can be easily derived for LH 6= 0Rm×m and LW =
0Rn×n . On the other hand, simultaneous optimization on both factors (with re-
spect to (6)) requires some supplement theory related to the bi-level formulation
of NMF for columns, which will be the subject of future works. Problem (7)
is convex in each variable separately3. Alternating optimization techniques are
helpful to incorporate into the minimization process the updates of each NMF
factor separately. Firstly, fixing W, one estimates H; subsequently, H is fixed
to estimate W. To tune the penalty HP matrix L, we incorporate it simultane-
ously into the process of updating factor W, introducing a bi-level strategy on
each row of W.

Let wi ∈ R
r be the i-th column of W⊤ and from now on, let λ ∈ R

n indicate
the vector of diagonal elements of L and λi ∈ Λ ⊂ R the i-th diagonal element
of L. We first consider the simple minimization problem in H (for fixed W):

min
H≥0

Dβ(X,WH). (8)

3for particular values of β and specific penalty functions.
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To obtain the update for W and achieve an optimal solution for matrix L,
we use the bi-level task applied to each wi, i.e the i-th row of W, which for
each i = 1, . . . , n reads:

min
λi∈Λ

f(λi), f(λi) = inf{E(wi(λi), λi) : wi(λi) ∈ arg min
u∈Rr

Lλi
(u)}, (9)

where f : Λ→ R is the so-called Response Function (RF) of the outer prob-
lem related to the i-th row of W (according to the bi-level notation). Namely,
first we fix an outer level hyperparameter λi, then we solve the inner level prob-
lem finding wi as argmin of a loss function. Finally, the feasible solution of
minλi∈Λ f(λi) is evaluated. Note that the RF associated with the entire matrix

problem is F (λ) =
n
∑

i=1

f(λi). Error Function (EF) E is the outer objective such

that

E : R
r × Λ→ R : (wi, λi) 7→

m
∑

j=1

dβ(xj ,

r
∑

k=1

wik(λi)hkj), (10)

where for every λi ∈ Λ; whereas Loss Function (LF) Lλi
is the inner objec-

tive

Lλi
: R

r → R : wi 7→

m
∑

j=1

dβ(xj ,

r
∑

k=1

wikhkj) + λir(wi), (11)

where r : R
r → R is a linear function, closely related to the enforcement of

the constraint, such that
n
∑

i=1

λir(wi) = R(LW).

In the following section, we clarify how to handle each part of optimization
problems (8) and (9).

2.1. Finding the unpenalized factor

To solve (8), different update rules satisfying diverse requirements exist (fast
convergence or easy implementation mechanisms); they range from multiplica-
tive to additive update rules [41, 42]. In this study, we focus on the standard
NMF Multiplicative Updates (MU) [43] due to their ease of implementation
and monotonic convergence. From initial matrices, MU uses scaling rules from
the minimization of an auxiliary function (derived from Richardson-Lucy or
Expectation-Maximization (EM) approaches [44–48]). Any approach based on
an auxiliary function is often used to solve NMF problems because it ensures
the nonnegativity of the computed factors without further handling, notwith-
standing that it converges slowly [43, 49].

We briefly review the update rule for the general β divergence giving the
particular result for the KL divergence.
Considering the update rule

6



H← H. ∗
W⊤((WH)·[β−2] · ∗X)

W⊤(WH)·[β−1]
, (12)

being .∗ the Hadamard product (exponential and ratio operators are com-
puted element-wise), it is known that the general β-divergence Dβ(·, ·), is non-
increasing using rule (12) for 0 ≤ β ≤ 2. In particular, the paper [50] shows
this result for β = 2 and β = 1. In [51], it is generalized to the case 1 ≤ β ≤ 2.
In practice, we observe that the criterion is still non-increasing under update
(12) for β < 1 and β > 2 (and in particular for β = 0, that corresponds to
the IS divergence). More details on theoretical results and proofs can be found
in [43, 49, 52].
Specifically for the KL divergence, (12) becomes:

H← H. ∗
W⊤(X./(WH))

(
n
∑

i=1

wi) · 1m
⊤

, (13)

where 1m is the ones-vector of dimension m.

2.2. Finding the penalized factor and solving the HPO

To obtain the update for W and determine an optimal solution for penalty
matrix L, we use bi-level approach (9) applied on each row of W. To simplify
the notation, from now until the end of subsection 2.2, subscript i for wi and
λi is omitted. For the sake of simplicity, we suppose the existence of a unique
minimizer w(λ) for the inner objective. Nevertheless, problem (9) generally has
no closed expression for w(λ), so it does not allow to optimize the outer objective
function directly.

A reliable approach is to replace the inner problem with a dynamical sys-
tem [13, 18, 53]. This point allows us to compute an exact gradient of an
approximation of (9). It also enables optimization of the HPs that define the
learning dynamics. As mentioned before, depending on how the gradient with
respect to HPs is calculated, two main approaches can be used: the implicit
differentiation, based on the implicit function theorem, and the iterative differ-
entiation approach. In this work, we will focus on the latter.
Therefore, the solution of the inner object minimization as a dynamical system
with state w(t) ∈ R

r can be written as:

w(t) = Φt(w
(t−1), λ) t = 1, ., T ; (14)

with initial condition w(0) = Φ0(λ), where Φt : (Rr × R) → R
r is a smooth

map, and it is the row-wise update for W, for t = 1, . . . , T . Note that w(t) for
all i = 1, . . . , n depend on λ, implicitly.

Bi-level problem (9) can be approximated (for each i = 1, . . . , n) using the
constrained procedure:

7



min
λ

f(λ) s. t. w(t) = Φt(w
(t−1), λ) for t = 1, . . . , T. (15)

In general, procedure (15) might not be the best approximation for bi-level
problem (9) since the minimizer of Lλ, to which the optimization dynamic con-
verges, does not necessarily minimize E. This problem is overcome by assuming
the uniqueness of the minimizer of Lλ, for any λ ∈ Λ ⊂ R, as we will see in detail
in the following subsection 2.2.1. Moreover, we note that for 1 ≤ β ≤ 2, thanks
to the convexity of the β divergence function, and consequently, of Lλ

4, the as-
sociated problems arg min f (T )(λ), arg min f(λ), and arg min Lλ are singleton,
where f (T ) is the response function at time T .

2.2.1. Existence and Convergence Results

We provide results on the existence of solutions to problem (9) and the
(variational) convergence for approximate problem (15) related to it.

Hypothesis 1. Considering the following assumptions:

1. Λ ⊂ R is compact;

2. Error Function (10) is jointly continuous5;

3. application (w, λ)→ Lλ(w) is jointly continuous, and problem arg min Lλ

is a singleton for every λ ∈ Λ;

4. ∀λ ∈ Λ, w(λ) = arg min Lλ is bounded.

Therefore, bi-level problem (9) can be reformulated as follows:

min
λ∈Λ

f(λ) = E(w(λ∗), λ
∗), w(λ) = arg min

u

Lλ(u), (16)

where (w(λ∗), λ
∗) is the optimal solution.

Theorem 2.1 (Existence). Problem (16) admits solutions under the assump-
tions 1− 4.

Proof. From the compactness of Λ, the continuity of f ensures minimizers ex-
ist. Consider λ̂ ∈ Λ and sequence (λn)n∈N in Λ converging to λ̂. Due to the
boundness of associate sequence (w(λn))n∈N, there is a converging subsequence
(w(λkn ))n∈N such that lim

λkn→λ̂
w(λkn ) = ŵ ∈ R

r.

For point 3 in Hypothesis 1, since λkn
converges to λ̂, it results:

∀w ∈ R
r

Lλ̂(ŵ) = lim
n

Lλkn
(w(λkn )) ≤ lim

n
Lλkn

(w) = Lλ̂(w). (17)

Thus, ŵ is a minimizer of Lλ̂ and consequently ŵ = ŵ(λ). This proves that
sequence (w(λn))n∈N is bounded and has a unique accumulation point.

4Lλ is convex as a sum of convex functions.
5The function is continuous with respect to each variable separately.
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Consequently (w(λn))n∈N converges to w(λ̂) (i.e. its unique accumulation point).

Lastly, for point 2 of Hypothesis 1 and since (w(λn), λn)→ (w(λ̂), λ̂), it follows

f(λn) = E(w(λn), λn)→E(w(λ̂), λ̂) = f(λ̂), that concludes the proof.

Theorem 2.2 (Convergence). In addition to Hypothesis 1, suppose that:

5. E(·, λ) is uniformly Lipschitz continuous;

6. (w
(T )
(λ) )T∈N → w(λ) uniformly on Λ for T → +∞.

Then

(a) inf f (T )(λ)→ inf f(λ),

(b) arg min f (T )(λ)→ arg min f(λ).

To prove Theorem 2.2, the following preliminary result concerning the stabil-
ity of minima and minimizers in optimization problems is helpful (the complete
proof of this result can be found in [54]).

Theorem 2.3. Let gT and g be lower semi-continuous functions defined on a
compact set Λ. If gT → g uniformly on Λ for T → +∞, then

(a) inf gT → inf g

(b) arg min gT → arg min g.

Thanks to these results, Theorem 2.2 can be proved.

Proof of Theorem 2.2. The uniform Lipschitz continuity of E(·, λ) ensures that
there exists ν > 0 such that:

|f (T )(λ) − f(λ)| = |E(w
(T )
(λ) , λ)−E(w(λ), λ)| ≤ ν||w

(T )
(λ) −w(λ)||,

for every T ∈ N, and λ ∈ Λ.
Since E(·, λ) is uniformly Lipschitz continuous, it results that f (T )(λ) → f(λ)
uniformly on Λ as T → +∞. The thesis follows by Theorem 2.3.

Hypotheses 1 − 6 are satisfied by many problems of practical interest, in
particular when 1 ≤ β ≤ 2. Results for other values of β could be obtained,
losing the hypothesis of convexity of f and Lλ.
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2.2.2. Solving the bi-level problem

Bi-level problem (16) or approximate problem (15) satisfy existence and con-
vergence theorems, respectively, so we can focus on finding penalty HPs matrix
L in practice. We now reintroduce subscript i for wi and λi. Applying a gradi-
ent type approach on each diagonal element of L = diag(λ), the optimization of
λ depends on the approximation of hypergradient ∇λF . Using the chain rule,
it results:

∂F

∂λi
=

∂f

∂λi
+

∂f

∂w
(T )
i

·
dw

(T )
i

dλi
, ∀i = 1, . . . , n, (18)

where ∂f
∂λi
∈ R and ∂f

∂w
(T )
i

∈ R
r are available.

Following the iterative differentiation approach, the computation of the hy-
pergradient can be done using the Reverse-Mode Differentiation (RMD) or
Forward-Mode Differentiation (FMD). RMD computes the hypergradient by
back-propagation; instead, FMD works with forwarding propagation. In our
algorithm, we use only the second mode; for completeness, we report both.

Reverse Mode. The reverse strategy to compute the hypergradient is based
on the Lagrangian perspective calculated for (15), that is L : R

r × Λ× R
r → R

which is defined as L(wi, λi,α) = E(w
(T )
i , λi) +

T
∑

t=1
α

⊤
t (Φt(w

(t−1)
i , λi) −w

(t)
i )

for i = 1, . . . , n, where, for each t = 1, . . . , T , αt ∈ R
r are the Lagrange multi-

pliers associated with the t-th step of the dynamics. The partial derivatives of
Lagrangian L are

∂L

∂αt
= Φt(w

(t−1)
i , λi)−w

(t)
i ,

∂L

∂wt
i

= α
⊤
t+1At+1 −α

⊤
t ,

∂L

∂w
(T )
i

= ∇E(w
(T )
i , λi)−α

⊤
T ,

∂L

∂λi
=

T
∑

t=1

α
⊤
t bt,

where

At =
∂Φt(w

(t−1)
i , λi)

∂w
(t−1)
i

∈ R
r×r and bt =

∂Φt(w
(t−1)
i , λi)

∂λi
∈ R

r×1. (19)

Therefore the optimality conditions give the iterative rules of RMD:



















α
⊤
T = ∇E(w

(T )
i , λi),

hT = ∂f
∂λi

,

ht−1 = ht + btα
⊤
t ,

α
⊤
t−1 = Atα

⊤
t ,

(20)

for t = T, . . . , 1 and i = 1, . . . , n. Then the i-th component of the hypergra-
dient can be computed as ∂f

∂λi
= h0.
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Forward-Mode. FMD computes the derivative of (18) by the chain rule. Each

Φt depends on λi directly, and on w
(t−1)
i indirectly, for t = 1, . . . , T . Hence:

dw
(t)
i

dλi
=

∂Φt(w
(t−1)
i , λi)

∂w
(t−1)
i

dw
(t−1)
i

dλi
+

∂Φt(w
(t−1)
i , λi)

∂λi
. (21)

Defining st =
dw

(t)
i

dλi
∈ R

r, each FMD iterate is:

{

s0 = b0;

st = Atst−1 + bt t = 1, . . . , T ;
(22)

where At and bt are defined as above, and the i-th component of the hyper-
gradient is

∂F

∂λi
= g⊤

T · sT ∈ R, being gT =
∂f

∂w
(T )
i

∈ R
r. (23)

Letting s0 = 0, the solution of (22) solves:

∂F (λi)

∂λi
=

∂f (T )(λi)

∂w
(T )
i

(

bT +

T−1
∑

t=0

(

T
∏

s=t+1

As)bt

)

. (24)

Computational considerations. Opting between RMD and FMD depends
on balancing the trade-off based on the size of wi and λi. The RMD approach

requires that w
(t)
i for all i = 1, . . . , n and all t = 1, . . . , T are stored in memory

to compute At and bt in the backward pass, and therefore it is suitable when
the quantity rT is small. As we will see later, our approach uses the FMD
strategy that requires time O(rT ) and space O(r) for every row and iteration.

3. Alternating Bi-level Algorithm - AltBi

In this section, we present our Alternating Bi-level (AltBi) algorithm for the
particular case of β = 1 and ℓ1 as penalty function in (7):

min
H≥0,W≥0

D1(X,WH) + ||LW||1. (25)

It implements the procedures described in the previous sections, performing
NMF updating, including the automatic setting of the HPs. As its name sug-
gests, AltBi optimizes H and W alternately through the bi-level approach.
Sub-interval of arbitrary length T , called bunch, is considered to perform the
bi-level procedure on W. It ensures the extraction of a convergent sub-sequence
from any bounded sequence6. Even if this is not unique, it is enough to consider
its sub-sequence to have the same limit.

6This holds for the Bolzano-Weierstrass Theorem.
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Algorithm 1 shows the pseudo-code for AltBi. It receives as input data ma-
trix X, the rank of factorization r, initial matrices W, H, and vector λ of the
diagonal elements of L. We initialize the number of iterates MaxIter, tolerance
tol, and length T of the bunch. The outer while-loop repeats the alternating
algorithm until one of the two conditions err > tol or iter < MaxIter is false.
Error is defined as the absolute value of the difference in the divergence cal-
culated between two successive iterates divided by the divergence at the initial
step. The inner for-loop performs the bi-level procedure for every bunch, calcu-
lating the hypergradient to update λ with a gradient method. The algorithm
returns the optimal matrices W∗, H∗, and L∗ = diag(λ∗).

Algorithm 1: Alternating Bi-level Algorithm - AltBi

Data: X ∈ R
n×m
+ , r < min(n,m).

Result: W∗ ∈ R
n×r
+ , H∗ ∈ R

r×m
+ ,L∗ = diag(λ∗) ∈ R

n×n
+ .

Initializations: W ∈ R
n×r
+ , H ∈ R

r×m
+ , L = diag(λ = (λ1, . . . , λn)), T ,

MaxIter, tol, err, and iter.
while (err > tol) & (iter < MaxIter) do

update H as in (13);
for t ∈ {1, . . . , T } do

for i ∈ {1, . . . , n} do

update w
(t)
i as in (28);

compute At and bt as in (19);

compute ∂F

∂λ
(t)
i

as in (24);

end

end
rearrange wi for all i = 1, . . . , n to construct W;

rearrange ∂F

∂λ
(t)
i

for all i = 1, . . . , n to construct ∇λF ;

update λ as in (29);
iter+ = 1;

end

Referring to (25), we use the MU rule specified in (13) for updating H. For
the bi-level formulation, we keep the KL divergence with the ℓ1 norm as a loss
function:

Lλi
: R

r → R : wi 7→

m
∑

j=1

d1(xj ,

r
∑

k=1

wikhkj) + λi||wi||1, (26)

whereas the KL divergence is the error function of the outer problem:

E : R
r × Λ→ R : (wi, λi) 7→

m
∑

j=1

d1(xj ,

r
∑

k=1

wik(λi)hkj). (27)
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To assess the theoretical results for the previous functions, Hypothesis 1
needs to be verified. Observe that E is jointly continuous with respect to wi

and λi. Similarly, d1 and the map (wi, λi) 7→ Li(wi). From the convexity and
the compactness of Λ, arg min Lλi

is a singleton for any λi. Finally, wi(λi) =
arg min Lλi

remains bounded as λi varies in Λ, in fact:

||wi(λi)|| ≤M ∀λi ∈ Λ with M > 0, M ≤M∗,

being M∗ = max{||wi(λi)||
2
2, λi ∈ Λ}.

Matrix W is updated using the following novel rule by rows Φ : R
r × Λ → R

r

s.t. (w
(t−1)
i , λi) 7→ w

(t)
i (this update can be similarly derived as in [43, 55]),

then for k = 1, . . . , r and i = 1, . . . , n

w
(t)
ik = w

(t−1)
ik

m
∑

j=1

hkj(xij/
r
∑

a=1
wiahaj)

m
∑

j=1

hkj + λi

. (28)

Its proof is detailed in Appendix A.
Vector λ is also updated by the steepest descent procedure:

λ = λ− c∇λF (λ), (29)

with stepsize c = 1
iter

7.
Each component of the hypergradient in (23) can be expressed with

(gT
⊤)k = −

m
∑

j=1

(
xij

r
∑

a=1
w

(T )
ia haj

hkj + hkj) for k = 1, . . . , r,

while At and bt for t = 1, . . . , T are given by:

(Akl)t =































m∑

j=1

hkj ·(xij/
r∑

a=1
w

(t−1)
ia

·haj)−w
(t−1)
ik

·
m∑

j=1

h2
kj ·(xij/(

r∑

a=1
w

(t−1)
ia

·haj)
2)

m∑

j=1

hkj+λi

if l = k,

−w
(t−1)
ik ·

m∑

j=1

hkj ·(xij/(
r∑

a=1
w

(t−1)
ia

·haj)
2)·hlj

m∑

j=1

hkj+λi

if l 6= k;

(bk)t = −w
(t−1)
ik ·

m∑

j=1

hkj ·(xij/(
r∑

a=1
w

(t−1)
ia

·haj))

(
m∑

j=1

hkj+λi)2
for k = 1, . . . , r.

7The usual conditions on the stepsize are fulfilled:
MaxIter∑

s=1

cs = ∞ and
MaxIter∑

s=1

c2s <

∞.
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Although we focused on a specific objective function and its associated up-
date rules, AltBi can be generalized for any β-divergence and penalty functions
R, respecting the assumptions in Section 2.

Remark 1. The computational complexity of rule (13) amounts to O(Kmnr),
where K is the number of iterations. Update rules (28) and (19) are more
expensive due to the use of the bunch and require O(KTmnr). The complexity
of other rules in Algorithm 1 is lower, which implies O(KTmnr) for the whole
algorithm. Note that the complexity of the proposed algorithm is larger with
respect to the standard multiplicative update rules in NMF only by factor T .

4. Numerical Experiments

This section illustrates the numerical results obtained using the AltBi al-
gorithm on two synthetic and two real datasets. It was implemented in MAT-
LAB 2021a environment, and numerical experiments were executed on the i7
octa-core, 16GB RAM machine. The benchmarks8 used in the experiments are
generated according to the model9 X ≈ Y = WH.

The datasets used are described in the following:

A) Factor matrices were generated randomly as full rank uniformly distributed
matrices. Matrix H ∈ R

r×m
+ was generated using the MATLAB command

rand, while W ∈ R
n×r
+ was generated using the command randn to

obtain sparse columns. Negative entries were replaced with a zero-value.

B) Each column in W is expressed as a sinusoidal wave signal with the fre-
quency and the phase set individually for each component/column. The
example of this signal waveform is plotted in Figure 1a. The negative
entries are replaced with a zero-value. Factor matrix H was randomly
generated as a full rank sparse matrix with sparseness level αH adjusted
by the user.

C) The source signals from the file AC10 art spectr noi of MATLAB tool-
box NMFLAB for Signal Processing [56] have been used. These signals
form matrix W ∈ R

n×r
+ . Exemplary five signals for n = 1000 are plotted

in Figure 1b. Also, in this case, H was generated as a sparse matrix with
αH fixed sparsity level.

D) Real reflectance signals taken from the U.S. Geological Survey (USGS)
database have been used as endmembers to generate the mixtures mod-
elling real hyperspectral imaging data. Using the NMF model, the aim
is to perform hyperspectral unmixing to obtain spectral components and
their corresponding proportion maps called abundances. In our approach,

8https://github.com/flaespo/Dataset signal HPO
9Noiseless dataset Y ∈ R

n×m was constructed. Since our goal is to solve the identification
problem, it is unnecessary to perturb matrix Y. In this way, we preserve initial sparsity.
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the column vectors of W contain the spectral signatures (endmembers)
(Figure 1d), and H represents the mixing matrix or vectorized abundance
maps (Figure 1c). The spectral signals are divided into 224 bands covering
the range of wavelengths from 400 nm to 2.5 µm. The angle between any
pair of the signals is greater than 15 degrees. These signals form matrix
W ∈ R

n×r
+ , where n = 224. The rank of factorization r determines the

number of endmembers.
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Figure 1: Waveform of signals in benchmark B (a), and benchmark C (b), Abundance maps
(c) and Spectral signatures (d) of benchmark D.

Three NMF algorithms were used and compared: AltBi, the standard un-
penalized MU in [50], and the standard penalized that alternates rule (13) and
the modified version of (A.2) in which λi = 0.5 ∀i = 1, . . . , n (referred to P-
MU). The same random initializer generated from a uniform distribution starts
all the algorithms [57]. The efficiency of the methods is analyzed by performing
30 Monte Carlo (MC) runs for the NMF algorithms, where for each run, initial
matrices W and H are different. At the beginning of the process, initial λ

is chosen to have homogeneity between the terms characterizing the objective
function, according to:

15



λi =

m
∑

j=1

d1(xj ,
r
∑

k=1

wikhkj)

10 · r(wi)
for i = 1, . . . , n;

where r is the ℓ1 penalty norm in this particular experimental case. The
maximum number of iterations for all the algorithms was set to 1000, the toler-
ance for early termination to 10−6, and the number of inner iterations (length
of the bunch) to 4, i.e., T = 4. The following tests were performed:

1) Benchmark A was used with n = 1000, m = 50, r = 4.

2) Benchmark B was used with n = 1000, m = 50, r = 4, αH = 0.1.

3) Benchmark C was used with n = 1000, m = 50, r = 5, αH = 0.1.

4) Benchmark D was used with n = 224, m = 3025, r = 5.

In all the tests, no noisy perturbations were used.
To evaluate the goodness of the approximation and the effectiveness of the

minimization process, we report the relative error10 and the evolution of the
objective function with respect to iterations for benchmark A in Figure 2. All
other benchmarks present similar results as reported in Section 4.1.
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Figure 2: (a) Relative error, (b) evolution of objective function with respect to iterations
(Benchmarks A).

The performance of the NMF algorithms was evaluated with the Signal-to-
Interference Ratio (SIR) measure [58] between the estimated signals and the
true ones. Figure 3 shows the SIR statistics (in dB) for assessing the columns in
W and the rows in H for benchmark A. Table 1 reports the numerical results
of Mean-SIR in estimating W and H for benchmark A.

10In this case, we compute the relative error as D1(X,WH)/
∑

i,j xij log(xij) [21].
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Figure 3: SIR statistics for estimating columns of W and rows H (Benchmark A).

Table 1: Mean-SIR [dB] for estimating matrices W and H.

MU P-MU AltBi
SIR for W 16.7325 16.7325 21.3388
SIR for H 19.2147 19.2147 23.3308

The general structure of the optimized λ has also been inspected. Figure
4 compares final and initial HPs for benchmark A: pointwise and distribution
of vector λ, in Figures 4a and 4b, respectively. The peak of the distribution
of initial HPs shifts its location from a positive towards the zero value. Thus,
the optimized λ is a sparse vector, suggesting the algorithm prefers to penalize
the selected rows of W rather than all. Finally, the numerical results are also

compared to evaluate the sparsity of W and H by Sp(A)11 = 100 · (1−#(A>τ))
#A

,

for A ∈ R
n×m. The sparsity constraint was added only on W, and for bench-

marks C and D, the user provided the sparsity on H. As shown in Figure 5, the
proposed method enforces the sparsity on W and does not affect the sparsity
profile in H, as expected.

Please observe that optimal λ obtained from AltBi gives the best results
either for identification and fitting problems and its choice is automatic. Figure
6 depicts the behavior of the response function for fixed values of λ in the P-MU
algorithm compared with the non-penalized MU and AltBi. AltBi shows the
best performance.

4.1. Results for benchmarks B, C, and D

All the experiments confirmed the expected behavior of AltBi in terms of the
identification problem. Figures 7c, 8c, and 9a show that the SIR values obtained
with AltBi are better than those obtained with MU and P-MU. Moreover,

11Sp(A) represents the ratio between the complement of the number of elements greater
than a certain threshold and the total number of elements in matrix A.
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Figure 4: Initial λ compared with final λ: vector components (a); density plot of λ vector (b)
(Benchmark A).

Figure 5: Statistics of the sparseness measure for W and H (Benchmark A).

for benchmark D, we show the original abundance maps (10a) and spectral
signatures (10c) compared to the estimated abundance maps (10b) and spectral
signatures (10d). Similar results are obtained for the relative error and the
objective function in benchmark D, which we omit for brevity. The abundance
maps are estimated with lower SIR performance than the spectral signatures
(matrix W). This result is not surprising: no penalty is imposed on H. The
sparsity-enforcing term was considered only for estimating matrix W.

5. Conclusions

We proposed the alternating HPO procedure for NMF problems which incor-
porates the penalty HPs into the optimization problem with the bi-level mode.
We proved the existence and convergence results for the solution of the consid-
ered task and provided promising numerical experiments and comparisons.

HPO in an unsupervised scenario of data matrix factorization represents an
evolving topic. However, when the size of the problem increases, the computa-
tional cost required by AltBi could not make this algorithm very competitive.
To improve the computational efficiency, a column-wise version of AltBi is under
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Figure 6: Response functions obtained through the P-MU algorithm with different λ values in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} compared with the unpenalized MU case and AltBi.

study with the possibility of speeding up the algorithm by varying the length
of the bunch to make the local truncation error approximately constant.

The extension of the theoretical results under hypotheses (1)− (6) with no
convex error and loss functions could also be considered. These aspects could
accomplish this evolving topic together with the analysis of the effects made
by different choices of the penalty functions on performance and computational
issues for large dataset applications (such as gene expression analysis [21, 59],
blind spectral unmixing [39, 60], and text mining).

Appendix A. Convergence and Correctness for the W update in (28)

Without loss of generality, the function in (25) can be rewritten neglecting
constants which are not relevant to the minimization process. Thus:

∑

i,j

(

−xij log

(

r
∑

k=1

wikhkj

)

+

r
∑

k=1

wikhkj

)

+
∑

i,j

λiwij . (A.1)

In particular, we theorize its element-wise update rules as:

wia ← wia

m
∑

j=1

(hajxij/
r
∑

k=1

wikhkj)

m
∑

j=1

haj + λi

, for i = 1, . . . , n and a = 1, . . . , r. (A.2)

Fixing the i-th row, let wi ∈ R
r and xi ∈ R

m be the i-th rows of W and X,
respectively, the function in (A.1) can be rewritten with respect to unknown wi

as
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Figure 7: (a) Relative error and (b) evolution of objective function with respect to iterations;
(c) SIR statistics for estimating the columns of W and the rows of H; (d) Statistics of the
sparseness measure in Benchmark B.

F(wi) =

m
∑

j=1

−xij log

(

r
∑

a=1

wiahaj

)

+

m
∑

j=1

r
∑

a=1

wiahaj + λi

r
∑

a=1

wia, (A.3)

then the updates for unknown wi follow from Theorem Appendix A.1.

Theorem Appendix A.1. The divergence in (A.3) is non-increasing under
update rules (A.2). The divergence is invariant under these updates if and only
if wi is a stationary point of the divergence.

The following proof proceeds the demonstration scheme proposed by Lee
and Seung [61] and Liu et al [55], but it adopts a different and more general
formulation of the auxiliary function for objective function (A.3).

Lemma Appendix A.2. G(wi,w
t
i) =

m
∑

j=1

r
∑

a=1
wiahaj
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Figure 8: (a) Relative error and (b) evolution of objective function with respect to iterations;
(c) SIR statistics for estimating the columns of W and the rows of H; (d) Statistics of the
sparseness measure in Benchmark C.

−
m
∑

j=1

r
∑

a=1

xij
wt

iahaj
r
∑

b=1

wt
ibhbj









log (wiahaj)− log









wt
iahaj

r
∑

b=1

wt
ibhbj

















+ λi

r
∑

a=1

wia

is an auxiliary function for F(wi).

Proof. We prove that G(wi,w
t
i) is an auxiliary function for F(wi). Due to the

basic proprieties of the logarithmic function, the condition G(wi,wi) = F(wi)
is straightforward. To prove that G(wi,w

t
i) ≥ F(wi), we consider the quantity

αaj =
wt

iahaj
∑

b w
t
ibhbj

with
∑

j

∑

a

αaj = 1. (A.4)

Due to the convexity of the logarithmic function, the inequality

∑

j

xij log
∑

a

wiahaj −
∑

j

∑

a

xijαaj log

(

wiaHaj

αaj

)

≥ 0 (A.5)
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(a) (b)

Figure 9: SIR statistics for estimating the columns of matrix W (spectral signatures) and the
rows of matrix H (a); Statistics of the sparseness measure (b) in Benchmark D.

holds, so that the proof follows.

Lemma Appendix A.3. Objective function F is non-increasing when its
auxiliary function is minimized.

Proof. The minimum value of G(wi,w
t
i) with respect to wi satisfies

dG(wi,w
t
i)

dwia
=
∑

j

haj −
∑

j

xij
wt

iahaj
∑

b w
t
ibhbj

(

1

haj

)

+ λi = 0. (A.6)

Thus, the update rule is (A.2).

According to this new update, the KKT conditions with respect to the non-
negative constraints are:











W. ∗ ∇WF(W,H) = 0,

∇WF(W,H) ≥ 0,

W ≥ 0,

(A.7)

where .∗ is the Hadamard pointwise product and∇W is the gradient of (A.1).
This formulation allows to prove that update (A.2) satisfies KKT conditions
(A.7) at the convergence, then its correctness is ensured.
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