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• Deep Transfer Learning architectures are compared against shallow learning image 

descriptors under the same conditions. 

• Deep transfer learning for fingerprint liveness detection is a viable way. 

• XAI shows that deep transfer learning extracts complex nonlinear patterns able to discern 

minutiae for liveness detection. 
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1. Introduction 

In this work, deep learning architectures and shallow learning 

techniques are used to determine whether the image of a 

fingerprint is real (Live) or not (Fake). The research deals with 

liveness detection and the developed techniques are integrated 

within biometric authentication systems in a variety of 

applications (Impedovo & Pirlo, 2021). Biometric traits such as 

fingerprints are particularly prone to spoofing attacks, a situation 

in which one person forges the identity of another person 

successfully, by spoofing another person’ fingerprint. In this 

specific case, some of the most famous materials used for artificial 

impression replicas are Ecoflex, Latex, gelatin and wood glue 

(Orrù & Et al, 2019). A countermeasure deals with image 

processing for liveness detection task (Marasco & Ross, 2015). 

Deep Learning (DL) has demonstrated to be a real game 

changer in computer vision, especially for image recognition task. 

(LeCun & Et al, 2015). In fact, convolutional neural networks are 

made of several convolutional layers stacked one upon the other 

and connected with neurons whose activation function is non-
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linear (usually ReLU), capable of extracting relevant patterns, 

such as lines, curves, shapes, jumps between curves, sinusoids and 

so on, going from simple patterns in early layers to more complex 

patterns (e.g. faces) in later (top) layers.  

The main drawbacks of DL, together with high computational 

power required, is the amount of data required to train the models 

efficiently. It is known, in fact, that DL techniques requires 

millions of samples to learn complex patterns and infer predictions 

accurately. (Aggarwal, 2018) 

Because of the limited amount of training data available for 

fake fingerprint detection, in this work it has been decided to use 

transfer learning (Tam & Et al, 2018). In transfer learning, a deep 

neural network architecture and its weights are trained on a big 

dataset. Once this process is completed, from the trained model, 

usually, the last classification layer (or latest layers depending on 

the use case) is removed and few new empty layers are added. The 

lasts added layers are fine-tuned (trained) on the new smaller 

dataset by freezing all the former layers weights. This is useful, 

because former layers learn high level representation of the 
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This work inspects deep learning architectures and shallow learning techniques to determine whether the image of a fingerprint is real (Live) or not 

(Fake). It is known that Deep Learning techniques deliver, in general, good accuracies being able to automatically extract relevant patterns, at the 

same time, it is also known that these algorithms require large amounts of data. For this reason, transfer learning aims to transfer the knowledge learnt 

over a huge dataset to a new, smaller dataset. In this work, because of the limited size of the LivDet2019 dataset, three well known deep learning 

architectures such as Inception V3, ResNet50 and NASNet Large have been modified to perform transfer learning from the huge imagenet dataset to 

the smaller LivDet2019.  

The hypothesis at the very basis of this work is that the deep learning architectures trained on the huge imagenet dataset would learn to extract relevant 

patterns like lines, shapes, curves, jump between curves, etc… Later, the extracted knowledge, is fine-tuned on the LivDet2019 dataset to recognize 

fingerprint minuities as a non-linear combination of the previously learned patterns. 

For sake of completeness, state of art shallow learning image descriptors, finetuned for fingerprint recognition, such as Binarized Statistical Image 

Features (BSIF), Local Phase Quantization (LPQ) and Weber Local Descriptor (WLD) are used for extracting features from the LivDet2019 dataset. 

The classification on each of these extracted features is performed both with a linear and non-linear (gaussian) support vector machine. 

Accuracies suggest that both shallow learning and deep learning techniques are on par with the accuracies of reviewed works and thus transfer learning 

in fingerprint liveness detection is a feasible strategy that deserve attention and future research with the aim of increasing fingerprint detection 

accuracies.  
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underlying patterns, while the top layers are specialized on the new 

dataset. (Tam & Et al, 2018) 

Given the above, the hypothesis at the very basis of this work is 
that the deep learning architectures trained on the huge ImageNet 
dataset containing more than 14 million samples of images 
(Krizhevsky & Et al, 2017) would learn to extract simple to 
complex patterns like lines, shapes, curves, jump between curves, 
up to faces, dogs, birds, cars and so on. Then, this extracted 
knowledge, is fine-tuned on the LivDet2019 (Orrù & Et al, 2019) 
dataset with the aim of recognizing fingerprint minuities as a non-
linear combination of the previously learned patterns. 

A comparison with state of the art non-deep (shallow) learning 
image descriptors, such as Binarized Statistical Image Features 
(BSIF), Local Phase Quantization (LPQ) and Weber Local 
Descriptor (WLD) is presented. The classification on each of these 
extracted features is performed both with a linear and non-linear 
(gaussian) support vector machine. 

The work is organized as follows: state of the art and related work 

is presented in Section 2; Used DL architectures and the transfer 

learning approach is sketched in Section 3. Shallow learning image 

descriptors are illustrated in Section 4. Experimental Setup is 

presented in Section 5. Results and reasoning are provided in 

Section 6.  Conclusions and future research directions are 

illustrated in Section 7.  

2. Related work 

Fingerprint is, so far, the most used biometric trait thanks also 

to the ease implementation as well as easy data acquisition, and it 

is able to provide high recognition rate (Askarin & et al, 2020). 

Fingerprints as a biometric trait characterize the uniqueness of the 

models and remain unchanged throughout a person's life (Patel & 

et al, 2021). This application is also widely accepted by users 

because it does not present characters that are invasive for the end 

user (Win & et al, 2020). 

Fingerprints are composed of epidermal ridges and valleys that 

usually run in parallel, forming the set of characteristics of the 

imprint. In the images obtained through the sensors, these crests 

are represented by dark lines, while the valleys are bright lines, 

and each of them is considered unique. Unfortunately, both the 

crests and the valleys are replicable, and therefore the uniqueness 

of the fingerprint no longer exists in this case. In particular, its 

copy takes place artificially through the use of other materials, 

which make it possible to obtain a rubbery finger and an accurate 

imitation of the minutiae of the original fingerprint. 

There are several studies on this, which aim to build systems 

capable of detecting real fingerprints from artificial ones (Labati 

& et al, 2018), (Xin & et al, 2018), (Yuan & et al, Fingerprint 

Liveness Detection Using an Improved CNN With Image Scale 

Equalization, 2019). 

Mainly there are two methods to detect these types of 

counterfeits: the first method is through appropriate hardware 

technologies, the second method through software technologies 

(Sousedik & Busch, 2014). 

For hardware technologies, fingerprint sensors or "patches" are 

built to be added to the classic fingerprint readers, which allow 

additional information to be extracted during authentication, such 

as skin distortion (Antonelli & et al, 2006), the presence of smell 

(Baldisserra & et al, 2006) and subcutaneous crest models (Rowe 

& Sidlauskas, 2006) with multispectral scanners. 

For skin distortion, it is meant that action of the user; this action 

consists in moving the finger by pressing it against the surface (eg 

Scanner), thus deliberately exaggerating the distortion of the skin. 

The approach respects privacy and requires no additional 

expensive hardware beyond a fingerprint scanner. The 

results in (Antonelli & et al, 2006) indicate that the approach is a 

very promising technique for making fingerprint recognition 

systems more robust against spoofing attempts. The authors in 

(Antonelli & et al, 2006) failed to find a way to render the system 

ineffective by finding a combination of techniques and materials 

that diminish its effectiveness. The disadvantage of this approach 

is that a better understanding of the relationship between false 

detection errors and identity verification errors would be needed 

(Antonelli & et al, 2006). 

An innovative method based on the acquisition of smell through 

an electronic nose could be combined with the previous approach. 

This approach is based on the fact that the smell emanating from 

the surface of the human skin is different from that emanating from 

other materials (latex, silicone, gelatin) used for the falsification of 

fingerprints. Then, by means of an odor sensor, the odor signal is 

sampled and, by means of an algorithm (Baldisserra & et al, 2006) 

discriminates the odor of the leather from that of other materials. 

The results confirm that the approach is able to distinguish real 

fingerprints from artificial reproductions. 

Considering the hardware approaches using multispectral 

scanners, prototype methods and systems for biometric detection 

have been also proposed (Rowe & Sidlauskas, 2006). The 

sapproach includes two subsystems: the first is a lighting system 

that receives diffused light from the textures of the skin, the second 

is a calculation unit that derives a multispectral image distributed 

in space from the light received at discrete wavelengths. The latter 

also compares the derived multispectral image with a multispectral 

database to identify the individual.  

Software solutions, unlike hardware solutions, can usually 

work with any fingerprint scanned by a fingerprint reader, and 

therefore without the need to change the authentication systems 

already available. In this case, image processing algorithms are 

used to collect additional fingerprint information. There are 

several approaches in the literature, but they all rely on feature 

extractions that can be static or dynamic. For the static ones there 

are anatomical ones, such as the position and distribution of the 

pores (Labati & et al, 2018), (Marcialis & et al, 2010) or the 

number of minutiae (Abhishek & et al, 2015), they can be 

physiological characteristics, such as sweating of the skin 

(Marasco & Sansone, 2012), (Jin & et al, 2011), or dynamics such 

as the characteristics based on the texture and distortion of the skin 

(Alice & et al, 2011), (Jia & et al, 2007). 

Software approaches based on anatomical features are mainly 

based on skin pores which can only be detected with high-

definition images. These approaches then analyze the positions of 

the pores that characterize the vitality of the impression. In 

(Abhishek & et al, 2015) it was considered that in most cases, the 

pore frequency in the genuine fingerprint is lower than that in the 

fake fingerprint due to the manufacturing steps required for 

replication. The results reported in (Abhishek & et al, 2015) 

encourage the study of this feature which could have future 

benefits. 

Considering the characteristic of software approaches based on 

physiological features, a system was tested in (Marasco & 

Sansone, 2012) which considered three different optical sensors. 

The overall system will be faster, because the information is 

extracted from a single image without scanning the test finger 

multiple times. The trial has also shown that there is a reduction in 

performance in the presence of new materials used for spoofing 

for the liveness detection through the use of a single functionality. 

This weakness is reduced thanks to the combination of 

characteristics based on morphology and perspiration. The 
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disadvantage of this approach is the high error rates achieved, 

which are still considered high when considering the use in a 

possible real scenario. Also due to the fact that tolerance with 

respect to a variation of the same characteristic depends on the 

discriminating power of the characteristic that receives the attack 

(Marasco & Sansone, 2012). 

In the approaches based on features extracted from the 

distortion of the skin there are several approaches that require a 

change in the acquisition phase of the fingerprint: in (Antonelli & 

et al, 2006) the subject rotates the finger during recognition. In 

(Zhang & et al, 2007) different levels of finger pressure are 

required during authentication, this of course could be a problem 

in many real applications. On the other hand,  there are also 

approaches that do not require particular inputs such as (Jia & et 

al, 2007) where several images are acquired from which 

characteristics are extracted. In particular, the characteristics 

describe how the scanning of the contact area changes in size and 

brightness when the finger is placed on the sensor. 

Concerning deep learning architectures, (Plesh & Et al, 2019) uses 

the features extracted through Inception V3 to carry out the 

classification within a presentation attack system with fingerprints. 

The classification is evaluated using features extracted in static, 

dynamic mode and a fusion of static and dynamic. (Koshy & 

Mahmood, 2019) compared different deep learning techniques to 

carry out facial liveness detection. The System with Inception 

network achieved 100% accuracy in detecting viability with the 

NUAA dataset. (Fernandes & Et al, 2019) proposed an approach 

in which the analysis of the attributes is carried out to identify the 

region of the fingerprint for classification. The approach was 

tested on the ATVS dataset with different techniques including 

InceptionV3, ResNet50 and NASNetLarge, always obtaining 

excellent results. 

(Zuo & Et al, 2020) compared different Convolutional Neural 

Networks to extract facial features and perform face liveness 

detection. Of the techniques compared on the NUAA dataset, the 

ResNet50 achieved 97.59% accuracy. 

(Arora & Bhatia, 2020) compared different techniques for 

detect face spoofing including Inception-V3 and ResNet50 

obtaining accuracy values above 99%. 

 

3. Deep Learning architectures and Transfer Learning 

In this section, three DL architectures previously trained on 

imagenet dataset are presented. In addition, the used transfer 

learning is illustrated in subsection 3.4. 

The following architectures were chosen depending 

on the importance in the literature, number of parameters, size and 

the accuracy achieved on imagenet dataset and reported in Table 1 

for completeness. 

  
Table 1.  Deep Learning Architectures  

 

Architecture Name size Parameters 
Top-5 Accuracy 

on Imagenet 

NASNet Large 343 MB 88,949,818 0.960 

ResNet 50 98 MB 25,636,712 0.921 

Inception V3 92 MB 23,851,784 0.937 

 

 

 

3.1. Inception V3 

Inception-V3 (Szegedy & Et al, 2016)  was originally 

developed in Google and V3 stands for its third release. The 

improvements brought by this new version include factorized 

convolutions, label smoothing, batch normalization and the use of 

the auxiliary classifier layer. This is used to propagate label 

information to former layers (lower) of the network.  

 
3.2. ResNet 50 

The ResNet-50 (He & Et al, 2016) architecture is composed by 5 

“stages”. Each stage is composed by sacking a convolution and an 

Identity block. Each identity and convolutional block have 3 

convolution layers resulting in over 23 million trainable 

parameters.  

ResNet brought important innovations into Deep Learning, and it 

is one of the most used architectures at time of writing. That is, 

because it introduced two major breakthroughs in computer 

vision:  

1. It mitigates the “vanishing gradient” problem 

by reinjecting, from time to time, information to the flow.   

2. It gives the network the possibility to learn the identity 

function with respect to the previous output. This ensures that 

the accuracy of learnt patterns in later layers is at least as 

good as the previous.  

 
3.3. NASNet Large 

NASNet Large deep neural network architecture differently 

from other architectures, is the result of an optimization process 

which takes the name of Neural Architecture Search (NAS). In 

NAS the network architecture and its weights are computed using 

reinforcement learning approach which aims to learn and decide 

the best choice of number of layers, type of layer and their 

hyperparameters.  Authors (Zoph & Et al, 2018) developed the 

reinforcement learning algorithm and its reward function with the 

goal of automatically constructing a convolutional layer (called 

“cell”) firstly trained on the CIFAR-10 dataset. Once the cell 

architecture was ready, it was later applied to the ImageNet dataset 

creating a novel architecture as the result of iteratively stacking 

copies of this cell, each optimized with their 

own  hyperparameters. 

 
3.4. Applied Transfer Learning  

The last (top) two layers (the dense and the softmax ones) have 

been removed from each previously mentioned architecture. A 2D 

global average pooling layer has been then added followed by one 

dense layer with 32 neurons and ReLU activation function. Finally 

the softmax layer has been added to perform binary classification 

(real vs. fake). Being unknown the number of layers to freeze 

while fine-tuning, it has been decided to perform various tests each 

unlocking a different number of layers for each test with a step of 

10% of the total layers. Thus, the first test will have just the last 

layer to be trained, the second test the 10% of layers as trainable, 

the third the 20% of layers as trainable and so on. The validation 

test is set to 15% of the training set. Labels are one-hot encoded. 

 

4. Shallow Learning Image Descriptors 

In this section, three different image descriptors, namely BSIF 

(Binarized Statistical Image Features), WLD (Weber Local 

Descriptor) and LPQ (Local Phase Quantization) are used to 

extract relevant features, later used for classification aims.  For the 

classification, linear and non-linear (Gaussian) Support Vector  

Machine (SVM) has been used. The choice of SVM as the only 

non-deep classification technique is because it generally delivers 

high accuracy on these tasks, it is robust against the “curse of 
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dimensionality” problem which affects these kind of datasets 

(Ding & Ross, 2016) and because it has few hyperparameters to 

tune making the model less prone to overfitting and it makes the 

experiment highly reproducible. (Zhang & et al, 2019), (Topcu & 

Erdogan, 2019), (Merchant & et al, 2018), (Li & et al, 2018).  

In fact, as will be shown in Section 5, SVM has been trained with 

default hyperparameters reaching on-par accuracies with DL 

techniques. 

4.1. BSIF 

BSIF computes a string of binary code for the pixels of a given 

image. The code value of a pixel is treated as a local descriptor of 

the intensity model of the image in the environment surrounding 

the pixel. In addition, the histograms of the pixel code values allow 

to characterize the properties of the textures within the sub-regions 

of images.  

In general, this approach offers good features for image 

processing. Furthermore, statistical independence provides the 

justification for the proposed independent quantization of the 

response vector elements. Therefore, expensive vector 

quantization is not necessary (Ghiani & et al, 2013).  

4.2. LPQ 

In the LPQ model, the descriptor uses locally computed phase 

information in a window for each image position. The phases of 

the four low-frequency coefficients are de-correlated and 

uniformly quantized in an eight-dimensional space. Next, a 

histogram of the resulting code words is created and used as a 

function in classifying textures. Ideally, the low-frequency phase 

components are shown invariant with respect to the symmetrical 

center blur. The method is still highly insensitive to blur at this 

point, although this ideal invariance is not fully achieved due to 

the finite size of the window. Furthermore, the method is also 

invariant to uniform changes in illuminations, since only the phase 

information is used. 

Local Phase Quantization is similar to Binarized Statistical 

Image Features in that it can be used in texture recognition tasks 

in a similar way to BSIF. However, Binarized Statistical Image 

Features instead of heuristic code constructions, is based on 

natural image statistics and this improves its modeling capability. 

(Yuan & et al, Fingerprint liveness detection based on multi-scale 

LPQ and PCA, 2016).  

In (Yuan & et al, Fingerprint liveness detection based on multi-

scale LPQ and PCA, 2016) it is shown that multi-resolution 

analysis is a useful method for extracting texture characteristics 

when capturing the vividness of fingerprints. The method is not 

yet fully studied and requires countless future tests, at the moment 

the inexperience of the method is to be considered a disadvantage. 

 

4.3. WLD 

WLD is based on the fact that the human perception of a model 

depends not only on the change of a stimulus (such as sound, 

lighting) but also on the original intensity of the stimulus. WLD 

consists of two components: differential excitation (ε) and 

orientation (Θ). 

For a given pixel, the Weber Local Descriptor (WLD) 

differential excitation component is calculated based on the ratio 

of two terms: one is the relative intensity difference of a current 

pixel with respect to its neighbors, the other is the intensity of the 

current pixel. With the differential excitation component, an 

attempt is made to extract local salient patterns in the input image. 

Furthermore, for each pixel of the input image, two 

components of the WLD function are computed. 

By combining the WLD per pixel function, it is possible to 

represent an input image (or image region) with a histogram, called 

WLD histogram. Therefore, WLD is a dense descriptor. For a 

given image, the two components are used to build a concatenated 

WLD histogram: a target pixel is selected in the fingerprint and  

the difference in color intensity between the target pixel and its 

neighbors is computed (Gragnaniello & et al, 2013). 

In (Gragnaniello & et al, 2013) WLD has been combined with 

other descriptors, with better results if the combined descriptors 

take into account the characteristics of the images in the other 

class. An advantage could be the combination of WLD with Local 

Phase Quantization (LPQ) where the results could improve 

significantly (Gragnaniello & et al, 2013). 

. 

5. Experiment setup 

5.1. Dataset 

The dataset here adopted is the  LivDet2019 (Orrù & Et al, 

2019). The LivDet2019 dataset is composed of two subsets 

obtained from the LivDet2017 dataset, namely "Orcanthus Certis2 

Image" and "Green Bit DactyScan84C", plus another subset 

obtained from the LivDet2015 dataset, or "Digital Persona U.are.U 

5160". 

The sizes and resolutions of the images captured by the 

different subsets are not the same. Table 2 shows the 

characteristics of the subsets. 

Each subset is divided into two parts, a training part and a 

testing part. Since only the training parts related to all three subsets 

were available, the available subsets were divided into training and 

testing using a split of 50% -50% using different subjects per train-

test split. This means that different people were inserted in training 

and testing sets. This is to avoid bleeding of information: e.g. 

different fingerprints coming from same person in both train and 

test.  

The subsets contain both real fingerprints and fake fingerprints, 

the latter made using different materials. Table 3 shows the 

materials used for the different subsets and the number of 

registered fingerprints; pictorial representation of fingerprint 

material is reported in Figure 1.  

Table 2.  Characteristics of the subsets 

Subsets Model Resolution 

[dpi] 

Image 

Size 

[px] 

Format Type 

Green Bit Dacty 

Scan84C 
500 500x500 BMP 

Optical 

Orcanthus Certis2 

Image 
500 300x419 PNG 

Thermal 

swipe 

Digital 

Persona 

U.are.U 

5160 
500 252x324 PNG 

Optical 

 

Table 3.  Number of samples for each subset and materials 

Subsets Live Wood 

Glue 

Ecoflex Body 

Double 

Latex Jelly 

Green Bit 1000 400 400 400 - - 

Orcanthus 1000 400 400 400 - - 

Digital 

Persona 
1000 250 250 - 250 250 
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Figure. 1. Types of fingerprints present in the LiveDet2019 dataset 

 
5.2. Experiment 

For the deep learning architectures, all official subset training 

and test dataset splits were respected for practical state of art 

comparison. No data augmentation was performed.  For transfer 

learning two datasets were used: imagenet (Krizhevsky & Et al, 

2017) with over 14 million images and ATVS (Galbally J., 2014). 

All used networks were trained in a end-to-end fashion on these 

datasets. The models created, are then used as pre-training and 

fine-tuning. 

In order to use imagenet as pre-training dataset, fingerprint images 

were imported as color rgb images. That is because the pre-pruned 

weights on imagenet accept only rgb-colored images as input. The 

ATVS dataset contains instead 3168 black and white images, thus 

no rgb conversion was performed and networks were trained on 

b/w images. 

The validation is performed on 15% of the training set. For all 

architectures Adam optimizer was used. All models were fine-

tuned (trained in transfer learning fashion) for 100 epochs. 

Concerning shallow learning techniques, the same train-test 

split of each original subset was respected for comparison 

purposes. Each test was repeated 10 times and the average results 

were reported. Extracted features, from each descriptor, were 

normalized with z-score before feeding input to the SVM classifier 

respecting train-test separation and avoiding bleeding of 

information from the training set to the test set. No feature 

selection, nor dimensionality reduction technique was used.  The 

SVM was trained with C=1.0. When Gaussian (rbf) kernel was 

tested, the gamma hyperparameter was adaptively chosen. SVM 

was trained in one versus all fashion. 

Accuracies, precision, recall and Average Classification Error 

(ACE) (Tolosana R., 2020) have been reported for each test along 

with the percentage of unlocked layer for deep neural network 

trained in transfer learning fashion. 

6. Results and Reasoning 

6.1. Results 

Results reported in Table 4 suggest that both shallow learning and 
deep learning are performing with high accuracies on all the 
datasets. More specifically Linear SVM with BSIF delivers high 
accuracy in almost all the dataset used. Other image descriptors 
such as WLD and LPQ have oscillating accuracies that strongly 
depend on the dataset used. On Green Bit dataset the state of art 
FSB algorithm (Orrù & Et al, 2019) is only 0.05 percentual points 
more accurate than the Linear SVM + BSIF image descriptor used 
in this work.  Deep learning approaches have outperformed the 
state of the art on some datasets and they are in line with the state 
of the art on Green Bit dataset. For Green Bit, when it is fine-tuned 
unlocking 60% of all its frozen layers, it delivered the 97.27% of 
accuracy. This result is still lower than state of art. The drop in 
performance with respect to the Linear SVM with BSIF may be 
due to the conversion of the image (originally one channel) to RGB 
and a higher reduction in size, with respect to the images contained 
in Orcanthus and Digital Persona. More specifically, the GreenBit 
images are 500x500 while the network accepts 224x224 as input, 

this is a 50% (approximately) reduction in size, which 
implies that some information is lost. The images of the other 
datasets, Orcanthus and Digital Persona, are 419x300 and 
324x252, respectively, thus the reduction is lower if compared to 
the previous case. In fact, NasNet Large trained with 70% of layers 
unlocked achieved an accuracy of 95.70% on Digital Persona, 
which is higher than the state of the art, while Inception V3 with 
50% of unlocked trainable layers achieved the state of art on 
Orcanthus dataset performing 99.17% of accuracy. These results 
suggest that deep learning techniques with transfer learning are 
applicable, but their accuracy suffer from the various image resize 
and compression due to pre-processing. 

Concerning Shallow Learning, the overall training time varies 

between 10 and 30 seconds, the evaluation in most cases is even 

under a second or at most 4 seconds. Training and testing times are 

not comprehensive of feature extraction phase, which lasted a few 

seconds. The times are computed on a per test basis (entire set of 

files used for training and testing). Performance previously 

reported are referred to Python 3.6 and sklearn running on a quad 

core Intel Xeon E3-1505M processor with Windows 10. 

Concerning Deep Learning, the training time ranges between 10 - 

12 minutes for ResNet50 V2 and Inception V3, while for NASNet 

Large, due to its large size, the training takes approximately 30 

minutes. Evaluation with ResNet50 and Inception V3 takes 

between 5 and 10 seconds. With NASNet Large, however, it takes 

between 25 and 40 seconds. Deep Neural Networks were trained 

using Keras with Tensorflow 2 backend on Google Colab with 

Nvidia P100 GPU having 3584 cuda cores. Although execution 

times are compliant with real time processing, it is worth noting 

that the system is a non-optimized prototype.  

Table 5 shows comparison with some state of the art techniques. 

It is important to state that, even if almost all reviewed works 

performed 50/50 split ratio with user split, randomness could lead 

some variation in the used training and test datasets.   I tcan be 

observed that Deep Learning techniques have fewer oscillating 

accuracies with respect to the dataset and for Orcanthus and 

Digital Persona outperform the state of art accuracies.  Another 

interesting result is that the NASNet Large, the neural network 

whose architecture was not created by a human being, but is the 

output of a reinforcement learning process,  

in almost all cases delivers the highest accuracy, nonetheless 

reached the state of art accuracy on Digital Persona.  

 Figure 2. Inception V3 training and validation accuracy on Oracnthus 

dataset. (1) on the left without transfer learning, (2) on the right with 50% of 
unlocked layer and imagenet transfer learning. 
  

Figure 2 shows the trend of Accuracy in training and validation on 

Orcanthus using Inception V3, without transfer learning (on the 

left) and with 50% layers of the base unlocked (on the right) using 

imagenet. Some overfittings  can be observed in case 1 on the left, 

on the other hand, it is less pronounced in configuration 2 on the 

right.. The two configurations obtained, respectively, an accuracy 

of 96.55% and 99.17%. Thus transfer learning by unlocking 
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different layers helped even in mitigating overfitting while 

training. 

 
Table 4.  Performances comparison 
 

 

Table 6 shows the overall accuracies on the LivDet 2019 dataset 

by averaging accuracies for each technique on the three datasets. 

It can be observed that pre-training using imagenet greatly 

increases the accuracy of the systems. This is due to the great 

amount of instances available in Imagenet (over 14 millions) with 

respect to the 3168 images in ATVS, which were insufficient to 

extract simple and complex patterns to be reused while 

performing transfer learning, especially on early layers of the 

networks. 

These results suggest that initial hypothesis of using transfer 

learning for transferring knowledge learnt over the huge ImageNet 

dataset on the new small LivDet2019 datasets is effective. For 

completeness, it should be acknowledged that because of the 

limited number of samples in the LivDet 2019 datasets (2000-2200 

max), accuracies really scrape decimal numbers. Most likely, the 

use of data augmentation techniques, would further improve 

accuracy. 

In order to understand what the deep learning models have learnt 

visually, an explainable artificial intelligence technique named 

LIME (Ribeiro & Et al, 2016) has been used. LIME is the acronym 

of local interpretable model-agnostic explanations. LIME is a 

technique that falls within the explainable artificial intelligence 

field (Samek & Et al, 2019). It is one of the most used local 

surrogate model technique. In surrogate models, simple 

explainable models (such as linear regression) are trained to 

approximate the predictions of the underlaying neural network 

model by focusing only on local information. In this case, the local 

surrogate model extracts surrounding pixels of a point and then try 

to fit them with a simple explainable model that seems to provide 

the highest correlation with the answer provided by the deep neural 

network. This technique has been used for image explanation 

(Samek & Et al, 2019).      

 Table 5.  Performances comparison 

  
 

Model Dataset Precisi

on 

Recall Accuracy ACE 

(Tolo

sana 

R., 

2020) 

Unlocke

d 

trainable 

layers 

(%) 

Time in 

seconds 

Gaussian 

SVM + 

WLD 

Digital 

Persona 

 0.8907 0.8800 0.8769 0.101

5 

Not 

applicab

le 

28 

Linear 

SVM + 

WLD 

Digital 

Persona 

0.8643 0.8584 0.8556 0.103

0 

Not 

applicab

le 

23 

Gaussian 

SVM + 

BSIF 

Digital 

Persona 

0.9506 0.9399 0.9395 0.080

38 

Not 

applicab

le 

31 

Linear 

SVM + 

BSIF 

Digital 

Persona 

0.9501 0.94 0.9393 0.080

40 

Not 

applicab

le 

37 

Gaussian 

SVM + 

LPQ 

Digital 

Persona 

0.943 0.931 0.9289 0.105

6 

Not 

applicab

le 

21 

Linear 

SVM + 

LPQ 

Digital 

Persona 

0.9219 0.9139 0.9122 0.106

0 

Not 

applicab

le 

32 

Gaussian 

SVM + 

WLD 

Orcanthu

s 

0.9253 0.9231 0.9232 0.082

8 

Not 

applicab

le 

24 

Linear 

SVM + 

WLD 

Orcanthu

s 

0.8499  0.846

8 

0.8466 0.099

3 

Not 

applicab

le 

11 

Gaussian 

SVM + 

BSIF 

Orcanthu

s 

0.987 0.9868 0.9868 0.013

6 

Not 

applicab

le 

32 

Linear 

SVM + 

BSIF 

Orcanthu

s 

0.9875 0.9872 0.9872 0.013

5 

Not 

applicab

le 

22 

Gaussian 

SVM + 

LPQ 

Orcanthu

s 

0.9669 0.9663 0.9663 0.040

2 

Not 

applicab

le 

31 

Linear 

SVM + 

LPQ 

Orcanthu

s 

0.9639 0.9636 0.9636 0.041

0 

Not 

applicab

le 

25 

Gaussian 

SVM + 

WLD 

GreenBit  0.9181 0.9114 0.9115 0.073

3 

Not 

applicab

le 

27 

Linear 

SVM + 

WLD 

GreenBit 0.9056 0.9036 0.9036 0.074

5 

Not 

applicab

le 

21 

Gaussian 

SVM + 

BSIF 

GreenBit 0.9927 0.9926 0.9926 0.007

8 

Not 

applicab

le 

29 

Linear 

SVM + 

BSIF 

GreenBit 0.9968 0.9968 0.9968 0.007

7 

Not 

applicab

le 

23 

Gaussian 

SVM + 

LPQ 

GreenBit 0.9918  0.991

7 

0.9917 0.010 Not 

applicab

le 

24 

Linear 

SVM + 

LPQ 

GreenBit 0.9887 0.9885 0.9885 0.013 Not 

applicab

le 

16 

Inception 

V3 

Digital 

Persona 

0.929 0.9401 0.9341 0.065

9 

50% 994 

ResNet 

50 

Digital 

Persona 

0.9244 0.9540 0.94 0.062

0 

40% 618 

NASNet 

Large 

Digital 

Persona 

0.9507 0.9640 0.9570 0.043

0 

70% 2071 

Inception 

V3 

Orcanth

us 

0.9880 0.9972 0.9917 0.011

0 

50% 1088 

ResNet 

50 

Orcanthu

s 

0.9899 0.9820 0.9872 0.011

0 

70% 666 

NASNet 

Large 

Orcanthu

s 

0.9939 0.9720 0.9845 0.016

5 

20% 1992 

Inception 

V3 

GreenBit 0.9586 0.9720 0.9682 0.030

1 

60% 988 

ResNet 

50 

GreenBit 0.9502 0.9920 0.9727 0.025

6 

60% 602 

NASNet 

Large 

GreenBit 0.9896 0.9480 0.9718 0.030

1 

70% 2282 

Work Name Algorithm Name Dataset Liveness 

Accuracy [%] 

Orrù & et al, 

2019 
FSB Green Bit 

99.73 

This Work Linear SVM + BSIF Green Bit 99.68 

Zhang  & 

Gao et al, 

2020 

Score Level Fusion 

Fingerprint Matching 
Green Bit 

98.61 

Zhang & et 

al, 2019 
Slim-ResCNN Green Bit 

97.81 

This Work ResNet 50 Green Bit 97.27 

Zhang & et 

al, 2019 
Slim-ResCNN 

Digital 

Persona 

95.42 

This Work 
NASNet Large 

Digital 

Persona 

95.70 

Zhang  & 

Gao et al, 

2020 

Score Level Fusion 

Fingerprint Matching 

Digital 

Persona 

94.30 

This Work 
Gaussian SVM + BSIF 

Digital 

Persona 

93.95 

Orrù & et al, 

2019 
PADUnkFv 

Digital 

Persona 

93.63 

Orrù & et al, 

2019 
JungCNN Orcanthus 

99.13 

This Work Linear SVM + BSIF Orcanthus 98.72 

This Work Inception V3 Orcanthus 99.17 

Zhang  & 

Gao et al, 

2020 

Score Level Fusion 

Fingerprint Matching 
Orcanthus 

93.98 
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Table 6.  Overall LivDet 2019 accuracy comparison with various unlocked 

layers using pre-trained weights from ATVS and Imagenet. 

ConvNet 

base 

Unlocked 

Layers (%) 

Accuracy 

pre-training 

ATVS 

(%) 

 

Accuracy 

pre-training 

Imagenet 

(%) 

ResNet50 

V2 

0 69,18 93,62 

20 58,33 94,61 

40 56,47 96,11 

60 55,85 96,04 

70 56,47 82,03 

Inception 
V3 

0 64,29 91,84 

20 57,74 95,28 

40 52,49 95,80 

60 53,85 95,72 

NASNet 

Large 

0 67,31 94,18 

20 57,65 95,48 

40 53,96 95,66 

70 55,98 96,90 

 

The output of Lime for two images belonging to the Orcanthus 

dataset for both a Fake and Live fingerprint is reported in 

Figure 3. Both images were correctly classified as Fake and 

Live respectively by the ResNet 50 model. It is interesting to 

see that the same model has focused its “attention” on different 

areas to check if the input image is fake or not. In facts, green 

area shows the portions of the image that contributed the most 

to the correct classification of the image and the red area the 

portion of images that contributed less. This means that some 

areas of the image, are more important than others. But this also 

means that the model could recognize high level complex 

patterns like the set of curves in the top green area of Figure 3 

(b) and minutiae in center and lower right area of Figure 3 (a). 

This interpretation of what the DL model has learnt, even if not 

perfect (note the probably green artifact in the right bottom of 

Figure 3 b) because of the linearity of the surrogate model, 

suggests that transfer learning in fingerprint liveness detection 

is an important tool that deserves further deepening. In fact, 

thanks to transfer learning, the model was able of recognizing 

fingerprint minuities as a non-linear combination of the 

previously learned patterns, even if the learning process 

happened on another dataset. 

 
Figure. 3. LIME output for ResNet 50 on Orcanthus dataset. It shows 

fingerprints correctly identified as Fake (a) and correctly identified as Live 

(b). 

7. Conclusions 

In this work standard image descriptors and deep learning 

techniques have been compared under the same conditions for the 

aim of fingerprint liveness detection. Both deep learning model 

trained in transfer learning fashion and shallow learning (image 

descriptors and SVM classifier) delivered good accuracies on par 

with the state of the art. In particular for Orcanthus and Digital 

Persona datasets, respectively Inception V3 and NasNet Large 

achieved the state of the art accuracies. 

This conclusion suggests that the hypothesis of using deep transfer 

learning for learning simple to complex patterns from a huge 

dataset, and later bring this knowledge to this small dataset is 

effective and deserve further deepening. Interesting is also the 

result of the NASNet Large, this network (not produced by a 

human being) was capable of achieving almost always the highest 

accuracies. 

In future, ad-hoc deep neural networks models developed with 

Neural Architecture Search and specifically fine-tuned on 

fingerprint dataset could develop an ad-hoc network that is trained, 

in a transfer learning fashion, to focus its “attention” to fingerprint 

minutiae and thus decrease the chance of a spoofing attack. 
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