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Abstract

Artificial  intelligence  and  multi-objective  optimization  represent  promising  solutions  to

bridge chemical and biological landscape by addressing the automated de novo design of

compounds  as  a  result  of  a  human-like  creative  process.  In  the  present  study,  we

conceived  a  novel  pair  based  multi-objective  approach implemented  in  an  adapted

SMILES generative algorithm based on Recurrent Neural Networks for the automated de

novo  design of new molecules whose overall features are optimized by finding the best

trade-offs  among  relevant  physicochemical  properties  (MW,  logP,  HBA,  HBD)  and

additional similarity-based constraints biasing specific biological targets. In this respect, we

carried  out  the  de  novo design  of  chemical  libraries  targeting  Neuraminidase,

Acetylcholinesterase  and  the  main  protease  of  Severe  Acute  Respiratory  Syndrome

Coronavirus 2. Several quality metrics were employed to assess drug-likeness, chemical

feasibility, diversity content and validity. Molecular docking was finally carried out to better

evaluate the scoring and posing of the de novo generated molecules with respect to X-ray

cognate ligands of  the corresponding molecular  counterparts.  Our  results  indicate that

artificial intelligence and multi-objective optimization allow to capture the latent links joining

chemical  and  biological  aspects,  thus  providing  easy-to-use  options  for  customizable

design  strategies,  which  are  especially  effective  for  both  lead  generation  and  lead

optimization. The algorithm is freely downloadable at https://github.com/alberdom88/moo-

denovo and all the data are available as Supporting Information.

https://github.com/alberdom88/moo-denovo
https://github.com/alberdom88/moo-denovo


Introduction

Despite the recent progresses in high throughput screening,1 the chemical space is still

widely  unexplored, in particular for  prospective drug design.2 Importantly,  the chemical

universe is  estimated to  encompass by  far  in  excess more  than 1060 molecules even

limiting its exploration only to drug-like space.3 Moreover, since the drug discovery process

is  typically  demanding,  slow and  expensive,4 academic  and industrial  researchers  are

discouraged to bet on completely novel chemotypes5,6 by exploring a potentially awarding

off-patent  chemical  space,  thus  preferring  to  make  me-too  decorations  of  well-known

molecular bioactive structures biasing specific biological targets.7 Among others, a reason

behind the low rate of success of finding structurally new interesting drug-like molecules is

their inherently multi-objective nature.8,9 In particular, drug-like candidates should match a

large number of often conflicting features such as water solubility, logP, molecular weight,

hydrogen bond donor/acceptor groups, toxic alerts.10 Moreover, new conceived drug-like

molecules  should  be  easy  to  prepare  by  chemical  synthesis  and,  last  but  not  least,

biologically active.11

Before  the  onset  of  computer  aided  molecular  design,  drug  discovery  was  mostly

addressed by knowledge-based human intuition.12 A new era in this field was born with the

advent of the artificially intelligence methods and the recent wide-spread of deep learning

techniques, which are capable not only to uncover hidden patterns from large amounts of

data, thus enabling the creation of highly predictive structure-activity models,13–15 but can

serve  as  automated  generative  algorithms  to  design  new  compounds  with  desired

properties and selective towards specific biological targets.16 As a matter of fact, there has

been a mushrooming growth of novel  de novo drug design machine learning algorithms

based on diverse techniques. A few examples are the variational autoencoders, 17–19 the

generative  adversarial  networks20–22 and  the  recurrent  neural  networks.23–26 In  general,

these  algorithms  are  trained  in  two  steps.  The  first  step  employs  large  high-quality

molecular databases (such as ChEMBL27 and ZINC28) to allow models to infer learning

rules concerning with chemical representation, usually SMILES23,26 or molecular graph,29,30

for the automated generation of novel molecules. In particular, the algorithm learns how

creating novel chemically valid molecules based on the probability of the next character in

SMILES sequences or the node and edge distribution in molecular graphs. As a second

step,  reinforcement  learning  methods31 are  used  to  speed-up  the  exploration  of  the

chemical space driving the generation of new samples towards unexplored regions with

desired  chemical,  physical  or  structural  properties.5 In  some  cases,  these  algorithms



proved to generate drug-like molecules with promising activity towards a protein target.16

For instance,  Merk et  al.  exploited recurrent  neural  network-based methods to  design

novel retinoid X and peroxisome proliferator-activated receptor agonists;25,32 Polykovskiy et

al. through entangled conditional adversarial autoencoder discovered novel Janus kinase

3  inhibitors;33 Zhavoronkov  et  al.  via  generative  tensorial  reinforcement  learning

discovered potent inhibitors of discoidin domain receptor 1.34 However, published methods

are generally focused on the automated generation of novel compounds through single

objective or weighted sum optimization functions.29 In the present work, we employed a

multi-objective  optimization  algorithm,  which  is  effective  in  those  real-life  problems

involving the simultaneous optimization of two or more objectives. Notably, multi-objective

optimization methods do not require any a priori calibration and are able to detect a family

of equivalent solutions per run instead than a single solution at a time. As shown in Figure

1,  each equivalent  solution falls  on the Pareto frontier  and is  non-dominated because

another solution does not exist that is better considering all the objectives to optimize. 

INSERT FIGURE 1

Only  a  few  applications  of  multi-objective  methods  in  conjunction  with  reinforcement

learning have been so far described for the de novo design. 35–37 In particular, we herein

propose  a  novel  multi-objective  optimization  approach capable  to  generate  de  novo

targeted chemical libraries whose compounds represent ideal non-dominated solutions for

a range of simultaneously pair based optimized features. In particular, we adapted the

REINVENT code proposed by Olivecrona et al.23 in order to enable the pair based multi-

objective optimization of  several  molecular  features  based on Pareto dominance.38 By

employing a tailored fitness function, our reinforcement learning based method is able to

drive  the  automated  generation  of  pair  based  non-dominated  solutions  representing

chemical structures whose molecular features are customized towards specific biological

targets and are constrained in drug-like ranges set by the user. The herein new proposed

method  was  thus  tested  to  accomplish  the  de  novo  generation  of  targeted  chemical

libraries.39 The code is  available  at  GitHub.40 Performances were  assessed employing

quality  metrics  specifically  suitable  for  evaluating  de  novo designed  compounds.41,42

Finally, our approach was applied to three real-life case studies relative to the  de novo

drug design of new therapeutically relevant enzymatic inhibitors targeting neuraminidase

(NA), acetylcholinesterase (AChE) and the main protease of Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2), the latter responsible of the COVID-19 global



health emergency.43,44 We believe that our method could be of inspiration to medicinal

chemists,  especially in early stages of the drug discovery process, by generating new

patentable chemotypes provided with a wider spectrum of desirable physicochemical and

biological properties.

Methods

The SMILES generative algorithm proposed in this work is built  by adapting a method

originally developed by Olivecrona et al. (REINVENT)23, which can be briefly summarized

as follows. The model consists in a Recurrent Neural Network (RNN) composed of three

layers with 512 Gated Recurrent Units45 in each layer. The SMILES is tokenized at each

single character with the exceptions of Cl, Br and chars included in square brackets that

are considered as one token. The RNN is trained by maximum likelihood estimation of the

next token in the generated sequence given the prefix of the previous steps. The next

character is sampled from the predicted probability distribution with the aim to maximize

the likelihood assigned to the correct token. The RNN was trained on a subset of the

ChEMBL22 database27 built  selecting molecules  containing between 10 and 50 heavy

atoms  and  elements  H,  C,  N,  O,  F,  S,  Cl,  Br  for  a  total  of  ~1.2  million  structures

canonicalized with the RDKit package.46 The generation of new molecules with specific

optimized  properties  is  tackled  through  a  policy-based  Reinforcement  Learning  (RL)

algorithm.47 Briefly, the probability distributions previously learnt by the trained RNN are

used as the initial prior policy. The RL procedure is able to modify the prior policy in order

to generate SMILES that maximize a given fitness function S. More details can be found in

the original REINVENT paper.23

The method proposed here exploits the REINVENT algorithm and implements a two-term

fitness function S. The first term R plays the role of a drug-like filter to reward molecules

within specific property ranges set by the user while increasing penalties are assigned

when moving out of the ranges. The second term P employs a pair based multi-objective

method.  Unlike  the  classical  multi-objective  approach  considering  all  the  objectives  at

once,  the pair  based multi-objective optimization is applied to all  the possible pairs  of

features  in order to return a more discriminant overall ranking. This can help to better

assess the quality of the de novo generated molecules instead of having a large number of

equivalent ranked solutions whose amount raises greatly when the number of objectives

increases.



In our approach, let x=(x1, x2,…, xN) be the vector of the N molecular features to optimize.

Let M be the number of molecules of the final targeted chemical library generated by de

novo design. With the aim to train the algorithm to result targeted chemical libraries with N

optimized molecular features, the S(x) fitness function, for each molecule in the targeted

chemical library, is defined as follows:

S ( x )=R ( x )+P ( x )

R ( x )=∑
i=1

N

r (x i )

r (x i )={ e−( xi−min i∆i )
2

if xi<min i
1if mini≤ x i≤maxi

e
−(x i−maxi∆ i )

2

if x i>maxi

where mini and maxi are the minimum and maximum acceptable values for a given feature

i and ∆ i=(max||i−mini )/4 if max i≠mini, ∆ i=1 otherwise.

P ( x )={ 0 ifR ( x )<N
1

C (N ,2 ) ∑
i , j∈C

m−d ij
m

ifR ( x )=N

where  dij is the Pareto dominance of the molecule with respect to the possible pairs of

sampled features i and j  of the generated targeted chemical library (e. g., the number of

molecules of the targeted chemical library dominating a given compound by considering

pairs of features  i and  j);  C is the set of all  the possible pairs of features under multi-

objective optimization that is  C(N,2) = N(N-1)/2; m is the number of molecules for which

r (x i )=1 for all the desired features. Based on these assumptions, the S(x) fitness function

returns values in the range [0, N+1]. In the ideal case, that is S=N+1, a de novo generated

molecule reflects all the considered molecular features in the desired range being all the

possible  pairs  of  its  optimized features located on the Pareto frontier  as optimal  non-

dominated solutions. Note that the direction of the Pareto frontier is defined by the choice

to maximize or minimize the objectives i and j within a given desired range.

For the sake of completeness, the overall dominance with respect to all the objectives at

once has been also calculated and the corresponding ranks are reported as Supporting



Information (see files NA.lib1.csv, NA.lib2.csv, AChE.lib1.csv, AChE.lib2.csv and SARS-

CoV-2.lib.csv). As shown, overall non-dominated solutions accumulate in the early 5% of

the top-scored de novo generated molecules. 

The algorithm is included in a graphical user interface (GUI), written with pyqt5, freely

downloadable at https://github.com/alberdom88/moo-denovo. The GUI is able to generate

targeted chemical libraries with up to six optimized molecular features that can be selected

from a collection of 203 options whose list is available as Supporting Information (File S1).

Among these, 201 are molecular descriptors calculated via RDKit46 and Moses41 packages.

In addition, two further features were also included. The first accounts for the presence of

a user-defined fragment  inside the  generated molecules.  The second is  the Tanimoto

similarity48 calculated using the Morgan fingerprints with radius equal to 2.49

As recently reported,41,42 the goodness of the targeted chemical libraries is assessed by

calculating  the  following  quality  metrics:  a)  validity,  which  represents  the  fraction  of

chemically valid SMILES; b) unicity,  which stands for the fraction of unique generated

SMILES; c) Internal Diversity (IntDiv)50, which accounts for the overall molecular diversity

of the targeted chemical library; d) filters, which reflect the fraction of de novo generated

molecules devoid of medicinal chemistry filters (MCFs)51,52 and of pan-assay interference

compounds (PAINS) alerts53 and e) Synthetic Accessibility (SA) score, which provides a

heuristic estimate of how hard (SA=10) or how easy (SA=1) is the chemical synthesis of a

given molecule:41 SA is averaged on the entire targeted chemical library.

The herein proposed de novo drug design algorithm was thus challenged by generating

targeted chemical libraries biased for binding NA, AChE and SARS-CoV-2 main protease.

The pair based multi-objective optimization algorithm progressed through 3000 cycles, by

generating 500 compounds per iteration. Finally, the targeted chemical libraries were built

sampling 10000 potential inhibitors from the policy that maximizes the average of  S(x)

fitness values (that is <S(x)>) and were evaluated according to the quality metrics above

described.  Furthermore,  using  the  Schrödinger  2019-4  suite,54 molecular  docking

simulations were performed to further evaluate the goodness of new generated inhibitors

towards the corresponding desired biological  targets.  In  this  respect,  the X-ray solved

crystal structures of NA, AChE and SARS-CoV-2 protease were retrieved from the Protein

Data  Bank  (PDB)  with  the  entry  identifiers  equal  to  3B7E,55 4EY756 and  6LU7,57

respectively. The Protein Preparation Wizard was thus used to revise the X-ray structures,

eliminating the water molecules, correcting the protonation states and carrying out energy

minimization.  All  the compounds comprised in  the  de novo targeted chemical  libraries



were thus prepared for docking simulations by employing the LigPrep tool 54 and setting no

more than eight stereoisomers per molecule to minimize structural complexity as well as

avoid  too  expensive  computational  costs.  Tautomers  and  ionization  states  were  kept

unchanged. All the dockings were performed employing Glide54 standard precision with

default settings by automatically centering the grid boxes on the co-crystallized cognate

ligands of the three reference proteins. The reliability of docking simulation protocols was

preliminary challenged by computing the root mean square deviation (RMSD) values (see

Figure  S1  of  Supporting  Information).  The  docking  results  were  analyzed  comparing

posing and scoring of the co-crystallized cognate ligands with those experienced from the

new  generated  molecules.  In  this  respect,  three  terms  were  mostly  considered:  the

docking scores,  the chance of  interacting  with  key binding site  residues and the  S(x)

fitness values.

Results

Our  automated  algorithm  for  de  novo design  was  challenged  by  generating  targeted

chemical libraries39 likely to bind NA, AChE, and novel SARS-CoV-2 main protease. More

specifically  two  targeted  chemical  libraries  were  generated  for  NA  (i.e.,  NA.lib1  and

NA.lib2) and for AChE (i.e., AChE.lib1 and AChE.lib2) and one targeted chemical library

(i.e.,  SARS-CoV-2.lib)  was  designed  for  SARS-CoV-2  main  protease.  Each  targeted

chemical library was obtained by pair based multi-objective optimization of several relevant

physicochemical  properties  and,  eventually,  by  considering  other  medicinal  chemistry

inspired constraints such as molecular  similarity.  As far as the three case studies are

concerned, the learning curves indicating the progress of the average of the S(x)  fitness

values is shown in Figure  2 while  a synoptic assessment of  de novo designed targeted

chemical libraries is provided in Table 1 by reporting the calculated quality metrics.

INSERT FIGURE 2

INSERT TABLE 1

Neuraminidase case study

NAs are glycoside hydrolase enzymes with a fundamental role in the spread of the virus,

especially in the late stages of infection.55 They are classified as exosialidases and are

capable of cleaving glycosidic bonds between sialic acid and sugar.55 The virus employs

this mechanism to detach itself from the host cell after the infection and, thus, to spread



out. NA inhibitors are a well-known class of drugs used against influenza A virus,58 and the

discovery  of  new  potent  biologically  active  agents  is  considerably  interesting  from  a

pharmaceutical  perspective. To this  purpose,  two targeted chemical  libraries of  10000

potential  inhibitors  each were  designed.  The first  targeted chemical  library  (NA.lib1  is

included in  Supporting  Information  as  File  S2)  was designed based on the  wealth  of

physicochemical information taken from a benchmark pool comprising all the entries (that

are  218)  available  from  ChEMBL  v.25  provided  with  IC50<1M  towards  NA  (target

referenced  as  ChEMBL2051).  The  de  novo design  of  NA.lib1  was  addressed  by

considering the variation within the benchmark pool of four easy to interpret molecular

descriptors that are the molecular weight (MW), the logP, the number of hydrogen bond

donor (HBD) atoms and the number of  hydrogen bond acceptor  (HBA) atoms.  In  our

approach the de novo designed compounds are optimized in a range defined within one

standard  deviation  around  the  mean value  of  the  selected  features  computed  for  the

benchmark pool as shown in Table S1 of the Supporting Information. On the other hand,

the  de novo design was addressed to generate compounds including one and only one

aliphatic ring like Zanamvir.    

As shown in Figure  2, the algorithm reaches the convergence after approximately 500

iterations. The point corresponding to the maximum value of <S(x)> average fitness value

(blue line of Figure 2) is thus used as a generative model to create NA.lib1 consisting of

10000 potential inhibitors. As reported in Table 1, the 99.5% of the generated molecules

are valid and 98.6% are unique. Importantly, only the 62.0% pass typical structural alerts

filters and this should alert users when prioritizing de novo designed compounds for further

testing. Finally,  the  generated  targeted  chemical  library  NA.lib1  owns  good  internal

diversity equal to 73.3% and a fair synthetic accessibility score (2.5220.361). Figure 3

depicts the distributions of the molecular descriptors selected for pair based multi-objective

optimization of NA.lib1 on the left-hand side and its average pair based Pareto dominance

on  the  right-hand  side.  In  particular,  the  93.4% of  the  molecules  in  the  library  owns

descriptors in the desired range. Additional details are reported in Figure S2 of Supporting

Information.

INSERT FIGURE 3

The second targeted chemical library (NA.lib2 is included in Supporting Information as File

S3) was instead designed to generate molecules whose structures and physicochemical

properties  are  constrained  to  those  of  Zanamivir.  To  this  end,  the  de  novo design



progressed by maximizing the Tanimoto molecular similarity to the Zanamivir with a cutoff

>0.3 and allowing deviations shown in Table S2 of Supporting Information as far as MW

and logP are concerned. As above discussed, NA.lib2 included 10000 molecules created

from the generative model taken from the maximum value of the average fitness value

<S(x)> (red line of Figure 2). As reported in Table 1, 99.8% of the generated molecules are

valid and 95.7% are unique. As expected, a drop of the internal diversity, that is now equal

to 66.9%, was observed with respect to the NA.lib1 but the molecules passing the filters

increases to 85.2%. The library shows an average synthetic accessibility of 4.7000.233,

a value complying that computed for Zanamivir (that is 4.287). A comprehensive view of

feature distribution is shown in Figure 3. Additional details are reported in Figure S2 and

Figure S3 of Supporting Information.

INSERT TABLE 2

Representative examples taken from NA.lib1 and NA.lib2 are shown in Table 2. The  de

novo drug design strategy employed to generate NA.lib1 allowed to build new chemotypes

including  piperidine,  piperazine  and  phenol  rings.  The  de  novo drug  design  strategy

employed to generate NA.lib2 resulted in the scaffold hopping of the dihydropyran ring of

Zanamivir, replaced for instance by tetrahydropyridine and cyclohexene cores. All these

engineered  structures  are  provided  with  polar  substituents,  such  as  aminic,  amidic,

sulfamoyl,  guanidinium,  hydroxyl  or  carboxyl  functional  groups,  potentially  capable  to

reproduce  the  molecular  interactions  accomplished  by  Zanamivir.  For  the  sake  of

interpretation, molecular docking analyses were thus carried out to gain insights about

molecular interactions established by de novo designed compounds at the binding site of

NA enzyme compared to those observed for Zanamivir whose observed docking score of -

7.002 kcal/mol is mainly due to the number of hydrogen bond (HB) interactions engaged

with  R371,  W178 and R152 at  the  NA binding  site.  In  this  respect,  we reported  two

applicative examples taken from NA.lib1 and NA.lib2, respectively. NA.lib1_02  de novo

designed compound returned a docking score equal to -6.920 kcal/mol being its sulfamoyl

and aminic groups involved in HBs with the side chains of R118, E277, R292, and R371

as well as with the backbone of W178 (see Figure  4a). NA.lib2_01 returned a docking

score equal -7.892 kcal/mol with the guanidinium group forming HBs with the side chains

of E276 and E277, the amidic group interacting with side chains of R371 and R118, and

the acetoamide substituents making HBs with R152 and D151 (see Figure 4b). Worthy of



mention, both NA.lib1_02 and NA.lib2_01 showed a posing and a scoring comparable to

Zanamivir by experiencing very similar molecular interactions at the NA binding site.

INSERT FIGURE 4

Acetylcholinesterase case study 

AChE is an enzyme located in the post-synaptic membrane of cholinergic neurons and

catalyzes  the  hydrolysis  reaction  of  the  acetylcholine  in  choline  and  acetic  acid.

Excessively decreased levels of acetylcholine are hallmarks of the Alzheimer onset.59 This

is the main reason why AChE inhibition is a widely studied mechanism for the symptomatic

palliation of neurodegenerative diseases.60 Donepezil, a selective AChE dual binding site

inhibitor,61 was used as reference for the automated generation of a targeted chemical

library. 

Again, two different strategies were adopted and, thus, two targeted chemical libraries of

10000  potential  inhibitors  each  were  designed.  The  first  targeted  chemical  library

(AChE.lib1 is included in Supporting Information as File S4) was designed based on five

easy to interpret molecular descriptors that are MW, logP, HBD, HBA and the number of

rings (nR). In particular the nR descriptor was selected considering the presence of four

rings (two of  which fused)  in  the structure of  Donepezil.  The minimum and maximum

values of these descriptors were selected retrieving all the entries (that are 1800) available

from ChEMBL v.25 provided with IC50<1M towards AChE (referenced as CHEMBL220).

The de novo designed compounds are optimized in a range defined within one standard

deviation around the mean value of the selected features computed for the benchmark

pool  as shown in  Table S3 of  the  Supporting Information. As shown in  Figure 1,  the

algorithm  reaches  the  convergence  after  approximately  500  iterations.  The  point

corresponding to the maximum value of <S(x)> average fitness value (yellow line of Figure

1) is thus used as a generative model to create AChE.lib1 consisting of 10000 potential

inhibitors. As reported in Table 1, 99.3% of the generated molecules are valid and 94.5%

are  unique.  Importantly,  92.0%  pass  typical  structural  alerts  filters.  Interestingly,  the

generated targeted chemical library AChE.lib1 owns good internal diversity equal to 71.5%

and a fair synthetic accessibility score (1.9420.192). Figure 5 depicts the distributions of

the molecular descriptors selected for pair based multi-objective optimization of AChE.lib1

on  the  left-hand  side  and  its  average  Pareto  dominance  on  the  right-hand  side.  In



particular,  96.1% of  the molecules in the library own descriptors in the desired range.

Additional details are reported in Figure S2 of Supporting Information.

INSERT FIGURE 5

The second targeted chemical library (AChE.lib2 is included in Supporting Information as

File  S5)  was  instead  designed  to  generate molecules  whose  structures  and

physicochemical properties are constrained to those of  Donepezil.  To this end,  the  de

novo design progressed by maximizing the Tanimoto molecular similarity to the Donepezil

with a cutoff >0.3 and allowing deviations shown in Table S4 of Supporting Information as

far  as  MW and  logP are  concerned.  As  above  discussed,  AChE.lib2  included  10000

molecules created from the generative model taken from the maximum  <S(x)>  average

fitness value (green line of Figure  2). As reported in Table 1, 99.8% of the generated

molecules are valid and 95.9% are unique. A drop of the internal diversity, that is now

equal to 62.5%, as well as of the molecules passing the filters, that is now equal to 84.1%,

was  observed  with  respect  to  AChE.lib1.  The  library  shows  an  average  synthetic

accessibility of 2.1650.256 complying that computed for Donepezil (that is 2.682). A

comprehensive view is shown in Figure 5. Additional details are reported in Figure S2 of

Supporting Information.

Representative examples taken from AChE.lib1 and AChE.lib2 are shown in Table 2. As

far as AChE.lib1 is concerned, the algorithm generated potential inhibitors with no less

than three slightly decorated aromatic rings joined by proper length ether or keto bridge to

ensure the sampling of the catalytic (CAS) and peripheral anionic (PAS) site of AChE. 62 On

the other hand, AChE.lib2 comprised compounds including the phenylpiperidine scaffold

as Donepezil. 

Hence,  molecular  docking  simulations  have  been  employed  to  inspect  the  molecular

interactions of the  de novo generated potential AChE inhibitors. As depicted in the left-

hand side of  Figure  6,  AChE.lib1_02 molecule,  taken from AChE.lib1,  can experience

 interactions  with  W286  at  PAS and  with  F338  and  can  make  HB with  the

backbone of F295. On the right-hand side of Figure 6, AChE.lib2_04 molecule, taken from

AChE.lib2,  can  engage  interactions  with  W286  at  PAS  through  the  3-

methoxyphenyl arm and with W86 at CAS through the benzylpiperidine moiety and HB

with F295. Moreover, the protonated nitrogen atom of the piperidine ring is able to engage

a cation-interaction with W286.  Interestingly,  these interactions are also visited by



Donepezil showing a docking score value equal to -12.640 kcal/mol. AChE.lib1_02 and

AChE.lib2_04  returned  docking  score  values  equal  to  -11.045  kcal/mol  and  -12.703

kcal/mol, respectively. 

INSERT FIGURE 6

SARS-CoV-2 main protease case study

The  dramatic  spread  of  Covid-19  due  to  infective  agent  SARS-CoV-2  (Severe  Acute

Respiratory Syndrome Coronavirus 2) has undoubtedly led researchers from all over the

world to face this new emergency with every possible resource.43,44 On February 2020, the

first X-ray solved structure of the protease of the new coronavirus has been released in the

PDB57 and represents an extremely important milestone for developing new and effective

drug therapies. After transcription, the viral mRNA penetrates the cytoplasm and uses the

cellular mechanism for the proteins production. The newly formed polypeptide chains are

cleaved into smaller fragments and used by the virus for its maturation.63 These cleavages

are carried out by proteases. Specifically, this is classified as cysteine-histidine protease

(H41-C145).64 As far as this case study is concerned, there is no entry available in the

ChEMBL repository since the target is so far still unknown. On this premise, a similarity

based  de novo design strategy was thus employed. As a reference for the similarity  de

novo design, the co-crystallized ligand (reported as N3 in the PDB entry coded as 6LU7)

covalently bonded to the SARS-CoV-2 main protease was selected. As show in Table S5

of the Supporting Information, a targeted chemical library (SARS-CoV-2.lib is included in

Supporting  Information  as  File  S6)  was  generated  by  pair  based  multi-objective

optimization of the following features:  the Tanimoto molecular similarity,  MW and logP

ranging in the intervals shown in Table S5 of Supporting Information. As far as this case

study is concerned,  the algorithm converged slowly after  1000 iterations (black line of

Figure  2).  This  is  likely  due  to  the  higher  structural  complexity  of  N3.  Again,  10000

molecules were generated using the generative model corresponding to the maximum of

<S(x)> average fitness value. As shown in Table 1, SARS-CoV-2.lib shows good values of

quality metrics being validity equal to 99.9%, unicity equal to 91.0% and ability to pass

structural alert  filters equal to 77.3%. The internal  diversity (that  is 53.9%) is however

lower compared to the cases of studies previously discussed. Again, this can be explained

with the large structural complexity of N3 that forces the algorithm to generate molecules

to some extent provided with a reduced structural variability. The library shows an average

synthetic accessibility of 3.6450.281 that is however slightly lower compared to that



computed  for  N3  (that  is  4.701).  Figure  7 depicts  the  distributions  of  the  molecular

descriptors selected for pair based multi-objective optimization of SARS-CoV-2.lib on the

left-hand side and its average Pareto dominance on the right-hand side.

INSERT FIGURE 7

As far as SARS-CoV-2.lib is concerned, the generation of new molecules has been driven

by employing a similarity-based strategy. For ease of discussion, four potential inhibitors

built by automated de novo design were reported as examples in Table 2. The algorithm

was able to  generate  peptide-like  molecules,  whose backbone included at  least  three

peptide bonds and whose side chains explored different combinations of residues such as

glycine, glutamate, aspartate, glutamine or leucine. 

Molecular docking studies were thus finally performed on SARS-CoV-2.lib by using as a

biological target the SARS-CoV-2 main protease (PDB entry 6LU7, the only 3D crystal

structure  available  at  the  time  of  writing).  In  this  particular  case  study,  a  protocol  of

covalent docking could have been an option except that it is very time-consuming and thus

not suitable for screening large numbers of ligands. As shown in Figure  8, the  de novo

generated peptide backbone is essential for engaging key HB interactions with E166 and

Q189 that actually were also observed in the N3 co-crystallized inhibitor provided with a

docking score value equal to -11.213 kcal/mol. Interestingly, SARS-CoV-2.lib_03 was also

able to form additional HB with C145, a key residue for the catalytic function of the SARS-

CoV-2 main protease, thus returning a docking score value of -9.046 kcal/mol.  

INSERT FIGURE 8

Final remarks 

Based  on  the  obtained  results,  we  can  conclude  that  artificial  intelligence  and  multi-

objective  optimization  provided  a  transparent  framework  for  customizable  design

strategies.65,66 Our  approach  demonstrated  to  be  particularly  suited  for  both  lead

generation and lead optimization phases. In this respect, lead generation could mostly be

pursued based on a merely data driven approach optimizing physicochemical properties

such as MW, logP, the number of HBA and HBD. In this regard, we observed that de novo

generated compounds (i.e. NA.lib1 and AChE.lib1) can sample new chemotypes exploring

a broader and hopefully off-patent chemical space compared to a given reference domain.

This  approach  is  indeed  more  challenging  and  helpful  to  fuel  new ideas  for  a  target



oriented design.  On the other  hand,  lead optimization is  instead mostly  addressed by

adding  further  constraints,  such  as  molecular  similarity  thresholds  or  the  inclusion  of

particular privileged scaffolds, which normally reflect specific user-dependent options (i.e.

NA.lib2, AChE.lib2 and SARS-CoV-2.lib). This approach is indeed more conservative but

likely of more practical use and, to some extent, less prone to late stage failures. These

considerations  were  also  supported  by  a  ligand-based  drug target  prediction  exercise

carried  out  by  employing  the  Multi-fingerprint  Similarity  Search  algorithm (MuSSel) 67,68

which is available as a free web platform at http://mussel.uniba.it:5000/prediction.html. For

instance, considering the top-5 targets predicted by MuSSel for each query compound, we

observed  that  the  Neuroaminidase  (referenced  as  ChEMBL2051)  and

Acetylcholinesterase (referenced as ChEMBL220) were predicted as the protein targets for

about 95% and about 68% compounds of NA.lib2 and AChE.lib2, respectively. On the

other hand, we observed that Monoamine oxidase B (referenced as ChEMBL2039)  and

Monoamine oxidase A (referenced as ChEMBL1951) were predicted as the protein targets

for about 31% and about 16% compounds of AChE.lib1, according to their potential action

as  multi-target  therapeutics  for  neurodegenerative  disorders.60 As  far  as  NA.lib1  is

concerned,  it  was  instead  difficult  to  derive  causative  relationships  with  the  predicted

protein targets. A synopsis of all the gathered drug target predictions is shown in Table S6

of Supporting Information. The overall quality of the  de novo designed target libraries is

however  ensured by the quality  metrics indicating that  the new generated compounds

were always in optimal ranges as far as the correctness of SMILES notations and the

occurrence  of  duplicates,  the  level  of  internal  dissimilarity,  the  compliance  with  drug-

likeness filters and the chemical feasibility is concerned. Furthermore, molecular docking

was employed to better assess the biological potential of the new generated compounds

by explicitly comparing their posing and scoring with those experimentally observed for

cognate  ligands  co-crystallized  at  the  binding  sites  of  target  proteins.  This  analysis

enabled  to  appreciate  that  the  de  novo designed  targeted  chemical  libraries  contain

molecules experiencing similar binding modes as they engaged specific interactions with

key target protein residues. Overall, the goodness of molecular docking as a retrospective

validation option is also supported by the comparison of the distribution of docking scores

of the 218 pool compounds (referenced as ChEMBL2051 and provided with IC50<1μM

towards  NA)  and  targeted  libraries  NA.lib1  and  NA.lib2  as  well  as  of  the  1800  pool

compounds (referenced as ChEMBL220 and provided with IC50<1μM towards AChE) and

targeted libraries AChE.lib1 and AChE.lib2 (see Figure S4 of Supporting Information). In a

http://mussel.uniba.it:5000/prediction.html


continuing analysis aimed at providing users with a prioritization list of best compounds for

synthesis and testing, we sorted the de novo designed libraries according to the calculated

values of Ligand Efficiency (LE)69 which is a universally accepted indicator of compound

quality for prospective drug design.  For the sake of comparison, the values of LE of the

cognate ligands were used as a reference.

INSERT FIGURE 9

As shown in Figure  9, best LE values accumulated in the early 0.12% and 10.38% for

NA.lib1 and NA.lib2, in the early 0.02% and 0.03% for AChE.lib1 and AChE.lib2, in the

early 1.29% for SARS-CoV-2.lib. While it is not wise to make any beforehand speculation

about these observed trends whose rationale may be case-by-case dependent, we can

conclude that these are the more meaningful fractions of the de novo generated targeted

chemical  libraries.  Importantly,  these  fractions  contained  those  de  novo  designed

compounds better awarding molecular interactions at the active sites of their biological

counterparts  while  keeping  as  low  as  possible  the  structural  complexity,  which  was

comparable or even lower than that of X-ray solved cognate ligands. What descend from

those  observations  could  be  of  utmost  importance  for  addressing  well-informed  drug

design strategies.

Finally,  this  new  proposed  method  makes  an  important  step  forward  considering  the

scenario of the recent literature which already includes a number  of generative  de novo

design algorithms.17–26,29,30,36 In this respect, we mostly focused on crafting a novel pair-

based  multi-objective  strategy that,  in  conjunction  with a  reinforcement  learning

framework,  allows  to  guide  the  creative  generation  of  drugs  owning  multiple

simultaneously optimized features based on the Pareto optimality philosophy. Indeed, this

new approach allowed to enhance the quality content of the results compared to recently

published  methods,  which  enable  the  automated  generation  of  novel  compounds  but

generally through single objective or weighted sum methods, 23,26,29,36 which require human

intervention for coefficient calibration with steps that are annoying, frustrating and time

consuming. Satisfactorily, our approach can be used as it is for the fast generation of de

novo targeted chemical libraries whose features fall in a given desired ranges giving the

users a pool of equivalent non-dominated solutions irrespective of calibration. Finally, note

that the herein proposed fitness function can be easily implemented as a reward option in

any already published reinforcement learning based molecular de novo design algorithm.

We chose to  adapt  the REINVENT algorithm23 because it  is  relatively  easy to  modify



compared to others already published; it  is provided with a simple and well  annotated

source  code;  it  requires  limited  computational  resources  and  shows  still  promising

performances.      

Conclusions

The  application  of  artificial  intelligence  and  multi-objective  optimization  in  computer

assisted drug discovery have paved the way to unprecedented chances for highly relevant

tasks  such  as  structure  activity  relationships,  target  prediction,  lead  generation  and

optimization, experimental design. All these activities are expected to shorten cycle-times

for the identification of new bioactive compounds for both industry and academia. In this

study, several aspects of artificial intelligence and multi-objective optimization for the  de

novo drug design of targeted combinatorial libraries were investigated with the intention to

support  real-life  project  workflows.  As a matter  of  fact,  three practical  case studies of

therapeutic relevance have been widely discussed. In particular,  this study showed as

complementing artificial intelligence with pair based multi-objective optimization is effective

in driving the de novo design of target chemical libraries whose compounds are the result

of  a  creative  process  based  on  molecular  features  taken  by  specific  portions  of  the

chemical space, which were interfaced with particular biological targets. Last but not least,

our  ultimate goal  is  not  to  replace bench chemistry  activities  but  rather  to  inspire  the

experimental work with low cost ideas.

Supporting Information

Features selected for pair based multi-objective optimization generation of the targeted

chemical library NA.lib1, NA.lib2, AChE.lib1, AChE.lib2 and  SARS-CoV-2.lib (Table S1-

S5).  Drug target  predictions  carried  out  by  using  the multi-fingerprint  similarity  search

MuSSel platform (Table S6). Overlap of X-ray solved and top-scored docking poses for

Zanamivir, Donepezil and N3 (Figure S1). List of all the 203 molecular features that can be

optimized via the algorithm (features.txt).  Targeted chemical library NA.lib1 (NA.lib1.csv).

Targeted  chemical  library  NA.lib2  (NA.lib2.csv).  Targeted  chemical  library  AChE.lib1

(AChE.lib1.csv). Targeted chemical library AChE.lib2 (AChE.lib2.csv). Targeted chemical

library  SARS-CoV-2.lib  (SARS-CoV-2.lib.csv).  The algorithm described in  this  paper  is

freely downloadable at https://github.com/alberdom88/moo-denovo.     





Figure 1. The solid red circles are non-dominated solutions and fall on the Pareto frontier,
colored in red. Dominated solutions are shown as unfilled circles and are ranked according
to the number of times they are dominated. Non-dominated solutions are given rank zero
and the dominated solutions are given ranks as shown.



Figure 2. Average value of the S(x) fitness function computed at each iteration of the pair
based multi-objective optimization algorithm for each case study.



Figure  3.  Distribution  of  the  optimized  features  and  docking  scores  of  the  10000
compounds and heat map showing the average pair based Pareto dominance concerned
with the targeted chemical libraries NA.lib1 and NA.lib2.  On the bottom right corner, the
structure of Zanamivir is reported.



Figure 4. Panels (a) and (b) report molecular interactions between NA (PDB entry 3B7E)
and  de  novo generated  compounds  taken  from  the  first  (NA.lib1_02)  and  second
(NA.lib2_01) targeted chemical libraries, respectively. Ligands and the target are rendered
in  green  sticks  and  gray  cartoon,  respectively.  Zanamivir  is  also  depicted  in  black
wireframe.  Red  arrows  indicate  hydrogen  bonds. For  the  sake  of  clarity,  only  polar
hydrogen atoms are shown.



Figure  5.  Distribution  of  the  optimized  features  and  docking  scores  of  the  10000
compounds and heat map showing the average pair based Pareto dominance concerned
with the targeted chemical libraries AChE.lib1 and AChE.lib2. On the bottom right corner,
the structure of Donepezil is reported.



Figure  6.  Panels (a)  and (b)  report  molecular  interactions between AChE (PDB entry
4EY7) and de novo generated compounds taken from the first (AChE.lib1_02) and second
(AChE.lib2_04)  targeted  chemical  libraries,  respectively.  Ligands  and  the  target  are
rendered in green sticks and gray cartoon, respectively. Donepezil is also depicted in black
wireframe. Red, green and blue arrows indicate hydrogen bonds,  and cation-
interactions,  respectively.  For  the  sake  of  clarity,  only  polar  hydrogen  atoms  are
shown.



Figure  7.  Distribution  of  the  optimized  features  and  docking  scores  of  the  10000
compounds and heat map showing the average pair based Pareto dominance concerned
with  the  targeted  chemical  library  SARS-CoV-2.lib.  On  the  bottom  right  corner,  the
structure of N3 inhibitor is reported. 



Figure 8. Molecular interactions between SARS-CoV-2 main protease (PDB entry 6LU7)
and de novo generated compound SARS-CoV-2.lib_03. Ligand and target are rendered in
green sticks and gray cartoon, respectively. N3 is also depicted in black wireframe. Red
arrows indicate hydrogen bonds. For the sake of clarity, only polar hydrogen atoms are
shown.



Figure 9. Red and blue solid lines as well as shaded areas indicate the average and the
standard  deviation  of  LE  values,  respectively,  computed  varying  the  considered
percentage of  each targeted library  sorted  at  the  increase of  LE.  The dark  solid  line
represents the LE value for the X-ray solved cognate ligands used as reference for each
case study.



Targeted
chemical library Validity Unicity IntDiv Filters SA

NA.lib1 0.995 0.986 0.733 0.620 2.5220.361
NA.lib2 0.998 0.957 0.669 0.852 4.7000.233

AChE.lib1 0.993 0.945 0.715 0.920 1.9420.192
AChE.lib2 0.998 0.959 0.625 0.841 2.1650.256

SARS-CoV-2.lib 0.999 0.910 0.539 0.773 3.6450.281
Table 1. Quality metrics of the targeted chemical libraries generated by de novo drug 
design. Note that SA values are reported as mean along with standard deviation. 



Table 2. Representative examples of potential inhibitors generated through automated de novo drug design. The superscript letters a
and b indicate docking scores (kcal/mol) and S(x) fitness values.

NA.lib1_01 -7.653a 5.833b NA.lib1_02 -6.920a 5.784b NA.lib1_03 -6.841a 5.603b NA.lib1_04 -6.820a 5.846b

NA.lib2_01 -7.892a 3.946b NA.lib2_02 -7.750a 3.915b NA.lib2_03 -7.687a 3.825b NA.lib2_04 -7.504a 3.954b

AChE.lib1_01 -11.152a 5.846b AChE.lib1_02 -11.045a 5.998b AChE.lib1_03 -10.044a 5.914b AChE.lib1_04 -9.422a 5.741b

AChE.lib2_01 -13.466a 3.894b AChE.lib2_02 -13.118a 3.898b AChE.lib2_03 -12.897a 3.851b AChE.lib2_04 -12.703a 3.967b

SAR-COV-2.lib_01 -10.409a 3.952b SAR-COV-2.lib_02 -9.697a 3.805b SAR-COV-2.lib_03 -9.471a 3.92b SAR-COV-2.lib_04 -9.046a 3.928b
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