
WELL-POSEDNESS FOR A SLOW EROSION MODEL
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Abstract. We improve in two ways the well-posedness results of [2] for a slow erosion model proposed
in [11]: firstly we study the asymptotic profile when u0

1+u0
∈ L∞, where u0 is the initial datum; moreover,

using a compensated compactness based argument we prove the existence of solutions when u0
1+u0

∈ Lσ,
σ ≥ 3.

1. The basic model

This paper is devoted to the analysis of the slow erosion model

(1.1) ∂tu+ ∂x (f(u)E[u]) = 0, t > 0, x ∈ R,

where

f(u) =
u

u+ 1
, E[u(t, ·)](x) = e

´∞
x f(u(t,ξ))dξ.

This equation has been studied in [2] and describes the slow erosion limit for a granular flow model
proposed in [11]. The function u + 1 gives the slope of the standing profile of granular matter, that is
influenced by the occurrence of small avalanches. The function f = f(u) is the erosion function and has
the meaning of the erosion rate per unit length in space covered by the avalanches. A more detailed
derivation of the model can be found in [15]. For more general f and a numerical analysis see [15, 1, 7].

We augment (1.1) with the initial condition

(1.2) u(0, x) = u0(x), x ∈ R,

and we assume that

(1.3) u0 ∈ L1(R), −1 ≤ u0 ≤ 0, f(u0) ∈ L1(R) ∩ Lσ(R),

for some 1 ≤ σ ≤ ∞.
We use the following notions of solution for (1.1) and (1.2).

Definition 1.1. Let u : [0,∞) × R → R be a function. We say that u is a weak solution of (1.1) and
(1.2) if for any test function ϕ ∈ C∞(R2) with compact support we have that

(1.4)

ˆ ∞
0

ˆ
R

(
u∂tϕ+ f(u)E[u]∂xϕ

)
dxdt+

ˆ
R
u0(x)ϕ(0, x)dx = 0.

Definition 1.2. Let u : [0,∞)×R→ R be a function. We say that u is an entropy solution of (1.1) and
(1.2) if for any nonnegative test function ϕ ∈ C∞(R2) with compact support and any convex entropy
η ∈ C2(R) with entropy flux q ∈ C2(R) defined by q′ = η′f ′ we have thatˆ ∞

0

ˆ
R

(
η(u)∂tϕ+ q(u)E[u]∂xϕ+ (f(u)η′(u)− q(u))f(u)E[u]ϕ

)
dxdt

+

ˆ
R
η(u0(x))ϕ(0, x)dx ≥0.

(1.5)
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In [1, 2] the authors studied the well-posedness of the entropy solutions of (1.1) and (1.2) assuming
that

(1.6) u0 ∈ BV (R)

and that (1.3) holds with

(1.7) σ =∞,

which means

(1.8) − 1 < κ0 ≤ u0 ≤ 0,

for some constant κ0. Using a front tracking algorithm, they proved that the Cauchy problem (1.1) and
(1.2) admits a unique entropy solution u such that:

u ∈ L∞(0, T ;L1(R)) ∩ L∞(0, T ;BV (R)), T > 0;(1.9)

for any T > 0 there exists κT s.t. −1 < κT ≤ u ≤ 0 a.e. in (0, T )× R.(1.10)

Moreover, they show that the map u0 7→ u is Lipschitz continuous, in the sense that if u and v are two
entropy solutions of (1.1) satisfying (1.3), (1.6), and (1.8) at time t = 0, then for any T > 0 there exists
a constant LT > 0 such that

(1.11) ‖u(t, ·)− v(t, ·)‖L1(R) ≤ LT ‖u(0, ·)− v(0, ·)‖L1(R) , a.e. 0 < t < T .

In this paper we consider the following vanishing viscosity approximation of (1.1) and (1.2):

(1.12)

{
∂tuε + ∂x (f(uε)E[uε]) = ε∂2xxuε, t > 0, x ∈ R,
uε(0, x) = u0,ε(x), x ∈ R,

where ε > 0 and u0,ε is a smooth approximation of u0. The well-posedness of smooth solutions for
(1.12) can be proved using the same arguments of [4, 5, 8].

We improve the results of [1, 2] in two ways. We begin by considering their assumptions, namely
we require on u0 (1.3), (1.6), (1.7), and (1.8). The analysis of the BV compactness properties of the
solutions of (1.12) allows us to

• give a simpler proof of the existence results of [1, 2] for (1.1) and (1.2);
• prove better pointwise lower bounds on the solution of (1.1) and (1.2) than the ones in [1, 2];
• describe the asymptotic behavior of the solution of (1.1) and (1.2) as t→∞;
• get hints on the compactness properties of numerical schemes for (1.1) and (1.2).

As a second step, we remove both (1.6) and (1.8), and we assume that (1.3) holds with

(1.13) σ ≥ 3.

From a physical point of view when σ <∞ the deposition function u+ 1 can become singular (i.e., can
vanish). The fact that in (1.13) we have σ ≥ 3 and not simply σ ≥ 1 is purely technical and is needed to
make sense to all the terms in (1.5) under the different choices of η. Under these assumptions, we prove
the existence of entropy solutions for (1.1) and (1.2). We bypass the lack of BV bounds on uε arguing
as in [6, 9, 10] and using the compensated compactness result deduced in [13, 14] for conservation laws
with discontinuous fluxes.

Finally, we wish to make an additional comment on the the upper bound u0 ≤ 0 on the initial
condition in (1.3), that is not considered in [2]. That bound physically says that we have only deposition
of material. Mathematically, we use this assumption to simplify the presentation and focus on removing
the lower bound κ0 > −1, see (1.8); indeed, passing from −1 ≤ u0 ≤ 0 to the case −1 ≤ u0 does not
increase difficulty, because f is bounded and Lipshitz continuous in [0,∞).

The paper is organized as follows. In Section 2, assuming σ = ∞, we prove the convergence of a
vanishing viscosity type approximation and we study the asymptotic behavior of the entropy solutions.
In Section 3, assuming σ ≥ 3, we prove that (1.1) and (1.2) admits an entropy solution.
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2. The case σ =∞

In this section we assume (1.3), (1.6), (1.7), and (1.8).
About the initial condition u0,ε of (1.12) we assume (here and in the following, as usual, TV means

total variation)

u0,ε ∈ C∞(R), ε > 0,

u0,ε → u0, a.e. in R and in Lp(R), 1 ≤ p <∞ as ε→ 0,

‖u0,ε‖L1(R) ≤ ‖u0‖L1(R) , ‖∂xu0,ε‖L1(R) ≤ TV (u0), −1 < κ0 ≤ u0,ε ≤ 0, ε > 0,

ε
∥∥∂2xxu0,ε∥∥L1(R) ≤ C, ε > 0,

(2.1)

for some constant C > 0 independent on ε.
The main result of this section is the following

Theorem 2.1. Assume (1.3), (1.6), (1.7), (1.8), and (2.1). Let u be the unique entropy solution of
(1.1) and (1.2) and uε the one of (1.12). We have that

(2.2) uε → u, a.e. in R and in Lploc((0,∞)× R), 1 ≤ p <∞ as ε→ 0.

Moreover, u ∈ BV ((0, T )× R) for any T > 0, and satisfies

(2.3)
−1

κ1t+ κ2 +
√

(κ1t+ κ2)2 + 1
≤ u(t, x) ≤ 0, a.e. in (0,∞)× R,

where

κ1 =
e
−
‖u0‖L1(R)

1+κ0

2
, κ2 =

κ20 − 1

2κ0
.

In particular, u has the following asymptotic behavior:

(2.4) u(t, ·)→ 0, a.e. in R and in Lploc(R), 1 ≤ p <∞ as t→∞.

In order to prove Theorem 2.1 we need some preliminary lemmas, for all of which we assume the
hypotheses of Theorem 2.1.

Lemma 2.1 (L∞ estimate). The following inequalities

(2.5) κ0 ≤ uε(t, x) ≤ 0

hold for any ε > 0, t ≥ 0, x ∈ R. In particular

(2.6)
κ0

κ0 + 1
≤ f(uε) ≤ 0, 1 ≤ f ′(uε) ≤

1

(1 + κ0)2
.

Proof. Consider the initial value problem

(2.7)

{
∂tv + f ′(v)E[uε]∂xv − f2(v)E[uε] = ε∂2xxv, t > 0, x ∈ R,
v(0, x) = u0,ε(x), x ∈ R.

We know that uε is the unique solution of (2.7), see [4, 5, 8].
Being

∂tv + f ′(v)E[uε]∂xv − f2(v)E[uε]− ε∂2xxv
∣∣∣
v≡0

=0,

∂tv + f ′(v)E[uε]∂xv − f2(v)E[uε]− ε∂2xxv
∣∣∣
v≡κ0

=− f2(κ0)E[uε] ≤ 0,

by (2.1) we get that 0 is a supersolution and κ0 is a subsolution to (2.7). Therefore, (2.5) follows from
the Comparison Principle for Parabolic equations.

Since f is concave and increasing in the interval (−1, 0], (2.5) implies (2.6). �
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Lemma 2.2 (L1 estimate). The following inequality

(2.8) ‖uε(t, ·)‖L1(R) ≤ ‖u0‖L1(R)

holds for any ε > 0 and t ≥ 0. Moreover

(2.9) e−κ3 ≤ E[uε](t, x) ≤ 1, t > 0, x ∈ R,

where

κ3 =
‖u0‖L1(R)

1 + κ0
.

Proof. Since uε is nonpositive (see (2.5)) and f(0) = 0, we have that

d

dt

ˆ
R
|uε|dx =

ˆ
R
∂tuεsign (uε) dx = −

ˆ
R
∂tuεdx

=− ε
ˆ
R
∂2xxuεdx+

ˆ
R
∂x(f(uε)E[uε])dx = 0.

An integration over (0, t) gives

‖uε(t, ·)‖L1(R) = ‖u0,ε‖L1(R) .

Therefore, (2.8) follows from (2.1).
By (2.5), (2.8) and the very definition of f , we get

0 ≥
ˆ ∞
x

f(uε(t, ξ))dξ =

ˆ ∞
x

uε(t, ξ)

1 + uε(t, ξ)
dξ

≥−
ˆ
R

|uε(t, ξ)|
1 + uε(t, ξ)

dξ ≥ − 1

1 + κ0

ˆ
R
|uε(t, ξ)|dξ ≥ −

‖u0‖L1(R)

1 + κ0
= −κ3.

Using the definition of the integral operator E[·] we gain (2.9). �

Lemma 2.3 (Lower bound). The inequality

(2.10) uε(t, x) ≥ −1

κ1t+ κ2 +
√

(κ1t+ κ2)2 + 1

holds for any ε > 0 and t ≥ 0.

Proof. Consider the function

w(t) =
−1

κ1t+ κ2 +
√

(κ1t+ κ2)2 + 1

which solves

w′ = 2κ1
w2

w2 + 1
, w(0) = κ0.

Using (2.9) and the identity 2κ1 = e−κ3 , we get

∂tv + f ′(v)E[uε]∂xv − f2(v)E[uε]− ε∂2xxv
∣∣∣
v≡w

= w′ − f2(w)E[uε] ≤ w′ − e−κ3f2(w)

= 2κ1
w2

w2 + 1
− e−κ3 w2

(w + 1)2
=

2e−κ3w3

(w + 1)2(w2 + 1)
≤ 0.

Therefore, by (2.1), w is a subsolution to (2.7). The Comparison Principle for Parabolic equations
guarantees that

w(t) ≤ uε(t, x),

that is (2.10). �
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Lemma 2.4 (BV estimate in x). The inequality

(2.11) ‖∂xuε(t, ·)‖L1(R) ≤ TV (u0) +
κ20

(1 + κ0)3
‖u0‖L1(R) t

holds for any ε > 0 and t ≥ 0.

Proof. Differentiating the equation in (1.12) with respect to x, we get

(2.12) ∂2txuε + ∂x
(
f ′(uε)E[uε]∂xuε

)
− 2f(uε)f

′(uε)E[uε]∂xuε + f3(uε)E[uε] = ε∂3xxxuε.

Thanks to (2.5), (2.6), (2.8), (2.9), and the definition of f , we have that

d

dt

ˆ
R
|∂xuε|dx =

ˆ
R
∂2txuεsign (∂xuε) dx

=ε

ˆ
R
∂3xxxuεsign (∂xuε) dx−

ˆ
R
∂x
(
f ′(uε)E[uε]∂xuε

)
sign (∂xuε) dx

+ 2

ˆ
R
f(uε)f

′(uε)E[uε]|∂xuε|dx−
ˆ
R
f3(uε)E[uε]sign (∂xuε) dx

=−ε
ˆ
R

(∂2xxuε)
2dδ{∂xuε=0}︸ ︷︷ ︸

≤0

+

ˆ
R
f ′(uε)E[uε]∂xuε∂

2
xxuεdδ{∂xuε=0}︸ ︷︷ ︸

=0

+ 2

ˆ
R
f(uε)f

′(uε)E[uε]|∂xuε|dx︸ ︷︷ ︸
≤0

−
ˆ
R
f3(uε)E[uε]sign (∂xuε) dx

≤ κ20
(1 + κ0)3

ˆ
R
|uε|dx ≤

κ20
(1 + κ0)3

‖u0‖L1(R) ,

where δ{∂xuε=0} is the Dirac delta concentrated on the set {∂xuε = 0}. An integration over (0, t) gives

‖∂xuε(t, ·)‖L1(R) ≤ ‖∂xu0,ε‖L1(R) +
κ20

(1 + κ0)3
‖u0‖L1(R) t.

Therefore, (2.11) follows from (2.1). �

Lemma 2.5 (BV estimate in t). The following inequality

(2.13) ‖∂tuε(t, ·)‖L1(R) ≤
(
C +

TV (u0)

(1 + κ0)2
+

|κ0|
(1 + κ0)2

‖u0‖L1(R)

)
eκ4t+κ5t

2

holds for any ε > 0 and t ≥ 0, where

κ4 = − κ0
(1 + κ0)3

+
TV (u0)

(1 + κ0)4
+
κ20 ‖u0‖L1(R)

(1 + κ0)4
, κ5 =

κ20
2(1 + κ0)7

‖u0‖L1(R) .

Proof. Differentiating the equation in (1.12) with respect to t, we get

∂2ttuε + f ′′(uε)E[uε]∂xuε∂tuε + f ′(uε)E[uε]∂
2
txuε

+ f ′(uε)E[uε]∂xuε

ˆ ∞
x

f ′(uε(t, ξ))∂tuε(t, ξ)dξ − 2f(uε)f
′(uε)E[uε]∂tuε

− f2(uε)E[uε]

ˆ ∞
x

f ′(uε(t, ξ))∂tuε(t, ξ)dξ = ε∂3txxuε.

(2.14)

Thanks to (2.5), (2.6), (2.8), (2.9), (2.11), and the definition of f , we have that

d

dt

ˆ
R
|∂tuε|dx =

ˆ
R
∂2ttuεsign (∂tuε) dx

=ε

ˆ
R
∂3txxuεsign (∂tuε) dx−

ˆ
R
f ′′(uε)E[uε]∂xuε|∂tuε|dx
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−
ˆ
R
f ′(uε)E[uε]∂

2
txuεsign (∂tuε) dx

−
ˆ
R
f ′(uε)E[uε]∂xuεsign (∂tuε)

ˆ ∞
x

f ′(uε(t, ξ))∂tuε(t, ξ)dξdx

+ 2

ˆ
R
f(uε)f

′(uε)E[uε]|∂tuε|dx

+

ˆ
R
f2(uε)E[uε]sign (∂tuε)

ˆ ∞
x

f ′(uε(t, ξ))∂tuε(t, ξ)dξdx

=−ε
ˆ
R

(∂2txuε)
2dδ{∂tuε=0}︸ ︷︷ ︸

≤0

−
ˆ
R
∂x(f ′(uε)|∂tuε|)E[uε]dx

−
ˆ
R
f ′(uε)E[uε]∂xuεsign (∂tuε)

ˆ ∞
x

f ′(uε(t, ξ))∂tuε(t, ξ)dξdx

+ 2

ˆ
R
f(uε)f

′(uε)E[uε]|∂tuε|dx︸ ︷︷ ︸
≤0

+

ˆ
R
f2(uε)E[uε]sign (∂tuε)

ˆ ∞
x

f ′(uε(t, ξ))∂tuε(t, ξ)dξdx

≤−
ˆ
R
f ′(uε)f(uε)|∂tuε|E[uε]dx

+

(ˆ
R
f ′(uε)E[uε]|∂xuε|dx

)(ˆ
R
f ′(uε)|∂tuε|dx

)
+

(ˆ
R
f2(uε)E[uε]dx

)(ˆ
R
f ′(uε)|∂tuε|dx

)
≤− κ0

(1 + κ0)3

ˆ
R
|∂tuε|dx+

1

(1 + κ0)4

(ˆ
R
|∂xuε|dx

)(ˆ
R
|∂tuε|dx

)
+

κ20
(1 + κ0)4

(ˆ
R
|uε|dx

)(ˆ
R
|∂tuε|dx

)
≤− κ0

(1 + κ0)3

ˆ
R
|∂tuε|dx

+
1

(1 + κ0)4

(
TV (u0) +

κ20
(1 + κ0)3

‖u0‖L1(R) t

) ˆ
R
|∂tuε|dx

+
κ20 ‖u0‖L1(R)

(1 + κ0)4

ˆ
R
|∂tuε|dx

= (κ4 + 2κ5t)

ˆ
R
|∂tuε|dx,

where δ{∂tuε=0} is the Dirac delta concentrated on the set {∂tuε = 0}. The Gronwall Lemma, (1.12),
(2.1), and (2.9) give

‖∂tuε(t, ·)‖L1(R) ≤‖∂tuε(0, ·)‖L1(R) e
κ4t+κ5t2

=
∥∥ε∂2xxu0,ε − f ′(u0,ε)E[u0,ε]∂xu0,ε + f2(u0,ε)E[u0,ε]

∥∥
L1(R) e

κ4t+κ5t2

≤

(
ε
∥∥∂2xxu0,ε∥∥L1(R) +

‖∂xu0,ε‖L1(R)

(1 + κ0)2
+

|κ0|
(1 + κ0)2

‖u0,ε‖L1(R)

)
eκ4t+κ5t

2
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≤
(
C +

TV (u0)

(1 + κ0)2
+

|κ0|
(1 + κ0)2

‖u0‖L1(R)

)
eκ4t+κ5t

2
.

Therefore, (2.13) is proved. �

Now, we are ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. Let {εk}k∈N ⊂ (0,∞) be such that εk → 0 and let T be any positive time. Since
the sequence {uεk}k∈N is bounded in L∞((0,∞)×R) ∩BV ((0, T )×R) (see Lemmas 2.1, 2.4, and 2.5),
there exist a function u ∈ L∞((0,∞)× R) ∩BV ((0, T )× R) and a subsquence {uεkh}h∈N such that

uεkh −→ u in Lploc((0,∞)× R), 1 ≤ p <∞, and a.e. in (0,∞)× R.

We claim that u is the unique entropy solution to (1.1) and (1.2). Let η ∈ C2(R) be a convex entropy
with flux q defined by q′ = η′f ′. Multiplying (1.12) by η′(uεkh ) we get

∂tη(uεkh ) + ∂x(q(uεkh )E[uεkh ])− (f(uεkh )η′(uεkh )− q(uεkh ))f(uεkh )E[uεkh ]

=εkh∂
2
xxuεkhη

′(uεkh ) = εkh∂
2
xxη(uεkh )−εkhη

′′(uεkh )(∂xuεkh )2︸ ︷︷ ︸
≤0

≤ εkh∂
2
xxη(uεkh ).

For any nonnegative test function ϕ ∈ C∞(R2) with compact support we have thatˆ ∞
0

ˆ
R

(
η(uεkh )∂tϕ+ q(uεkh )E[uεkh ]∂xϕ+ (f(uεkh )η′(uεkh )− q(uεkh ))f(uεkh )E[uεkh ]ϕ

)
dxdt

+

ˆ
R
η(u0,εkh (x))ϕ(0, x)dx ≥ −εkh

ˆ ∞
0

ˆ
R
η(uεkh )∂2xxϕdxdt.

As h→∞, the Dominated Convergence Theorem givesˆ ∞
0

ˆ
R

(
η(u)∂tϕ+ q(u)E[u]∂xϕ+ (f(u)η′(u)− q(u))f(u)E[u]ϕ

)
dxdt

+

ˆ
R
η(u0(x))ϕ(0, x)dx ≥0,

proving that u is the unique entropy solution of (1.1) and (1.2).
Thanks to Urysohn Property, (2.2) is proved.
Moreover, (2.3) follows from (2.5) and (2.10). Finally, (2.4) follows from (2.3). �

3. The case σ ≥ 3

In this section we assume that (1.3) holds with

(3.1) σ = 3,

(and a fortiori if σ > 3); therefore now u0 may attain the value −1 at some point. This case has not
been considered in [1, 2].

On the initial condition u0,ε of (1.12) we assume

u0,ε ∈ C∞(R), ε > 0,

u0,ε → u0, a.e. in R and in Lp(R), 1 ≤ p <∞ as ε→ 0,

f(u0,ε)→ f(u0), a.e. in R and in Lp(R), 1 ≤ p ≤ 3 as ε→ 0,

‖u0,ε‖L1(R) ≤ ‖u0‖L1(R) , −1 < − 1

1 + ε
≤ u0,ε ≤ 0, ε > 0,

‖f(u0,ε)‖Lp(R) ≤ C, ε > 0, 1 ≤ p ≤ 3,

(3.2)

for some constant C > 0 independent on ε.
The main result of this section is the following.
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Theorem 3.1. Assume (1.3), (3.1), and (3.2). There exist a sequence {εh}h∈N ⊂ (0,∞), εh → 0, and
a function u : [0,∞)× R→ R such that

u is an entropy solution of (1.1) and (1.2),

− 1 ≤ u(t, x) ≤ 0, a.e. in (0,∞)× R,
f(u) ∈ L∞loc(0,∞;Lp(R)), 1 ≤ p ≤ 3,

‖u(t, ·)‖L1(R) ≤ ‖u0‖L1(R) , a.e. t ≥ 0,

uεh → u, a.e. in (0,∞)× R and in Lploc((0,∞)× R), 1 ≤ p <∞ as h→∞,
f(uεh)→ f(u), a.e. in (0,∞)× R and in Lploc((0,∞)× R), 1 ≤ p < 3 as h→∞,
E[uεh ]→ E[u], a.e. in (0,∞)× R and in Lploc((0,∞)× R), 1 ≤ p <∞ as h→∞.

(3.3)

Finally, if (1.6) holds, and

(3.4) ‖∂xu0,ε‖L1(R) ≤ TV (u0), ε > 0,

we have also

u ∈ L∞loc(0,∞;BV (R)),

TV (u(t, ·)) ≤ TV (u0) + Ct, a.e. t > 0.
(3.5)

In order to prove Theorem 3.1 we need some preliminary lemmas, for all of which we assume the
hypotheses of Theorem 3.1.

Lemma 3.1 (L∞ and L1 estimate). The following inequalities

− 1

1 + ε
≤ uε(t, x) ≤ 0,

f(uε(t, x)) ≤ 0, f ′(uε(t, x)) ≥ 1,

‖uε(t, ·)‖L1(R) ≤ ‖u0‖L1(R) ,

0 ≤ E[uε](t, x) ≤ 1,

(3.6)

hold for any ε > 0, t ≥ 0, x ∈ R.

Proof. Quite similar to the proofs of Lemmas 2.1 and 2.2. �

Lemma 3.2. Let η ∈ C2((−1, 0]) be a convex nonnegative entropy with entropy flux

(3.7) q(ξ) =

ˆ ξ

0
f ′(s)η′(s)ds, −1 < ξ ≤ 0.

Then

(3.8) f(uε)η
′(uε)− q(uε) ≥ 0.

Moreover, if

(3.9) η(u0,ε) ∈ L1(R),

we have

‖η(uε(t, ·))‖L1(R) +

ˆ t

0

ˆ
R

(f(uε)η
′(uε)− q(uε))|f(uε)|E[uε]dsdx

+ ε

ˆ t

0

ˆ
R
η′′(uε)(∂xuε)

2dxds = ‖η(u0,ε)‖L1(R) .

(3.10)

Proof. Observe that, for ξ ∈ (−1, 0],

∂ξ(f(ξ)η′(ξ)− q(ξ)) = f ′(ξ)η′(ξ) + f(ξ)η′′(ξ)− f ′(ξ)η′(ξ) = f(ξ)η′′(ξ) ≤ 0.

Therefore, using the first inequality of (3.6), we have

f(uε)η
′(uε)− q(uε) ≥ f(0)η′(0)− q(0) = 0,
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that gives (3.8).
Multiplying the equation in (1.12) by η′(uε) we get

(3.11) ∂tη(uε) + ∂x(q(uε)E[uε])− (f(uε)η
′(uε)− q(uε))f(uε)E[uε] = ε∂2xxη(uε)− εη′′(uε)(∂xuε)2.

From (3.11) we obtain

∂tη(uε) + ∂x(q(uε)E[uε]) = (f(uε)η
′(uε)− q(uε))︸ ︷︷ ︸
≥0

f(uε)︸ ︷︷ ︸
≤0

E[uε]︸ ︷︷ ︸
≥0

+ε∂2xxη(uε)−εη′′(uε)(∂xuε)2︸ ︷︷ ︸
≤0

.

Integrating over (0, t)× Rˆ
R
η(uε(t, x))dx+

ˆ t

0

ˆ
R

(f(uε)η
′(uε)− q(uε))|f(uε)|E[uε]dsdx+ ε

ˆ t

0

ˆ
R
η′′(uε)(∂xuε)

2dsdx

=

ˆ
R
η(u0,ε)dx.

Now (3.10) follows from (3.9). �

Lemma 3.3. The following inequalities

‖f(uε(t, ·))‖L1(R) +

ˆ t

0

ˆ
R
|(f(uε)f

′(uε) +Q(uε))f(uε)|E[uε]dxds(3.12)

+ε

ˆ t

0

ˆ
R
|f ′′(uε)|(∂xuε)2dxds ≤ C,

‖Q(uε(t, ·))‖L1(R) ≤ C,(3.13)

‖f(uε(t, ·))‖L3(R) ≤ C,(3.14) ∥∥f ′(uε(t, ·))− 1
∥∥
L1(R) ≤ C,(3.15)

ε

ˆ t

0

ˆ
R
|f ′(uε)|(∂xuε)2dsdx ≤ C,(3.16)

hold for any ε > 0, t ≥ 0 and some constant C > 0 independent on t and ε, where

(3.17) Q(ξ) =
1

3

1

(1 + ξ)3
− 1

3
, −1 < ξ ≤ 0.

Proof. Estimate (3.12) follows from Lemma 3.2 by choosing

η(ξ) = −f(ξ) =
−ξ

1 + ξ
, q(ξ) = Q(ξ), −1 < ξ ≤ 0.

Indeed, for ξ ∈ (−1, 0],

η(ξ) =− f(ξ) ≥ 0,

η′(ξ) =− f ′(ξ) = − 1

(1 + ξ)2
,

η′′(ξ) =− f ′′(ξ) =
2

(1 + ξ)3
≥ 0.

Moreover, thanks to (3.2),ˆ
R
|η(u0,ε)| dx =

ˆ
R
|f(u0,ε)|dx = ‖f(u0,ε)‖L1(R) ≤ C,

that guarantees (3.9).
Estimate (3.13) follows from Lemma 3.2 by choosing

η(ξ) = Q(ξ), q(ξ) =

ˆ ξ

0
f ′(s)Q′(s)ds, −1 < ξ ≤ 0.
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Indeed, for ξ ∈ (−1, 0],

η(ξ) =Q(ξ) ≥ 0,

η′(ξ) =Q′(ξ) = − 1

(1 + ξ)4
,

η′′(ξ) =Q′′(ξ) =
4

(1 + ξ)5
≥ 0.

Moreover, thanks to (3.2), for every given −1 < δ < 0ˆ
R
|η(u0,ε)| dx ≤

1

3

ˆ
R

(
3|u0,ε|

(1 + u0,ε)3
+

3(u0,ε)
2

(1 + u0,ε)3
+

|u0,ε|3

(1 + u0,ε)3

)
dx

≤1

3

ˆ
{u0,ε<δ}

(
3|u0,ε|

(1 + u0,ε)3
+

3(u0,ε)
2

(1 + u0,ε)3
+

|u0,ε|3

(1 + u0,ε)3

)
dx

+
1

3

ˆ
{u0,ε≥δ}

(
3|u0,ε|

(1 + u0,ε)3
+

3(u0,ε)
2

(1 + u0,ε)3
+

|u0,ε|3

(1 + u0,ε)3

)
dx

≤1

3

ˆ
R

(
3

δ2
|u0,ε|3

(1 + u0,ε)3
+

3|u0,ε|
(1 + δ)3

+
3

|δ|
|u0,ε|3

(1 + u0,ε)3
+

3|u0,ε|2

(1 + δ)3
+

|u0,ε|3

(1 + u0,ε)3

)
dx

≤1

3

((
3

δ2
+

3

|δ|
+ 1

)
‖f(u0,ε)‖3L3(R) +

3 ‖u0,ε‖L1(R)

(1 + δ)3
+
‖u0,ε‖2L2(R)

(1 + δ)3

)

≤1

3

((
3

δ2
+

3

|δ|
+ 1

)
‖f(u0,ε)‖3L3(R) +

3 ‖u0,ε‖L1(R)

(1 + δ)3
+

3 ‖u0,ε‖2L1(R)

(1 + δ)3

)

≤1

3

((
3

δ2
+

3

|δ|
+ 1

)
C3 +

3 ‖u0‖L1(R)

(1 + δ)3
+

3 ‖u0‖2L1(R)

(1 + δ)3

)
,

that guarantees (3.9).
Estimate (3.14) follows follows from Lemma 3.2 by choosing

η(ξ) = −f3(ξ), q(ξ) = −3

ˆ ξ

0
(f ′(s))2(f(s))2ds, −1 < ξ ≤ 0.

Indeed, for ξ ∈ (−1, 0],

η(ξ) =− f(ξ) ≥ 0,

η′(ξ) =− 3f ′(ξ)f2(ξ),

η′′(ξ) =− 3f ′′(ξ)f2(ξ)− 6(f ′(ξ))2f(ξ) ≥ 0.

Moreover, thanks to (3.2), for every given −1 < δ < 0ˆ
R
|η(u0,ε)| dx =

ˆ
R
|f(u0,ε)|3dx = ‖f(u0,ε)‖3L3(R) ≤ C,

that guarantees (3.9).
On the other hand (3.15) follows from Lemma 3.2 by choosing

η(ξ) = f ′(ξ)− 1, q(ξ) =

ˆ ξ

0
f ′(s)f ′′(s)ds, −1 < ξ ≤ 0.

Indeed, for ξ ∈ (−1, 0],

η(ξ) =f ′(ξ)− 1 =
1

(1 + ξ)2
− 1 ≥ 0,

η′(ξ) =f ′′(ξ) = − 2

(1 + ξ)3
,
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η′′(ξ) =f ′′′(ξ) =
6

(1 + ξ)4
≥ 0.

Moreover, thanks to (3.2), for every given −1 < δ < 0ˆ
R
|η(u0,ε)|dx =

ˆ
R

(
1

(1 + u0,ε)2
− 1

)
dx = −

ˆ
R

ˆ u0,ε

0

2

(1 + y)3
dydx

≤
ˆ
R

2|u0,ε|
(1 + u0,ε)3

dx =

ˆ
{u0,ε<δ}

2|u0,ε|
(1 + u0,ε)3

dx+

ˆ
{u0,ε≥δ}

2|u0,ε|
(1 + u0,ε)3

dx

≤ 2

δ2

ˆ
{u0,ε<δ}

|u0,ε|3

(1 + u0,ε)3
dx+

ˆ
{u0,ε≥δ}

2|u0,ε|
(1 + δ)3

dx

≤ 2

δ2
‖f(u0,ε)‖3L3(R) +

2 ‖u0,ε‖L1(R)

(1 + δ)3
≤ 2

δ2
C3 +

2 ‖u0‖L1(R)

(1 + δ)3
,

that guarantees (3.9).
Finally, estimate (3.16) follows from Lemma 3.2 by choosing

η(ξ) = − log(1 + ξ), q(ξ) =

ˆ ξ

0
f ′(s)η′(s)ds, −1 < ξ ≤ 0.

Indeed, for ξ ∈ (−1, 0],

η(ξ) =− log(1 + ξ) ≥ 0,

η′(ξ) =− 1

1 + ξ
,

η′′(ξ) =f ′(ξ) =
1

(1 + ξ)2
≥ 0.

Moreover, thanks to (3.2),ˆ
R
|η(u0,ε)| dx = −

ˆ
R

log(1 + u0,ε)dx =

ˆ
R

ˆ 0

u0,ε

dy

1 + y
dx ≤

ˆ
R

|u0,ε|
1 + u0,ε

dx = ‖f(u0,ε)‖L1(R) ≤ C,

that guarantees (3.9). �

Lemma 3.4 (BV estimates on E[uε]). The family {E[uε]}ε>0 is bounded in W 1,1
loc ((0,∞)× R).

Proof. Observe that
∂xE[uε] = −f(uε)E[uε],

therefore thanks to Lemma 3.1 and (3.12) we have

(3.18) {∂xE[uε]}ε>0 is bounded in L1((0, T )× R) for any T > 0.

Moreover, using (1.12),

∂tE[uε] =E[uε]

ˆ ∞
x

f ′(uε(t, ξ))∂tuε(t, ξ)dξ

=− E[uε]

ˆ ∞
x

f ′(uε)∂x(f(uε)E[uε])dξ + εE[uε]

ˆ ∞
x

f ′(uε)∂
2
xxuεdξ

=E[uε]

ˆ ∞
x

∂x(Q(uε)E[uε])dξ + E[uε]

ˆ ∞
x

(f(uε)f
′(uε) +Q(uε))f(uε)E[uε]dξ

+ εE[uε]

ˆ ∞
x

∂x(f ′(uε)∂xuε)dξ − εE[uε]

ˆ ∞
x

f ′′(uε)(∂xuε)
2dξ

=−Q(uε)E[uε]
2 + E[uε]

ˆ ∞
x

(f(uε)f
′(uε) +Q(uε))f(uε)E[uε]dξ

− εE[uε]f
′(uε)∂xuε − εE[uε]

ˆ ∞
x

f ′′(uε)(∂xuε)
2dξ,
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where Q is defined in (3.17). By Lemma 3.1

|∂tE[uε]| ≤|Q(uε)|+
ˆ
R
|(f(uε)f

′(uε) +Q(uε))f(uε)|E[uε]dx

+ εf ′(uε)|∂xuε|+ ε

ˆ
R
|f ′′(uε)|(∂xuε)2dx.

Let T, R > 0 be given. We have thatˆ T

0

ˆ R

−R
|∂tE[uε]|dxdt ≤

ˆ T

0
‖Q(uε(t, ·))‖L1(R) dt

+ 2R

ˆ T

0

ˆ
R
|(f(uε)f

′(uε) +Q(uε))f(uε)|E[uε]dxdt

+
ε

2

ˆ T

0

∥∥f ′(uε(t, ·))− 1
∥∥
L1(R) dt+ εRT

+
ε

2

ˆ T

0

ˆ
R
f ′(uε)(∂xuε)

2dxdt

+ 2Rε

ˆ T

0

ˆ
R
|f ′′(uε)|(∂xuε)2dxdt,

therefore from Lemma 3.3 we deduce

(3.19) {∂tE[uε]}ε>0 is bounded in L1((0, T )× (−R,R)) for any T, R > 0.

Now our claim follows from (3.18), (3.19), and the last condition in (3.6). �

Lemma 3.5. There exist a function E and a sequence {εk}k∈N ⊂ (0,∞), εk → 0, such that

0 ≤ E ≤ 1, E ∈ BVloc((0,∞)× R),

E[uεk ]→ E , a.e. in (0,∞)× R and in Lploc((0,∞)× R), 1 ≤ p <∞.
(3.20)

Proof. Direct consequence of Lemma 3.4 and the Helly Theorem [3, Theorem 2.4]. �

Before stating our next lemma we recall two well-know results which will play a key role in what
follows.

Proposition 3.1 (see [13, Theorem 5], [14]). Let {uν}ν>0 be a family of functions defined on (0,∞)×R.
If {uν}ν∈N lies in a bounded set of L1

loc((0,∞)× R) and for any constant c ∈ R the family

{∂t |uν − c|+ ∂x(sign (uν − c) (f(uν)− f(c))E)}ν>0

lies in a compact set of H−1loc ((0,∞)× R), then there exist a sequence {νn}n∈N ⊂ (0,∞), νn → 0, and a
map v ∈ L∞((0,∞)× R) such that

vνn → v a.e. and in Lploc((0,∞)× R), 1 ≤ p <∞.

Proposition 3.2 (see [12]). Let Ω be a bounded open subset of RN , N ≥ 2. Suppose the sequence
{Ln}n∈N of distributions is bounded in W−1,∞(Ω). Suppose also that

Ln = L1,n + L2,n,
where {L1,n}n∈N lies in a compact subset of H−1loc (Ω) and {L2,n}n∈N lies in a bounded subset ofMloc(Ω).

Then {Ln}n∈N lies in a compact subset of H−1loc (Ω).

Lemma 3.6. There exist a function u and a subsequence {εh}h∈N ⊂ (0,∞), εh → 0, such that

− 1 ≤ u ≤ 0, sup
t>0
‖u(t, ·)‖L1(R) ≤ ‖u0‖L1(R) ,

uεh → u, a.e. in (0,∞)× R and in Lploc((0,∞)× R), 1 ≤ p <∞,
f(uεh)→ f(u), a.e. in (0,∞)× R and in Lploc((0,∞)× R), 1 ≤ p < 3,

E = E[u].

(3.21)
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Proof. Let c ∈ R be fixed. We claim that the family

{∂t |uεk − c|+ ∂x(sign (uεk − c) (f(uεk)− f(u))E)}ε>0

is compact in H−1loc (RN × (0,∞)). For the sake of notational simplicity we introduce the following
notations:

η0(ξ) = |ξ − c| − |c| ,
q0(ξ) = sign (ξ − c)

(
f(ξ)− f(c)

)
+ sign (−c) f(c).

Let us remark that

η0(0) = q0(0) = 0,

∂t |uεk − c|+ ∂x(sign (uεk − c)
(
f(uεk)− f(c)

)
E) = ∂tη0(uεk) + ∂x(q0(uεk)E).

(3.22)

Let {(ηε, qε)}ε>0 be a family of maps such that

ηε ∈ C2([−1, 0]), qε ∈ C2([−1, 0]),

q′ε = f ′η′ε, η′′ε ≥ 0

‖ηε − η0‖L∞(−1,0) ≤ ε
3,

∥∥η′ε − η′0∥∥L1(−1,0) ≤ ε
3,∥∥η′ε∥∥L∞(−1,0) ≤ 1, ηε(0) = qε(0) = 0,

(3.23)

for any ε > 0. By (1.12)

∂tη0(uεk) + ∂x(q0(uεk)E)

=∂tηεk(uεk) + ∂x(qεk(uεk)E[uεk ]) + ∂t (η0(uεk)− ηεk(uεk))

+ ∂x((q0(uεk)− qεk(uεk))E) + ∂x(qεk(uεk)(E − E[uεk ]))

= (f(uεk)η′εk(uεk)− qεk(uεk))f(uεk)E[uεk ]︸ ︷︷ ︸
I1

+ εk∂
2
xxηεk(uεk)︸ ︷︷ ︸

I2

− εkη′′εk(uεk)(∂xuεk)2︸ ︷︷ ︸
I3

+ ∂t (η0(uεk)− ηεk(uεk))︸ ︷︷ ︸
I4

+ ∂x((q0(uεk)− qεk(uεk))E)︸ ︷︷ ︸
I5

+ ∂x(qεk(uεk)(E − E[uεk ]))︸ ︷︷ ︸
I6

.

Thanks to Lemma 3.2 and (3.23) we have

‖I1‖L1((0,∞)×R) ≤ ‖ηεk(u0,εk)‖L1(R) ≤ ‖u0,εk‖L1(R) ,

εk
2

ˆ ∞
0

ˆ
R
|η′εk(uεk)|2(∂xuεk)2dxdt ≤ εk2

ˆ ∞
0

ˆ
R

(∂xuεk)2dxdt ≤ εk
2

∥∥u20,εk∥∥L1(R) → 0,

εk

ˆ ∞
0

ˆ
R
η′′εk(uεk)(∂xuεk)2dxdt ≤ ‖ηεk(u0,εk)‖L1(R) ≤ ‖u0,εk‖L1(R) ,

therefore

I1 is bounded in L1((0,∞)× R),

I2 → 0 in H−1((0,∞)× R),

I3 is bounded in L1((0,∞)× R).

Thanks to Lemma 3.1, (3.20) and (3.23) we have

‖η0(uεk)− ηεk(uεk)‖L∞((0,∞)×R) ≤‖η0 − ηεk‖L∞(−1,0) ≤ εk
3 → 0,

‖(q0(uεk)− qεk(uεk))E‖L∞((0,∞)×R) ≤‖q0 − qεk‖L∞(− 1
1+εk

,0)
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≤
∥∥f ′∥∥

L∞(− 1
1+εk

,0)

∥∥η′εk − η′0∥∥L1(− 1
1+εk

,0)

≤(1 + εk)
2

εk2
εk

3 → 0,

hence

I4 → 0 in H−1loc ((0,∞)× R),

I5 → 0 in H−1loc ((0,∞)× R).

Finally, (3.23) gives for ξ ∈ (−1, 0]

|qεk(ξ)| ≤
∣∣∣∣ˆ ξ

0
f ′(s)|η′εk(s)|ds

∣∣∣∣ ≤ ∣∣∣∣ˆ ξ

0
f ′(s)ds

∣∣∣∣ ≤ |f(ξ)|.

By (3.14), Lemmas 3.2 and 3.5, for any K ⊂⊂ (0, T )× R, we get

‖qεk(uεk)(E − E[uεk ])‖L2(K) ≤‖qεk(uεk)‖L3(K) ‖E − E[uεk ]‖L6(K)

≤T 1/3 ‖f(u0,εk)‖L3(R) ‖E − E[uεk ]‖L6(K)

≤T 1/3C‖E − E[uεk ]‖L6(K) → 0,

therefore
I6 → 0 in H−1((0,∞)× R).

Now our claim follows from Propositions 3.1 and 3.2. �

Proof of Theorem 3.1. We have to prove that the function u of Lemma 3.6 is an entropy solution of
(1.1) and (1.2). Let η ∈ C2(R) be a convex entropy with flux q defined by q′ = η′f ′. Thanks to Lemmas
3.5 and 3.6 we have

η(uεh)→ η(u), a.e. and in L1
loc((0,∞)× R),

q(uεh)→ q(u), a.e. and in L1
loc((0,∞)× R),

(f(uεh)η′(uεh)− q(uεh))f(uεh)E[uεh ]→ (f(u)η′(u)− q(u))f(u)E[u], a.e. and in L1
loc((0,∞)× R).

Therefore, we can prove (3.3) arguing as in the proof of Theorem 2.1.
Let us turn to (3.5). Differentiating the equation in (1.12) with respect to x, we get (2.12). Thanks

to (3.6) and (3.14), we have

d

dt

ˆ
R
|∂xuε|dx =

ˆ
R
∂2txuεsign (∂xuε) dx

=ε

ˆ
R
∂3xxxuεsign (∂xuε) dx−

ˆ
R
∂x
(
f ′(uε)E[uε]∂xuε

)
sign (∂xuε) dx

+ 2

ˆ
R
f(uε)f

′(uε)E[uε]|∂xuε|dx−
ˆ
R
f3(uε)E[uε]sign (∂xuε) dx

=−ε
ˆ
R

(∂2xxuε)
2dδ{∂xuε=0}︸ ︷︷ ︸

≤0

+

ˆ
R
f ′(uε)E[uε]∂xuε∂

2
xxuεdδ{∂xuε=0}︸ ︷︷ ︸

=0

+ 2

ˆ
R
f(uε)f

′(uε)E[uε]|∂xuε|dx︸ ︷︷ ︸
≤0

−
ˆ
R
f3(uε)E[uε]sign (∂xuε) dx

≤
ˆ
R
|f(uε)|3dx = ‖f(uε(t, ·))‖3L3(R) ≤ C

3,

where δ{∂xuε=0} is the Dirac delta concentrated on the set {∂xuε = 0}. An integration over (0, t) and
(3.4) give

‖∂xuε(t, ·)‖L1(R) ≤ ‖∂xu0,ε‖L1(R) + tC3 ≤ TV (u0) + tC3.
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Therefore, (3.5) follows from (3.3). �
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