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Abstract

1 The recent boom in deep learning has revealed that the application of deep

neural networks is a valuable way to address network intrusion detection prob-

lems. This paper presents a novel deep learning methodology that uses convo-

lutional neural networks (CNNs) to equip a computer network with an effective

means to analyse traffic on the network for signs of malicious activity. The

basic idea is to represent network flows as 2D images and use this imagery rep-

resentation of the flows to train a 2D CNN architecture. The novelty consists

in deriving an imagery representation of the network flows through performing

a combination of the nearest neighbour search and the clustering process. The

advantage is that the proposed data mapping method allows us to build im-

agery data that express potential data patterns arising at neighbouring flows.

The proposed methodology leads to better predictive accuracy when compared

to competitive intrusion detection architectures on three benchmark datasets.
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1. Introduction

The recent trend in cybersecurity research is recognising deep learning as a

definitely relevant approach in computer network security [1, 2], since thousands

of zero-day attacks (e.g. new variants of attack) occur due to the addition of

various protocols, and most of them are small variants of previously known5

cyber-attacks [3]. This situation indicates that even advanced mechanisms, such

as conventional machine learning systems, try to face the difficulty of detecting

these small mutants of attack over time. However, the non-linear activation

layers of deep neural networks may actually facilitate the discovery of effective

patterns, which keep their effectiveness also under drifting conditions [4].10

Following this research direction, various deep learning architectures (see [5]

for a survey) have been recently investigated in the intrusion detection literature

[6]. However, these methods neglect possible data patterns that may emerge,

accounting for network flows within a neighbourhood. They mainly perform

learning, accounting for the vector-type representation of the characteristics of15

single flows. On the other hand, our idea is that the knowledge hidden along

the boundary of the neighbour flows, which belong to either the same class or

the opposite class of a target flow, may be processed to learn a more accurate

intrusion detection model.

So, the primary innovation of this study is the definition of a new deep20

learning pipeline, that couples the characteristics of a target network flow to the

characteristics of the neighbour of the flow under consideration, which belongs

to the same class, as well as the characteristics of the neighbour that belongs to

the opposite class of the target flow. Enriching the representation of any target

flow with neighbourhood information helps deep learning to capture the specific25

behaviour of the considered feature space inside the input region of the data,

belonging to the same class as the imagery target sample as well as along the

boundary of the input regions of data associated with the class of the target

sample and the opposite class. This allows us to diminish the number of mis-
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classifications to discriminate network intrusions from normal flows. Another30

innovation is that this joint information – the characteristics of the network

flows coupled to the characteristics of the neighbour flows – is represented as

multiple rows of image-like 2D pixel grids, instead of being concatenated into 1D

vectors. By introducing this imagery representation of the network traffic data,

we are able to properly process network flows as the input of a 2D Convolutional35

Neural Network (CNN)[7] architecture.

In particular, the 2D CNN architecture is trained to learn a classification

model, in order to discriminate attacking network flows from normal ones, based

on the image of the characteristics of the flow under consideration and the char-

acteristics of its neighbours. We note that 2D CNNs are designed to work with40

grid-structured inputs, which have strong spatial dependencies in local regions

of the grid [7]. To produce this spatial dependency condition, we adopt an im-

agery encoding process of the network traffic data, that is able to reinforce the

distribution of similar characteristics (pixels) at close columns. In this way, we

are able to take advantage of the ability of 2D CNNs to apply filters on spatially-45

neighbouring “pixels” of input images, in order to detect spatial patterns (e.g.

edges, shading changes, shapes and objects) [8]. These spatial patterns con-

tribute to extracting significant features from the input, thus gaining predictive

accuracy.

Specifically, in this paper, we define a new multi-stage intrusion detection50

methodology that cascades:

• an autoencoder that is used to build a high-level, robust feature vector

representation of network data flows;

• a combination of the clustering process and the nearest neighbour search,

that is performed in order to represent the network flows as 2D grids of55

pixels, by accounting for a clustering model of the neighbouring informa-

tion;

• a 2D CNN architecture that is trained on the 2D imagery representation
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of the network flows, in order to build a classification model that discrim-

inates the attacking flow behaviour from the normal one.60

We note that autoencoders, nearest neighbour search, clustering and 2D

CNNs have already been explored in the literature. However, to the best of our

knowledge, the novelty of this study is the specific formulation adopted for these

components (in particular, for deriving the imagery representation of the net-

work flows), as well as the effectiveness of the combination of these components65

in a methodology that actually outperforms the intrusion detection accuracy of

several state-of-the-art competitors on various benchmark data sets. In particu-

lar, this study contributes to proving that the formulated nearest cluster-based

method is an effective means to delineate intrusion-informative patterns, emerg-

ing on flows within a neighbourhood. These patterns have a geometric shape,70

which allows us to build a 2D representation of network flows. So, we are able

to train 2D CNNs that achieve classification accuracy gain by speeding-up both

learning and predicting operations. In general, our methodology gains in ac-

curacy compared to various intrusion detection models, comprising those using

convolutions (but without neighbouring patterns), in order to yield the final75

classifications.

This paper is organised as follows. The related works are presented in Section

2. The formulated machine learning methodology is described in Section 3,

while the implementation details are reported in Section 4. The findings in the

evaluation of the proposed strategy are discussed in Section 5. Finally, Section 680

refocuses on the purpose of the research, draws conclusions and proposes future

developments.

2. Related works

Although previous research on intrusion detection is mainly populated with

conventional machine learning techniques [9, 10, 11], the recent advances made85

in deep learning have put the problem of intrusion detection at a more challeng-

ing level of study and relative computational solutions at an improved level of
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performance [12, 13, 14, 15, 16]. Since in this paper we revamp 2D CNN archi-

tectures in combination with clustering and nearest-neighbour search, we focus

the overview mainly on the cybersecurity literature that applies these methods90

for intrusion detection.

The CNNs define a type of robust, popular neural network designed to pro-

cess input data stored in arrays [7]. These neural networks are commonly used

for processing 2D arrays of images or audio spectrograms. They are also used

frequently for three-dimensional (3D) arrays (videos and volumetric images).95

Their use in 1D arrays (signals) is less frequent, but is increasing in cybersecu-

rity [17, 18, 17].

The success of 2D CNNs is largely attributed to the use of local filtering

and pooling in the network architecture. These operations enable the network

to capture deeply the spatial structure of image data. Although 2D CNNs are100

mainly used in computed vision, the authors of both [19] and [20] originally

adopt 2D CNNs in intrusion detection and focus their research on how network

flows can be mapped into 2D image arrays, expressing latent characteristics of

input data within a 2D data representation. In particular, Li et al. [19] de-

scribe a quantization method to convert the value of each numeric feature into105

an 8-digit binary pixel. The input representation built with this method is fi-

nally processed as the input of two popular CNNs, that is, ResNet50 [21] and

GoogLeNet [22]. Kim et al. [20] extend the method described in [19] by intro-

ducing an RGB-like encode of the data. This input representation is processed

in combination with GoogLeNet Inception V3 [22]. The experiments described110

in [20] prove that their approach outperforms the seminal one in [19]. Millar

et al. [23] introduce an image encoding approach, named Flow-Image, which is

inspired by the natural language processing theory. They process network flow

samples that represent sequences of ten packets. These samples are mapped

into a 2D representation by encoding consecutive packets on consecutive rows.115

All the above-mentioned studies with 2D CNN architectures are close to the

research described here, as they all introduce possible 2D representations of net-

work flows, in order to train 2D CNNs. However, to the best of our knowledge,
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none of the existing state-of-the-art algorithms propose a 2D representation of

the network flows, which encodes the neighbouring information in the imaging120

step. On the other hand, this is one of the innovative contributions of this

study, which actually aids the proposed intrusion detection system to be more

accurate than its competitors.

In addition, we note that, even if the recent research trend in intrusion de-

tection ratifies the prevalence of the use of deep learning, commonly coupled125

with the supervised paradigm, there are also a few studies experimenting clus-

tering, hence unsupervised learning, as a means to gain accuracy and/or make

the learning process scalable. While staying under the umbrella of conventional

machine learning, Salo et al. [24] perform clustering for detecting density regions

of attacking or normal network flows, and train a conventional classifier from130

each cluster. A similar idea has been recently investigated in [25] to deal with

the imbalanced condition, but in malware classification problems. Focusing on

the scalability issue, Peng et al.[26] demonstrate that clustering performed with

Mini Batch K-means can remain accurate, even scaling well with large amounts

of network flow data.135

On the other hand, Benaddi et al. [27] show that clustering can be combined

with k-NN to reduce the amount of training data and speed up the nearest

neighbour prediction process. This specific combination of clustering and the

nearest-neighbour search is also developed in our study, since we perform the

nearest-neighbour search on the cluster centroids of both the attacks and the140

normal samples, respectively. However, the authors of [27] use clustering to

reduce the amount of training data and the nearest-neighbour search as the

lazy learner of the intrusion detection pattern. On the contrary, we consider

the nearest-neighbour search in combination with clustering to augment the

training data representation and derive a 2D arrangement of the network flows145

(jointly with their neighbours). In this way, the intrusion detection pattern can

be, in our proposal, deeply learned with a 2D CNN architecture, that is, trained

on the neighbourhood-enriched 2D training set.

Finally, there are a few recent studies which cascade clustering and classi-

6



Table 1: Notation

Symbol Description

X original feature space

M size of X

X′ encoder-level feature space

m size of X′ with m ≤M

Y target variable with domain {attack, normal}

T training collection of network flows

e network flow e = (x′, y) with x′ ∈ X′ and y ∈ Y

c+ the nearest cluster centre with y = normal

c− the nearest cluster centre with y = attack

E 2D image associated with e

x′ feature vector x′ ∈ X′

x′+ feature vector x′ ∈ X′ associated with e+

x′− feature vector x′ ∈ X′ associated with e−

k number of cluster centres

fication also in the deep learning scenario. Kenaza et al. [28] perform spectral150

clustering and consider the distances of a training sample from the cluster cen-

tres, to produce the input space of a supervised deep neural network. Yang

et al. [29] apply a fuzzy clustering stage to reduce the amount of the training

data and the possible imbalance of the samples. Moreover, similarly to [24],

they use each cluster to train its own sub-deep belief network classifier. The155

predictions of all sub-DBNs are aggregated on the basis of fuzzy membership

weights. These are calculated for each test sample, according to the nearest

neighbour criterion, in the cluster used to train each sub-DBN.

Similarly to the above-mentioned studies, we also adopt clustering to speed

up the computation. However, we pursue this speeding-up with respect to the160

imaging stage, while the related works listed above mainly use clustering to

accelerate the deep learning stage, by reducing the volume of data processed to

train the networks. We also perform experiments proving that the efficiency in

our methodology is gained by preserving the accuracy of the final CNNs trained

with the produced images.165
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Figure 1: The CLAIRE methodology. It takes as input the training samples spanned on the

original feature vector space – X – with size M , in order to train an autoencoder (left), whose

encoder layer is used to extract a compressed, latent, sophisticated feature representation –

X′ – of the input, with size m with m ≤ M (bottom-center). The encoder-level feature vector

representation is mapped into 2D images through nearest neighbouring and clustering. For

each training sample (e) the 2D image is built using the nearest normal cluster (in blue) and

the nearest attacking cluster (in red). Finally, 2D images are used as input to train a CNN

architecture (bottom-right).

3. The intrusion detection methodology of CLAIRE

In this Section we describe the intrusion detection methodology, named

CLAIRE (CLuster-based neArest neighbour-based IntRusion dEtection through

convolutional neural networks), formulated in this study. The methodology is

illustrated in Figure 1, while the adopted notation is introduced in Table 1.170

First we train an autoencoder [30] to build a high-level, robust feature repre-

sentation of the characteristics of the input network flow data. The autoencoder

consists of an encoder function x′ = f(x) – mapping the input x to a hidden

code x′ – and a decoder which produces the reconstructed input x̂ = g(x′). We

set the output layer of the encoder – X′ – with a lower dimensionality than175

the input layer X, so that the feature vector f(x) is regarded as a compressed

representation of the input x. We consider the compressed representation X′

(in place of X) in the subsequent stages of the methodology.
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Figure 2: A portion of the heat map of CICIDS2017Train. In Figure 2a the columns are

associated with the features of the output encoder layer X′ of the autoencoder architecture.

In the heat map shown in Figure 2a, the columns of Figure 2a have been permuted according

to the distance information.

Second we permute the columns of X′ by minimising the distance between

the consecutive features of X′. The permutation algorithm is described in Ap-180

pendix A. The feature permutation step introduces an inter-column continuity

in the 1D feature vector by reinforcing the distribution of similar features at

close columns. This is highlighted in Figure 2. In particular, Figure 2b shows

that the proposed distance-based permutation of the columns, built at the out-

put encoder layer (shown in Figure 2a), contributes to better delineating the185

data continuity phenomenon across close columns.

Third we map X′ to the 2D input of a CNN. This is done through a combina-

tion of the clustering step and the nearest neighbouring search. The clustering

step is performed with the K-Means algorithm [31], run on the input normal

data and the input attacking data separately. For each clustering execution,190

samples labelled with the same class are processed as they are spanned on X′,

by resorting to the Mini Batch K-means [32] algorithm.2 In particular, for a

2This clustering algorithm is selected according to the analysis performed by [26], who

proved that clustering of network flows performed with Mini Batch K-means can remain
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given training sample e = (x′, y), with x′ ∈ X′ and y ∈ {normal, attack}, we

determine both the nearest normal cluster centre neighbour – c+ – and the near-

est attacking cluster centre neighbour – c− – of this target sample in the input195

space. The neighbourhood relation is evaluated by computing the Euclidean

distance on X′. We account for this neighbourhood information and transform

the 1D representation of e into a 2D representation (


x′

x′+

x′−

 , y), where x′,

x′+ and x′− are feature vectors spanned on X′ of e, c+ and c−, while y is the

class associated with e in Y . Therefore, by computing this data transformation200

method, we are able to associate every target sample e with a 3×m× 1 image

E spanned on three rows (one row for each sample under consideration) and m

columns (one column for each encoder feature of X′), respectively.

Figure 3a shows the 2D array associated with a normal network, while Fig-

ure 3b shows the greyscale image associated with this 2D array. We note that,205

thanks to the permutation step, Figure 3b highlights the phenomenon of con-

tinuity on the values of certain features at neighbour samples (e.g. the intra-

column values of features X ′2, X ′3, X ′4 and X ′9). On the other hand, there

are also columns, which draw attention to a change (discontinuity) that occurs

when moving from normal behaviour to attacking behaviour. In Figure 3b, this210

change range is high on feature X ′1, that assumes similar values (0.46 and 0.48)

on both the normal target sample e and its normal nearest neighbour c+, while

it assumes a significantly different value on the attacking nearest neighbour c−

(0.14). The knowledge hidden in the inter-row distribution of some columns is

expected to aid the ability of 2D CNN to discriminate between classes.215

Finally, we train the 2D CNN architecture, in order to process the 2D data

that have been produced as a representation of the input network flows. This

neural network is designed according to the theory on CNNs [7] (see Appendix

B), in order to discriminate attacks from normal flows.

accurate, even scaling well with large amounts of data.
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X ′1 X ′2 X ′3 X ′4 X ′5 X ′6 X ′7 X ′8 X ′9 X ′10

x′ 0.46 0 0.014 0 0.57 1.91 2.13 0.36 0 0.08

x′+ 0.48 0 0.07 0 0.53 1.93 2.14 0.34 0 0.12

x′− 0.14 0 0 0 0.47 1.80 1.35 0 0 0.23

(a) 2D array

(b) 2D image

Figure 3: 2D image representation constructed, with m = 10, for a normal network flow

sample e, collected in dataset CICIDS2017. The space of the centres of the clusters detected

by reducing both the normal input data and the attacking input data are searched to identify

neighbours e+ and e−. The 2D array of the selected network flow is reported in Figure 3a,

while the greyscale image associated with this 2D array is shown in Figure 3b.

In conclusion, we consider the time complexity of the learning stage of220

the proposed methodology. The time cost of the autoencoder layers is O

(

dA∑
l=1

nl−1nl) [33], where dA is the number of layers in the autoencoder, l is

the index of a layer and nl is the number of nodes in layer l. The time cost of

performing clustering with Mini Batch K-means is O(N + btk) [34], where N

is the number of input network flows, b is the given mini batch size, t is the225

number of iterations and k is the number of clusters. The time cost of searching

the nearest neighbour cluster centroids of the network data flows is O(Nk). So,

the cost of mapping the 1D feature vector representation of the encoded input

data into 2D arrays is O(N + btk +Nk). Finally, the time cost of the convolu-
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tion layers3 is O (

dC∑
l=1

nl−1s
2
l nlm

2
l ) [35], where dC is the number of convolution230

layers in the 2D CNN, l is the index of a convolution layer, nl is the number of

filters at layer l, s2
l is the size of the 2D filters at layer l and m2

l is the size of

the output feature map at layer l.

3.1. Some inherent remarks

Some inherent remarks concern the motivation behind the decision to use235

an autoencoder, clustering and an image representation of the network traffic

in the proposed method.

The autoencoder introduces the compressed representation X′ of the charac-

teristics of the network flows, that is considered instead of X in the subsequent

stages of the methodology. It allows us to ease the computation of the classi-240

fication model without affecting its accuracy. The additional advantage is that

learning the autoencoder with a non-linear activation function and multiple lay-

ers allows us to capture non-linear patterns in network flow data, by building a

more robust encoding of their latent data distributions.

The clustering step is introduced since the cost of the nearest neighbouring245

search is linear in the number of candidate neighbours explored. The clustering

step allows us to reduce the neighbour candidate volume. In addition, the cluster

centres learn a generalisation of the training samples. So, processing the cluster

centres (instead of the original samples) should limit the possible phenomenon

of overfitting that may occur during the nearest neighbour search.4250

3As shown in [35], the time cost of fully connected layers and pooling layers can be ignored

in the cost analysis. These layers often take 5-10% of the computational time. Therefore,

as in [35], we may only consider the trade-off among the convolutional layers. Regarding the

pooling operations, the authors of [35] also show that the addition of pooling layers does not

change the complexity of subsequent convolution layers in a 2D CNN architecture. So, based

upon these considerations, we consider the presence of pooling operations which are irrelevant

for the complexity of the subsequent convolution layers.
4Based upon these considerations, we expect that clustering speeds up the nearest neigh-

bour search and aids the accuracy of a classification model, learned by accounting for nearest
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Final remarks concern the actual advantages of inputting the described 2D

representation of the network flow samples to the CNN architecture. One ad-

vantage of a 2D CNN architecture is capturing possible spatial contiguity in

2D data [36]. The produced image representation of the input data allows us

to depict potential data patterns arising at neighbour samples. In particular,255

the neighbourhood information of any target sample highlights the specific be-

haviour of the considered feature space. This space is located inside the input

region of the data, belonging to the same class as the imagery target sample,

as well as along the boundary of the input regions of data associated with the

target sample class and the opposite class.260

4. Implementation details

CLAIRE has been implemented in Python 2.7. The source code is available

online.5 The deep neural network architectures are developed in Keras 2.36 – a

high-level neural network API with TensorFlow7 as the back-end.

For each dataset we conduct an automatic hyper-parameter optimization,265

using the tree-structured Parzen estimator algorithm, as implemented in the

Hyperopt library [37]. This hyper-parameter optimization is done by using 20%

of the entire training as a validation set, according to the Pareto Principle [38].

In particular, we randomly select the validation set with the stratified sampling

procedure [39]. So, in CLAIRE, we automatically choose the configuration of270

the parameters that achieves the best validation loss. The values of the hyper-

parameters, automatically explored with the tree-structured Parzen estimator,

are reported in Table 2. The effectiveness of the configuration of the hyper-

parameters, that is automatically selected by exploring twenty trials generated

on the range of values reported in Table 2, is evaluated in Section 5.4.275

neighbour information. The experimental study described in Section 5.3 provides the empirical

evidence of the soundness of these considerations.
5https://github.com/gsndr/CLAIRE
6https://keras.io/
7https://www.tensorflow.org/
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Table 2: Hyper-parameter search space for both the autoencoders and the 2D CNNs.

autoencoders classifier

batch size {25, 26, 27, 28, 29 } {25,26, 27, 28, 29 }

learning rate [0.0001, 0.01] [0.0001, 0.01]

dropout [0,1] [0,1]

Table 3: Structure and configuration of the Autoencoder. FC denotes a fully-connected layer.

The mean squared error (mse) is used as the loss function. The rectified linear unit (ReLu)

is selected as the activation function for each hidden layer. The Linear activation function is

used in the last layer.

Layer Type #Neurons Activation function

1 FC 80 ReLu

2 FC 30 ReLu

3 FC 10 ReLu

4 Dropout 10

5 FC 30 ReLu

6 FC 80 Linear

The autoencoder architecture comprises five fully-connected (FC) layers and

one dropout layer, in order to prevent overfitting. The details of the configura-

tion of this architecture are reported in Table 3. The 2D CNN architecture con-

sists of three convolutional layers, two dropout layers and three fully-connected

(FC) layers (see Figure 4). The network takes a training set of 2D samples as280

input and predicts a Bernoulli probability. The details of the configuration of

the CNN architecture are reported in Table 4. Both the architectures select the

rectified linear unit (ReLu) [40] as the activation function for each layer. This

decision is motivated by the recent literature [16], which has proved that the

best results are commonly achieved by using this activation function.285

We note that the 2D CNN architecture described does not comprise pooling

operations. This decision follows the conclusions drawn in [41], which have high-

lighted that including explicit pooling operations does not always improve the

performance of CNNs. We empirically investigate the effectiveness of these con-

clusions in the intrusion detection scenario addressed in this study. In particular,290

14



Table 4: Structure and configuration of the 2D CNN. The binary-cross entropy is used as the

loss function. The rectified linear unit (ReLu) is selected as the activation function for each

layer.

Layer Type #Neurons #Filters filter size stride Activation function

1 Conv2D 32 2× 2 1 ReLu

2 Dropout

3 Conv2D 64 2× 2 1 ReLu

4 Dropout

5 Conv2D 128 1× 2 1 ReLu

6 Flatten

7 FC 256 ReLu

8 FC 1024 ReLu

9 FC 2 Softmax

Text

Attacks/
Normal

F = 32
stride= 1
Kernel =

2 x 2

Input
3 x 10 x 1

Convolutional
2 x 9 x 32

Dropout

F = 64
stride= 1
Kernel =

2 x 2

Convolutional
1 x 8 x 64

Text

Dropout TextFC
1024

Softmax

F = 128
stride= 1
Kernel =

1 x 2

Convolutional
1 x 7 x 128

Text

TextFC
256

Figure 4: 2D CNN architecture of CLAIRE.

the experimental study described in Section 5.3 shows that the performance of

CLAIRE does not actually benefit from the addition of pooling layers.

The networks are trained with mini-batches by back-propagation, and the

gradient-based optimisation is performed using the Adam update rule [42]. The

weights are initialized following the Xavier scheme. Furthermore, a maximum295

number of epochs equal to 150 has been set, retaining the best models and using

an early stopping approach that achieves the lowest loss on the validation set

(the same set used for the hyper-parameter optimization).
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The Mini-Batch K-means8 algorithm is implemented in the Scikit-learn li-

brary.9 This implementation is run with the default parameter configuration300

(of mini-batch size and number of iterations), except for the number of clusters

– k. The sensitivity of the intrusion detection methodology to the set-up of k

is investigated in Section 5.3.

5. Empirical evaluation

We consider three benchmark datasets (see Section 5.1), in order to eval-305

uate the effectiveness of the intrusion detection methodology implemented by

CLAIRE. Each dataset includes both a labelled training set – processed to learn

the intrusion detection model – and a testing set – considered to evaluate the

intrusion detection ability of the trained model. In particular, the performance

of CLAIRE is measured in terms of accuracy and efficiency (see Section 5.2).310

The presentation of the results is organised as follows. First we evaluate

the sensitivity of the performance of CLAIRE to the size of the clustering step

(i.e. to the number of clusters) performed during the nearest neighbour search

of the imaging stage, as well as to the use of pooling operations in the 2D CNN

architecture. Then we study the effectiveness of the hyper-parameter optimiza-315

tion that CLAIRE performs during the training of its deep neural networks (see

Section 5.4). Subsequently, we discuss the accuracy results that are reported

in the recent intrusion detection literature and which are achieved by process-

ing the datasets also considered in our study (see Section 5.5). Finally, we

perform an ablation study (see Section 5.6), where we investigate how both the320

cluster-based nearest neighbour information and the 2D convolutions can jointly

contribute to gain accuracy in the intrusion detection model learned by CLAIRE.

This analysis also verifies the robustness of this contribution to the imbalance

condition.

8https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

MiniBatchKMeans.html
9https://scikit-learn.org/stable/
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Table 5: Dataset description. For each dataset we collect: the number of attributes, the total

number of network flow samples collected in the dataset, the number of normal network flows

(and their percentage of the total size), as well as the number of attacking flows (and their

percentage of the total size).

Dataset

KDDCUP99 UNSW-NB15 CICIDS2017

Attributes

Total 42 43 79

Binary 6 2 18

Categorical 3 3 -

Numerical 32 37 60

Class 1 1 1

Training set

Total 494021 82332 100000

Normal flows 97278 (19.7%) 37000 (44.9%) 80000 (80%)

Attacking flows 396743 (80.3%) 45332 (55.1%) 20000 (20%)

Testing set

Total 311029 175341 900000

Normal flows 60593 (19.5%) 56000 (31.9%) 720000 (80%)

Attacking flows 250436 (80.5%) 119341 (68.1%) 180000 (20%)

5.1. Dataset description and experimental methodology325

We consider three benchmark intrusion detection datasets, that is, KDD-

CUP99,10 UNSW-NB1511 and CICIDS2017.12 KDDCUP99 is a benchmark

dataset that is commonly used for the evaluation of intrusion detection sys-

tems also in recent studies [43, 44, 45]. In this study, we consider 10%KDD-

CUP99Train for the learning stage, while we use the entire testing set, denoted330

as KDDCUP99Test, for the evaluation stage.13 This experimental scenario,

with both 10%KDDCUP99Train and KDDCUP99Test, is commonly used in

10http://kdd.ics.uci.edu//databases//kddcup99//kddcup99.html
11https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/

ADFA-NB15-Datasets/
12https://www.unb.ca/cic/datasets/ids-2017.html
1310%KDDCUP99Train and KDDCUP99Test are populated with the data stored in kd-

dcup.data 10 percent.gz and corrected.gz at http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html
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the literature (e.g. [14, 46, 47]). UNSW-NB15 has recently been used in the

evaluation of various intrusion detection methodologies [20, 48, 29, 49]. Fi-

nally, CICIDS2017 is commonly used in the evaluation of anomaly detection335

methodologies with the training performed on the first day [50, 51]. However,

a few recent studies consider these data also in the evaluation of classification

methodologies, as we do in this paper [20, 52, 46, 53]. In our experimental study

we consider the training and testing sets of CICIDS2017, built according to the

strategy described in [20]. Specifically, we build one training set with 100K sam-340

ples and one testing set with 900K samples. Both training and testing samples

are randomly selected from the entire 5-day log. For the creation of both the

training and testing set, we used stratified random sampling. A summary of

the characteristics of the datasets considered in this experimental investigation

is presented in Table 5.345

5.2. Evaluation metrics

The overall accuracy performance of the proposed methodology is measured

by analysing the F1-score of the intrusion detection models learned. This is

the harmonic mean of Precision and Recall, where Precision measures the ability

of an intrusion detection system to identify only the attacks, while Recall can350

be thought of as the system’s ability to find all the attacks. The higher the

F1-score, the better the balance between precision and recall achieved by the

algorithm. On the contrary, the F1-score is not so high when one measure is

improved at the expense of the other. In addition, we consider Accuracy (that

is measured in the evaluation of various competitors). This is the ratio of flows355

correctly labelled on all flows tested. The mathematical formulation of these

accuracy metrics is reported in Table 6.

The efficiency performance is evaluated with the computation time spent

training the intrusion detection model and the average time spent processing

every testing sample. They are collected on a Linux machine with an Intel(R)360

Core(TM) i7-9700F CPU @ 3.00GHz and 32GB RAM. All the experiments have

been executed on a single GeForce RTX 2080. The training TIME is measured
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Table 6: Evaluation metrics: Accuracy, Precision, Recall and F1-score. These metrics are

computed by accounting for the number of true positive—TP (number of attacks correctly

detected), the number of true negative—TN (number of normal samples correctly detected),

the number of false positive—FP (number of normal samples incorrectly detected as attacks)

and the number of false negative—FN (number of normal samples incorrectly detected as

attacks).

Metric Mathematical formulation

Accuracy
TP + TN

TP + TN + FP + FN

Precision
TP

TP + FP

Recall
TP

TP + FN

F1-score 2 ·
P · R
P + R

Table 7: Set-up of k considered to run CLAIRE. For each dataset k ranges between k =

500, 1000, 5000, 10000, 15000, . . . ,maxK, where maxK is selected as the minimum between

the number of normal flows and the number of attacks in the training set.

dataset maxK k

KDDCUP99 95000 500, 1000, 5000, 10000, 15000, . . . , 90000, 95000

UNSW-NB15 37000 500, 1000, 5000, 10000, 15000, . . . , 10000, 15000

CICIDS2017 15000 500, 1000, 5000, 10000, 15000

in minutes, while the testing TIME is measured in milliseconds.

5.3. Sensitivity analysis

This sensitivity analysis is performed, in order to: (1) quantify the gain in365

both the accuracy and efficiency, due to the introduction of a clustering step

during the nearest neighbour search, (2) analyze the need for pooling operations

in the adopted 2D CNN architecture and (3) verify the dependence between the

sensitivity of the intrusion detection performance and the size of the clustering

step (i.e. the number of clusters k), in order to verify the existence of a default370

configuration that can be considered in all the datasets.
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To this aim, we explore the performance of CLAIRE along the number of

clusters k when the classification model is trained with two 2D CNN architec-

tures. These architectures are denoted: (1) NoPooling, that is implemented in

CLAIRE (see details in Section 4) without the pooling layers and (2) MaxPooling,375

that is implemented with the addition of the pooling layers. In the experiments

performed, we use Max Pooling as a pooling operation. This decision is mo-

tivated by the considerations reported in [54], which assess that Max Pooling

commonly preserves the most informative features, by offering better transla-

tion invariance than Average Pooling. To define the architecture MaxPooling,380

we modify the NoPooling architecture shown in Figure 4, by introducing two

Max Pooling layers before the dropout layers. This is inspired by LeNet-5 [36],

that alternates convolutional layers and pooling layers. The Max Pooling layers

are set with a stride equal to 1 and a 2× 2 sliding window.

Table 7 describes the parameter set-up of the number of clusters k used in385

the experiments performed with KDDCUP99, UNSW-NB15 and CICIDS2017.

As a baseline of this investigation, we also consider the configuration of CLAIRE

with no clustering step performed during the imaging stage. In this baseline,

denoted as noClustering, the nearest neighbour search is done by considering

all training samples as candidate neighbours. For the analysis of the accuracy390

performance, we report the F1-score (see Figure 5), while for the analysis of the

efficiency, we report the computation TIME spent completing the training phase

(see figure 6), as well as the computation TIME spent completing the testing

phase (see Figure 7).

We start analysing the accuracy performance of both MaxPooling and NoPool-395

ing by varying k. The results of F1-score, reported in Figure 5, provide the

empirical evidence that the clustering step does not cause any decrease in the

accuracy performance; quite the opposite, it allows us to achieve a gain in the

accuracy of the intrusion detection models learned in all the datasets. Although

the gain in F1-score is negligible with KDDCUP99 (from 95.6 to 95.9 with the400

best clustering configuration of NoPooling and from 95.1 to 95.7 with the best

clustering configuration of MaxPooling), it is high with both UNSW-NB15 (from
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Figure 5: Sensitivity analysis: F1-score (axis X) computed on the testing samples, predicted

by using the intrusion detection models learned with both the version of CLAIRE with pooling

(MaxPooling) and the default version without pooling (NoPooling). The results are collected

on the datasets KDDCUP99 (Figure 5a), UNSW-NB15 (Figure 5b) and CICIDS2017 (Figure

5c), by varying the number of clusters in the clustering step (axis Y). For every dataset the

highest F-Score is in red for the configurations of CLAIRE with both MaxPooling and NoPooling.
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91.8 to 95.4 with the best clustering configuration of NoPooling and from 92.9

to 95.3 with the best clustering configuration of MaxPooling) and CICID2017

(from 91.3 to 95.2 with the best clustering configuration of NoPooling and from405

91.5 to 94.3 with the best clustering configuration of MaxPooling). This result

confirms our hypothesis that CLAIRE actually benefits from the clustering step.

Processing the cluster centres during the nearest neighbour search allows us to

limit the occurrence of the phenomenon of overfitting in the nearest-neighbour

search, which may compromise the accuracy of the classification model finally410

learned with this information.

The conclusions drawn above, on the effectiveness in terms of accuracy of

the clustering step, are independent of the presence of the pooling operation.

Additional considerations can be formulated by focusing attention on the sensi-

tivity of the F1-score along the pooling operation. The higher accuracy achieved415

with NoPooling is always close to the higher accuracy achieved with MaxPooling

(95.9 with NoPooling vs 95.7 with MaxPooling in KDDCup99, 95.4 with NoPool-

ing vs 95.3 with MaxPooling in UNSW-NB15 and 95.2 with NoPooling vs 94.3

with MaxPooling in CICIDS2017). On the other hand, the higher accuracy with

NoPooling can be observed at k = 1000 in all the datasets. These results show420

that no significant improvement can be achieved with pooling operations by

agreeing upon the same default configuration of CLAIRE-NoPooling for all the

datasets. This default configuration is that comprising the clustering step with

k = 1000 coupled with the 2D CNN architecture NoPooling.

We complete this sensitivity study by evaluating the considered configura-425

tions along the efficiency performance. Figure 6 reports the training TIME

spent computing the autoencoder (Autoencoding), completing the clustering

stage (Clustering), performing the nearest-neighbour search for the 2D repre-

sentation of the data (Imaging) and training the 2D CNN architecture. The

results show that the differences between NoPooling and MaxPooling are negligi-430

ble (less than one minute for completing the training phase) in all the datasets,

independently of the size of the clustering step. On the other hand, the clus-

tering step always speeds up the nearest-neighbour search, that is performed
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Figure 6: Sensitivity analysis: training TIME (axis X) spent in minutes completing the training

process with both the version of CLAIRE with pooling (MaxPooling) and the default version

without pooling (NoPooling). The results are collected by varying the number of clusters in

the clustering step (axis Y) on the datasets KDDCUP99 (Figure 6a), UNSW-NB15 (Figure

6b) and CICIDS2017 (Figure 6c).
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to construct the 2D representation of the training samples. In particular, the

imaging stage of the configuration noClustering, which constructs the 2D data435

without the clustering step, is always more time-consuming than all the config-

urations where the clustering step is activated.

In any case, the completion of the clustering step has a time cost during the

training. As regards the cost of clustering, we note that the longer time spent

clustering the training set is fully counterbalanced by the shorter time spent440

imaging the training samples, when CLAIRE is run in the default configuration

(i.e. clustering with k = 1000 and NoPooling) that we have identified with the

F1-score analysis.

Final conclusions can be drawn from the analysis of the testing TIME. In

particular, the results reported in Figure 7 highlight that the clustering step445

always speeds up the detection phase, i.e. the time spent, on average, using the

learned intrusion detection model, to process new network traffic and classify

each flow as a normal flow or an attacking flow. In general, the lower the number

of clusters k, the quicker the testing phase, with the clustering stage activated.

5.4. Deep neural network hyper-parameter optimization analysis450

In this Section we explore how CLAIRE is actually able to identify, during

the training stage, the optimal deep neural network hyper-parameter configu-

ration that performs well on the unseen testing sets. We recall that the hyper-

parameter optimisation is done automatically for both the autoencoder and

the CNN architectures (as reported in Table 2). We check the effectiveness of455

the hyper-parameters estimated for autoencoders by analysing the mean square

error—MSE—measured between the original data and the same data encoded

and decoded through the autoencoder architectures. We check the effective-

ness of the hyper-parameters estimated for CNNs by analysing the accuracy—

F1-score—of the classifications yielded with the CNN architectures. For each460

dataset we analyse these metrics computed on both the validation set (processed

during the training stage to perform the hyper-parameter optimisation) and the

unseen testing set.
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Figure 7: Sensitivity analysis: average testing TIME (axis X) spent in seconds predicting

each testing sample, by using the intrusion detection model learned with both the version of

CLAIRE with pooling (MaxPooling) and the default version without pooling (NoPooling). The

results are collected by varying the number of clusters in the clustering step (axis Y) on the

datasets KDDCUP99 (Figure 7a), UNSW-NB15 (Figure 7b) and CICIDS2017 (Figure 7c).
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Figures 8a-8c and Figures 8d-8f show how the MSE and F1-scores vary,

respectively, concerning the architecture validation loss (mean square error in465

autoencoders and binary-cross entropy in CNNs). Plotted data are determined

for CLAIRE in the default configuration (with k = 1000 and NoPooling) and with

the tree-structured Parzen hyper-parameter estimator run on the range of values

described in Table 2. These results confirm that the automatically selected

hyper-parameter configuration (i.e. the one measuring the lowest architecture470

loss on the validation set) is optimal on both the validation set (where it is

selected) and the unseen testing set for both the autoencoders and the CNNs.

In fact, the architectures achieving the lowest validation loss exhibit the lowest

MSE (in autoencoders) and the highest F1-score (in CNNs), respectively, in both

the validation and the testing set. As expected, the MSE curves monotonically475

increase with the autoencoder loss. On the other hand, the F1-score curves

approximate a monotonically decreasing trend with the CNN loss, except for

the UNSW-NB15 testing set. In any case, also in UNSW-NB15, the hyper-

parameter configuration, selected with the lowest validation loss, achieves the

highest F1-score in both the validation and testing set.480

Upon the completion of this analysis of the viability of the hyper-parameter

optimization, we perform the Friedman-Nemenyi statistical test [55]. This is a

non-parametric test commonly used to compare multiple algorithms over mul-

tiple data. It ranks the algorithms for each data set separately, so the best

performing algorithm is given rank of 1, the second best rank 2 and so on [55].485

We perform the test on KDDCUP99, UNSW-NB15 and CICIDS2017 to com-

pare the twenty configurations of CLAIRE, which are evaluated using the tree-

structured Parzen hyper-parameter estimator. We sort these configurations in

the ascending order by the validation loss, so that CLAIRE1 is the best configu-

ration achieving the lowest validation loss (i.e. the configuration automatically490

selected as the final intrusion detection model), while CLAIRE20 is the worst

configuration achieving the highest validation loss. Figures 9a and 9b rank the

configurations according to the result of the Friedman-Nemenyi statistical test

done on the F1-score, measured on the validation set and the testing set, re-
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Figure 8: The MSE of the autoencoder data reconstruction (Figures 8a-8c) and the F1-score

of the CNN classifications (Figures 8d-8f) measured on both the validation set and the testing

set (axis Y), with respect to the architecture validation loss (axis X). The results are collected

for KDDCUP99, UNSW-NB15 and CICIDS2017 datasets on the range of hyper-parameter

values reported in Table 2, and explored according to the hyper-parameter optimization done

during the training stage of CLAIRE (with k = 1000 and NoPooling).

spectively. The results of the test confirm that the configuration of CLAIRE495

that is automatically selected with the tree-structured Parzen hyper-parameter

estimator is ranked the highest both on the validation set and on the testing

set.

5.5. Competitor analysis

We compare the accuracy performance achieved by CLAIRE to that of several500

competitors, selected from the recent state-of-the-art literature. In particular,

we consider the following competitors:

• 1D Convolutional Neural Network-based competitors (1D CNN): CNN-1D

[49],CNN4 [16];

• 2D Convolutional Neural Network-based competitors (2D CNN): Grey-scale505
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(a) F1-score (Validation Set) (b) F1-score (Testing Set)

Figure 9: The Friedman-Nemenyi test calculated on the F1-score measured on both the val-

idation set (Figure 9a) and the testing set (Figure 9b) of KDDCUP99, UNSW-NB15 and

CICIDS2017. The F1-score is measured on the configurations of CLAIRE, which are trained

on the range of hyper-parameter values reported in Table 2 and explored according to the

hyper-parameter optimization done during the training stage of CLAIRE (with k = 1000 and

NoPooling). The compared configurations of CLAIRE are sorted in ascending order by the

validation loss.

[19], [20] and RGB [20];

• Long Short-Term Memory Neural Network-based competitor (LSTM): BLSTM

[56];

• Recurrent Neural Network-based competitor (RNN): BRNN [56];

• Deep Neural Network-based competitors (DNN): DNN 4 Layers [14], DNN-510

3 [4], DNN4 [16], DBN [47] , A+DBN [47], MLP [49], WnD [15], MLP [15],

SAE [15], DAE [57], AIDA [12] and RBM [15];

• Clustering+Deep Neural Network-based competitor (Clustering+DNN): MDPCA-

DBN [29];

• GAN Network-based competitors (1D CNN): AnoGAN [58] [59] and ALAD515

[59].

We note that both the 2D CNN-based competitors and the Clustering+DNN-

based competitor are the most related to CLAIRE. In fact, the 2D CNN-based

competitors, similarly to CLAIRE, experiment various 2D encoding techniques,
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in order to transform network flows into imagery data and train a 2D CNN520

architecture. On the other hand, the Clustering+DNN-based competitor com-

bines clustering with deep learning. However, none of these competitors use

neighbouring information (in combination with cluster centres) within the 2D

data transformation, which is the main novelty of this study.

Table 8: Competitor analysis: The accuracy metrics of the competitors have been collected

from the reference papers. “-” denotes that no value is reported in the reference paper.

dataset category description Accuracy F1-score

KDDCUP99

CLAIRE 2D CNN 93.58 95.90

CNN4 [16] 1D CNN 92.47 -

DNN4Layers [14] DNN + Text-based encoding 93.00 95.50

DNN-3 [4] DNN 93.00 95.50

DNN4 [16] DNN 92.88 -

DBN [47] DNN 91.40 -

A+DBN [47] Autoencoder + DBN 92.10 -

AIDA [12] Autoencoder + MLP 92.36 95.04

BLSTM [56] LSTM - 93.27

BRNN [56] RNN - 91.82

AnoGAN [58] [59] GAN - 88.65

ALAD [59] GAN - 95.01

UNSW-NB15

CLAIRE 2D-CNN 93.52 95.40

CNN-1D [49] 1D CNN 89.80 91.30

Grey-scale[19][20] 2D CNN 80.00 84.00

RGB [20] 2D CNN 83.00 86.50

DNN4Layers [14] DNN + Text-based encoding 76.50 90.10

MLP [49] DNN 86.60 88.90

WnD [15] DNN + Embedding 91.20 -

MLP [15] MLP 86.70 -

SAE [15] Autoencoder 88.20 -

DAE [57] Autoencoder + DNN 92.40 -

AIDA [12] Autoencoder + MLP 90.54 92.71

MDPCA-DBN [29] Clustering + DNN 90.18 91.49

RBM [15] RBM 87.10 -

CICIDS2017

CLAIRE 2D-CNN 98.01 95.20

Grey-scale [19][20] 2D-CNN - 82.00

RGB [20] 2D-CNN - 89.00

AIDA [12] Autoencoder + MLP 94.50 85.80

For all the methods in this comparative study, we collect the Accuracy and525
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F1-score, as these metrics are commonly provided in the reference studies. The

results collected are reported in Table 8 for all the datasets. The results of

CLAIRE are collected in the default configuration (k = 1000 and NoPooling).

These results show that CLAIRE outperforms its competitors, comprising both

the 2D CNN-based competitors (CNN4 evaluated on KDDCUP99, Grey-scale530

and RGB evaluated on UNSW-NB15 and CICIDS2017 in the reference studies)

and the Clustering+DNN-based competitor (MDPCA-DBN evaluated on UNSW-

NB15 in the reference study).

This empirical result contributes to assessing the significance and novelty of

CLAIRE with respect to the key ideas (definition of a specific 2D representation of535

the network flows, use of a 2D CNN architecture and consideration of clustering

information) which it puts forward. Although these ideas have in some way

been experimented in the literature, they are developed in this study under

a new algorithmic umbrella that has proved to effectively outperform various

competitors including those recently developed with the same background.540

5.6. Ablation study

We complete this experimental study by performing an ablation study. This

study aims at investigating:

• how the proposed method can take advantage of coupling the information,

synthesised through the cluster-based nearest neighbour search, to the545

architecture with 2D convolutions;

• how the proposed method (and also its baselines) is sensitive to the size

of the imbalance condition.

To investigate the result of both the cluster-based nearest neighbour search

and the 2D convolutions, we consider four configuration architectures as base-550

lines. These are in turn defined by removing the (cluster-based) nearest neigh-

bour information and the convolutions from the whole architecture of CLAIRE.

In this way, we define four baseline architectures that are run using the same

configuration (e.g. activation function and loss function) adopted to run CLAIRE
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(see the description in Section 4). In all the baselines, convolution layers Conv2D555

are run with NoPooling and clustering is run with k = 1000 (default configura-

tion). In particular, the baseline architectures are defined as follows:

• NN: X′ → FC(256)→ FC(1024)→ FC(2). This architecture, that consists

of the last 3 fully-connected layers of the CLAIRE architecture, takes as

input samples x′ ∈ X′, which are the training samples spanned on the560

feature space X′.

• N+NN: X′ ⊕X′ ⊕X′ → FC(256)→ FC(1024)→ FC(2). This architecture

takes as input samples x′ ⊕ x′+ ⊕ x′− ∈ X′ ⊕X′ ⊕X′, where x′, x′+ and

x′− are spanned on X′ and row-concatenated in a 1D vector. x′+ and x′−

are the nearest neighbour (normal and attacking) samples of x′, searched565

in the original training set (without clustering).

• C+N+NN: the architecture is like that of N+NN, but it performs the

clustering step for the nearest neighbour search. It takes as input x′ ⊕

x′+⊕x′− row-concatenated, where x′+ and x′− are selected as the nearest

neighbour (normal and attacking) cluster centres of x′.570

• N+CNN:


X′

X′+

X′−

 → Conv2D(32) → Conv2D(64) → Conv2D(128) →

FC(256)→ FC(1024)→ FC(2). This architecture takes as input the train-

ing samples in the 2D representation, where x′, x′+ and x′− are feature

vectors spanned on X′ and assigned to separate rows of a 2D grid. x′+

and x′− are searched without the clustering step activated.575

We evaluate the performance of CLAIRE, NN, N+NN, C+N+NN and N+CNN

on CICIDS2017, where the data have been collected in an imbalance scenario

(the one to be expected in many real world networks), consisting of 80% normal

flows and 20% attacks. The performance of the compared algorithms is mea-

sured in terms of Accuracy and F1-score. The overall results, reported in Table580

9, show that CLAIRE is more accurate than all its baselines. This confirms the
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Table 9: Ablation study: Accuracy and F1-score measured on CICIDS2017Test for CLAIRE,

NN, N+NN, C+N+NN and N+CNN. The best results are in bold.

Architecture

CLAIRE NN N+NN C+N+NN N+CNN

Accuracy 98.01 96.50 96.10 95.99 96.43

F1-score 95.20 91.34 90.29 89.98 91.34

effectiveness of combining cluster-based nearest-neighbour information and 2D

convolutions, in order to gain accuracy in an intrusion detection task. Specific

considerations can be made from the detailed analysis of the results.

In particular, we note that the use of the additional information, obtained585

using the nearest-neighbour search decoupled from the 2D convolutions, cannot

guarantee an improvement in the accuracy. In fact, both N-NN and C+N+NN,

which process the nearest neighbour information without the 2D convolutions,

perform worse than NN, that ignores the nearest neighbour information. On

the other hand, putting clustering aside, 2D convolutions improve the intrusion590

detection accuracy (N+CNN outperforms NN). This highlights that the accuracy

gained by processing the nearest neighbour information is due to the ability to

compute 2D convolutions on the 2D representation that we have introduced to

handle the nearest data (instead of computing traditional fully-connected layers

on vector data, built by concatenation). In any case, our analysis confirms,595

once again, that the nearest neighbour search, decoupled from the clustering

step, may suffer from overfitting, with a decrease in the accuracy performance.

In fact, the superiority of CLAIRE, due to the 2D convolutions on the nearest

neighbour data, also depends on its ability to perform the nearest neighbour

search which uses cluster centres as a generalisation of normal and attacking600

network flows (CLAIRE outperforms N+CNN).

To explore the sensitivity of the overall accuracy of the compared architec-

tures to the size of the imbalance condition, we consider four trials with 100%

(baseline), 75%, 50% and 25% attacks, respectively.

The F1-score of CLAIRE, NN, N+NN, C+N+NN and N+CNN, collected by605
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(a) F1-score by varying the number of attacks
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(b) F1-score on CICIDS2017Attacks25%

Figure 10: Imbalance condition analysis: F1-score of CLAIRE NN, N+NN, C+N+NN and

N+CNN by varying the number of attacks in CICIDS2017 (Figure 10a). F1-score of N+CNN

and CLAIRE on CICIDS2017Attacks25% with CLAIRE run by setting the number of clusters

on normal samples (knormal) equal to 1000 (default value) and by varying the number of

clusters on attacks (kattack) from 1000 to 100 (Figure 10b)

.

diminishing the number of attacks, is plotted in Figure 10a. Diminishing the

number of attacks (and consequently stressing the imbalance condition) leads to

a decrease in the F1-score of all the compared algorithm. We note that CLAIRE

continues outperforming its baselines independently of the balance degree in the

training set. The difference between CLAIRE and N+CNN becomes negligible610

when only 25% of the attacks (i.e. 5000 training attacks) are considered (al-

though, also in this configuration, CLAIRE slightly outperforms N+CNN). We

recall that the clustering step has been performed in the default configuration

(with k = 1000). Clustering training 5000 attacks in 1000 clusters diminishes

the generalization power of clustering, by reducing the ability to limit over-615

fitting when performing the nearest neighbour search. This justifies the close

performance of CLAIRE and N+CNN on CICID2017Attacks25%.

We empirically verify the validity of our interpretation of the performance

of CLAIRE and N+CNN on CICIDS2017Attacks25%, by studying the sensi-
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tivity of the F1-score of CLAIRE to the number of attacking clusters in CI-620

CIDS2017Attacks25%. To this aim, we perform the clustering step by main-

taining the number of clusters of normal samples (majority class) set equal

to 1000 (as in the default configuration), and by varying the number of clus-

ters of attacks (minority class) between 1000 and 100. This allows us to check

how the clustering step can gain in generalisation power on the attacking sam-625

ples, independently of the imbalance condition. The results, reported in Figure

10b, confirm that CLAIRE gains in F1-score when we increase the generalization

power of the clustering operation performed on the attacks (i.e. by diminish-

ing kattack). In fact, all the clustering configurations with kattack < 1000 (and

knormal = 1000) augment the accuracy gap between CLAIRE and its variant630

without clustering — N+CNN — in the trial with CICIDS2017Attacks25%.

The best improvement occurs with kattack < 500. This result paves the way

for future investigations concerning the size of clustering in the presence of the

imbalance condition.

6. Conclusions635

Conventional machine learning methods, proposed in the intrusion detection

literature, are often not effective at detecting unforeseen network attacks. In

this study we address the network intrusion detection problem by proposing a

multi-stage methodology, denoted as CLAIRE, that combines nearest neighbour

search, clustering and convolutional neural networks. In particular, we propose640

a novel encoding method, that accounts for the nearest neighbouring knowledge,

to map the one-dimensional feature vector representation of the network flows

into a two-dimensional imaging representation of these data. 2D data are used

to train a CNN-based intrusion detection model.

We evaluate the effectiveness of the proposed methodology using three bench-645

mark datasets (KDDCUP99, USW-NB15 and CICIDS2017), which contain net-

work flows collected in different years. The experimental analysis proves the

viability of the multiple stages of the proposed methodology. In addition, it
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proves that CLAIRE gains accuracy compared to several, recently defined, state-

of-the-art competitors using deep learning and/or clustering.650

As future work, we plan to explore the effectiveness of the described encod-

ing method, by carrying out experiments using common CNN architectures like

those based on ResNet, Inception or LeNet. Moreover, we plan to explore how

the RGB mapping, that was already explored in [20], can be used in combination

with the neighbouring search as a base for an enhanced imaging representation655

of the network traffic. We also intend to examine in depth the criteria used to

customise the parameter set-up of the clustering step in the presence of imbal-

ance conditions. Finally, we plan to extend this investigation to the classification

of the intrusion families.
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Appendix A. Encoder feature permutation

Let X′ be the output encoder layer of the autoencoder architecture. The670

permutation of the X′ columns is completed through a process that consists of

an initialization step and an iterative step.

In the initialisation step, we determine columns X ′i, X
′
j , X

′
h, X ′k of X′, such
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that:

X ′i, X
′
j = arg min

X′i∈X′,X′j∈X′,X′i 6=X′j

distance(X ′i, X
′
j), (A.1)

X ′h = arg min
X′h∈X′,X

′
h 6=X′i,X

′
h 6=X′j

distance(X ′i, X
′
h), (A.2)

X ′k = arg min
X′k∈X′,X

′
k 6=X′i,X

′
k 6=X′j

distance(X ′j , X
′
k), (A.3)

where distance() is computed with the Euclidean distance. If distance(X ′i, X
′
h) ≤675

distance(X ′j , X
′
k), we swap X ′1 with X ′j , X

′
2 with X ′i and X ′3 with X ′h, otherwise

we swap X ′1 with X ′i, X
′
2 with X ′j and X ′3 with X ′k.

In the iterative step, we start with i = 3, then we determine column X ′j ,

such that:

X ′j = arg min
X′j∈X′,j>i

distance(X ′i, X
′
j). (A.4)

We swap X ′i+1 with X ′j in X′. We increment i by one and iterate this step until

i = ]X′ − 1, where ]X′ is the number of columns of X′.

Appendix B. Convolution Neural Network680

A Convolutional Neural Network (CNN) is a special kind of fully-connected

feed-forward neural network, introducing three extra concepts: local filters (con-

volution), pooling and weight sharing [7]. This deep learning architecture is

commonly used in the literature for processing grid-like topology data, such as

the imagery data – two dimensional arrays of pixels – that have been produced685

here as a representation of the network flows. A convolutional layer convolves

a set of filters that are replicated along the whole input to process small local

parts of the input [30]. A pooling layer generates a lower resolution version of

the convolutional layer output. The pooling operation is typically the average

or the maximum. The use of pooling may add shift-invariance and tolerance690

to minor differences in the positions of the patterns in the input [60]. Higher

layers use broader filters, that work on lower resolution inputs to process more

complex parts of the input. Top fully-connected layers finally combine inputs

from all positions to classify the overall inputs.
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Specifically, given a two-dimensional input image E, the k-th feature map at

location (i, j), in a given convolutional l-th layer, is determined by the weight

matrix Wl
k and the bias vector bl

k of the k-th filter on the l-th layer, with a

non-linear activation function σ(), such that:

hli,j,k = σ(Wl
k ∗El

i,j + bl
k), (B.1)

where El
i,j is the input patch centered at location (i, j) of the l-th layer and ∗

represents the convolution function. The kernel Wl
k is shared for each possible

location (i, j), thus reducing the model complexity and making the network

easier to train. A pooling layer, placed after a convolutional layer, aims to

achieve shift-invariance, by reducing the resolution of the feature map hl
:,:,k to:

yli,j,k = pool(hlm,n,k),∀(m,n) ∈ Rij , (B.2)

where Rij is a local neighbourhood around location (i, j). There are two com-695

mon types of Pooling described in the literature: Max Pooling and Average

Pooling. Max Pooling returns the maximum value from the portion of the im-

age covered by the kernel, while Average Pooling calculates the average value

for each path on the feature map. Max Pooling has recently been preferred to

Average Pooling, as it allows the architecture to preserve the most informative700

features by offering better translation invariance [54].

The final set of layers in CNNs is fully-connected. In a fully-connected layer

every neuron is connected to each hidden state in the previous layer, like a

traditional feed-forward neural network. In particular, the output layer of a

CNN is designed in an application-specific way, using an activation function705

such as logistic, softmax or linear activation [7]. In a classification task, like the

one addressed in this study, softmax is usually chosen as the activation function.
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