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A  B  S  T  R  A  C  T   
 

Wildfires are a major disturbance in the Mediterranean Basin and an ecological factor that constantly alters the 

landscape. In this context, it is crucial to understand where wildfires are more likely to occur as well as the 

drivers guiding them in complex landscapes such as the Mediterranean area. The objectives of this study are to 

estimate wildfire probability occurrence as a function of biophysical and human-related drivers, to provide an 

assessment of the relative impact of each driver and analyze the performance of machine learning techniques 

compared to traditional regression modeling. By employing an Artificial Neural Network model and fire data 

(2004–2012), we estimated wildfire probability across two geographical regions covering most of the Italian 

territory: Alpine and subalpine region and Insular and peninsular region. The high classification accuracy (0.68 

for the Alpine and subalpine region and 0.76 for the Insular and peninsular region) and good performances of the 

technique (AUC values of 0.82 and 0.76, respectively) suggest that our model can be used in the areas studied to 

assess wildfire probability occurrence. We compared our model with a logistic function, which showed a weaker 

predictive power (AUC values of 0.78 for the Alpine and subalpine region and 0.65 for the Insular and peninsular 

region) compared to the Artificial Neural Network. In addition, we assessed the importance of each variable by 

isolating it in the model. The importance of an individual variable differed between the two regions, under- 

scoring the high diversity of wildfire occurrence drivers in Mediterranean landscapes. Results show that in the 

Alpine and subalpine region, the presence of forest is the most important variable, while climate resulted as 

being the most important variable in the Insular and peninsular region. The majority of areas recently affected by 

large wildfires in both regions have been correctly classified by the ANN model as ‘high fire probability’. Hence, 

the use of an Artificial Neural Network is efficient and robust for understanding the probability of wildfire 

occurrence in Italy and other similar complex landscapes. 

 
 

 

1. Introduction 

Fire disturbance is a key driver of many natural landscapes and for 

the delivery of ecosystem services (Johnstone et al., 2016; Molina and 

Herrera, 2019). However, wildfires have detrimental effects on natural 

resources and human life when they occur in urban interfaces 

(Argañaraz et al., 2017; Modugno et al., 2016; San-Miguel-Ayanz et al., 

2013). 

Reports of the European Commission suggest that over the past 

30 years Europe has seen an increase of extreme wildfire events gen- 

erating major socio-ecological impacts (Elia et al., 2016; Lozano et al., 

2017; Paveglio et al., 2018). In Italy, the magnitude of the wildfire 

dilemma is similar to that of other Mediterranean countries (Carlucci 

et al., 2019; Mancini et al., 2018b). In 2017 alone, more than 7800 

wildfires occurred in the peninsula burning over 162,000 ha. Statistics 

also reveal that the average number of wildfire casualties is 5 per year, 

while the mean number of injured is 39 per year (Union, P.O. of the E, 

2018). Despite the continuous support of the European Commission and 

the efforts of national and regional government to improve fire man- 

agement policies, these data depict a dramatic picture. The numbers 

remind us of the importance and urgency to integrate the emergency 

approach (e.g., fire suppression) with a more efficient preventive fire 

management strategy, specifically focused on favoring the development 

of fire-resistant and resilient landscapes (Moreira et al., 2020; Twidwell 
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et al., 2019). To this end, landscape management agencies need to 

understand where wildfires are most likely to occur (i.e., wildfire 

probability) as well as the key drivers of current wildfires (Faivre et al., 

2014; Guo et al., 2017; Pricope and Binford, 2012; Rodrigues et al., 

2016). 

The scientific community has developed many approaches to dis- 

entangle the multifactorial aspects that lead to wildfire probability in a 

specific landscape. For example, the first pioneering study by Chuvieco 

and Congalton (1989) suggests integrating geo-environmental data and 

logistic regression to assess wildfire probability. Preisler et al. (2004a) 

published a study presenting a probability-based model for estimating 

wildfire occurrences. Subsequent to these first studies wildfire prob- 

ability estimation became an increasingly popular research theme, 

fostering a large variety of innovative approaches worldwide (Amatulli 

et al., 2013; Oliveira et al., 2012; Jaafari et al., 2017; Mancini et al., 

2018a; Michetti and Pinar, 2019). 

In this regard, the use of machine learning techniques (MLTs) can 

greatly improve the understanding of wildfire probability in complex 

territories as the Mediterranean (Jain et al., 2020). For example, Arti- 

ficial Neural Network (ANN) models, in comparison to simpler models 

(e.g., linear regression), have the ability to explore a set of existing non- 

linear relationships in the data leading to improved model accuracy 

(Yang et al., 2006). 

Previous studies have employed ANNs to investigate fire danger 

(Bisquert et al., 2012; Pai et al., 2020), wildfire vulnerability (Dimuccio 

et al., 2011; de Bem et al., 2019), wildfire risk assessment (Li et al., 

2009; Jafari Goldarag et al., 2016; Lall and Mathibela, 2016), burned 

area detection (Maeda et al., 2009; Gómez and Martín, 2011), pre- and 

post-fire vegetation (Debouk et al., 2013; Polinova et al., 2019), causes 

of wildfires (Rodrigues and de la Riva, 2014), and flame and smoke 

detection (Chetehouna et al., 2015; Hossain et al., 2019). However, the 

literature currently does not provide a satisfactorily large number of 

studies in which ANNs have been employed to estimate the probability 

of wildfire occurrence. Further,In many cases the scale of analysis is 

restricted to small geographical areas (Vega Garcia et al., 1996; 

Vasilakos et al., 2009; Ruiz-Mirazo et al., 2012; Safi and Bouroumi, 

2013; Satir et al., 2016). 

To fill these gaps, we developed an ANN model to estimate the 

probability of wildfire occurrence in the complex Mediterranean land- 

scape of Italy. The Italian landscape represents a suitable testbed for our 

study given its wide variety of vegetation types, topographical and 

ecological features in heterogeneous urbanization contexts, and dif- 

ferent weather conditions. The specific objectives of the study are: (1) 

to estimate the probability of wildfire occurrence as a function of bio- 

physical and human-related drivers; (2) to assess the relative magnitude 

of each driver; and (3) to analyze the performance of the ANN model 

compared to traditional regression modeling. 

Because of varying fire regimes and the difficulty in obtaining a 

robust model for the entire country, the Italian peninsula was divided 

into two main study areas: (i) the Alpine and subalpine region (ASR) 

and (ii) Insular and peninsular region (IPR). The models and relative 

validations were applied to each region. The findings represent a fur- 

ther step toward a better understanding of wildfire probability occur- 

rence, which can be useful for other related studies across the globe. 

2. Materials and methods 

2.1. Study areas 

Italy is located at a northern latitude between 36° and 47°30′ and an 

eastern longitude between 5°30′ and 18°30′, extending for the most part 

into the Mediterranean Sea (Fig. 1). The territory covers an area of 

approXimately 301,330 km2, 23% of which is classified as lowland, 

42% as upland, and 35% as mountainous landscape. Italy is crossed by 

two important mountain chains – the Alps in the North and the Apen- 

nines in the south-central region. This orography gives rise to a climate 

gradient from North to South, ranging from Mediterranean warm to 

temperate cool. Most of the remaining region is surrounded by the 

Mediterranean Sea creating conditions for the presence of a wide 

variety of flora and fauna species. Forest resources in Italy extend over 

10.9 million ha (RAF, 2019). According to Habitat Directive no. 43/92 

of the European Commission, 32% of forest lands cover the Alpine bio- 

geographical region, 16% the Continental region, and 52% the Medi- 

terranean region. 

Italy is one of the southern European countries most affected by 

wildfires. Its fire regime changes while proceeding from North to South 

(Conedera et al., 2018). In the ASR, the majority of wildfires in recent 

decades have mainly occurred in the first three months of the year 

(from January to March), reaching a peak in March of 1000 events 

(Fig. 1-a). This winter fire regime is due to the continental climate 

characterized by cold-dry winters, fully cured vegetation and frequent 

episodes of strong warm-dry winds (foehn) that further dry out vege- 

tation and make it fire prone (Valese et al., 2014). On the contrary, in 

the IPR wildfires mostly occur in summer (third quarter of the year), 

reaching a maximum of about 14,000 events (Fig. 1-b). During this 

season the climate is of the Mediterranean type characterized by 

minimum precipitation in July, dry winds from North Africa and high 

temperatures causing the loss of fuel moisture, hence increasing the 

probability of fire ignition and spread (Michetti and Pinar, 2019). 

2.2. Response variable 

To estimate the response variable, we used historical wildfire 

georeferenced polygons derived from the Comando Unità Forestali, 

Ambientali e Agroalimentari (CUFAA), Carabinieri Force, and forest 

services of Autonomous Regions. The response variable represents 

wildfire occurrence (presence/absence) in each 1-km2 grid cell of the 

two study regions. If the fire polygon or a portion of it fell in a 1-km2 

cell we considered it as presence of wildfire, whereas if it did not it was 

considered as absence of wildfire occurrence. We opted to use the 2004 

to 2012 time period for our study, which displays the most harmonized 

data throughout Italy. The Liguria region, the Valle d'Aosta region and 

the Autonomous Province of Bolzano were excluded from the analysis 

due to the difficulty in obtaining a complete spatial and temporal da- 

taset of wildfire events for the entire territory. 

2.3. Biophysical explanatory variables 

One of the most important steps in probability analysis is building a 

set of explanatory variables based on their potential relation to the 

response variable (wildfire occurrence) and data availability (Table 1). 

Therefore, we collected human-related and biophysical variables and 

transformed each variable into a continuous scale at a 1-km2 resolution 

grid (Elia et al., 2019; Guo et al., 2016). 

To characterize land cover, the Corine Land Cover initiative 

1:100,000 (2012) was adopted, which ensured a complete mapping of 

the Italian landscape at the fourth hierarchical level (CLC, 2012). We 

aggregated the land cover classes by creating eight variables, each 

corresponding to a specific group of land use such as agriculture, 

wetland, waterland, forest, grassland, shrubland, otherland, and urban. 

We then calculated the presence (percentage) of each group within the 

1-km2 grid cells. 

Another important variable affecting the probability of wildfire 

occurrence is tree cover (Satir et al., 2016). In Mediterranean con- 

iferous forests tree cover might be positively related to crown fire be- 

havior, while dense broadleaved forests could hamper fire spread due to 

the high moisture content in the understory and the limited presence of 

flammable grasses and shrubs. We derived tree cover from the Co- 

pernicus Land Monitoring Service (https://land.copernicus.eu/). The 

product consisted of status layers (for 2012) showing the level of tree 

cover density in a range from 0 to 100%; these layers were then con- 

verted into a 1-km2 resolution grid scale. 

https://land.copernicus.eu/
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Fig. 1. Location of the study areas in Italy (black line indicates the boundaries of the Alpine and subalpine region and Insular and peninsular region) within the 

Mediterranean Basin, and map of wildfires during the period of investigation. The histograms show the number of fire events (percentage) across months for each 

study area: (a) Alpine and subalpine region; (b) Insular and peninsular region. 
 

Topographical variables were selected for their relevance to wildfire 

occurrence based on previous research and data availability. The to- 

pographical features of a landscape heavily affect species composition, 

the microclimate and fire behavior (e.g., stack effect) (Syphard et al., 

2008). Furthermore, previous studies (Gralewicz et al., 2012) have 

entire time period of investigation. Once the parameters were collected, 

a Fire Climate Index (FCI) was estimated for each 1-km2 cell of the two 

study areas (Fig. 2) based on previous studies (Barbero et al., 2015; FoX 

et al., 2015; Hamadeh et al., 2017; Satir et al., 2016; Sharples et al., 

2009). This index was calculated using the following formula: 

found that the higher the altitude, the fewer the occurrences of wild- 

fires. Elevation and slope were derived from the Digital Elevation 
Fire Climate Index = max(U )/FMI (1) 

Model at European level (Reuter et al., 2007) and reclassified at a 1-km2
 

resolution grid scale. 

With regard to climatic variables, we used an index combining in- 

formation on different weather parameters in the period of investiga- 

tion (2004–2012). Data on maximum wind speed, maximum tempera- 

ture and relative humidity in the two study areas were collected daily. 

Climate data for the months of January, February, March and April 

were obtained for the ASR, while the same data for June, July, August 

and September were collected for the IPR. Consequently, for each re- 

gion we estimated a mean value of the three climatic parameters for the 

Table 1 

where U represents the wind speed (km h−1) and FMI stands for the fuel 

moisture index. The FMI was developed by Sharples et al. (2009) using 

the following formula: 

FMI = 10     0.25 (T     H) (2) 

where T is the temperature (°C) and H stands for the relative humidity 

(%). 

All the data were downloaded from the SCIA (National System for 

the collection, processing and dissemination of climate data) website 

(http://www.scia.isprambiente.it/wwwrootscia/Home_new_eng.html) 

Overview of the explanatory variables selected to perform the study.  

Data Input Source Output Coding 

Relative humidity (%) 

Climate Absolute maximum temperature 

(°C) 

Maximum wind (m/s) 

SCIA Fire Climate Index 

Road maps  Distance from Road_dist, Urban_dist Rail_dist, Pop_density 

Anthropogenic      Rail maps Open Street maps roads, settlements and 

railways 

Settlement locations  Population density map 

Population Gallego, 2010 

Topographic DTM National Geoportal Digital elevation map 

Slope (%)  Slope map 

Elev, slope 

Landscape Corine Land Cover Copernicus Program     Corine Classes Percentage Urban, Agric, Shrubland, Forest, Wetland, Waterland, Grassland, 

Tree cover density (%) Tree canopy Percentage Otherland, Cover_tree 

 

DTM = Digital Terrain Model; SCIA = National System for the collection, processing and dissemination of climate data. 

http://www.scia.isprambiente.it/wwwrootscia/Home_new_eng.html
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Fig. 2. The Fire Climate Index estimated for each km2 cell within the two study regions: (a) Alpine and subalpine region; (b) Insular and peninsular region. 
 

of the Italian Institute for Environmental Protection and Research 

(ISPRA). The website provides main climatic parameters that can be 

downloaded and displayed in the form of tables, diagrams and maps. 

 
2.4. Human-related explanatory variables 

Most wildfires in Italy are linked to human activity. For example, 

fires may ignite as a result of pasture renewal or the burning of stubble 

and then spread to nearby forest patches. These practices demonstrate 

the need to include human-related variables in our analytical model to 

explain the presence of anthropogenic activity. Based on previous stu- 

dies (Lein and Stump, 2009; Maingi and Henry, 2007; Ricotta and Di 

Vito, 2014) and the available data, we opted to consider three main 

human-related predictors: major roads, railways, and distance from 

human settlements (e.g., houses, industrial areas, airports) (Table 1). 

The layers were extracted from the Open Street Map website on a scale 

validation. 

Among the MLTs we chose to employ ANNs, which are mathema- 

tical models of supervised learning (Abiodun et al., 2018). ANNs take 

inspiration from modeling the human brain and try to replicate its 

structure. Nodes or neurons are the basic units of neural networks. They 

combine data inputs with coefficients, or weights, which amplify or 

reduce the importance of inputs according to the algorithm. For each 

node, the sum of the inputs multiplied by their weights passes through 

an activation function which determines how this signal influences the 

results. The selection of the optimal values for the weights is referred to 

as the “training phase”, where the model is trained using a resilient 

back propagation algorithm with weight backtracking. 

For ASR the “neuralnet” package of R was applied. We employed one 

hidden layer and a logistic activation function [Eq. 3] setting the value 

between 0 and 1. 

AF =
 1 

 

of 1:50,000. From these layers we derived the raster distance from 

major roads, the distance from railways and from settlements re- 
(1 + exp ( x)) (3) 

sampled at a 1-km2 resolution grid. All the datasets were processed for 

the ASR and IPR. 

 
2.5. Pre-processing and model selection 

For each study region, a predictive model of wildfire probability 

occurrence was built using MLTs. Pre-processing is an essential step in 

machine learning consisting of normalization, data split and balancing 

of the database. The data were normalized in a range from 0 to 1 to 

homogenize the entire dataset. Before fitting the model, the original 

dataset was divided into training (70% of data) and testing (30% of 

data) sets. Because our dataset was strongly unbalanced with a major 

absence of wildfires (0) and a minor presence of wildfire occurrences 

(1), the training set of each area was subjected to an under-sampling 

technique, i.e. Random Over-Sampling EXamples (ROSE). This tech- 

nique consists in randomly under-sizing the most represented class (Liu 

et al., 2009; Menardi and Torelli, 2014). Subsequently, the training set 

was used to train the model algorithm while the test set was used for its 

In this case the training set, consisting of 64,547 observations of 

which 61,448 were classified as absence and 3099 as presence, was 

under-sampled as previously mentioned to reduce the number of non- 

occurrences to 3099. 

In this case the training set, consisting of 64,547 observations of 

which 61,448 were classified as absence of wildfires and 3099 as pre- 

sence of wildfires, was under-sampled as previously mentioned to re- 

duce the number of wildfire non-occurrences to 3099. For the IPR it was 

necessary to apply a deep neural network due to the size of the area and 

large amount of data. In this case, we used “keras” package for R 

(https://cran.r-project.org/web/packages/keras/index.html). Two 

hidden layers were employed, and a sequential model was created 

containing two activation functions: the Relu function for the inter- 

mediate hidden layers, and the Sigmoid activation function to obtain 

output from 0 to 1. The optimization algorithm used was Adam 

(Adaptive Momentum estimation), and binary cross-entropy was used 

as loss of function. In this case the training set consisting of 143,200 

observations, of which 118,129 were classified as “absence” and 25,071 

https://cran.r-project.org/web/packages/keras/index.html


M. Elia, et al. 

5 

 

 

 

 

Fig. 3. EXplanatory power of the variables through model isolation for the (a) Alpine and subalpine region and (b) Insular and peninsular region. Variable names are 

also found in Table 1. 
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as “presence” of wildfires, was under-sampled with the same technique 

to reduce the number of wildfire non-occurrences to 25,071. 

 
2.6. Model performance and variable importance assessment 

The model performances were assessed using the confusion matriX 

and Receiver Operating Characteristic (ROC) curve test method. The 

area under the curve (AUC) was employed as it is one of the most 

common statistical methods adopted to estimate model fitting (Guo 

et al., 2017; Jiménez-Valverde, 2012; Vilar del Hoyo et al., 2011). For 

AUC values ≥0.7 the predictors indicated good performance in pre- 

dicting the dependent variable (Elia et al., 2019). Accuracy was also 

considered in assessing the correct classification; results were then 

compared and validated as a function of their accuracies. 

The ANN models were validated through cross-validation. Model 

calibrations were performed five times on random subsamples of the 

training and test sets and the metrics estimated for each subsample. In 

addition, we attempted to describe the explanatory power of the to- 

pographic variables by isolating them in the overall models (Fig. 3). 

Variable importance can be estimated by observing how much the 

score, AUC in our study, decreases when a feature is not used in the 

model calibration process. Importance is represented by subtracting the 

estimated AUC value without the considered variable from the total 

AUC of the all variables. 

Lastly, we developed a logistic model with our dataset and com- 

pared the results with the ANN models on the basis of the AUC para- 

meter for each study area. We also developed probability maps for both 

models and discussed them from a management perspective. 

 
3. Results 

3.1. Artificial neural networks and variable importance 

After the ANNs were constructed and trained using the test set (70% 

of the total dataset), the remaining 30% of the data was used to assess 

ANN performance. Table 2 summarizes the performance metrics for the 

ANN model used to estimate the probability of wildfire occurrence for 

each study region. Overall, the performances of the ANNs across each 

study area were robust. Of the two areas, the ASR recorded the highest 

AUC value (0.82) and lowest accuracy value (0.68) in contrast to the 

IPR, respectively. 

The cross-validations confirmed model robustness (Table 3). The 

results showed similar metrics values among the five subsamples of 

training and test set models for each study area, indicating that the 

overall model did not show explicit overfitting. 

In the ASR the presence of forest showed the highest importance 

with a value of 0.17, followed by the topographic variables, Elevation 

and Slope with values of 0.16 and 0.13, respectively (Fig. 3-a). In ad- 

dition, the human-related variables exhibited a lower value of im- 

portance in comparison to the IPR. For example, by eliminating road 

distance the AUC decreased by a value of 0.03, which is less than that of 

the IPR (0.07). 

In the IPR, the FCI and topographic variables, Slope and Elevation, 

yielded high importance values, i.e., 0.16, 0.12 and 0.11, respectively, 

which were greater than for the remaining predictors (Fig. 3-b). The 

other variables related to land cover and human-related drivers 

Table 2 

Performance metrics of the Aerificial Neural Network model for each study 

area.  

AUC Accuracy 

Alpine and subalpine region (ASR) 0.82 0.68 
Insular and peninsular region (IPR) 0.76 0.76 

 
Table 3 

Performance metrics in five random subsamples of the training and test sets for 

each study area.  

AUC Accuracy 
 

  

ASR IPR ASR IPR 
 

 

Sample 1 0.82 0.76 0.69 0.78 

Sample 2 0.82 0.76 0.69 0.80 

Sample 3 0.83 0.76 0.69 0.79 

Sample 4 0.82 0.76 0.68 0.78 

Sample 5 0.82 0.76 0.70 0.79 
 

 

AUC = area under the curve. 

ASR = Alpine-subalpine region. 

IPR = Insular and peninsular region. 

 
exhibited a lower value of importance (~0.02) for population density 

and urban lands. 

 
3.2. Probability of wildfire occurrence 

The high classification accuracy and good performances of ANNs 

suggest that ANN models can be used in the two studied regions to 

estimate wildfire probability (Fig. 4). In the ASR, the model highlighted 

the high probability of wildfire occurrence throughout the entire 

esalpic mountain belt of the southern European Alps, starting from the 

Maritime Alps at the western-most side to the southern limestone Alps 

in the Eastern Alps. Interestingly, the model discriminated between 

higher wildfire probability in the lower esalpic part of the Alpine val- 

leys and a lower probability in the higher inland area, a gradient that is 

particularly marked in the Eastern Alps. Furthermore, the model con- 

sistently correlated recurrent extensive wildfires with several well- 

known hotspots such as the slopes surrounding major Alpine lakes of 

the Insubric region and the coast of the Gulf of Trieste at the eastern- 

most side of the Alpine region. The map also exhibited high wildfire 

probability occurrence across the southern slopes of the lower Susa 

valley in the southwestern Alps where in the summer of 2017 the lar- 

gest wildfire in Italy occurred. 

With regard to the IPR, an increasing North-South gradient in 

wildfire probability occurrence was evident with some isolated hot- 

spots. This gradient is mostly due to southern summer climatic condi- 

tions that trigger dramatic increases in temperature, dryness and wind 

speed compared to northern areas. However, the ANN model effectively 

detected relevant isolated hotspots in central-north Italy, such as the 

hills west of Florence, the Conero reserve south of Ancona, or the 

mountain ridge of Monti Pisani, which features one of the most flam- 

mable forests in the Tuscany region; here, in 2018, the largest fire event 

of the last 30 years took place. Notably, the model correctly classified 

the area in the IPR with the highest wildfire probability, which com- 

prises the mountain ridge of Monti Aurunci, (the highest fire recurrence 

rate in Italy, i.e., three fire events during the study period), and high 

fire-prone areas such as the Tyrrhenian coast from Cilento to Calabria 

and the Ogliastra region of the island of Sardegna. Similarly, the model 

effectively identified isolated hotspots such as Vesuvio National Park, 

where in 2017 a large wildfire burned 44% of the protected area 

(Espinosa et al., 2018), and the coastline south of Peschici, where in 

2007 one of the most dramatic and largest wildfires occurred in Italy's 

history in terms of human fatalities. 

 
3.3. Comparison with the logistic model 

As stated above (section 2.6), we developed a logistic (Logit) 

function to compare our ANN models (Table 4). Based on the AUC 

parameter, the ANN models showed a higher predictive power than the 
   Logit function in each of the two study areas. The major difference was 

AUC = area under the curve. found in IPR, where the AUC value of our ANN models was 0.76 versus 
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Fig. 4. Map of wildfire probability occurrence generated by the Artificial Neural Network (ANN) model across the entire peninsula of Italy merging the Alpine and 

subalpine region and Insular and peninsular region. The histograms indicate cell distribution according to the probability of wildfire occurrence. 
 

Table 4 

Comparison between the logistic and ANN models using the AUC 

parameter.  

AUC 
 

 

Model ASR IPR 

ANNs 0.82 0.76 

Logit 0.78 0.65 
 

 

AUC = area under the curve; ANNs = Artificial Neural Networks; 

ASR = Alpine and subalpine region; IPR = Insular and peninsular 

region; Logit = logistic. 

0.65 for the Logit function. More information about the Logit function 

(e.g., coefficient of explanatory variables and relative P-values) is 

available in the Supplementary materials (Tables S1 and S2). 

With regard to the ANNs, the map generated by the Logit model 

(Fig. 5) revealed remarkable differences in estimations of wildfire 

probability occurrence. The Logit model seemed to overestimate the 

values across the landscape. For example, the logistic map suggested an 

average probability value of 0.35 for the Pianura Padana. However, the 

area is mostly dominated by agriculture and few wildfires were re- 

corded in the past due to lack of forest fuel prone to wildfire occurrence. 

On the contrary, the ANN map showed that the same area exhibited an 

average probability value of 0.06, which is much lower. This finding 

suggests a more accurate performance of the ANN in discriminating 

areas with high probability from areas with low probability of wildfire 

occurrence. 

 
4. Discussion 

Using novel approaches to understand the main predictors of 

wildfire occurrence is crucial in the context of broader wildfire risk 

assessment (Jaafari et al., 2019; Lafortezza et al., 2015; Polinova et al., 

2019). Hence, the aim of this study was to increase our knowledge of 

wildfire probability occurrences in Italy using MLTs. Previous studies 

have also employed MLTs for estimating wildfire probability in Medi- 

terranean areas. However, our investigation is one of the first to apply 

ANN models at a regional scale to better understand the impact of 

biophysical and human-related drivers on the probability of wildfire 

occurrence in the complex Italian landscape. 

Consistent with other studies (Oliveira et al., 2012; Syphard et al., 

2008; Vilar et al., 2019), our model suggests that the probability of 

wildfire occurrence is affected by both biophysical and human-related 

drivers and that a non-linear trend exists between them and the variable 

response. For example, Oliveira et al. (2012) adopted a MLT (Random 

Forest) to explain fire density in Europe. The authors found a non-linear 

relationship between predictors and fire density and suggested that a 

non-parametric model could be more suitable to explain the response 

variable. 

The comparison between the ANN model and logistic function (see 

Table 4) showed a more robust predictive power for ANNs in both study 
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Fig. 5. Map of probability of wildfire occurrence generated by the logistic (Logit) model across the entire territory of Italy by merging the Alpine and subalpine region 

and Insular and peninsular region. The histograms indicate cell distribution according to the probability of wildfire occurrence. 
 

areas, while logistic regression demonstrated weaker predictive power 

between the response variable and predictors. More specifically, our 

results indicate a better performance (i.e., higher AUC) for ANNs 

compared to the logistic function, suggesting the ability of ANNs to 

depict the spatial variability of wildfires in Italy based on high land- 

scape heterogeneity (i.e., biophysical and human-driven variability) 

and fire regimes. Our results are consistent with those of previous 

studies focusing on differences between the logistic function and ANNs. 

For instance, Jafari Goldarag et al. (2016) found that accuracy was low 

(50.84%) for logistic regression compared to ANNs (92.3%) in devel- 

oping fire prediction maps in Iran. In predicting fire occurrences in 

Brazil, de Bem et al. (2019) found AUC values of 0.77 and 0.75 using an 

ANN approach and logistic regression, respectively. Bisquert et al. 

(2012) used the ANN approach to investigate fire occurrences in Galicia 

(Spain) and found an average accuracy of 75%. Other authors as well 

have proven the soundness of ANN in estimating wildfire occurrences. 

For example, two studies in Lebanon (Hamadeh et al., 2015) analyzed 

the effects of climatological data on forest fire occurrences. Their results 

are consistent with ours, since they found an accuracy and an AUC 

value of 94% and 98%, respectively. Similarly, Sakr et al. (2011) de- 

monstrated the robust capacity of ANN to correctly estimate the prob- 

ability of fire occurrence with an accuracy of 90%. 

4.1. Probability of wildfire occurrence and variable importance 

In the Italian peninsula characterized by different ecological fea- 

tures and patterns of urbanization, environmental and anthropogenic 

elements play differently across the ASR and IPR study areas. Therefore, 

it is crucial to collect a comprehensive set of biophysical and human- 

related drivers (Prasad et al., 2008). The topographic variables of the 

ASR and IPR displayed a common pattern in terms of importance. Slope 

and elevation significantly influenced the probability of wildfire oc- 

currence ranking high as variables of importance in both study areas 

(Fig. 4). This is most likely correlated to the positive influence of slope 

(e.g., chimney effect) and altitude on fire behavior and spread (Butler 

et al., 2007). Furthermore, it is rare to find wildland plains with 

flammable vegetation in Italy; the majority of wildfires occur in 

mountainous areas or in areas where the slope is steep. Previous studies 

have highlighted the strong influence of elevation on fire occurrence 

(Ajin et al., 2016). Wildfire occurrences in areas at a high altitude can 

be directly influenced by consistent sun exposure and increased light- 

ening (de Bem et al., 2019). Our results are consistent with those of 

Mancini et al. (2018b), who found that elevation significantly influ- 

ences both fire frequency and incidence in Italy (. 

The study results also show that the two land cover variables pro- 

portion of forest and grassland present high importance values in the 

ASR. This region is characterized by dense forest cover of relatively 

flammable fuel complexes, such as understory of chestnut, oak, and 

pine plantations, which dry out during the winter because of minimal 

precipitation and foehn winds (Valese et al., 2014). As expected, the 

forest variable was important in both study areas, most likely due to the 

substantial amount of fuel available to burn and to the continuity and 

connectivity of forested landscapes. This finding has highlighted the 

importance of one of the main drivers of fire regimes in Italy, which in 

the last century has been forest expansion consequent to agriculture 

and grazing abandonment in mountainous and hilly areas (Bovio et al., 

2017). Grassland was the more important variable in the ASR. Grass- 

lands are mostly composed of flash fuels and are easy to ignite, thus 

their association to fire occurrence is somewhat predictable. In fact, 

during the winter season the herbaceous layers in this region are se- 

verely dried by the freezing winds blowing from northern Europe, thus 

becoming prone to fires. 
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The presence of shrublands was surprisingly less important than the 

above-mentioned land cover variables in both study areas, a finding 

that contrasts with previous studies. For example, Sebastián-López et al. 

(2008) considered shrubs as the principal predictor of fire danger in 

their model for southern Europe. Other studies (Moreira et al., 2011; 

Nunes et al., 2005) have provided evidence that shrubland is usually 

the land cover which is most fire prone in Mediterranean ecosystems. In 

our study areas, the presence of shrubland was less representative than 

forest and grassland and therefore exhibited lower predictive power. 

However, this outcome may contrast with local results suggesting that 

shrublands are more prone to burn if adjacent to roads and urban areas 

(Elia et al., 2020). 

From a climatic perspective, FCI was recognized in the analysis as 

the most influential variable in the IPR. Conversely, the FCI did not 

attribute much importance to the ASR, ranking 10th as a variable of 

importance among all (Fig. 3-a). As expected, in the IPR during the fire 

season dry and hot summers make fuel prone to ignition and create 

flammable conditions. In addition, strong warm winds from North 

Africa push wildfires and in many cases lead to extreme and dangerous 

outcomes. 

Some predictors did not exhibit much importance individually, and 

therefore it was easier to assess their impact on probability of wildfire 

occurrence within a group of variables. For instance, human-related 

variables such as distance from roads, railways and human settlements 

had an evident impact on the maps derived by the model. ProXimity to 

the above-mentioned variables increases the probability of wildfire 

occurrence, even in areas of low population density (Bar Massada et al., 

2013). The gradient of higher wildfire probability in the lower esalpic 

part of the Alpine valleys toward a lower probability in the higher in- 

land area is a typical feature of fire regimes in the Alps (Valese et al., 

2014), which is partly related to decreasing population density and 

lower foehn intensity in the upper valleys. Unexpectedly, the ANN 

model ranked 5th as a variable of importance among the different an- 

thropic predictors for each study area. In the ASR, the human-related 

variable urban distance ranked 5th mostly due to the fact that the 

majority of wildfires originate close to the urban interface at the bottom 

of valleys, but then propagate and spread up the slopes affecting forests 

at higher elevations than most inhabited areas. Moreover, in this region 

a significant portion of fires originate from pastoral burns to maintain 

grazing areas (Ascoli and Bovio, 2013) at the top of mountain ridges 

distant from urban areas. 

In the IPR, the first human-related variable considered was road 

distance. Many authors have pointed out how road distance can affect 

wildfire occurrences in the Mediterranean region. Others still (Cardille 

et al., 2001; Faivre et al., 2014; Gralewicz et al., 2012; Jaafari et al., 

2018) have found significant correlations between wildfire occurrences 

and proXimity to roads. Maingi and Henry (2007) estimated that in the 

US (Appalachian counties of Eastern Kentucky) distance to roads ex- 

plained 54% of the total variation observed in wildfire occurrences. Elia 

et al. (2020) found that distance to roads influenced the likelihood and 

frequency of wildfires in southern Europe. 

4.2. Management implications 

Wildfire prevention, suppression and mitigation are critical issues 

for forest managers and decision makers because of the stochastic 

variability of the phenomenon across space. A deeper understanding of 

the wildfire phenomenon will inform about where wildfires are likely to 

occur and the drivers guiding potential new occurrences. This need has 

stimulated research efforts on wildfire probability studies, especially in 

Italy where the landscape is characterized by heterogeneous ecosystems 

from North to South and from coastlines to mountainous hinterlands. 

Once areas with the highest wildfire probability are detected by 

ANN models, forest managers can use the resulting maps to prioritize 

fire management interventions (Elia et al., 2014). Additionally, by 

adopting these maps decision makers can develop civil protection plans, 

particularly in areas where natural and human systems miX (e.g., 

wildland urban interfaces) and with a high probability of wildfire oc- 

currence. 

5. Conclusions 

In this study we applied an ANN model to estimate the probability 

of wildfire occurrence in Italy using a comprehensive set of biophysical 

and human predictors. The findings demonstrate that in a complex 

landscape such as the Italian peninsula, characterized by a large variety 

of anthropic and environmental features, the use of ANNs is efficient 

and statistically robust for understanding the probability of wildfire 

occurrence. Our model, in fact, suggests that the importance of a single 

variable differs along the North to South gradient, which underscores 

the high variability of fire drivers in a changing landscape. In addition, 

compared to the logistic function the ANN model produced a higher 

AUC value and demonstrated greater accuracy when evaluating wild- 

fire probability. 

Wildfire probability estimation using ANN models in the 

Mediterranean Basin still offers wide room for improvement. Although 

our method has been applied to a given landscape (Italy) and over a 

certain time period (2004–2012), it has the potential to be employed for 

longer periods of time and in cross-regional areas. This would require 

an adaptation of the ANN algorithm, thus involving a wide range of 

network architectures. Additionally, we recommend further investiga- 

tion of the relationship between explanatory variables and the prob- 

ability of wildfire occurrence by focusing on new predictors (e.g., socio- 

economic) or by further examining those used in the present work. 

A further intent of our work was to corroborate prior studies in the 

field of machine learning techniques to understand wildfire probability 

occurrence. For this purpose, the operational use of the above-men- 

tioned algorithms might be worth investigating in the future. A key role 

in this regard is played by the scientific community for both the de- 

velopment of new models and the transmission of knowledge to the 

operative world (e.g., for fire risk assessment in Regional Fire 

Management Plans in Italy, Art. 3 – Law 353/2000), that still favors 

traditional approaches rather than models with “black boXes” as ANNs 

(Yang et al., 2006). 
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