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Abstract: Recent years have witnessed an increasing interest in air pollutants and their effects on
human health. More generally, it has become evident how human, animal and environmental health
are deeply interconnected within a One Health framework. Ground level air monitoring stations
are sparse and thus have limited coverage due to high costs. Satellite and reanalysis data represent
an alternative with high spatio-temporal resolution. The idea of this work is to build an Artificial
Intelligence model for the estimation of surface-level daily concentrations of air pollutants over the
entire Italian territory using satellite, climate reanalysis, geographical and social data. As ground
truth we use data from the monitoring stations of the Regional Environmental Protection Agency
(ARPA) covering the period 2019–2022 at municipal level. The analysis compares different models
and applies an Explainable Artificial Intelligence approach to evaluate the role of individual features
in the model. The best model reaches an average R2 of 0.84 ± 0.01 and MAE of 5.00 ± 0.01 µg/m3

across all pollutants which compare well with the body of literature. The XAI analysis highlights the
pivotal role of satellite and climate reanalysis data. Our work can facilitate One Health surveys and
help researchers and policy makers.

Keywords: air pollution; satellite data; machine learning; explainable artificial intelligence

1. Introduction
Nowadays, there is an ever-growing interest in air pollution which has led to the

birth of the One Health paradigm. This paradigm studies the relationship between human,
animal and environmental health and represents a new front for the study of complex
diseases, where the connections with environmental conditions, including pollution, are
evaluated [1].

In response to the complicated challenges posed by air quality, scientists have in-
creasingly relied on satellite and climate reanalysis data which provide a global view
on atmospheric conditions, making them indispensable for assessing the dispersion and
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density of pollutants, especially in areas where on-site monitoring is insufficient, but they
present some critical issues [2].

A notable discrepancy arises when comparing satellite data with ground-level mea-
surements of air quality [3]. The perspective from space offers a macroscopic view that
may not capture the fine-grained variations in pollution levels experienced at ground level.
This discrepancy between satellite and ground-based measurements raises questions about
the accuracy and applicability of satellite data for air quality monitoring.

Some satellite missions deal with the detection of pollutants, such as the Sentinel-5P
of the European Earth Observation Program Copernicus. The Copernicus Sentinel-5 Pre-
cursor mission, launched on 13 October 2017, is the first Copernicus mission dedicated
to monitoring Earth’s atmosphere. Thanks to the TROPOspheric Monitoring Instrument
(TROPOMI) spectrometer, the Sentinel-5P missions provide observations of key atmo-
spheric constituents (such as O3, NO2, CO, SO2, CH4, CH2O, aerosols and clouds) at the
level of the troposphere [4]. However measurements provided by Sentinel-5P, which have
a spatial resolution ranging from 1.1 to 5 km, are column concentrations and therefore they
are expressed in mol/m2 unlike the ground measurements, which are measured in µg/m3.
Furthermore, numerous effects related to traffic, the presence of industries and the nature
of the territory alter the surface concentration of certain pollutants and are not directly
observable from satellite [5]. Integrating Sentinel-5P measurements with atmospheric
reanalysis of the global climate, namely ERA5, can allow the creation of an improved model
to estimate surface level concentrations.

In general, air quality monitoring at surface level is conducted by special government
agencies. In Italy, the environmental monitoring is conducted by the Regional Environ-
mental Protection Agency (ARPA) [6]. ARPA has several hundred monitoring stations
throughout Italy that are responsible for the hourly monitoring of various air pollutants,
including O3, NO2, PMs, SO2, CO. The main problem of these monitoring stations is their
insufficient number to cover the entire Italian territory.

Our work aimed to create a model for estimating the daily ground level concentrations
of air pollutants at municipal scale, using satellite, meteorological and geographical data
over the period 2019–2022. To this end, we used artificial intelligence techniques for the
creation of the model and Explainable Artificial Intelligence (XAI), for the interpretation
of the results. The model, based on ensemble algorithms, was trained using data from
337 ARPA control units, distributed over 4 different Italian regions and considered as the
ground truth of our framework. Panel A of Figure 1 shows the Italian territory with all the
considered municipalities in Italy; panel B displays the control units used in our analysis.
Municipal areas range from 1 to 1287.24 km2 with an average of 37.3 km2.

Figure 1. On the left (panel A) a representation of Italian municipalities (8092), on the right (panel B)
a representation of municipalities with at least one ARPA control unit.
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We compared our findings with the predictions provided by Copernicus Atmosphere
Monitoring Service (CAMS) global reanalysis dataset [7]. CAMS [8] is a service imple-
mented by the European Centre for Medium-Range Weather Forecasts (ECMWF), based on
a variety of ground level and satellite retrieved data. Its purpose is to provide continuous
information on atmospheric composition including total column values for NO2 and O3
and surface concentrations of PM10 and PM2.5.

The proposed model, optimized at the municipal level, could facilitate One Health
studies as well as support local and national stakeholders, agencies, and policymakers.

2. Materials and Methods
The goal of our study was to develop a model to estimate ground level air pollution in

Italy at the municipal level from 2019 to 2022 through heterogeneous data such as satellite,
meteorological, geographical and social data. In particular, we focused on the estimation
of ground level concentrations of 4 air pollutants, namely NO2, O3, PM2.5 and PM10,
through a machine learning approach, as summarized in Figure 2. After a preprocessing
phase, we selected the ML algorithm with the best performance among linear model,
Random Forest and XGBoost, by means of a five-fold cross validation procedure. Then, we
implemented a feature importance procedure using an approach based on Shapley (SHAP)
values to assess the role of each feature in the model. We collected different types of data
for the construction of the machine learning model: satellite, meteorological, and ground
pollution data, geographical and social data. All data was preprocessed to have daily time
granularity, covering the years between 2019 and 2022 at a municipal scale with a total of
8092 Italian municipalities.

Figure 2. Flowchart of the analysis. After the collection of satellite, reanalysis and census data
we implemented three different models to predict ground-level daily air pollution over all Italian
municipalities. Afterwards, we applied a XAI feature importance procedure to understand the role of
each feature in the prediction.

2.1. Sentinel-5P Data
Satellite data refers to information collected from Earth-observing satellites orbiting

around our planet. These satellites are equipped with various sensors and instruments
that capture a wide range of data, including atmospheric composition, meteorological,
and environmental parameters. Satellite data has become pivotal for monitoring and
understanding Earth’s dynamic processes, climate change, and environmental trends.

Copernicus Sentinel-5P mission is part of the European Space Agency’s Copernicus
Earth Observation Program, which aims to provide open and free access to environmental



Remote Sens. 2024, 16, 1206 4 of 16

data for a multitude of applications [9]. Sentinel-5P specifically focuses on monitoring
the Earth’s atmosphere and plays a crucial role in tracking air quality and atmospheric
composition. Sentinel-5P is equipped with a state-of-the-art spectrometer called TROPOMI
(Tropospheric Monitoring Instrument). TROPOMI can measure a wide range of atmo-
spheric gases with a spatial resolution of 5.5 → 3.5 km2, a swath width of 2600 km and time
of overpassing Italy around 2 p.m. It measures a wide range of atmospheric trace gases
such as nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and carbon monoxide
(CO), among others. These measurements are crucial to assess air pollution, greenhouse
gas levels and to evaluate their impact on climate and human health [10].

For the construction of the model, we collected daily concentrations of pollutants,
namely NO2 and O3 from the Google Earth Engine [11,12]. From the same source we
collected the Aerosols Absorbing Index [13], which can be used to determine the presence
of UV-absorbing aerosols, such as dust and smoke. Positive values of this index indicate
the presence of these pollutants. This index can be a proxy for the concentration of PM2.5
and PM10 and positive values of this index indicate the presence of elevated absorbing
aerosols in the Earth’s atmosphere.

The original spatial resolution of this data is 5.5 → 3.5 km2, however Google Earth
Engine converts original L2 data to L3 images using a grid with the pixel size smaller
then the actual resolution in order to avoid data loss. The final spatial resolution is then
1.1 → 1.1 km2.

2.2. ERA5 Data
Climate reanalysis data combine past observations collected by a variety of sources on

land, ocean, airplains, satellites and from instruments with different lifespans, quality and
resolution with models to generate consistent time series of multiple climate variables.

ERA5 stands for the “Fifth Generation European Reanalysis”. It is a project led by
ECMWF that aims to create a comprehensive, high-quality dataset of historical and current
weather and climate information [14].

ERA5 utilizes a large amount of observational data including data from satellites,
weather stations, aircraft, and more, to reconstruct the Earth’s atmospheric conditions and
surface variables. This reanalysis dataset provides a consistent and detailed record of past
weather and climate conditions on a global scale, allowing scientists and researchers to
analyze long-term climate trends, investigate extreme weather events, and improve climate
modeling and forecasting.

From the Google Earth Engine we collected ERA5 [15], namely temperature 2 m above
ground, surface pressure, u and v component of wind 1 m above the surface and the
amount of precipitation. The spatial resolution of this data is 27.8 → 27.8 km2 with a daily
granularity. Also, from the wind components we calculated wind speed using the classical
Euclidean norm.

2.3. ISTAT Data
For a further spatial characterization of the municipalities, we collected social and geo-

graphical data from public repositories of the Italian National Institute of Statistics (ISTAT).
ISTAT is the primary governmental agency responsible for collecting, analyzing, and dis-
seminating statistical information in Italy [16]. From the ISTAT repository we extracted 39
features from the 2011 census data [17], reported in the Supplementary Materials. Features
include altitude, type (coastal, urban, etc. . . ), population density, density of buildings,
density of roads and number of workers for each municipality.

2.4. ARPA Ground Data
We used pollution data from ARPA ground stations as labels to train our machine

learning model. The environmental quality monitoring conducted by ARPA involves the
systematic assessment and measurement of various environmental parameters within indi-
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vidual regions. This monitoring process includes the collection and analysis of data related
to air and water quality, soil conditions, noise levels, and other environmental factors.

To train our model, we collected air pollution data from 337 control units located in
four regions: Puglia (60 control units) [18], Lazio (53 control units) [19], Emilia Romagna
(54 control units) [20] and Lombardy (170 control units) [21], placed in the Southern, Central,
Northeastern, and Northwestern part of Italy, respectively. The set of control units has
been chosen to be as heterogeneous as possible. The types of stations are: Traffic, Industry
and Background. The areas are: Urban, Suburban and Rural. The data are hourly or daily
averages, cover the period between 2019 and 2022, and provide concentrations in µg/m3

of four pollutants, namely O3, NO2, PM2.5 and PM10.
We have chosen these 4 regions for a double reason: (i) these regions are representative

of the territorial and climatic diversity of Italy due to their geographical location; (ii) to
reduce computational costs, since the analysis of these data required in fact several days
of processing.

To improve the performance of our framework in estimating ground level concen-
trations of a pollutant, we also used satellite measurements of the other three pollutants
Section 2.1) as independent variables of the model, given the high correlation between the
different pollutants (see Figure S1 of the Supplementary Materials).

3. Data Preprocessing
We followed a preprocessing strategy to handle the missing data to reduce redun-

dant information in our dataset and to address data colocation in time and space. Data
missingness is an issue inherent to the nature of satellite data, since not all Italian areas
are crossed daily by the satellite’s orbit. On the other hand, the ARPA data also contained
missing values mainly due to malfunction or temporary shutdowns of the control units.
To overcome this problem, we removed all observations with missing ground level data
from the control unit. The percentage of missing values in the ARPA data was 1% for NO2,
19% for O3, 23% for PM2.5 and 3% for PM10.

As for the data obtained by satellite, these variables were downloaded at level L3,
i.e., with pixels that have a QA value > 75%. The percentages of missing values were 35%
for NO2, 2% for O3 and 1% for AAI. To encode time-related information in the model
we added three features, namely year, month and day of the week. With the exception
of year, we converted time variables using cyclic encoding from R’s Lubridate package.
Cyclic encoding of time variables involves the representation of time data in a circular
or periodic manner. Cyclic encoding of time variables is a common practice in machine
learning. Through this procedure it is possible to capture recurring patterns within a
data set. For example, if an input feature of the model is month of the year, ordinary
encoding will match the month with an integer between 0 an 11, starting with January; in
this encoding January (0) and December (11) will be very different even though they are
close temporally. Generally, periodic functions such as sine and cosine are used to encode
time variables such as day of the week and month [22]. This is often referred to as circular
coding or circular representation. In our case, we represented the days of the week as if
they were angles we then applied the sine and cosine functions:

θ =
2πd
N

, (1)

where d is the day of the week, an integer between 0 and 6 starting from Monday and N is
7. Then we calculated:

sin.week = sin(θ) (2)

cos.week = cos(θ) (3)

We repeated the same procedure to encode the months of the year by replacing d in (1)
with an integer between 0 and 11, starting with January, and N with 12. At the end our
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dataset was composed by 68 features including satellite, meteorological, geografical and
social variables.

A first Pearson correlation analysis highlighted a strong correlation between some fea-
tures. Therefore, to remove the redundant information we selected a correlation threshold
of 50% such that no two variables that have a correlation greater this threshold are included
in the model which reduced the final number of features to 32. We selected the threshold
that minimized the error of the model. In the Supplementary Materials we list all features
used in the model, including redundant features.

When the data from the ARPA control units had an hourly time granularity, we
averaged over a daily time window to achieve the granularity of satellite data. Our
input data also had different spatial granularity. Since our analysis had the granularity of
municipalities, when the input data had higher resolution, we averaged measurements
covering the same municipality.

The spatial analysis required the use of different R packages. The used packages were
gstat, raster, sf and exactextractr. Specifically, the satellite images were downloaded in .tif
format from Google Earth Engine and read in with the raster package. The image was then
re-projected into the same coordinate reference system (CRS) as the shapefile used for the
Italian municipality. Finally, the image values were extracted with the exactextractr package,
using the mean value as an aggregation function.

4. Learning Framework
We implemented a learning framework to estimate the daily ground concentration at

the municipal level of the following air pollutants: NO2, O3, PM5 and PM10. We started
with a linear model, then we compared the performance of this model with two machine
learning algorithms: Random Forest and XGBoost. We trained our model with the data
collected by 337 control units located in four regions within a 5-fold cross validation (CV)
framework, repeated 100 times, to further increase the robustness of our procedure [23].
In this procedure, for a given day, the initial dataset containing data of 337 control units is
randomly divided into 5 subsets without re-insertion: 4 subsets represent the training set
and the remaining subset is used for validation.

4.1. Linear Model
Multiple linear regression is one of the most widely used statistical models. This

model examines the relationship between a dependent variable (y), some independent
variables (xi) and their interactions under a linear hypothesis:

y = ε0 + ε1x1 + ε2x2 + . . . εnxx + ϱ (4)

where ε0 is the intercept value, εi are the regression coefficients to fit, ϱ is the model error
and n is the number of features used in the model.

4.2. Random Forest
The Random Forest (RF) [24] model has gained widespread popularity in the field

of Machine Learning, particularly in recent years. This algorithm combines the strengths
of both decision trees and the bagging strategies. Similarly to decision trees, the model
delves deep into the data, assessing the significance of specific variables at each node
and branching accordingly. However, the key distinction lies in the simultaneous use of
multiple decision trees, each specializing in a random sample drawn from the complete
dataset in a bootstrap mode.

The parameter m, representing the number of variables used for training at each node,
is a hyperparameter that can be customized by the programmer. Typically, a recommended
value for this parameter is

↑
N, where N stands for the total number of variables. Another

parameter that can be configured is the total number of trees of the forest. During the growth
of the forest, the value of m remains constant while each tree is expanded to its maximum
extent without employing any pruning techniques.
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In our analysis we used R package randomForest with a number of trees equal to 500
and m =

↑
N [25].

4.3. XGBoost
Extreme Gradient Boosting (XGBoost), represents a highly optimized version of the

gradient boosting algorithm with the added advantage of parallelization. Parallelization
significantly enhances the speed of the training process [26]. Rather than focusing on
training a single optimal model with the entire dataset, XGBoost adopts a different approach.
It trains numerous models on various subsets of the training data and subsequently selects
the best-performing model through a voting mechanism. In many scenarios, XGBoost
outperforms traditional gradient boosting algorithms.

We implemented this model using R package XGBoost, using the default parameters,
booster gbtree and 500 runs [27].

4.4. Performance Metrics
To evaluate performances we used the coefficient of determination between predicted

and actual values:

R2 = 1 ↓ ∑N
i=1(Ai ↓ Pi)

2

∑N
i=1(Ai ↓ Ā)2 , (5)

the mean absolute percentage error (MAE), defined as:

MAE =
1
n

N

∑
i=1

|Ai ↓ Pi|, (6)

and the root mean square error (RMSE), defined as:

RMSE =

√
1
n

n

∑
i=1

(Ai ↓ Pi)
2 (7)

with Ai that represents the actual value, Pi the predicted value and Ā the mean of the
actual values.

5. Explainable Artificial Intelligence and SHAP Values
The SHAP (SHapley Additive exPlanation) technique is a mathematical approach em-

ployed to elucidate the predictions generated by a machine learning model [28]. It relies on
principles from cooperative game theory to investigate the contribution of each variable in
the model’s predictions. In other words, SHAP serves as an individualized model-agnostic
interpreter. It operates under the assumption that the model being elucidated is a black box,
meaning its internal workings are not known. Therefore, SHAP can only access the input
data and the predictions produced by the model. The primary objective of this interpreter
is to replicate the entire prediction process of the original model while maintaining inter-
pretability. In our work, we applied the SHAP local explanation method to evaluate the
role of each feature in both Random Forest and XGBoost models. We computed the mean
SHAP values after a 5-fold CV, repeated 100 times.

The method exploits the concept of the Shapley (SHAP) values. For all possible feature
subsets F of the total feature set S (F ↔ S) given a feature j the SHAP value is the result of
the difference between the output of two models: a first model including the feature, and a
second model without that feature. The SHAP value of the j-th feature for the observation
x is measured by adding and removing the j-th feature to all possible subsets,

SHAPj(x) = ∑
F↔S↓{j}

|F|!(|S|↓ |F|↓ 1)!
|S|! [ fx(F ↗ j)↓ fx(F)], (8)
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where |.| is the cardinality and all permutation are considered; fx(F) indicates the model
prediction f for obsevation x, considering a subset F without the j-th feature; fx(F ↗ j)
represents the output of the same model including the j-th feature.

The Shap analysis was performed with Python package shap.

6. Results
6.1. Machine Learning Predictions

In Table 1 we show the performance in terms of Mean Absolute Error (MAE), Root
mean Squared Error (RMSE) and R2 obtained using three different models: Linear Model,
Random Forest and XGBoost. A 5-fold Cross Validation repeated 100 times was used to
obtain the distribution of these metrics. The employed dataset covered the period between
2019 and 2020. The algorithm XGBoost had the best performance.

Table 1. Results obtained for all pollutants using three different models. The distribution of MAE,
RMSE and R2 are obtained using a 5-fold cross validation repeated 100 times.

MAE (µg/m3) RMSE (µg/m3) R2

Linear model

NO2 8.68 ± 0.01 11.91 ± 0.01 0.48 ± 0.01

O3 13.93 ± 0.01 17.82 ± 0.01 0.68 ± 0.01

PM2.5 6.92 ± 0.01 9.71 ± 0.01 0.39 ± 0.01

PM10 9.45 ± 0.01 13.26 ± 0.01 0.30 ± 0.01

Random Forest

NO2 4.81 ± 0.01 7.25 ± 0.01 0.81 ± 0.01

O3 7.15 ± 0.01 9.57 ± 0.02 0.90 ± 0.01

PM2.5 3.99 ± 0.01 5.97 ± 0.01 0.78 ± 0.01

PM10 5.06 ± 0.01 7.25 ± 0.02 0.77 ± 0.01

XGBoost

NO2 4.62 ± 0.01 6.85 ± 0.01 0.83 ± 0.01

O3 6.86 ± 0.01 9.16 ± 0.01 0.92 ± 0.01

PM2.5 3.75 ± 0.01 5.46 ± 0.01 0.81 ± 0.01

PM10 4.84 ± 0.01 6.91 ± 0.01 0.81 ± 0.01

Figures 3 and 4 show the daily maps obtained from the model for all considered
pollutants on the same day. Figure 5 displays the time series of NO2 estimated concentra-
tions (Panel A) and of PM2.5 estimated concentrations (Panel B) averaged over all Italian
municipalities with a time window of 7 days. We can underline that a seasonal behaviour
in the concentration of the pollutants is manifest as reported in [29–31].
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Figure 3. On the left (panel A) estimated NO2 concentrations (µg/m3), on the right (panel B)
estimated O3 concentrations (µg/m3) for date 1 February 2019.

Figure 4. Left panel (panel A) estimated PM2.5 concentrations (µg/m3), on the right panel (panel B)
estimated PM10 concentrations (µg/m3), both on 1 February 2019.
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Figure 5. Time series of NO2 concentrations (µg/m3) (panel A) estimated by the model, averaged
over all Italian municipalities with a time window of 7 days. Below, (panel B) time series of the
estimated O3 concentrations (µg/m3).

6.2. SHAP Values
Figures 6 and 7 contain the SHAP plots of the estimation of NO2, O3, PM2.5 and

PM10 concentrations, respectively. The distributions are obtained using a repeated cross
validation approach. In these plots, on the y axis the relevant features for each pollutants
are ordered in terms of the mean absolute SHAP value, which indicates their overall impact
on the estimated concentrations. Instead, the x axis indicates how each feature affects
the model prediction, e.g., in a positive or negative way (sign of x) and to what extent (x
absolute value). Each point corresponds to a prediction, red corresponds to higher values
of a feature.
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Figure 6. SHAP values distribution for the prediction of NO2 (left, panel A) and O3 (right, panel B)
concentrations, obtained in cross validation.

Figure 7. SHAP values distribution for the prediction of PM2.5 (left, panel A) and PM10 (right, panel
B) concentrations, obtained using a cross validation.

7. Discussion
Our model aims at estimating daily ground level air pollution in Italian municipalities.

Our choice of the granularity, namely at the level of municipality, is motivated both by a
reduction of the model complexity and by our intention to use our results in a future One
Health study, where only the municipality of residence is known—as it is usually the case
in population studies. As we can see from Table 1, XGBoost is the best model for estimating
the four pollutants considered. In addition, this model has the highest computational
performance. The performance of our model seems comparable, or even superior, to those
reported in the literature.

Our results are in line with the literature. Stafoggia, M et al. [32] applied a multilevel
approach to obtain daily maps of PM2.5 and PM10 in Italy by using the Random Forest
algorithm as predictor and Institute for Environmental Protection and Research (ISPRA)
monitoring stations as ground truth together with different meteorological, geographical
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and land use variables. Comparing the errors obtained with a cross validation procedure,
we see that the RMSE of their model in predicting PM10 is 8.40 µg/m3 in the best case,
while our model reaches 6.91 µg/m3; for PM2.5 their error is 5.36 µg/m3, while ours is
5.46 µg/m3. It is worth mentioning that the spatial resolution of their estimates is 1 km,
which is higher than our model.

Cedeno et al. [33] reported a RMSE value of 6.37 µg/m3 predicting the daily concen-
tration of NO2 in the area of Milan and using ARPA’s control units as ground truth and
Machine Learning models.

Silibello et al. [34] estimated the daily ground level concentration of NO2 and Ozone
using the Random Forest algorithm, geographical variables and a model called FARM.
Also in this case the spatial resolution of the model was 1 km. The best RMSE values found
were 11.7 and 14.2 µg/m3 for NO2 and O3 respectively.

Chen et al. [35] obtained a RMSE of 13.55 µg/m3 for the prediction of surface Ozone
in a large area of China, using meteorological data between September 2015 and August
2021. As regards PMs, Chu-Chih Chen et al. [36] presented a machine learning framework
to forecast the monthly PM2.5 concentrations of Taiwan at different spatial resolutions
obtaining a R2 of 0.80, comparable with the results of our XGBoost model. Peddle et al. [37]
used Aerosol Optical Depth data to predict concentrations of PM2.5 and PM10 for six US
urban areas: Los Angeles, CA; Chicago, IL; St. Paul, MN; Baltimore, MD; New York,
NY; Winston-Salem, NC. This study covered a period between 2000 and 2012 obtaining a
performance in terms of R2 ranging from 0.50 to 0.97.

Figure 5 highlights a seasonal trend of the concentration of NO2 and O3, pollutants that
are particularly related to temperature and urban pollution, as shown by Nguyen et al. [29],
who also emphasised the relationship between the concentration of NO2 and heating
systems and population density.

In a study conducted by Di Bernardino et al. [38] in Italy, the same seasonal behaviour
of NO2 and O3 was found when analyzing control sites in Rome. When analyzing weekly
NO2 concentrations, they also concluded that the decrease in NO2 was related to the
decrease in urban traffic that typically accompanies the weekend. Another study in Italy by
Ravina et al. [39] confirmed these results. They investigated the NO2 concentrations of two
stations in the Turin area and showed the influence of temperature on the NO2 and NOx
concentrations. In particular, by comparing the trends of NO2 concentrations measured by
two different stations, they found significant differences during the winter season. This
behavior seems to be influenced by the increased traffic volume and home heating.

The connection among NO2 and O3 concentrations, temperature and population
density is confirmed by the results of our SHAP analysis displayed in Figure 6, which
shows the twenty features with the highest shap values. As we can see, population density
plays a crucial role in predicting NO2 on the ground surpassing the influence of satellite
retrieved NO2. However, the influence of the urban context seems to be less influential for
the prediction of O3. Nevertheless, the pivotal role of temperature is confirmed, in particular
high temperatures are associated with higher values of O3 concentrations and the opposite
is true for NO2, which is expected. In fact, O3 is a secondary pollutant whose formation
is catalyzed by solar radiation [30]. Satellite measures of NO2 and O3 concentrations are
anti-correlated with each other and play an important role in predicting ground level
concentrations of both NO2 and O3, as expected [40,41].

The Shap diagrams for particulate matters, which are shown in Figure 7, indicate
that wind speed plays a decisive role in addition to temperature and appears to be anti-
correlated with the model results [42]. The role of the wind in moving the dust masses and
reducing their concentrations is straightforward. An interesting result is the importance
given by the model to the south-north component (wind_v_component) of the wind, which
is positively correlated with particulate concentrations except for PM2.5 perhaps where
positive and negative contributions are mixed and could indicate the transport of dust from
Africa to the Italian regions.



Remote Sens. 2024, 16, 1206 13 of 16

This result is confirmed by other studies. Calidonna et al. [43] conducted medium-term
observations at the GAW regional observatory in Lamezia Terme from 2015–2019 to identify
dust outbreaks and investigate aerosol properties. They investigated an intense dust
outburst episode in April 2019 as a case study and performed a detailed analysis considering
surface and column optical properties, chemical properties, air quality modeling, satellite
products and the return trajectory analysis, confirming the role of wind speed as the main
cause of dust transportation.

Other meteorological variables that emerge as important in the model are precipi-
tations and pressure; their behaviour confirms the goodness of our model. In particular,
from the Shap diagrams we can see that precipitation is negatively correlated with the
concentrations of the different pollutants, while pressure is positively correlated. This is a
reasonable result, since rain combined with low pressure causes air pollutants to precipitate
on the surface and their concentration to decrease [44].

Time-related features also seem to play an important role within the model. For exam-
ple, in the estimation of NO2 concentrations, variable sin.week, which correlates positively
with the prediction, could be related to the “weekend effect” [45], which links the concen-
tration of NO2 with the traffic flow [46]. The Shap diagrams show that the use of satellite
measurements of O3 and NO2 in the model to estimate ground level concentrations of the
four considered pollutants was important. In contrast, the aerosol absorption index was
not among the most important variables for the prediction of PM2.5 and PM10. This result
is consistent with the literature. The Aerosol Absorption Index does not in fact provide a
quantitative measure of the concentration of aerosols, but is used for special events such as
volcanic eruptions, large dust events and forest fires [47].

Finally, as mentioned in the introduction, we compared the results of our model
with the predictions of the CAMS model, which are available from 1 July 2021. For the
comparison, we used linear correlation because NO2 and O3 measurements provided by
CAMS have different units of measurement than ground station measurements, namely
(kg/m2) versus (kg/m3). Table 2 shows the values of the linear correlations between the
values provided by CAMS, the results of our model and the ground truth provided by
ARPA. From these values we can see that, unlike our models predictions, CAMS predictions
are not statistically correlated with ground station measurements. This low correlation
may be due to the granularity of the CAMS model, which has a spatial resolution of
44.5 → 44.5 km2 and therefore ground stations that are not as far, compared to CAMS
resolution, are assigned the same predicted value by CAMS even if their geographical and
meteorological conditions are different.

Table 2. Correlation among CAMS predictions, Ground truth values (ARPA) and Our model predic-
tions. Except for O3, the significance level is less than 1%.

CAMS vs. Ground Truth Our Model vs. Ground Truth Our Model vs. CAMS

NO2 0.03 0.91 0.04

O3 0.01 0.96 ↓0.01

PM2.5 0.12 0.91 0.14

PM10 0.07 0.91 0.08

8. Conclusions
We compared three different learning models for the daily prediction of concentrations

of NO2, O3, PM2.5 and PM10 of Italian municipalities at the surface level. Our frame-
work incorporates information from heterogeneous data such as satellite, meteorological,
geographic and social indicators as well as control station measurements provided by
the Regional Environmental Protection Agency for the period 2019–2022 that we used as
ground truth. The algorithm XGBoost had the best performance with an average R2 of
0.84. Our results outperform or are comparable with results reported in other papers in
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the literature, although some studies present models with a higher resolution than the one
used in this study.

Furthermore we evaluated the impact of the different features on the estimation of the
concentration of each pollutant through an eXplainable Artificial Intelligence method using
SHAP values to improve the interpretability and transparency of our Machine Learning
models. The SHAP analysis confirmed some aspects already described in the literature,
such as the anti-correlation between wind speed and NO2 and dust concentrations, or the
positive correlation between temperature and O3 concentrations.

A possible application of our model can be the prediction of extreme air pollution
events combining our procedure with the approach of Varotsos et al [48]. They developed a
model to forecast pollution extremes in Athens given changes in the dynamics of pollution
and using data from ground stations. Their approach was based on fitting the surface
concentration of O3, NO2 and PM10 to the Gutenberg-Richter law. In addition, they
introduced the concept of natural time as opposed to clock time. This concept is based on
the observation that temporal fluctuations in time series can be used to quantify long-term
dependencies and to differentiate the type of self-similarity within the series. As a result,
they calculated the average waiting time between successive extreme concentrations of
these three pollutants.

Moreover, our model can be used in One Health cohort studies to assess the impact of
air pollution on human health at the municipal level. Future improvements of this model
could increase the spatial resolution going from municipalities to distances of the order of
kilometers.
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