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Abstract—Fuzzy Rule-Based Systems (FRBSs) are endowed
with a knowledge base that can be used to provide model and
outcome explanations. Usually, FRBSs are acquired from data
by applying some learning methods: it is expected that, when
modeling the same phenomenon, the FRBSs resulting from the
application of a learning method should provide almost the
same explanations. This requires a stability in the description
of the knowledge bases that can be evaluated through the
proposed measure of Descriptive Stability. The measure has been
applied on three methods for generating FRBSs based on three
benchmark datasets. The results show that, under same settings,
different methods may produce FRBSs with varying stability,
which impacts on their ability to provide trustful explanations.

Index Terms—Fuzzy Rule-Based System, Explainability, De-
scriptive Stability.

I. INTRODUCTION

A. Motivation and state-of-the-art

The pervasiveness of machine learning models in our daily
lives is increasing at an ever-expanding rate, and humans
already have to rely on the judgments, support, suggestions,
and decisions of artificial tools. This is due to the level of
maturity reached by artificial intelligence methods (in par-
ticular, machine learning methods), along with technological
advancements that have enabled the creation of increasingly
sophisticated tools which are now able to provide answers in
real time in many fields of application.

Although some machine learning models, such as those
based on (deep) neural learning, are able to perform very
well in terms of accuracy of their outcomes, there is a strong
need to go beyond a mere acquisition of the suggested results.
Additional elements are demanded which may contribute to
the acceptance of those results by the human user. This is
especially true in some application fields (medicine, business
intelligence, avionics, etc.) which cannot admit blind support
from black boxes, because of the criticality of the choices
to be made. Reliance on technology is eased when it can
be explained: this brings to focus interest on such concepts
as explanation [1], trust [2], ethics commitment and privacy
protection [3] which are currently objects of investigation
under the global umbrella of Explainable Artificial Intelligence
(XAI) [4], [5], [6].

Ribeiro et al. highlighted two types of trust [2]: a trust
in prediction (focussed on a single outcome proposed by
a model), and an even more compelling trust in a model
as a whole. Users need to be confident that a model will

perform well on data according to some metrics of interest. In
common practice of computer science this kind of assessment
is usually performed in terms of accuracy: such an evaluation
is often carried out by considering multiple models (possibly
coming from a session of cross-validation), thus providing an
indication about the goodness of the method that led to the
generation of those models.

However, when trust comes into play, some different di-
rections should be explored, other than just accuracy. In this
sense, an interesting factor to take into account is repre-
sented by the consistency in terms of explanations. Ideally,
explanations produced by one method should be somewhat
comparable, especially when coming from the analysis of
similar phenomena. Measuring such a consistency could be
useful also to compare the explainability power of different
methods. The idea is to spot (and reject) the occurrence known
in the social sciences under the name of “Rashomon effect”,
i.e. the situation where a single event is accounted and/or
described in a discrepant/contradictory way by several subjects
[7]. The theme of Explanation Invariance has been already
introduced in the research context of XAI [8], although it is
often put into practice by still resorting to some accuracy-
based or outcome-centred evaluations [9].

B. Our approach and rationale

Following the outlined research direction, we went a step
further in the investigation of explanation invariance, bearing
in mind that a profitable machine learning method should be
able to elicit some insights on a specific phenomenon under
study. In this sense, the XAI practitioner must be interested
in the explanations related to the process of phenomenon
understanding provided by a model, rather than catching some
of its inner mechanisms leading to the final inference.

In the attempt to identify the prominent features embedding
the explanatory setup of a machine learning model, we fo-
cussed on the realm of fuzzy rule-based systems (FRBSs) and
we considered the very structure of the rule-bases as a suitable
illustration of the phenomenon at hand. FRBSs are commonly
built up from data by means of several learning methods.
Then the derived models are assessed in terms of accuracy
of their results; also, they are regarded as interpretable tools
for knowledge representation which oppose the power of
natural language expressiveness to the opacity of black box
systems. When we turn to consider the evaluation of a learning
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method in terms of explanation capabilities, we are interested
in assessing something different from mere accuracy and we
propose to look at the stability of its descriptions. In case
of learning methods devoted to the automatic construction of
fuzzy rule bases, such descriptions are encoded in the structure
of the overall machinery responsible of the final inference
process, which is expected to preserve stability under some
circumstances.

Broadly speaking, if we repeatedly employ a method to
extract fuzzy rule bases from the analysis of data, we would
expect to come up with a number of models whose knowl-
edge bases are not too dissimilar. As long as it is safe to
assume that the repeated application of a method is aimed at
modeling the same phenomenon (e.g., the training sets remain
consistent in terms of data distribution), that seems to be a
reasonable demand for a method which is called to capture
and explain through its knowledge bases the investigated
phenomenon. On the contrary, if the obtained models happen
to show remarkable dissimilarities, that would be a signal of
unsettled explanatory capabilities—either due to the method
or to the violation of the aforementioned assumption—even
if the models may prove to be effective in terms of accuracy.
Should the method be used as a support in critical contexts
of application (e.g., medical diagnosis), such an occurrence
would be detrimental to user trusting.

In this way, the common practice of cross-validation may
be performed to investigate a method in terms of its descrip-
tive stability (rather than accuracy), in order to assess its
explanatory power in place of just performance capabilities.
To achieve this aim, a purposely defined metric is needed
to evaluate the descriptive stability in a quantitative way.
Once such metric is available, it may be also applied across
the board to assess and compare the different values of
descriptive stability characterizing a set of learning methods,
so that a preference may be expressed among them whenever
trustworthy explanation is a major issue.

In the next Section we introduce a method oriented to for-
mally derive a degree of descriptive stability to be evaluated on
a set of fuzzy rule bases. The degree is recursively calculated
by considering the similarities traceable among the involved
knowledge bases and all of their intrinsic components: all the
formal passages leading to the definition of the stability degree
are illustrated in a top-down fashion. In Section III we detail
the experimental session performed on FRBSs derived by three
different methods. The illustrated experiments concern both
an intra-method evaluation (devoted to assess the stability of
a particular learning method) and an inter-methods evaluation
(oriented to highlight differences in terms of descriptive sta-
bility among different learning methods). Section IV closes
the paper with some remarks and hints for future work.

The code and data are available under CC BY-NC-
SA licence at https://github.com/cmencar/descriptive_stability/
releases/tag/1.0.

II. METHODOLOGY

The Descriptive Similarity DS is based on the recursive ag-
gregation of the similarity of several components. In this work,
we use arithmetic mean to aggregate similarities because of
its compensative property. However, more drastic aggregation
(e.g., through t-norms) or weighted aggregation (e.g., through
OWA) are also possible. The definition of all the components
of DS is oriented to guarantee symmetry and values in [0, 1]
so that two components have similarity equal to 1 if and only
if they are identical; the use of arithmetic mean ensures that
two components have similarity equal to 0 if and only if they
do not share any element.

Definition 1. Let S be a set of n FRBSs that are enumerated
as S1, S2, . . . , Sn. The DS degree is defined as

DS (S) =
2

n2 − n

n∑
i=1

n∑
j=i+1

KBS (Si, Sj) (1)

The definition ensures that the descriptive stability metric
does not depend on the ordering of FRBS, which is only
instrumental to ensure that each pair (Si, Sj) is considered
just once.

The DS degree depends on the Knowledge Base Similarity
degree KBS, which compares the knowledge bases of two
FRBSs. A FRBS is also endowed with an inference engine
(which defines the semantics of the logical operators as well
as the aggregation of rules); in this paper we assume that all
the FRBSs in S share the same inference engine, therefore it
is not involved in the definition of similarity.

In order to define the function KBS, we take into account
the structure of a FRBS, which can be identified as a pair
(DB, RB) being DB the Data Base and RB the Rule Base.

Definition 2. Let S′, S′′ two FRBSs with Data Bases DB′, DB′′

and Rule Bases RB′, RB′′ respectively. The degree KBS is
defined as

KBS (S′, S′′) =
DBS (DB′, DB′′) + RBS (RB′, RB′′)

2

where DBS is the Data Base Similarity function and RBS is
the Rule Base Similarity function as defined in the following
sections.

A. Data Base Similarity

The database of a FRBS can be defined as a set of Linguistic
Variables (LVs), i.e.

DB = {LV1, . . . , LVm}

where each LV is defined as the tuple

LV = (X,T, U,G, µ)

defined as follows:
• X is the name of the LV, i.e. a symbol;
• T is the set of the linguistic terms, i.e. a set of symbols;
• U is the universe of discourse of the LV
• G is a generative grammar of the term set T ;
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• µ is an interpretation function, mapping each term t ∈ T
to a fuzzy set µt : U 7→ [0, 1].

As a convention, we will use the “dot” notation to access the
attributes of a LV. For example, by LV.X we will denote the
name X of the linguistic variable LV.

In order to define the similarity of the databases of two
FRBSs, it must be noticed that they may not share the
same LVs, or they may have LVs with the same name but
different terms, or same name, same term set but different
interpretations. The evaluation of the similarity between two
Data Bases should take into account all these possibilities.

As a preliminary step, we define the set of names of a Data
Base DB as follows:

DBN = {LV.X : LV ∈ DB}

Here, we are assuming that all the LVs of a Data Base have
distinct names.

Definition 3. Let DB′, DB′′ be two Data Bases. The Data Base
Similarity degree DBS is defined as:

DBS (DB′, DB′′) =

DBNS (DB′, DB′′) + DBTS (DB′, DB′′) + DBIS (DB′, DB′′)

3

where DBNS is the Data Base Name Similarity, DBTS is
the Data Base Term Similarity and DBIS is the Data Base
Interpretation Similarity.

DBNS evaluates how much two FRBSs share the same
names in the Data Base; usually, such names correspond to
features in data, therefore, DBNS evaluates the similarity of
FRBSs in terms of feature sharing. In consequence of this
definition, DBTS and DBIS are computed only for the fraction
of LVs that are shared between the two Data Bases.

Definition 4. Let DB′, DB′′ be two Data Bases. The degree
DBNS is defined as:

DBNS (DB′, DB′′) =
|DBN′ ∩ DBN′′|
|DBN′ ∪ DBN′′|

where DBN′, DBN′′ are the sets of names of DB′, DB′′, respec-
tively.

Definition 5. Let DB′, DB′′ be two Data Bases. The degree
DBTS evaluates the similarity of terms within the variables
shared in the Data Bases. It is defined as:

DBTS (DB′, DB′′) = avg
LV′ ∈ DB′

LV′′ ∈ DB′′

LV′.X = LV′′.X

TS (LV′.T, LV′′.T )

where avg is the arithmetic averaging function, and TS is the
Term Similarity function.

As a first approach, the function TS can be defined as
a quantification of the similarity of the term sets by using
the Jaccard index. More refined approaches could use the
generative grammars LV′.G and LV.G′′ to take into account

possible relations between terms; also, if terms are ordered in
a known way, this ordering could be used to define TS. In this
work, we use the simplest approach.

Definition 6. Let T ′, T ′′ two term sets. The Term Similarity
degree TS is defined as:

TS (T ′, T ′′) =
|T ′ ∩ T ′′|
|T ′ ∪ T ′′|

The Data Base Interpretation Similarity DBIS is an aggregate
measure of similarities of all interpretations of the same terms
occurring in LVs with the same names of the Data Bases of
two FRBSs.

Definition 7. Let DB’, DB” be two Data Bases. The Data Base
Interpretation Similarity degree DBIS is defined as:

DBIS (DB′, DB′′) =

avg
LV′ ∈ DB′

LV′′ ∈ DB′′

LV′.X = LV′′.X
t ∈ LV′.T ∩ LV′′.T

IS (LV′.µ (t) , LV′′.µ (t))

where IS is the Interpretation Similarity between two fuzzy
sets.

An interpretation µt of a term t in a LV is a fuzzy
set defined on LV.U . In order to define the similarity of
interpretations, we should take into account the possibility
that the interpretations are defined on different universes of
discourses. In fact, although it is safe to assume that LVs with
the same name refer to the same feature in data, yet it may be
the case that the procedure used for designing the FRBSs is
strictly data-dependent and the universe of discourse of each
LV has been defined based on the available dataset, which
could be different for each FRBS. In any case, we may safely
assume that both universes of discourse are either discrete or
continuous.

Definition 8. Given two fuzzy sets µ′, µ′′ defined on the
universes of discourse U ′, U ′′ respectively, the Interpretation
Similarity IS is defined as:

IS (µ′, µ′′) =

∫
U ′∩U ′′ min {µ′ (x) , µ′′ (x)} dx∫
U ′∪U ′′ max

{
µ̄′ (x) , µ̄′′ (x)

}
dx

if U ′, U ′′ are continuous, and:

IS (µ′, µ′′) =

∑
x∈U ′∩U ′′ min {µ′ (x) , µ′′ (x)}∑
x∈U ′∪U ′′ max

{
µ̄′ (x) , µ̄′′ (x)

}
if U ′, U ′′ are discrete, where:

µ̄′ (x) =

{
µ (x) , x ∈ U ′

0, x /∈ U ′

and µ̄′′ is defined accordingly.

For the sake of efficiency, integral could be replaced with
a sampled sum if necessary.



B. Rule Base Similarity

The Rule Base (RB) of a FRBS is defined as a set of
rules. Comparing the RBs of two different FRBSs is not trivial
because the RBs may have different cardinality, and rules may
not share the same structure.

Assuming the availability of a function RS for evaluating the
similarity between rules, the problem of computing the simi-
larity of two RBs can be translated into an unbalanced assign-
ment problem, which can be solved by different techniques,
including the Hungarian algorithm specifically extended for
unbalanced assignment [10].

Definition 9. Let RB′, RB′′ two Rule Bases consisting of r′, r′′

rules respectively. The Rule Base Similarity degree RBS is
defined as:

RBS (RB′, RB′′) =
RBASS (RB′, RB′′)

max {r′, r′′}

where:

RBASS (RB′, RB′′) = max
∑

R′ ∈ RB′

R′′ ∈ RB′′

RS (R′, R′′) · a (R′, R′′)

subject to:
∑

R′∈RB′ a (R′, R′′) = 1, if r′′ ≤ r′∑
R′′∈RB′′ a (R′, R′′) = 1, if r′ < r′′

a (R′, R′′) ∈ {0, 1} ∀R′, R′′

The function a stands for an assignment function which
maps rules of one RB to rules of the other RB. As an example,
if RB′ has r′ rules and RB′′ has r′′ ≤ r′ rules, the unbalanced
assignment problem matches each rule in RB′′ with a rule
in RB′; eventually, r′ − r′′ rules in RB′ are left unassigned.
The normalizing function max {r′, r′′} ensures that RBS is
bounded in [0, 1].

To define Rule Similarity, the structure of a rule R can be
represented as a pair (A,C) corresponding to the antecedent
and the consequent of the rule.

Definition 10. Given two rules R′, R′′, the degree RS is
defined as:

RS (R′, R′′) =
AS (A′, A′′) + CS (C ′, C ′′)

2

where AS is the Antecedent Similarity and CS is the Conse-
quent Similarity.

The antecedent of a rule can be simply defined as a conjunc-
tion of elementary soft constraints of the form “X is t” where
X is the name of a LV and t is a term in the corresponding
term set. More complex rules can be defined, using different
logical operators, nested structures, etc. In this work, we only
consider conjunctive rules, therefore an antecedent A can be
represented as a set of soft constraints SC. In turn, each soft
constraint can be represented as a pair (X, t). By convention,
we will denote by SC.X the name of the LV and by SC.t the

linguistic term of SC. Also, it is convenient to define the set
of all LV names occurring in an antecedent:

ASN = {SC.X : SC ∈ A}

We also assume that no pair of soft constraints in the an-
tecedent has the same name.

Definition 11. Let A′, A′′ two antecedents. The Antecedent
Similarity degree AS is defined as:

AS (A′, A′′) =

avg

{
|ASN′ ∩ ASN′′|
|ASN′ ∪ ASN′′|

}
∪

⋃
SC′ ∈ A′

SC′′ ∈ A′′
SC′.X = SC′′.X

{χ (SC′.t, SC′′.t)}

where:

χ (t′, t′′) =

{
1 t′ = t′′

0 t′ 6= t′′

The definition compares the terms of two soft constraints
with the same name and returns 1 if the two terms coincide,
otherwise it returns 0. More refined definitions may take into
account additional properties coming from grammatical or
ordering relations among terms.

The Consequent Similarity CS depends on the type of FRBS.
In the case of a Mamdani FRBS, the consequent of a rule is a
soft constraint, therefore the definition of similarity is similar
to Antecedent Similarity.

Definition 12 (Mamdani). Given two Mamdani consequents
C ′ = (Y ′, t′) and C ′′ = (Y ′′, t′′), the Consequent Similarity
degree CS is defined as:

CS (C ′, C ′′) = χ (C ′.X,C ′′.X) · χ (C ′.t, C ′′.t)

In the case of a 0-th order TSK FRBS, the consequent takes
the form “Y = w” where Y is the name of a variable (not
a LV) and w ∈ R. In this case, the evaluation of similarity
should take into account the metric properties of the output.

Definition 13 (0-th order TSK). Given two 0-th order TSK
consequents C ′ = (Y ′, w′) and C ′′ = (Y ′′, w′′), the Conse-
quent Similarity (CS) degree is defined as:

CS (C ′, C ′′) = χ (C ′.X,C ′′.X) · e−(w′−w′′)
2

In the case of a classification FRBS (a.k.a. Fuzzy Rule
Based Classifier, FRBC), the consequent takes the form of a
class label, therefore the consequent similarity can be defined
as in the Mamdani case.

III. NUMERICAL ANALYSIS AND DISCUSSION

To put into action the introduced methodology, we consid-
ered a number of methods designed to derive FRBCs from the
analysis of raw data. Particularly, we selected three algorithms:
i) the Fuzzy Unordered Rule Induction Algorithm (FURIA); ii)
the Fuzzy Decision Tree algorithm (FDT); iii) a variant of FDT
(FDT-S) oriented to simplify the produced knowledge bases.



TABLE I
PAIRWISE DS EVALUATIONS OF THE MODELS OBTAINED BY APPLYING FDT TO THE 10 FOLDS COMPOSING THE BEER DATASET.

F-01 F-02 F-03 F-04 F-05 F-06 F-07 F-08 F-09 F-10

F-01 1
F-02 0.771 1
F-03 0.779 0.988 1
F-04 0.777 0.985 0.996 1
F-05 0.751 0.795 0.794 0.792 1
F-06 0.781 0.986 0.997 0.994 0.797 1
F-07 0.777 0.984 0.995 0.995 0.791 0.992 1
F-08 0.780 0.989 0.999 0.995 0.794 0.996 0.994 1
F-09 0.781 0.984 0.996 0.993 0.794 0.996 0.992 0.995 1
F-10 0.736 0.926 0.929 0.932 0.752 0.928 0.929 0.930 0.928 1

The first method generates fuzzy rules especially focussing on
accuracy, while disregarding the interpretability of the whole
derived model [11]. FDT adopts a fuzzy version of the ID3
technique for tree generation to extract fuzzy rules from data
viewed as fuzzy partitions [12]. The HILK procedure [13]
can be employed to simplify a fuzzy knowledge base with the
aim of increasing interpretability without penalizing accuracy
too much: it has been adopted to realize a simplified variant
of FDT (in the way it is implemented in GUAJE [14]) which
stands as FDT-S, i.e. the third alternative method to learn fuzzy
classifiers in our experimental session.

Three datasets have been selected to run the learning
methods and derive the FRBCs to be evaluated: BEER [15],
PIMA, and WINE [16]. A first evaluation has been performed
on an intra-method basis: each of the three methods has been
assessed in terms of its descriptive stability while tackling
a single task. To do so, we performed a special case of
10-fold cross-validation, where the DS degree is involved in
place of accuracy. The results of such an assessment are
illustrated in Table I: for the sake of conciseness, the reported
values of DS concern only the models obtained during the
application of FDT on BEER. The matrix shows the degrees
of the descriptive stability pairwise-evaluated for each couple
of FRBCs extracted from the analysis of the 10 folds of data
(F-01, . . ., F-10) composing the BEER dataset.

It can be observed how the maximum values of DS are
obviously aligned on the diagonal of the matrix depicted in
Table I, since they refer to the stability of a couple of identical
models. The other values are in the range [0.736, 0.999] and
average to 0.902, thus testifying an adequate level of stability
of FDT while describing the classification task underlying
the BEER dataset. If we consider the columns of the matrix,
we note how the 10 derived models are generally stable
when pairwise considered, with the only exceptions of those
pertaining to F-01 and F-05 whose degree of dissimilarity with
respect to the others appears to be a little more pronounced.

We observe that the highest values of DS are obtained
when the FRBSs differ in negligible details, such as small
variations in the parameters defining the fuzzy sets involved
in the linguistic variables. (FDT generates trapezoidal and
triangular fuzzy sets.) As an example, FRBSs obtained in folds
F-03 and F-08 (whose pairwise DS value amounts to 0.999)

TABLE II
DIFFERENT PARAMETERIZATION OF FUZZY SETS IN FRBSS GENERATED

ON FOLDS F-08 AND F-03. TPZ=TRAPEZOIDAL FUZZY SET;
TRN=TRIANGULAR FUZZY SET.

F-08 F-03

tpz(0.0, 0.0, 3.356, 9.917) tpz(0.0, 0.0, 3.367, 9.926)
trn(3.356, 9.917, 17.12) trn(3.367, 9.926, 17.327)
trn(9.917, 17.12, 27.561) trn(9.926, 17.327, 27.639)
trn(17.12, 27.561, 35.387) trn(17.327, 27.639, 35.3)
trn(27.561, 35.387, 40.636) trn(27.639, 35.3, 40.8)
tpz(35.387, 40.636, 45.0, 45.0) tpz(35.3, 40.8, 45.0, 45.0)
tpz(8.0, 8.0, 24.883, 46.291) tpz(8.0, 8.0, 25.304, 47.739)
trn(24.883, 46.291, 91.841) trn(25.304, 47.739, 90.81)
trn(46.291, 91.841, 145.667) trn(47.739, 90.81, 145.667)
trn(91.841, 145.667, 201.6) trn(90.81, 145.667, 201.6)

differ in the parameterization of 10 fuzzy sets, as reported
in Table II. It should be noticed that DS does not explicitly
depend on the parameters defining the fuzzy sets but it is more
general since it uses the membership degrees to compute IS
as in Definition 8. (In this case we approximate integrals with
sampling, by dividing the domain of each LV in 100 equally
spaced samples.)

In the opposite case, we observe that the lowest value of DS
(amounting to 0.736) is obtained when comparing the FRBSs
of folds F-01 and F-10. In fact, the two FRBSs are different
in many aspects, summarized as follows:

• different parameters in fuzzy sets, some-
times with significant differences (e.g.,
fuzzy sets trn(73.512, 101.976, 201.6)
vs. trn(91.714, 145.667, 201.6) as interpretations of
term HIGH for the LV BITTERNESS) for 17 fuzzy sets
out of 25;

• different term sets (both in cardinal-
ity and terms) for the same LV (e.g.,
{VERY_LOW, LOW, AVERAGE_LOW, HIGH, VERY_HIGH}
vs. {LOW, LOW_MEDIUM,MEDIUM_HIGH, HIGH} as
term sets for LV BITTERNESS) for 3 LVs out of 4;

• different number of rules (29 vs. 24);
• different rules, in terms of number and values of soft

constraints (e.g., "IF COLOR IS AMBER AND BITTER-
NESS IS LOW AND STRENGTH IS VERY HIGH THEN
BEER_STYLE IS BARLEYWINE" vs. "IF COLOR IS AM-



TABLE III
GLOBAL DS EVALUATION OF THE THREE METHODS APPLIED TO THE

THREE DATASETS.

FDT FDT-S FURIA

BEER 0.902 0.850 0.760
PIMA 0.832 0.675 0.683
WINE 0.873 0.694 0.692

BER AND STRENGTH IS LABEL6 THEN BEER_STYLE IS
BARLEYWINE") for 17 rules out of 24.

The global values of DS have been calculated to per-
form also an inter-methods evaluation involving all the three
learning methods applied to the three datasets during the
experimentation. The obtained values are included in Table III.
We observe that FDT appears to be the most stable method.
FURIA is by far the least stable method when applied on BEER,
while being able to exhibit values of the DS degree similar to
FDT-S on the remaining datasets. All in all, FURIA registers an
average stability which is approximately 18% lower than FDT.
To justify the superior stability of FDT over FDT-S we could
infer that, being the latter characterized by the production of
models which are simpler from a structural point of view, its
evaluation in terms of DS is more influenced by (even reduced)
alterations in the derived knowledge bases.

IV. CONCLUSIONS

The proposed Descriptive Stability metric is capable of
evaluating the changes in the description of the knowledge
bases of a set of FRBSs. It has been used as a stability measure
to evaluate how much different are the knowledge bases of a
set of FRBSs that have been generated with the same method
under similar circumstances. We consider that this application
assumes a particular relevance in XAI: it may be expected that,
if the initial conditions for generating a model are almost the
same, the resulting models should provide almost the same
explanations. We propose the descriptive stability measure in
the attempt to quantify this aspect and provide the designer
with another tool for choosing a data driven method (other than
accuracy). Indeed, preliminary experimental results show that
methods can be significantly different in terms of descriptive
stability.

The introduced measure is a first step for a more general
tool to evaluate the descriptive stability of a number of
models, including FRBSs with more complex rules, generative
grammars for terms, and so on. The measure could be also
extended with an ontology to grasp the semantic similarity of
terms that are syntactically different (e.g., synonyms). Further-
more, it is possible to generalize the measure of descriptive
stability by grasping the most general descriptive properties
of predictive models, so as to assess and compare different
methods generating predictive models with highly different
structures (e.g., FRBSs, neural networks, generalized linear
models, etc.). This is subject of ongoing research.
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