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Abstract
The survival probability of a quantum system with a finite ground energy is
known to decay subexponentially at large times. Here we show that, under
the same assumption, the average value of any quantum observable, whenever
well-defined, cannot converge exponentially to an extremal value of the spec-
trum of the observable. Large-time deviations from the exponential decay are
therefore a general feature of quantum systems. As a simple application of
these results, we show that, when considering an open quantum system whose
dynamics is generated by a Hamiltonian with a finite ground energy, a large-
time exponential decay of populations is forbidden, whereas coherences may
still decay exponentially.

Keywords: quantum dynamics, exponential decay, positive Hamiltonians

1. Introduction

The description of decay phenomena has been a central topic in quantum mechanics since
its inception. A fundamental role is played by exponential decay: unstable systems are often
experimentally shown to follow an exponentially decaying law at large times. Quantum mech-
anical models exhibiting such behaviors were first provided in [9, 11, 20].

There is, however, a huge limitation in the quantum mechanical description of exponential
decay: whenever the Hamiltonian generating the dynamics of the system is bounded from
below, i.e. admits a finite ground energy, the survival probability of any pure state of the system
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cannot decay exponentially at large times. Its evolution must follow a slower decay law, for
instance a power law. This is the content of a highly influential no-go argument first obtained by
Khalfin [12, 13] as a direct consequence of the celebrated Paley–Wiener theorem in Fourier
analysis [17]: exponential decay at large times requires, as a necessary condition, that the
Hamiltonian has a doubly unbounded spectrum, which is regarded as unphysical in quantum
theory. Khalfin’s argument can be summarized as follows: given a vector state ψ in a Hilbert
space H, with ∥ψ∥= 1, and a Hamiltonian H bounded from below, the survival amplitude of
ψ under the evolution generated by H,

t ∈ R #→ ⟨ψ|e−itHψ⟩ ∈ C, (1)

must satisfy the following inequality:

ˆ ∞

−∞

log
∣∣⟨ψ|e−itHψ⟩

∣∣
1+ t2

dt>−∞. (2)

Consequently, the survival probability of any state cannot behave exponentially at large
times: if it decays to zero, its decay should be slower than any exponential function e−γt.
Mathematically, this follows from the fact that, if the spectrum of H is bounded from below,
the function in equation (1) can be extended to a bounded analytic function in the lower com-
plex half-plane, continuous up to the real axis, which must necessarily satisfy equation (2).
Further details can be found, for example, in [6–8, 10, 15, 16, 18] and references therein.

Since most Hamiltonians in quantum physics are bounded from below, exponential decay at
large times is thus argued to be unphysical, even though deviations from the exponential law
are usually hard to detect experimentally, the first observations of sub-exponential behavior
at large times being relatively recent [5]. However, the survival probability is not the only
physically interesting decay law associated with a quantum system: we are often interested in
the time behavior of the average value of other quantum observables. Khalfin’s argument does
not extend directly to a generic quantum average. Indeed, the evolution law of the average of
some observables can be exponential. This was first pointed out in [3]: the reduced dynamics
of a bipartite system can be Markovian and some local observables can decay with a pure
exponential law. It is thus natural to ask whether exponential decay of quantum averages can
still be ruled out for some class of observables.

In this paper we will show that Khalfin’s argument can be greatly generalized: positive
Hamiltonians cannot give large-time exponential decay of the average value of a positive
observable. The result holds for bounded observables as well as unbounded ones, provided
that the average value is well-defined at every time.

The time evolution of the average value on ψ of any positive observable A, whenever well-
defined, is given by

⟨A⟩ψ (t) = ⟨e−itHψ|Ae−itHψ⟩= ∥A1/2e−itHψ∥2. (3)

We will show that the function

t ∈ R #→ A1/2e−itHψ ∈H (4)

must satisfy an inequality analogous to equation (2):

ˆ ∞

−∞

log∥A1/2e−itHψ∥
1+ t2

dt>−∞, (5)
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ruling out exponential decay. Analogous estimates can be obtained, more generally, in the case
in which the system is initially assumed to be prepared in a (possibly) mixed state, represented
by a density operator ρ ∈ B(H)—that is, a positive trace-class operator with unit trace.

More generally, this means that, if the average value of a quantum observable A converges
to an extremal value of its spectrum, then the convergence cannot be exponential: an exponen-
tial convergence to a value a can only be obtained as the result of a compensation between
the contributions of the positive and negative parts of the spectrum of A− a. There is noth-
ing inherently ‘special’ about the survival probability of pure states, which corresponds to
choosing A= |ψ⟩⟨ψ|: deviations from the exponential law are a much more general feature of
quantum mechanical systems.

This paper is organized as follows. In section 2 we show that the evolution law of a state ψ
induced by a HamiltonianH bounded from below admits a vector-valued analytic extension to
the lower half-plane; in section 3 we exploit this formalism to generalize Khalfin’s argument to
⟨A⟩ψ(t); finally, in section 4 we discuss some applications to open quantum system theory, and
in section 5 we summarize our results. The appendix is devoted to the proof of a logarithmic
inequality for vector-valued analytic functions, which is crucial for proving our results.

2. Analytic continuation of the evolution group

Let H be a self-adjoint operator on a separable Hilbert space H, with scalar product ⟨·|·⟩ and
norm ∥ · ∥. We will suppose H to be bounded from below; without loss of generality, we will
take H! 0. By Stone’s theorem, H is uniquely associated with a unitary propagator, i.e. a
strongly continuous unitary group {U(t)}t∈R on H, defined via

e−itH =

ˆ ∞

0
e−itλ dPH (λ) , (6)

with PH being the projection-valued measure associated with H. Above, we used the fact that,
since H! 0, the spectrum of H is contained in [0,∞).

By construction, for all ψ ∈H, the vector-valued function

t ∈ R #→ e−itHψ ∈H (7)

is continuous. Physically, for a quantum system, given any state ψ ∈H, the map in (7) repres-
ents the evolution of the state of a quantum system which, at t= 0, is in the state ψ. We remark
that, for all α! 0,

e−itHDomHα = DomHα, (8)

DomHα being the domain of Hα, and that the evolution map (7), for a generic ψ ∈H, is
continuous but not necessarily differentiable. Differentiability holds if and only if ψ ∈ DomH,
with

i
d
dt
e−itHψ = He−itHψ, (9)

and more generally, whenever ψ ∈ DomHk for k ∈ N,
(
i
d
dt

)k

e−itHψ = Hke−itHψ = e−itHHkψ. (10)
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The regularity of the map in (7) is thus directly linked with the number of energy moments
that are finite in the state ψ, namely ∥Hkψ∥<∞.

Proposition 2.1. Let H! 0. For all τ ∈ C−, the open lower half-plane of complex numbers,
the operator

e−iτH =

ˆ ∞

0
e−iλτ dPH (λ) (11)

is well-defined and bounded. Besides, for all ψ ∈H, we have

e−iτHψ ∈
⋂

α!0

DomHα, (12)

and the map

τ ∈ C− ∪R #→ e−iτHψ ∈H (13)

is a bounded vector-valued function, analytic in C− and continuous up to the real axis, with
complex derivative

(
i
d
dτ

)k

e−iτHψ = Hke−iτHψ , (14)

for all k ∈ N and all τ ∈ C−.

Proof. For all ψ ∈H, setting τ = t− iη with η ! 0, we have

∥e−iτHψ∥2 =
ˆ ∞

0
|e−iλτ |2 dµψ (λ) =

ˆ ∞

0
e−2ηλ dµψ (λ)" ∥ψ∥2 <∞, (15)

since the function λ ∈ [0,∞) #→ e−2λη is bounded by 1, and µψ(Ω) = ∥PH(Ω)ψ∥2 is a finite
measure with µψ(R) = ∥ψ∥2. Consequently, e−iτH is a bounded operator.

Moreover, we also have, for all α! 0, and η> 0,

∥Hαe−iτHψ∥2 =
ˆ ∞

0
λ2α|e−iλτ |2 dµψ (λ) =

ˆ ∞

0
λ2αe−2ηλ dµψ (λ)<∞, (16)

implying that Hαe−iτH is itself a bounded operator, or equivalently that, for all ψ ∈H,
e−iτHψ ∈ DomHα. The latter property also means that the function (13) can be differenti-
ated (in the strong sense) in C−, thus implying analyticity and, for all k ∈ N, equation (14).
Boundedness of the function τ #→ e−iτHψ follows from equation (15).

Consequently, whenever the spectrum is bounded from below, the evolution map can be
continuously extended to a function in the lower complex half-plane which is analytic for every
choice of ψ. Hence, the choice of ψ only affects the regularity property of its behavior at the
boundary, i.e. on the real line. In other words, the ‘nice’ properties of the analytic continuation
of τ #→ e−iτHψ follow because, when extended to the lower half-plane, the evolution group
acquires an exponentially decaying term and hence ‘regularizes’ all states on which it acts.
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As an immediate corollary of proposition 2.1, givenα! 0, for allψ ∈ DomHα the function

τ ∈ C− ∪R #→ Hαe−iτHψ ∈H (17)

is a well-defined bounded function, analytic in C− and continuous up to R. If we take ψ /∈
DomHα, we still obtain a well-defined analytic map in C−, but the latter cannot be extended
to the real axis nor is it bounded.

3. Evolution of quantum averages

Recall that quantum observables are associated with self-adjoint operators A on H. In partic-
ular, let A be a positive self-adjoint operator on H, with domain DomA. The average value
⟨A⟩ψ of A at the state ψ is well-defined if and only if ψ ∈ DomA1/2, which is the form domain
of A, and reads

⟨A⟩ψ = ∥A1/2ψ∥2. (18)

However, the average value of A at any time t ∈ R, i.e.

⟨A⟩ψ (t) = ∥A1/2e−itHψ∥2, t ∈ R, (19)

will generally be ill-defined unless some requirements on the relation between A and the
Hamiltonian H are made. Indeed, even if ψ ∈ DomA1/2, in general e−itHψ need not be in
DomA1/2 for all t ∈ R. A minimal requirement ensuring well-definiteness of ⟨A⟩ψ(t) for all
times is the following:

Lemma 3.1. Let A and H be positive self-adjoint operators onH such that

DomA1/2 ⊃ DomHα, (20)

for some α! 0. Then, for all ψ ∈ DomHα, the map

t ∈ R #→ A1/2e−itHψ ∈H (21)

is well-defined.

Proof. Immediate consequence of equation (8).

Property (20) means that the form domain of A contains the domain of the αth power of H.
Notice that, if (20) holds for some α, then it also holds for all β ! α: the smaller the minimal
value of α for which (20) holds, the larger is the linear subspace for which the map (21) is
well-defined. In particular, α= 0 corresponds to the case of a bounded observable, for which
no domain issues arise and (21) exists for all ψ ∈H.

Example 3.2 (free Hamiltonian under relatively bounded perturbations). In many cases of
interest, the Hamiltonian H can be regarded as a ‘perturbation’ of some self-adjoint operator
H0 representing the energy of the system in the absence of interactions (free Hamiltonian); in
such cases, it is interesting to study the behavior of the average of H0 itself or its powers—
physically, the behavior of the energy under perturbations.
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In this direction, let H0 ! 0 be self-adjoint and V be a symmetric operator relatively
bounded with respect to H0, with relative bound strictly less than one. By the Kato–Rellich
theorem (see e.g. [19, theorem 6.4]), the operator H= H0 +V with domain DomH= DomH0

is self-adjoint and bounded from below (so that there is no loss of generality in assuming
H,H0 ! 0). As a result, the observable

A := H2s
0 , for every 0" s" 1, (22)

satisfies condition (20) with α= 1, since DomA1/2 = DomHs
0 ⊃ DomH0 = DomH.

Example 3.3 (free Hamiltonian under form-bounded perturbations). Let again H0 be self-
adjoint with H0 ! 0, and consider a quadratic form h= h0 + v, where h0 is the closed sym-
metric form uniquely associated with H0, and v is a symmetric form that is relatively bounded
with respect to h0 with relative bound strictly less than one. By the KLMN theorem (see e.g.
[19, theorem 6.24]), there exists a unique self-adjoint operator bounded from below (whence
again we can assume H,H0 ! 0) with DomH1/2 = DomH1/2

0 . Consequently, the observable

A := H2s
0 , for every 0" s" 1/2, (23)

satisfies condition (20) with α= 1/2, since DomA1/2 = DomHs
0 ⊃ DomH1/2

0 = DomH1/2.

Recalling proposition 2.1, we can now provide an analytic continuation of the function
t ∈ R #→ A1/2e−itHψ ∈H:

Proposition 3.4. Let A and H be positive self-adjoint operators on H satisfying DomA1/2 ⊃
DomHα for some α! 0. Then, for all ψ ∈ DomHα, the map

τ ∈ C− ∪R #→ A1/2e−iτHψ ∈H (24)

is a bounded vector-valued function, analytic in C− and continuous up to the real axis.

Proof. By proposition 2.1 (see equation (12)) and the assumption DomA1/2 ⊃ DomHα, for
all τ ∈ C− we have e−iτHψ ∈ DomA1/2, hence the map in (24) is well-defined.

To prove the remaining properties, notice that, since both A1/2 and Hα are self-adjoint
operators, the property DomA1/2 ⊃ DomHα is equivalent to A1/2 being relatively bounded
with respect to Hα (see e.g. [19, lemma 6.2]), i.e. there exist a,b! 0 such that, for all ψ ∈
DomHα,

∥A1/2ψ∥" a∥Hαψ∥+ b∥ψ∥. (25)

This allows us to prove boundedness of the map τ #→ A1/2e−iτHψ, since

∥A1/2e−iτHψ∥" a∥Hαe−iτHψ∥+ b∥e−iτHψ∥
" a∥Hαψ∥+ b∥ψ∥. (26)

Continuity on R and analyticity in C− follow similarly from the continuity and analyticity of
τ #→ e−iτHψ, Hαe−iτHψ, and the bounds above.

6
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We are now ready to state our result:

Theorem 3.5. Let A and H be positive operators on H satisfying DomA1/2 ⊃ DomHα for
some α! 0. Then for all ψ ∈ DomHα, we have

ˆ ∞

−∞

log∥A1/2e−itHψ∥
1+ t2

dt>−∞. (27)

Proof. By proposition 3.4, the function τ ∈ C− ∪R #→ F(τ) = A1/2e−iτHψ ∈H is bounded,
analytic inC− and continuous up toR. As shown in lemma A.3 in the appendix, such function
must satisfy a logarithmic inequality

ˆ ∞

−∞

log∥F(t)∥
1+ t2

dt>−∞, (28)

which is equation (27) in our case.

Consequently, the map t #→ ⟨A⟩ψ(t) = ∥A1/2e−itHψ∥2 cannot be exponential at large times,
i.e. if

lim
t→∞

⟨A⟩ψ (t) = 0, (29)

then the convergence must be subexponential. We have thus generalized Khalfin’s argument
to the average value of any positive observable, whenever it is well-defined.

Obviously, there is nothing special about positive observables: if A is bounded from below
with a ∈ R being the infimum of its spectrum, then A! a, and the argument shows that the
average value of A cannot converge exponentially to a. Moreover, if A is bounded from above,
then−A is bounded from below.We can therefore conclude, as claimed in the Introduction, that
the average value of a quantum observable cannot converge exponentially to a finite extremal
value of its spectrum.

Exponential convergence to a non-extremal value of the spectrum, instead, is not ruled out
in general. Indeed, let A be a quantum observable and ψ satisfying ⟨A⟩ψ(t)→ 0. In the most
general case, we can always decompose A in its domain as

A= A+ −A−, A± ! 0, (30)

and thus

⟨A⟩ψ (t) = ⟨A+⟩ψ (t)−⟨A−⟩ψ (t) . (31)

Suppose that both ⟨A±⟩ψ(t) converge to 0 as well: by our argument, the decay laws of A±
cannot be exponential at large times, but, in principle, slower decaying terms of A+ and A−
may cancel out, thus yielding a purely exponential decay of ⟨A⟩ψ(t). Explicit examples of this
phenomenon were given in [3]. This cannot happen if either A+ = 0 or A− = 0, i.e. when the
limiting value 0 is an extremal point of the spectrum of A.

In general, our argument allows us to conclude that, if the average value of a positive A
decays to zero, then it cannot decay exponentially. As a concrete application of our argument
to a family of cases in which we know that the average decays, we will provide the following
corollary. Recall thatA is said to be relatively compactwith respect toH if the operatorARH(z),
with RH(z) := (H− z)−1 being the resolvent of H at z ∈ C, is compact for some z. Besides,
relative compactness of A implies DomA⊃ DomH.

7
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Corollary 3.6. Let A and H be positive self-adjoint operators such that A1/2 is relatively com-
pact with respect to H. Then, for every ψ ∈ DomH in the absolutely continuous subspace of
H, the map

t ∈ R #→ ∥A1/2e−itHψ∥2 ∈ R (32)

decays subexponentially as t→∞.

Proof. Under our hypotheses it is known (see e.g. [19, theorem 5.6]) that t ∈ R #→
∥A1/2e−itHψ∥2 converges to zero. Theorem 3.5 then holds with α= 1.

We finally remark that similar results can be straightforwardly inferred for higher moments
of A: if we suppose DomAδ/2 ⊃ DomHα for some δ,α! 0, then the average value of Aδ ,
i.e. the δth moment of A will satisfy an analogous constraint and thus, in particular, will not
undergo any exponential decay.

4. Extension to mixed states, and an application to open quantum systems

As a starting point, notice that the discussion abovemay be easily replicated,mutatis mutandis,
to the case in which the quantum system starts its evolution from a possibly mixed state, rep-
resented by a positive trace-class operator ϱ ∈ B(H) of trace one. For our purposes, it will be
sufficient to restrict our attention to the following case:

ϱ=
r∑

j=1

pj|ψj⟩⟨ψj|, (33)

with r being a finite integer, p1, . . . ,pr being a family of nonnegative real numbers summing
to one, and ψ1, . . . ,ψr ∈H of unit norm. We shall again consider a positive operator such that
DomA1/2 ⊃ DomHα for some α! 0. Then, as an immediate consequence of lemma 3.1, if
ψj ∈ DomHα, the map

t ∈ R #→ A1/2e−itH√ϱ ∈ HS (34)

is well-defined. Here, HS is the space of Hilbert–Schmidt operators on H, which is itself a
Hilbert space with the scalar product ⟨T|S⟩HS := trT†S. In this case, the average value of A is
defined at all times:

⟨A⟩ϱ (t) = tr
[
Ae−itHϱeitH

]
=
∥∥∥A1/2e−itH√ϱ

∥∥∥
2

HS
. (35)

Corollary 4.1. Let A and H be positive self-adjoint operator on H satisfying DomA1/2 ⊃
DomHα for some α! 0, and let ϱ ∈ B(H) be a density operator as in (33), such that
ψ1, . . . ,ψr ∈ DomHα. Then

ˆ ∞

−∞

log∥A1/2e−itH√ϱ∥HS
1+ t2

dt>−∞. (36)

Proof. As a direct consequence of proposition 3.4, the map (34) admits a bounded HS-valued
extension to C− ∪R which is analytic in C− and continuous up to the real axis. Whence the
claim follows analogously as in the pure state case by simply replacing the norm of H with
the Hilbert–Schmidt norm.

8
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Consequently, the discussion in the previous section holds without substantial differences
if we consider a system whose dynamics starts from a mixed state ϱ, modulo some minor tech-
nical assumptions ensuring the operator A1/2e−itH√ϱ to be well-defined and Hilbert–Schmidt
at all time.

As a simple application of this result, let us consider a bipartite quantum system, represented
by a Hilbert spaceH=HS ⊗HE. Physically,HS is the space associated with the experiment-
ally accessible system, with finite dimension dimHS = d, while HE represents the external,
inaccessible environment. Suppose that, at the initial time, the system and the environment are
in a separable (uncorrelated) state

ϱ= ρ⊗ |Ω0⟩⟨Ω0|, (37)

with ρ ∈ B(HS) being a density matrix, and Ω0 ∈HE. The reduced evolution induced on the
system by a global Hamiltonian is thus represented by the map

t ∈ R+ #→ Λt (ρ) = trE
[
e−itHρ⊗ |Ω0⟩⟨Ω0|eitH

]
, (38)

with trE denoting the partial trace with respect to the environment’s degrees of freedom.
Given two arbitrary orthonormal bases {ξj}j=0,...,d−1 ⊂HS, {Ωn}n∈N ⊂HE, one clearly has,
for all j,

⟨ξj|Λt (ρ)ξj⟩= ⟨ξj| trE
[
e−itHρ⊗ |Ω0⟩⟨Ω0|eitH

]
ξj⟩

=
∑

n∈N
⟨ξj⊗Ωn|

(
e−itHρ⊗ |Ω0⟩⟨Ω0|eitH

)
ξj⊗Ωn⟩

=
∑

n∈N

∥∥Pjne−itH√ρ⊗ |Ω0⟩⟨Ω0|
∥∥2
HS , (39)

with Pjn = |ξj⊗Ωn⟩⟨ξj⊗Ωn| being the rank-one projector associated with the vector ξj⊗Ωn.
As a direct consequence of corollary 4.1, each term in the sum above, if converging to zero,
vanishes more slowly than exponentially at large times, whence so does ⟨ξj|Λt(ρ)ξj⟩.

In other words: given an open quantum system whose dynamics is generated by a global
Hamiltonian H with a spectrum bounded from below, then the diagonal elements of the
evolved density operator ρ(t) = Λt(ρ) in any fixed basis cannot decay exponentially, a res-
ult that was first pointed out in [2]. Of course, this argument does not apply to the off-diagonal
elements of the density matrix, which may decay exponentially regardless the positivity of
the global Hamiltonian, with the dephasing model studied in [3] (see also [14]) being a clear
counterexample: a positive Hamiltonian can generate a purely Markovian dephasing semig-
roup, involving a pure exponential decay of the off-diagonal elements of the density matrix.

Physically, the populations of an open quantum system cannot deplete exponentially at
arbitrarily large times: deviations from the exponential decay at sufficiently large times are pre-
dicted. Khalfin’s argument is thus recovered as the unitary version of a more general statement.
Instead, no such constraint is imposed on the coherences, which may decay exponentially.

5. Conclusions

We have shown that, under quite general conditions, an exponential decay at large times of
the average value of a positive quantum observable is prohibited whenever the Hamiltonian
generating the dynamics has a finite ground energy, which is a physical requirement for many
quantum systems. An exponential decay of a quantum observable requires its spectrum to

9
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admit a nontrivial negative part: in that case, slower decaying terms generated by the posit-
ive and negative parts of the spectrum may cancel out in such a way to produce an overall
exponential decay.

Our result generalizes well-known properties of the survival probability of a pure state,
showing that deviations from the exponential decay are indeed a general features of quantum
systems, while also clarifying precisely the conditions under which such deviations are expec-
ted to emerge. Mathematically, these results follow as a consequence of the possibility, in the
presence of a Hamiltonian bounded from below, to define an analytic continuation of the evol-
ution group from the real line to the lower complex half-plane: the evolution group is thus
seen as the boundary limit of an analytic function, and this allows us to infer a constraint on
its decay properties. Future works may be dedicated to infer other dynamical properties of
quantum systems via a similar technique.
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Appendix. A logarithmic inequality

In this appendix we will prove equation (28) for anH-valued bounded analytic function in the
lower complex half-plane, continuous up to the real axis.

Let us start from the scalar case: consider a nonzero function f : C− ∪R→ C, analytic
in C−, continuous on the real axis, and bounded. We will denote the complex variable as
τ ∈ C− ∪R. It is known that such functions must satisfy the logarithmic inequality

ˆ ∞

−∞

log | f(t) |
1+ t2

dt>−∞. (A.1)

Let us briefly revise how to obtain equation (A.1). The standard technique is the following
one:

• we transform f into an analytic function f̂ in the unit diskD1 = {ζ ∈ C : |ζ|< 1}, continuous
up to the boundary, via a conformal mapping (i.e. an angle-preserving map) between C−

and D1;
• we use a well-known property of such functions: log | f̂| is subharmonic (proposition A.1),
i.e. it satisfies the inequality (A.5);

• we transfer this inequality back to the lower half-plane, thus obtaining equation (A.1).

10
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We will sketch the main steps of this procedure. First of all, let us consider explicitly a con-
formal mapping between C− and D1. To this purpose, we can take the map

τ ∈ C− #→ ζ̂ (τ) =
i+ τ

i− τ
∈ D1, (A.2)

and its inverse

ζ ∈ D1 #→ τ̂ (ζ) = i
ζ − 1
ζ + 1

∈ C−. (A.3)

If we allow ζ to range on the closure of D1, D1 = {ζ ∈ C : |ζ|" 1}, then τ will range on the
closed half plane C− ∪R plus the point at infinity ∞. In particular:

• the real line R is mapped to the unit circle minus the point ζ =−1;
• τ =∞ is mapped to the point ζ =−1;
• τ =−i is mapped to the center ζ = 0 of the disk.

Let us transfer our problem from the half-plane to the unit disk. Define the function

f̂ : D1 → C, f̂(ζ) = f(τ̂ (ζ)) ∈ C. (A.4)

By construction, f̂ is analytic inD1. Besides, since f(τ) is continuous up to the real axis (which
is mapped to the circle minus ζ =−1) and is bounded, i.e. it is also regular at∞, f̂(ζ) inherits
the same properties of f(τ): it is analytic in the unit disk and continuous on the boundary.

For such functions, the following inequality must hold:

Proposition A.1. Let the function ζ ∈ D1 #→ f̂(ζ) ∈ C be analytic in D1 and continuous up to
the boundary. Then ζ ∈ D1 #→ log | f̂(ζ)| ∈ R∪ {−∞} is subharmonic, i.e. it satisfies

log | f̂(0) |" 1
2π

ˆ 2π

0
log | f̂

(
eiθ

)
|dθ. (A.5)

Proof. Suppose that f̂(0) ̸= 0. This property is a straightforward consequence of Jensen’s
formula:

log | f̂(0) |=
n∑

j=1

log |ζj|+
1
2π

ˆ 2π

0
log | f̂

(
eiθ

)
|dθ. (A.6)

Here ζ1, . . .ζn are the zeros of f̂(ζ) inD1. A complete proof of this formula can be found inmany
books of complex analysis (see e.g. [1]). Besides, the hypothesis f̂(0) ̸= 0 can be relaxed: a
further generalization of Jensen’s formula may be shown to hold without that requirement.

As a consequence, the value of the integral on the right-hand side is bounded from below,
and therefore

ˆ 2π

0
log | f̂

(
eiθ

)
|dθ >−∞. (A.7)

Now we can come back to the half-plane and translate this inequality in terms of the original
function f, which, by equation (A.4), can be reconstructed via

f(τ) = f̂
(
ζ̂ (τ)

)
∈ C. (A.8)

11
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Via conformal mapping, the integral of f̂(ζ) on the unit circle corresponds to the integral of
f(τ) on the real line, up to a weight term coming from the Jacobian of the transformation:
equation (A.7) is therefore equivalent to

ˆ ∞

−∞

log | f(t) |
1+ t2

dt>−∞, (A.9)

which is the logarithmic inequality (A.1).
Let us generalize this property to the vector-valued case. Analytic functions having values

in a Hilbert spaceH are a straightforward generalization of the usual notion ofC-valued holo-
morphic functions. The standard theory of analytic functions generalizes immediately to the
Hilbert-valued case without substantial differences. With little effort, it can be shown that a
H-valued function f is analytic if and only if it is weakly analytic (see e.g. [4]), i.e. if and only
if, for all φ ∈H, the function z #→ ⟨φ| f(z)⟩ ∈ C is analytic. This property allows us to easily
identify H-valued analytic functions.

To show the extension of the logarithmic inequality (28) to H-valued functions F : C− ∪
R→H, analytic in C−, continuous on the real axis and bounded, we will follow a similar
strategy. First of all, again we will use the conformal mappings (A.2) and (A.3) between the
lower half-plane and the unit disk to construct an analytic,H-valued function on the real disk:

F̂ : D1 → C, F̂(ζ) = F(τ̂ (z)) ∈H, (A.10)

which, again, is analytic inside the unit disk and continuous up to the circle. Proposition A.1
can be generalized to the vector-valued case:

Proposition A.2. Let the vector-valued function ζ ∈ D1 #→ F̂(ζ) ∈H be analytic in D1 and
continuous up to the boundary. Then the function ζ ∈ D1 #→ log∥F̂(ζ)∥ ∈ R∪ {−∞} is
subharmonic, i.e. it satisfies

log∥F̂(0)∥" 1
2π

ˆ 2π

0
log∥F̂

(
eiθ

)
∥dθ. (A.11)

Proof. Since F̂ is analytic, for everyφ ∈H the complex-valued function ζ ∈ D1 #→ ⟨φ|F̂(ζ)⟩ ∈
C is analytic inD1 and continuous up to the unit circle, therefore, by propositionA.1, it satisfies

log |⟨φ|F̂(0)⟩|" 1
2π

ˆ 2π

0
log |⟨φ|F̂

(
eiθ

)
⟩|dθ. (A.12)

On the other hand, by the Riesz-Fréchet representation theorem one has

∥F̂(ζ)∥= sup
∥φ∥=1

|⟨φ|F̂(ζ)⟩| , (A.13)

thus, also using the continuity and monotonicity of the logarithm,

log∥F̂(ζ)∥= log sup
∥φ∥=1

|⟨φ|F̂(ζ)⟩|= sup
∥φ∥=1

log |⟨φ|F̂(ζ)⟩| . (A.14)

This means that, for all ϵ> 0, there is φϵ ∈H with ∥φϵ∥= 1 such that

log∥F̂(0)∥" log |⟨φϵ|F̂(0)⟩|+ ϵ, (A.15)

12
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and therefore

log∥F̂(0)∥" ϵ+
1
2π

ˆ 2π

0
log |⟨φϵ|F̂

(
eiθ

)
⟩|dθ

" ϵ+
1
2π

ˆ 2π

0
log∥F̂

(
eiθ

)
∥dθ.

Since ϵ is arbitrary, equation (A.11) follows.

Again, this property implies that the integral in the right-hand side of equation (A.11) is
bounded from below, and therefore cannot diverge to −∞. Transferring back the problem
from the unit disk to the lower half-plane, this finally proves the following Lemma which is
the sought result, see equation (28):

Lemma A.3. Let F : C− ∪R→H be a nonzero vector-valued function analytic in C−, con-
tinuous on the real axis, and bounded. Then

ˆ ∞

−∞

log∥F(t)∥
1+ t2

dt>−∞. (A.16)
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