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expressed under stress condition, highlighted that 
homoeologous Rca1 genes have different expression 
levels especially after infections by Zymoseptoria, 
powdrey mildew and fusarium. A deeper knowledge 
of Rca genes structures as well as a better understand-
ing of their physiological role in durum wheat might 
be of greater importance in panning future modern 
breeding programs to improve crop yield in adverse 
environmental condition.
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Introduction

The world’s population is expected to reach over 9 
billion by 2050, as the latest FAO forecast reports 
(OECD/FAO 2020), determining a 70% increase in 
the global food demand, especially on cereals (York 
2016; Chen et  al. 2017; FAO 2017). To satisfy this 
demand, the development of improved cultivars along 
with the adoption of new and optimized management 
practices will be essential. As reported by Beres et al. 
(2020), the accomplishment of this goal will necessi-
tate a significant yield boost for crops such as wheat, 
which rate of gain needs to be improved by 30–40% 
(FAO 2017; Cassman et  al. 2020). Wheat is one of 
the most globally grown crop, supplying about 20% 
of the human daily calories and protein intake (CRP-
WHEAT 2016). Most of the cultivated wheats belong 

Abstract  Durum wheat (T. turgidum L. var. durum) 
is one of the most widely cultivated cereal crop in the 
Mediterranean area. Its production has been triggered 
by drought and rising temperature, both affecting the 
photosynthetic machinery. Rubisco is one of the most 
important enzymes in plants. Despite its major role 
in the control of carbon cycle it has a very low effi-
ciency, which is restored by the action of Ribulose-
1,5-bisphosphate carboxylase/oxygenase activase 
(Rca), a protein belonging to the AAA​+ family. The 
main objective of our work was to isolate and charac-
terize Rca genes in durum wheat and determine their 
phylogeny with other main crops and model species. 
Besides a genetic and physical position of Rca1 gene 
was allowed in a RIL mapping population previously 
developed. In silico analysis, performed in order to 
understand whether Rca1 gene was differentially 
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either to the hexaploid Triticum aestivum L. or to the 
tetraploid T. durum species, the latter representing 
only the 5% of the total wheat production. Durum 
wheat is an élite crop in dry lands, such as the Medi-
terranean basin, with a yearly production average 
of 40 million tonnes (MT) on a planting area of 17 
million hectares globally (IGC 2020). Durum wheat 
is mostly grown under rain-fed conditions, so its pro-
ductivity is severely influenced by rainfall as well as 
biotic (pests and diseases) and abiotic (drought, cold, 
salinity) stresses. So far, breeding programs aiming 
at durum wheat yield improvement, will also have to 
deal with the variable effects induced by the climate 
changes we are witnessing (Reynolds et  al. 2020). 
The increasing atmospheric CO2 is affecting global 
temperatures, water availability and weather events, 
all having strong impacts on plant productivity and 
carbon assimilation, as well as on agriculture and 
food production.

So far, bigger efforts will be required to face and 
deal with these issues and guarantee sustainable 
crop production and provide climate-smart agricul-
ture, especially from a genetic perspective. Indeed, 
the identification of candidate genes having a major 
role in the control of central metabolic pathways is 
of crucial importance in underpinning and revealing 
the genomic region actively involved in those traits’ 
control.

Ribulose-1,5-bisphosphate carboxylase/oxyge-
nase (Rubisco, EC 4.1.1.39) is responsible for the 
photosynthetic assimilation of CO2 into organic 
compounds, the rate limiting step in photosynthesis 
(Spreitzer et al. 2002). As reported by Perdomo et al. 
(2021), Rubisco is a quite complex enzyme, consist-
ing of eight large subunits, encoded by a single plas-
tidial gene (RbcL), and eight small subunits which 
are instead encoded by a nuclear multigene family 
(RbcS), (Schmidt et al. 1986; Roy 1989; Carmo-Silva 
et al. 2015; Bracher et al. 2021).

Despite being the most abundant protein in plants 
(and on Earth) (Raven 2013), Rubisco has been 
reported as one of the most inefficient enzymes 
ever, both because of its very low catalytic turnover 
rate and the predisposition to be inhibited by sugar-
phosphate derivatives which latches the active (Por-
tis 1995; Carmo-Silva et  al. 2015; Bracher 2021). 
Enhancing Rubisco functionality has significant 
repercussions concerning the improvement of plant 
productivity and resource use efficiency (Parry et al. 

2007; Whitney et al. 2011). It has been demonstrated 
that its activity depends on interaction with the 
Rubisco activase (Rca), a chloroplast ATPases associ-
ated with diverse cellular aActivities (AAA + protein 
family) encoded by a nuclear gene (Bhat 2017).

Rca plays a significant role in photosynthesis, as 
catalyzes the Rubisco activation in the photosynthetic 
light-independent Calvin-Benson-Basham cycle. 
Rca utilizes the energy derived by ATP hydrolysis 
to release the sugar-phosphates from Rubisco active 
sites, thus reestablishing its catalytic competence 
(Bhat et al. 2017; Shivhare et al. 2017).

Bread wheat (T. aestivum) contains two Rca genes, 
as most of flowering plant species, including grasses. 
Carmo-Silva et  al. (2015) reported the presence 
of two Rca sequences, in tandem, on chromosome 
group 4 in bread wheat (specifically, long arm for A 
genome and short arm for B and D genomes). TaRca1 
has a simpler structure, consisting of only two exons, 
and originates a single short mature protein named 
TaRca1-β. TaRca2 is a longer gene, with a total of six 
exons; as alternative splicing has been demonstrated 
to occur at the end of exon 5, two isoforms might be 
obtained: a shorter one, TaRca2-β, and a complete 
one, TaRca2-α, 37 aa longer than the previous. The 
two β isoforms different just for 0.5 kDa (TaRca1-β 
and TaRca2-β being 42.7 and 42.2 kDa, respectively), 
while TaRca2-α isoform has a predicted molecular 
weight of 46.0 kDa (Carmo-Silva et al. 2015).

Little is known about Rca detailed mechanism(s) 
in plants, since only recently plant Rubiscos have 
been recombinantly expressed (Ng et al. 2020).

Some specific conditions might affect its effi-
ciency, such as abiotic or biotic stresses, especially 
light, temperature and pathogen infection. Some stud-
ies have been carried out to determine the expres-
sion of Rca specific isoforms during the 24  h diel 
cycle (Perdomo et al. 2021), and heat-stress condition 
(Degen et al. 2020). Nevertheless, several proteomic 
studies have highlighted a differential expression 
of Rca enzymes after pathogen infection. Interest-
ingly, Fusarium graminearum seemed to determine 
a change in Rca protein abundance after infection 
both in wheat and barley (Zhou et  al. 2006; Geddes 
et al. 2008). The recently published bread and durum 
wheat genome sequences (Appels et  al. 2018; Mac-
caferri et al. 2019), might be considerably valuable in 
disclosing the genetic complexity of those species. By 
exploiting these and other publicly available data, we 
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focused on the isolation and characterization of Rca 
genes in durum wheat, as well as on the depiction 
of their phylogeny with other main crops and model 
species. Also, a RIL mapping population previously 
developed to study Fusarium graminearum resistance 
(Giancaspro et al. 2016) was used to genetically and 
physically map the genes, and in silico analysis was 
performed in order to identify differential expres-
sions under different environmental condition. A 
deeper knowledge of Rca genes structures as well 
as their physical and genetic mapping might be of 
greater importance in planning future breeding pro-
grams based on the most recent and precise genetic 
techniques, such as the genome editing approaches, to 
improve both crop yield and/or pathogen resistance, 
such as to Fusarium.

Materials and methods

Ribulose‑1,5‑bisphosphate carboxylase‑oxygenase 
activase (Rca) genes isolation and characterization in 
durum wheat

Bread wheat Rca gene sequences (accession num-
bers LM992844 (TaRca1) and LM992846 (TaRca2) 
(Carmo-Silva et  al. 2015) were used as queries and 
launched against the publicly available durum wheat 
cv Svevo genome browser (https://d-​gbrow​se.​inter​
omics.​eu/). The retrieved gene sequences were fur-
ther analyzed for gene structure detection and used to 
primer pairs design for further investigation in differ-
ent wheat genotypes.

Phylogenetic analysis of Rca genes

Rca1 and Rca2 orthologous genes for T. aestivum, 
T. durum, Triticum turgidum L. subsp. dicoccoides, 
Triticum urartu, Aegilops tauschii, Hordeum vul-
gare, Brachypodium distachyon, Oryza sativa, Sor-
ghum bicolor and Zea mays were retrieved from the 
EnsemblePlant database (http://​plants.​ensem​bl.​org/) 
by blasting the two genes of T. aestivum against each 
of the considered species’ genome.

For ease of phylogenetic tree reading, abbrevia-
tions of common names and genus names will be 
used as follows. Each plant species considered in this 
paper was indicated with a two-letter prefix (followed 
by each gene symbol): Ta for T. aestivum, Tt for T. 

durum, Tdic for T. dicoccoides, Tu for T. Urartu, Ae 
for Ae. tauschii, Hv for H. vulgare, Bd for B. distach-
yon, Os for O. sativa, Sb for S. bicolor and Zm for Z. 
mays.

All retrieved genes’ cDNAs were aligned by using 
the ClustalW method via MegaX software (Kumar 
et al. 2018). Phylogenetic analysis was carried out on 
28 CDS sequences using the Maximum Likelihood 
based on the Tamura-Nei model (Tamura et al. 1993).

The tree was drawn to scale, with branch lengths 
measured in the number of substitutions per site. The 
tree was generated with MegaX as well and modified 
with the FigTree program (http://​tree.​bio.​ed.​ac.​uk/​
softw​are/​figtr​ee/).

Plant material and polymorphism detection through 
ecotilling analysis

Two wheat genotypes, 02-5B-318 and Saragolla, 
parents of a mapping population consisting of a set 
of 135 recombinant inbred lines (RILs) segregant for 
FHB resistance (Giancaspro et al. 2016), were used to 
eventually identify polymorphisms within Rca genes 
sequence to genetically and physically map them. 
02-5B-318, a breeding line derived from the resistant 
Chinese cv. Sumai-3, is a FHB-resistant bread wheat 
accession, while durum wheat cv. Saragolla is FHB-
susceptible. Primer combination for were designed. 
By using Oligo Explorer (http://​www.​genel​ink.​com/​
tools/​gl-​oe.​asp) and Primer3 (http://​frodo.​wi.​mit.​edu/​
prime​r3/) software, a set of genome specific primer 
pairs were designed based on the retrieved Svevo 
Rca1 and Rca2 gene sequences and used to amplify 
target DNA from both 02 and Saragolla parental lines 
(Table 1). The RIL population was also used for map-
ping yield and Protein content QTLs (Giancaspro 
et al. 2019).

DNA amplifications were carried out in 20  μL 
reaction mixtures, each containing 50 ng DNA tem-
plate, 200 M of dNTP, each primer in 0.5 µM concen-
trations, 1 × buffer, 0.02 U/µL Taq polymerase. The 
following PCR protocol in a BIORAD thermo cyclers 
was used: initial denaturation at 95 °C for 3 min, fol-
lowed by 35 cycles of 94 °C for 30’’, 60.5 °C/63 °C 
for 30’’, 72  °C for 1  min with a final extension at 
72 °C for 10 min (Nigro et al. 2014).

In order to discover and map eventual polymor-
phism between the genomic sequences of the two 
varieties previously described, Single Nucleotide 

https://d-gbrowse.interomics.eu/
https://d-gbrowse.interomics.eu/
http://plants.ensembl.org/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://www.genelink.com/tools/gl-oe.asp
http://www.genelink.com/tools/gl-oe.asp
http://frodo.wi.mit.edu/primer3/
http://frodo.wi.mit.edu/primer3/
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Polymorphisms (SNPs) were detected using the Sur-
veyor nuclease kit (Transgenomic, Inc.), following 
manufacture’s instruction. The heteroduplex forma-
tion, CELI digestion and gel analysis were carried out 
as reported by Nigro et al. (2014, 2017).

To confirm the polymorphisms within genome 
specific genes, the heteroduplex hybridization diges-
tion pattern was compared to the ones obtained in 
each parental lines. Furthermore, PCR products giv-
ing a digestion pattern after CEL1 treatment were re-
amplified and sequenced by 96 capillary 3100 Avant 
(Life Technologies) (Nigro et al. 2014, 2017).

Development of Rca1 specific markers

The Rca1 sequences of the two wheat genotypes 
02-5B-318 and Saragolla were aligned using ClustalΩ 
(https://​www.​ebi.​ac.​uk/​Tools/​msa/​clust​alo/) from EBI 
website to identify polymorphisms. The polymor-
phic markers were mapped in the ‘Saragolla’ and’02-
5B-318’ mapping population. The observed segre-
gation ratio for the marker was tested by Chi-square 
analysis for deviation from the expected 1:1 ratio. The 
linkage analysis was performed by JoinMap v. 4.0 
(Ooijen et al. 2006) and the Kosambi mapping func-
tion was used to calculate map distances (1943).

Rca genes in‑silico expression analysis

In silico expression analysis and the identification of 
upregulated gene models was carried out using the 
RNAseq data available at http://​www.​wheat-​expre​
ssion.​com/ using gene models from ‘Chinese spring’. 
All experimental conditions were considered. Addi-
tionally, the homologous genes from ‘Svevo’ were 
picked in durum wheat.

Results

Isolation of genomic sequences of Rca genes in 
wheat

The bread wheat TaRca1 and TaRca2 sequences 
were used as queries by blast analysis in the Svevo 
portal (https://d-​gbrow​se.​inter​omics.​eu/​gb2/​gbrow​
se/​Svevo/), and several different durum wheat 
sequences annotated as the Ribulose-1,5-bis-
phosphate carboxylase-oxygenase activase, were 
retrieved. Specifically, 79 different splicing iso-
forms were identified on 4A chromosome, while 74 
different ones were identified for 4B homoeologous.

Indeed, differently from bread wheat and other 
species, the two genes were not separately and 
individually annotated, but reported in tandem as 
different splicing form of the same gene: TRIT-
D4Av1G139700 on minus strand of 4A chromo-
some, and TRITD4Bv1G060980 on plus strand of 
4B. By sequence analysis and comparison of CDS 
and predicted aminoacidic sequence, it was possi-
ble to determine the most similar and more likely 
to be the durum wheat Rca1 and Rca2 sequences 
for both A and B genome: Rca1-4A: TRIT-
D4Av1G139700.79 (chr4A:442,229,641.0.442,23
2,675); Rca2-4A: TRITD4Av1G139700.4; Rca1-
4B: TRITD4Bv1G060980.1; Rca2-4B: TRITD-
4Bv1G060980.64. Both Rca1 homoeologous genes 
comprise 2 exons, a complete CDS of 1299 bp and a 
predicted protein of 432 aa.

Rca2 genes have 6 exons, a CDS of 1404 bp and 
a protein of 467 aa. It should be reminded that in 
this case, an alternative splicing at exon 5 might 
induce a shorter isoform (Fig. 1).

Table 1   Primer sequences used to amplify Rca genes from 02-5B-318 and Saragolla parental lines

Primer name Primer sequences Annealing 
temperature 
(°C)Forward (5’-3’) Reverse (5’-3’)

Rca-1 AAA​CAA​GAT​AGT​ATA​TAC​GGG​CGA​ CCT​CTG​GTG​ATG​TCC​TGC​TG 60.5
Rca-2 TGG​CTA​ATA​AAC​AAG​ACG​ATCCG​ AGG​CAA​GAC​CCT​TCC​ACT​TG 62.5
Rca-3 AGG​CCA​ACA​GGT​TCA​CAG​TC ATT​GGG​CTG​TGG​TGA​AAA​GC 63
Rca-4 CAT​ACT​GTC​ACA​CAG​TCA​TAG​ATG​C TGT​GCG​TAG​TTC​ACC​TCC​TC 62
Rca-5 ATG​CTA​ACC​AGG​ATG​CGA​TGA​ AAA​GCA​GAA​GCA​GTC​TCC​ACT​ 62

https://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.wheat-expression.com/
http://www.wheat-expression.com/
https://d-gbrowse.interomics.eu/gb2/gbrowse/Svevo/
https://d-gbrowse.interomics.eu/gb2/gbrowse/Svevo/
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Phylogenetic analysis

Orthologues Rca1 and Rca2 gene sequences were 
retrieved for ten species from the EnsemblePlant 
database (http://​plants.​ensem​bl.​org/), including T. 
aestivum, T. durum, T. dicoccoides, T. urartu, Ae. 
tauschii, H. vulgare, B. distachyon, O. sativa, S. 
bicolor and Z. mays. The above reported species were 
chosen as either sequenced wheat genome progenitor 
and related species, or model plants which genome 
sequences have been fully sequenced and annotated. 
Furthermore, two C4 species were chosen in order to 
compare the evolutive distance of Rca1 genes with 
C3 ones.

The identified CDS were checked for sequence 
structure and similarity. A total of 28 gene sequences 
were retained to build a phylogenetic tree compris-
ing the ten considered species (Table  2), which 
were firstly aligned by using the ClustalW method 
via MegaX software (sequences and alignment are 
reported in Supplementary file 1).

The evolutionary history was inferred by using 
the Maximum Likelihood method based on the 
Tamura-Nei model (Tamura et  al. 1993). The tree 
with the highest log likelihood (− 8623.3812) is 
shown (Fig. 2). Initial tree(s) for the heuristic search 
were obtained automatically by applying Neighbor-
Join and BioNJ algorithms to a matrix of pairwise 
distances estimated using the Maximum Composite 
Likelihood (MCL) approach, and then selecting the 
topology with superior log likelihood value. The tree 
is drawn to scale, with branch lengths measured in 

the number of substitutions per site. Codon positions 
included were 1st + 2nd + 3rd + Noncoding. There 
were a total of 1774 positions in the final dataset. 
Evolutionary analyses were conducted in MEGAX 
(Kumar et al. 2018).

As shown by the tree in Fig. 2, two main clades, 
and a third smaller one, were generated. The first one, 
grouped 11 Rca1 sequences (reported in pink) belong-
ing to the 7 of the analyzed species; as expected, 
sequences belonging to A genome from Triticum spe-
cies clustered altogether with the Urartu one, and the 
same situation was observed for orthologous Rca1 
belonging to B and D genome, the latter clustering 
with the Rca1 of Ae. tauschii as well. H. vulgare and 
B. distachyon had the more dissimilar sequences, as 
expected. The same situation was observed for the 
second cluster, which grouped 12 Rca2 sequences. 
Triticum orthologous belonging to the same genome 
clustered together, as previously observed for Rca1 
CDS. Interestingly, a third smaller cluster formed, 
which grouped both Rca1 and Rca2 from Sorghum 
and Maize, the only C4 species included in the analy-
sis. A divergent sequence was also found out, a Rca2 
CDS sequence of rice.

Genetic and physical mapping of wheat Rca genes 
sequences

ECOTILLING approach requires a treatment of the 
amplified DNA with CELI endonuclease, or any 
of a number of single strand endonucleases, after 
heteroduplex formation between the lines to be 

Fig. 1   Durum wheat Rca1 
and Rca2 sequences for A 
and B genome and physical 
position on reference Svevo 
genome

http://plants.ensembl.org/
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investigated. Surveyor nuclease cleaves with high 
specificity at the 3′ side of any mismatch site in both 
DNA strands, including all base substitutions and 
insertion/deletions up to at least 12 nucleotides. The 
treatment of all amplicons for each Rca gene allowed 
the identification of a mismatch in Rca1 sequence, 
and specifically, a SNP was identified within the sec-
ond exon of Rca1-4A gene. Precisely, the T/C SNP 
identified between the two parental line, 02-5B-318 
(C) and Saragolla (T), was mapped in the RIL map-
ping population, and was localized at 123.9  cM 
(Fig. 3). Analysis of SNP in the predicted mature pro-
tein showed that the polymorphism resulted in amino 
acid substitution in position 260, a leucine to phenyla-
lanine switch L-F (C/T). Unfortunately, no polymor-
phism was detected within Rca2 gene sequence. The 
projected SNP of Rca1 in the Svevo genome mapped 
at 37.7 cM, at physical position 442,230,162 bp. The 
metaQTL analysis conducted by Maccaferri et  al. 
(2019), identified 14 different QTLs underlying the 
Rca genes region, most of which related to yield 
traits, but two of them found to be involved for Fusar-
ium graminearium and leaf rust resistance. On these 
bases a new QTL analysis for Fusarium resistance 
was contacted using the same phenotypic data and 
genetic map of Giancaspro et al. (2016) adding data 
from Rca1. QTL analysis conformed the presences of 
a QTL for FHB resistance coincident with Rca gene 
with a LOD of 3.

Expression profile of Rca genes in wheat

Using the genome browser for ‘Svevo’ (https://d-​
gbrow​se.​inter​omics.​eu/​gb2/​gbrow​se/​Svevo/) refer-
ence genomes and the RNAseq data available at 
http://​www.​wheat-​expre​ssion.​com/ (Borrill et  al. 
2016), we carried out an in silico gene expression 
analysis to identify in which tissue and phenological 
stage Rca1 gene transcripts were more abundant.

In addition, the analysis was conducted to corre-
late the gene expression with biotic stress conditions 
and detected where the expression was higher during 
plant development.

The Rca1-4A gene expression was detected in 
leaves (including flag leaf), followed by roots and 
spikes. Considering the developmental stages and 
types of leaf, the higher level of Rca1-4A gene 
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expression was reported at seedling, three leaf and 
reproductive stages and during grain filling.

According to stress response, the wheat Rca1-
4A gene showed to be particularly expressed during 
Zymoseptoria tritici, Stripe rust, Powdery mildew 
and Fusarium infections (Fig. 4), conforming what 
obtained with QTL analysis for FHB resistance.

Expression analysis of Rca1-4A under abiotic 
stress included: drought stress, heat stress, com-
bined drought and heat stresses, water stress, chi-
tin addition and PEG 6000 treatment to simulate 
drought and cold stress.

The homeologus gene Rca1-4B was highly 
expressed in leaves, while lower levels were 
detected in roots and spikes. Comparing the expres-
sion of the Rca1-4A and Rca1-4B genes under 
stress conditions, the latter one showed a higher 
expression level under the Powdery mildew infec-
tion. Overall, the expression data reported for the 
Rca genes located on chromosome 4B appeared to 
be more abundant compared to the ones on the 4A 
homoeologues.

Discussion

The rise in atmospheric temperatures has affected 
the length of cereal growing season in large areas of 
Europe. This, together with water scarcity, are two 
main constraining factors for crop productivity, as 
reported by Perdomo et al. (2015, 2016).

Over the past 150 years, the concentration of car-
bon dioxide in the atmosphere increased by 32%, 
going from 280 to 370 parts for million in volume. 
As known, CO2 concentration directly affects pho-
tosynthesis, a process extremely susceptible to both 
drought and heat stress (Chaves et al. 2009; Carmo-
Silva et al. 2012; Vile et al. 2012; Mathur et al. 2014; 
Singh et al. 2014).

Rubisco, the key enzyme of CO2 carboxylation in 
the Calvin–Benson cycle, represent 50% or more of 
total proteins in leaves. Its deactivation represents a 
major element in decreased CO2 assimilation rate at 
high temperatures (Parry et  al. 2013; Bracher et  al. 
2017). Rubisco activase (Rca) facilitates the disso-
ciation of inhibitory sugar phosphates from the active 

Fig. 2   Molecular Phyloge-
netic analysis by Maximum 
Likelihood method of Rca1 
and Rca2 genes retrieved 
from T. aestivum, T. durum, 
T. dicoccoides, T. urartu, 
Ae. tauschii, H. vulgare, 
B. distachyon, O. sativa, S. 
bicolor and Z. mays 
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site of Rubisco (Spreitzer et  al. 2002), affecting the 
efficiency of photosynthetic activity.

Due to its pivotal role in photosynthetic processes, 
the enhancement of Rubisco activation by Rca may 

be a potential strategy for improving a photosynthe-
sis-driven increase in crop yield.

In this paper, we focused on the gene structure 
characterization of Rca genes in durum wheat, and 
their mapping on a RIL population previously devel-
oped and used to map QTL involved in Fusarium 
graminearum resistance.

Previous proteomic studies have indeed high-
lighted a differential expression of Rca enzymes 
after Fusarium graminearum infection. Interestingly, 
the pathogen seemed to determine a change in Rca 
protein abundance after infection both in wheat and 
barley (Zhou et  al. 2006). Zhou et  al. (2006), iden-
tified a down-regulation of Rubisco activase (2,sev-
enfold change detected) along with glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) and degrada-
tion of Rubisco, suggesting that photosynthesis was 
disrupted or at least decreased after F. graminearum 
infection in wheat spikes. Recently, a study of Kos-
ovà et  al. (2017) analyzed the effect of an artificial 
infection with Fusarium culmorum and application of 
deoxynivalenol (DON) on barley spikes at flowering 
by proteomic analysis (2D-DIGE technique combined 
with LC–MS/MS). They found out a decrease in pho-
tosynthesis-related proteins in Fusarium- and DON-
treated plants with respect to control indicating an 
adverse effect of stress on photosynthetic apparatus. 
Rubisco activase small isoform A were detected only 
in Fusarium- and DON-treated plants while they were 
ab sent in control plants of both analyzed genotypes. 
According to Geddes et al. (2008), enhanced level of 
Rubisco activase isoform1was found in Fusarium-
treated susceptible and intermediate-resistant bar-
ley cultivars, while no change was found in resistant 
ones, suggesting indicating that they Rca were latterly 
induced as a consequence of both pathogen infection 
and mycotoxin application.

We mapped Rca gene on 4A chromosome in 
02-5b-318 × Saragolla RIL population, and the 
SNP was projected on the reference Svevo genome 
(Macaferri et  al. 2019). MetaQTL analysis previ-
ously performed highlighted a very interesting situ-
ation. Indeed, the region on Rca1-4A gene was sur-
rounded by 14 different QTL. Despite 12 of them 
were involved in yield and yield-related traits control, 
two of them were a FHB resistance QTL and a LR 
resistance one (Prat et  al. 2014; Aoun et  al. 2016). 
This confirm our data that identified a QTL coinci-
dent with the Rca1 gene location on 4A chromosome. 

Fig. 3   Graphic representation of chromosome 4A and Rca-1 
gene location
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The same investigation carried out on the 4B homoe-
ologous genes region, showed similar result, with 35 
different QTL underlying the region, and specifically 
two involved in FHB resistance QTL and a LR resist-
ance (Marone et al. 2009; Ruan et al. 2012), suggest-
ing that this region and its homoeologous are actively 
involved in both yield and pathogen resistance.

Furthermore, the SNP (C/T) identified between the 
two parental lines determined an amino acidic change. 
Specifically, the amino acid substitution is located at 
position 260, at the beginning of the α helical subdo-
main of the AAA + module, and determines a leucine 
to phenylalanine switch L-F. Previous studies have 
reported single amino acid substitution in Rca pro-
teins, and in some cases, they have been shown hav-
ing a solid effect on the enzyme thermostability.

Scafaro et al. (2019) found that two mutant wheat 
Rca2b proteins showed 5–7  °C increases in thermo 
stability. Those mutants were found in warm adapted 
species and presented eight and 11 residue substitu-
tions, respectively, and both including the mutation 
M159I. Also, Scafaro et al. (2019) reported that a sin-
gle lysine residue in the C-terminal extension of Rca 
was responsible for ADP sensitivity decrease.

Degen et  al. (2020) demonstrated that a single 
amino acid residue substitution (methionine/ iso-
leucine at position 159) in the wheat Rca2b isoform 
(Scafaro et  al. 2016) extended the temperature opti-
mum while maintaining the efficiency of Rubisco 
activation by Rca. It was supposed that this substitu-
tion altered the regulatory properties of Rca which 

was more thermostable, resulting in a more efficient 
activation of Rubisco. The occurrence of an iso-
leucine at position 159 in Rca2 might indicate an 
adaptation to warm environments, and some authors 
hypothesized that the ancestral monocots Rcas had a 
methionine residue at this position.

Further investigation will be carried out to deter-
mine its involvement in FHB resistance and whether 
also the single substitution we reported here might 
have similar effects on the Rca activity, as a ther-
mal and regulatory switch that can be exploited to 
improve the efficiency and climate resilience of wheat 
carbon fixation, besides with.

Ultimately, the importance of targeting Rca in 
future breeding programs is also enhanced consid-
ering its pivotal role in photosynthetic processes, 
which will be adapting to always more environmen-
tal changes. The strong correlation and interaction 
between C and N metabolisms have been widely 
studied, and recent reports pointed their attention on 
how Rubisco and Rca might change their expression 
whether different N supplement were given to plants. 
Tetard-Jones et al. (2013), compare the effect of con-
trasting components (fertilization and crop protec-
tion regime) of organic and conventional cropping 
systems, and found out an up-regulation of both GS2 
and Rca when wheat plants were supplemented with 
mineral fertilizers, as also reported by other authors 
(Fortunato et al. 2019; Lacolla et al. 2019). Another 
study from Yousuf et  al. (2017) analyzed the prot-
eomic pattern in two wheat cultivars with contrasting 

Fig. 4   In silico expression analysis of durum Rca1_4A gene in leaves/shoots under stress disease, in particular in response to 
Zymoseptoria tritici, Stripe rust pathogen, Powdery mildew and Fusarium infections
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nitrogen efficiencies when both high temperature and 
low nitrogen stresses were combined. The authors 
found the Rca significantly increased in abundance 
under stressful conditions, suggesting its potential to 
regulate Rubisco activity.

Rca has been widely demonstrated to be a valuable 
candidate gene to enhance Rubisco activity and CO2 
assimilation under mutable environmental conditions, 
especially water and nutrient availability which are 
predicted to be occurring even more frequently due 
to climate change scenarios. So far, developing new 
traditional as well as innovative breeding programs, 
such as with specific genome editing experiment 
to induce new and useful amino acid substitutions, 
might be a promising strategy for the improvement of 
yield capacity and sustainability of crops under global 
warming.
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