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Abstract
We discuss several aspects concerning the asymptotic dynamics of discrete-
time semigroups associated with a quantum channel. By using an explicit
expression of the asymptotic map, which describes the action of the quantum
channel on its attractor manifold, we investigate the role of permutations in
the asymptotic dynamics. We show that, in general, they make the asymptotic
evolution non-unitary, and they are related to the divisibility of the quantum
channel. Also, we derive several results about the asymptotics of faithful and
non-faithful channels, and we establish a constructive unfolding theorem for
the asymptotic dynamics.
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1. Introduction

Modeling a quantum computer or, more generally, any complex quantum hardware by a
sequence of unitary gates is no longer sufficient to obtain efficient devices. Indeed, the unavoid-
able effects of noise and decoherence due to the coupling of the system with its environment
is known to be a key obstacle for quantum information processing [1].

In this respect, dissipation processes can be harnessed in order to protect quantum informa-
tion in themanifold of steady states of dissipative systems. In particular, the asymptotic dynam-
ics of open quantum systems can be exploited for the realization of unitary operations inside
subspaces protected from noise and decoherence [2, 3]. Also, the system evolution at large
times may be used in reservoir engineering [4, 5], namely the preparation of a target state by
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relaxation of a system suitably coupled to the environment, or in phase-locking and synchron-
ization of quantum systems [6]. A non-degenerate attractormanifold, i.e. consisting of a unique
stationary state towards which the evolution converges, is often not enough in all these applic-
ations. Therefore, it is crucial to study the dynamics of dissipative systems at large times under
less restrictive assumptions, as it was done in [8–14] for finite-dimensional systems, and [15]
for infinite-dimensional ones. In particular, many efforts were devoted to the asymptotics of
Markovian continuous dynamics [16–20], described by quantum dynamical semigroups. They
were completely characterized by Gorini, Kossakowski, Lindblad and Sudarshan (GKLS) [7,
21], and the manifold of their steady states was analyzed in the following years [22–25].

In this Article we will investigate the asymptotic structure of a quantum channel. The start-
ing point of our analysis is the direct sum decomposition of the attractor manifold, where the
asymptotic dynamics takes place, and the action of a quantum channel onto it (theorem 2.2),
as obtained by Wolf and Perez-Garcia [10, 11, theorem 2.1]. In spite of the importance of this
result and its use in previous works [26, 27], its consequences have not been fully investigated
yet in the literature.

In particular, the presence of permutations between the factors of the decomposition gener-
ally implies the lack of unitarity of the asymptotic dynamics. For a better understanding of the
role of permutations, we will find a sufficient condition and a characterization of their absence,
from which the connection with the Markovianity and divisibility of the channel emerges.

Also, wewill construct a quantum channel with a given asymptotic dynamics, namelywith a
fixed attractor subspace and dynamics onto it (theorem 4.1), proving a converse of theorem 2.2.
This is an example of extension theorem for quantum channels, in the trail of similar results
obtained in the literature [28, 29].

Moreover, we will prove an alternative structure theorem of the asymptotic map (the-
orem 3.2), which provides a decomposition in terms of unitary and irreducible channels.
It yields an alternative decomposition of the asymptotic manifold which may be obtained
from [30]. Interestingly, it turns out that the irreducible part represents a classical dynam-
ics which emerges in the asymptotic limit. Also, the unitary part, that encodes the quantum
contribution to the asymptotic dynamics, can be used to circumvent decoherence in quantum
information tasks [31]. Finally, previous results on the asymptotics of quantum dynamics by
Novotný et al [8, 9] will be discussed in connection with the structure theorems for a non-
faithful channel.

The paper is organized as follows. First, we will recall some general properties of quantum
channels (section 2.1) and of infinitely divisible channels (section 2.2), and then we give the
structure theorem of the asymptotic map in section 2.3. Afterwards, in section 3 we prove a
decomposition of the asymptotic map in terms of unitary and irreducible channels, while in
section 4wewill construct a quantum channel unfolding the asymptoticmap. Then, in section 5
we will explore in detail the role of permutations in the asymptotic dynamics, characterize
their absence, and link them to the infinite divisibility and primitivity of the channel. Finally,
in section 6 we discuss several results on the asymptotics of quantum channels and their
consistency with the structure theorems. After the concluding remarks (section 7), we prove
in the appendices some results needed in the main part of the paper.

2. Asymptotics of open quantum systems

In this section we will set up the notation and recall some known results about the asymptotic
dynamics of finite-dimensional open quantum systems.

2



J. Phys. A: Math. Theor. 56 (2023) 265304 D Amato et al

2.1. Quantum channels

The state of an open quantum system is given by a density operator ρ, i.e. a positive semidefinite
operator of unit trace on H, with H the system Hilbert space, that in the following will be
assumed to have a finite dimension d. Let S(H) be the set of density operators on H. The
evolution of the state ρ in the unit time is given by a quantum channel Φ, that is a completely
positive trace-preserving map on B(H), the algebra of bounded operators on H [32]. The
adjoint map Φ† of the channel Φ is defined with respect to the Hilbert–Schmidt scalar product
〈A|B〉HS = tr(A†B) via

〈A|Φ(B)〉HS = 〈Φ†(A)|B〉HS, A,B ∈ B(H). (1)

Φ† is a completely positive unital map on B(H), describing the evolution of system observ-
ables, i.e. the dynamics in the Heisenberg picture.

Working in the Schrödinger picture, given a quantum channel Φ, the evolution at time
t= n ∈ Nwill be given by the n-fold compositionΦn ofΦ, so we obtain a discrete-time semig-
roup (Φn)n∈N.

The spectrum spect(Φ) of a quantum channel Φ in finite dimensions is the set of its eigen-
values, and it satisfies the following three properties

• 1 ∈ spect(Φ),
• λ ∈ spect(Φ)⇒ λ̄ ∈ spect(Φ),
• spect(Φ)⊆ {λ ∈ C | |λ|! 1}.

Incidentally, these properties still hold for the larger class of positive and trace-preserving
maps [11]. In particular, the peripheral spectrum spectP(Φ) of the channel Φ is defined as the
set of eigenvalues with unit modulus, namely

spectP(Φ) = {λ ∈ spect(Φ) | |λ|= 1}. (2)

The asymptotic dynamics, obtained in the limit n→∞, takes place inside the asymptotic,
peripheral, or attractor subspace of Φ, defined as

Attr(Φ) =
⊕

λ∈spectP(Φ)

Ker(Φ −λ1B(H)), (3)

since the peripheral eigenvalues are semisimple [11]. Equivalently,

Attr(Φ) = span{X |Φ(X) = λX for someλ ∈ spectP(Φ)}, (4)

i.e. the space spanned by the eigenvectors corresponding to the peripheral eigenvalues.
Physically, the attractor subspace is the space of recurrences Y of the map Φ, namely [11]

∀ε> 0 ∃n ∈ N s.t. ‖Φn(Y)− Y‖HS ! ε. (5)

Some of its elements are limit cycles

Φn(Y) = Y for somen ∈ N, (6)

and, in particular, fixed points

Fix(Φ) = {Y |Φ(Y) = Y}. (7)

Now, let us introduce the spectral decomposition of a quantum channel Φ

Φ=
N∑

k=1

(λkPk+Nk), (8)
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where Pk and Nk are the eigenprojections and eigenilpotents of Φ corresponding to the kth
eigenvalue λk, k= 1, . . . ,N [33]. In particular, let us denote by P the eigenprojection onto the
fixed point space Fix(Φ), corresponding to the eigenvalue λ= 1. Also, define the peripheral
projection by

PP =
∑

λk∈spectP(Φ)

Pk. (9)

Evidently, its range is the attractor subspace Attr(Φ). Both projectionsP andPP can be written
in terms of the channel Φ as

P = lim
n→∞

1
n

n∑

k=1

Φk, (10)

PP = lim
i→∞

Φni , (11)

for some increasing subsequence (ni)i∈N. From equations (10) and (11) it is clear that both P
and PP are quantum channels. We can also introduce the peripheral channel ΦP of Φ:

ΦP = PPΦ= ΦPP =
∑

λk∈spectP(Φ)

λkPk. (12)

Note that in equation (12) the eigenilpotents do not appear, since the peripheral eigenvalues
are semisimple.

Interestingly, one gets

Fix(Φ)⊆ 0⊕B(H0), (13)

where H0 = suppP(I) = RanP(I). Here, suppA and RanA denote the support and the range
of the operator A, and 0 acts on H⊥

0 , the orthogonal complement of H0. Therefore

X ∈ Fix(Φ) ⇒ suppX, RanX⊆H0, (14)

and, in particular, P(I) is a maximum-rank fixed point ofΦ. By applying [11, proposition 6.9]
to PP, we obtain

Attr(Φ)⊆ 0⊕B(H ′
0), (15)

whereH ′
0 = suppPP(I) = RanPP(I)⊇H0. In fact, as proved in appendices A. and B., it turns

out that

H0 =H ′
0, (16)

even though, in general,

PP(I) .= P(I). (17)

However, notice that PP(I) = P(I) for unital channels, i.e. Φ(I) = I, or channels with trivial
peripheral spectrum, viz. spectP(Φ) = {1}, such as primitive maps (see definition 3.1).

2.2. Infinitely divisible channels

We now introduce the important class of infinitely divisible quantum channels which in the
following will be proved to exhibit a special asymptotic behavior.

Let (Φt)t∈R+ be a one-parameter family of channels withΦ0 = 1B(H), the identity channel.
If the semigroup property Φt1+t2 = Φt1Φt2 is satisfied for all t1, t2 ∈ R+, the family is called a
quantum dynamical semigroup, and it is of the form

Φt = etL, t ∈ R+. (18)
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Here, L is a GKLS generator and has the following structure [7, 21]:

L(X) =−i[H,X] +
d2−1∑

k=1

(
AkXA

†
k −

1
2
{A†

kAk,X}
)
= LH(X)+LD(X), (19)

for X ∈ B(H). The square (curly) brackets denote the (anti)commutator, H= H† is the system
Hamiltonian, and the noise operators Ak are arbitrary operators on a d-dimensional Hilbert
space. Moreover, LH and LD stand for the Hamiltonian and dissipative parts of the generator
L, respectively.

A quantum channel Φ = eL, with L of the form (19), is said to be Markovian. Note that
a Markovian channel Φ is invertible (as a linear map), which is equivalent to say that 0 .∈
spect(Φ).

Another relevant class of channels are the idempotent channels, satisfying the condition
Φ2 = Φ. A paradigmatic example is the contraction channel

Φ(X) = tr(X)ρ, ρ ∈ S(H), X ∈ B(H). (20)

Unlike Markovian channels, idempotent channels are not invertible, except for the trivial iden-
tity channel 1B(H). However, both classes of channels share the following more general prop-
erty, called infinite divisibility.

Definition 2.1. Let Φ be a quantum channel. Then Φ is said to be infinitely divisible iff for all
positive n ∈ N,

Φ= Φn
n, (21)

for some quantum channel Φn, called an nth root of Φ.

While Markovian and idempotent channels are infinitely divisible, there are examples of
infinitely divisible channels which are neither Markovian nor idempotent. Nevertheless, it can
be proved that Φ is infinitely divisible iff

Φ=QeL, (22)

where Q is an idempotent channel, L an GKLS generator, and QL=QLQ [34, 35].

2.3. The structure of the asymptotic map

One may ask whether there exists a finer structure for the asymptotic manifold Attr(Φ) and
for the action of the asymptotic map

Φ̂P = Φ|Attr(Φ) = ΦP|Attr(Φ) (23)

of a quantum channel Φ. The answer is given by the following structure theorem of Wolf and
Perez-Garcia [10, theorem 8].

Theorem 2.2 (Asymptotic map). Let Φ be a quantum channel on B(H), and P its eigenpro-
jection corresponding to λ= 1.
There exists a decomposition of the Hilbert spaceH

H=H⊥
0 ⊕

M⊕

k=1

Hk,1 ⊗Hk,2, (24)
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with H0 = suppP(I), Hk,i being Hilbert spaces (k= 1, . . . ,M and i = 1,2), and there exist
positive definite density operators ρk onHk,2 such that

Attr(Φ) = 0⊕
M⊕

k=1

B(Hk,1)⊗Cρk. (25)

Therefore every X ∈ Attr(Φ) can be written as

X= 0⊕
M⊕

k=1

xk⊗ ρk, (26)

for some operators xk ∈ B(Hk,1).
Moreover, there exist unitaries Uk onHk,1 and a permutation π on the set {1, . . . ,M} such

that the asymptotic map of the quantum channel Φ reads

Φ̂P(X) = 0⊕
M⊕

k=1

Ukxπ(k)U
†
k ⊗ ρk, (27)

with X ∈ Attr(Φ) in the form (26).

Remark 1. The permutation π acts on subsets of {1, . . . ,M}, so that the corresponding Hilbert
spaces must have the same dimension, i.e.

dπ(k) = dk, k= 1, . . . ,M, (28)

with dk = dim(Hk,1), consistently with the fact that Attr(Φ) is an invariant subspace for Φ

ΦAttr(Φ) = Attr(Φ). (29)

Remark 2. ([36]). If Φ is faithful, i.e. it has a full-rank fixed state, then dim(H⊥
0 ) = 0, so that

the zero term in (25) disappears. Consequently,

PP(X) =
M∑

k=1

trk,2(PkXPk)⊗ ρk, (30)

where Pk is the projection onto Hk,1 ⊗Hk,2 and trk,2 denotes the partial trace over Hk,2.
Moreover, it can be shown that Attr(Φ†) is a unital ∗-algebra [37] with the following struc-

ture [15, theorem 1]

Attr(Φ†) =
M⊕

k=1

B(Hk,1)⊗CIk,2, (31)

where Ik,2 is the identity on Hk,2.
Attr(Φ) is an algebra with respect to the %-product [38, 39]

A %B := APP(I)−1B ∈ Attr(Φ), A,B ∈ Attr(Φ). (32)

This can be immediately seen if we observe that (30) implies that

PP(I) =
M⊕

k=1

mkIk,1 ⊗ ρk, (33)

where Ik,1 is the identity on Hk,1 and mk = dim(Hk,2).
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Remark 3. As a consequence of (27), every maximum-rank fixed state σ has the form

σ =
1

∑M
k=1 tr(σk)

(
0⊕

M⊕

k=1

σk⊗ ρk

)
, (34)

with σk > 0 such that

Ukσπ(k)U
†
k = σk, k= 1, . . . ,M. (35)

3. Cyclic structure of the asymptotic map

In this section, we are going to exhibit an interesting alternative form for the asymptotic map
Φ̂P of a quantum channel Φ. In particular, we are going to show that, in each disjoint cycle of
the permutation π, the channel can be written as the tensor product between a unitary channel
and an irreducible one, being a permutation between the density matrices ρk in the decompos-
ition (25) of the asymptotic manifold. First, let us recall the notion of irreducible and primitive
channels [11].

Definition 3.1. Let Φ be a quantum channel. Then

• Φ is irreducible if it has a unique full-rank fixed state σ, i.e. Φ(σ) = σ, with 0< σ ∈ S(H);
• Φ is called primitive if it is irreducible and it has trivial peripheral spectrum, namely

spectP(Φ) = {1}.

Now, we aim at rewriting the map (27) in a form where in each cycle all the unitaries
Uk are the same. According to theorem 2.2, given the Hilbert space decomposition (24) and
an element X ∈ Attr(Φ) in the form (26), the action of the asymptotic map Φ̂P on X is in the
form (27). Notice that local unitary transformations (i.e. local basis changes) Vk :Hk,1 →H ′

k,1,
with k= 1, . . . ,M, induce a unitary map V :H→H ′, where

H ′ =H⊥
0 ⊕

M⊕

k=1

H ′
k,1 ⊗Hk,2 (36)

has exactly the same structure of H. We will use this freedom in order to simplify the expres-
sion of the asymptotic map Φ̂P.

Any operator of the asymptotic manifold X ∈ Attr(Φ) is transformed by V into

X ′ = VXV† = 0⊕
M⊕

k=1

x ′k ⊗ ρk, (37)

where

x ′k = VkxkV
†
k . (38)

Correspondingly, the action of the asymptotic map on X ′ becomes

Φ̂ ′
P(X

′) = VΦ̂P(X)V† = VΦ̂P(V†X ′V)V†, (39)

that is

Φ̂ ′
P(X

′) = 0⊕
M⊕

k=1

(VkUkV
†
π(k))x

′
π(k)(Vπ(k)U

†
kV

†
k)⊗ ρk = 0⊕

M⊕

k=1

U ′
kx

′
π(k)U

′†
k ⊗ ρk. (40)
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As a result, changing the local basis will change the operators Uk as

Uk 1→ U ′
k = VkUkV

†
π(k). (41)

In general a permutation π is the product of disjoint cycles. Assume first that π =
(k1, . . . ,kM) is a cyclic permutation of length M, that is

π(kj) = kj+1 modM. (42)

In such a case all Hilbert spaces are isomorphic,

H ′
1,1 2H ′

2,1 2 · · ·2H ′
M,1 2H1, (43)

and we can write

H ′ =H⊥
0 ⊕

M⊕

k=1

H1 ⊗Hk,2. (44)

Now, we require that the unitaries U ′
k be all equal:

U ′
k1 = U ′

k2 = · · ·= U ′
kM = U, (45)

which means that

U= VkjUkjV
†
kj+1

modM. (46)

By writing Vkj+1 in terms of Vkj , one gets

Vk1 = (U†)MVk1(Uk1Uk2 · · ·UkM), (47)

or explicitly

U= Vk1(Uk1Uk2 · · ·UkM)
1/MV†

k1 . (48)

Therefore, up to a local unitary Vk1 on Hk1,1 2H1, the transformed unitary U turns out to be
a geometric mean of the original unitaries Ukj , j = 1, . . . ,M, along the cycle.

Thus, by changing basis and dropping the primes in (40), the expression (27) for the asymp-
totic map becomes

Φ̂P(X) = 0⊕
M⊕

k=1

Uxπ(k)U
† ⊗ ρk. (49)

Moreover, we can decompose the Hilbert space H as

H=H⊥
0 ⊕

M⊕

k=1

H1 ⊗Hk,2 =H⊥
0 ⊕H1 ⊗

(
M⊕

k=1

Hk,2

)
. (50)

With respect to the decomposition (50), the attractor subspace Attr(Φ) becomes

Attr(Φ) = 0⊕B(H1)⊗
(

M⊕

k=1

Cρk

)
, (51)

and the action of Φ̂P on an element X ∈ Attr(Φ),

X= 0⊕
M∑

k=1

xk⊗ ρ̂k, (52)
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with ρ̂k = (0⊕ 0⊕ · · ·⊕ ρk⊕ 0⊕ · · ·⊕ 0), is given by

Φ̂P(X) = 0⊕
M∑

k=1

Uxπ(k)U
† ⊗ ρ̂k = 0⊕

M∑

k=1

UxkU† ⊗ ρ̂π−1(k). (53)

Now, it is easy to check that one gets ρ̂π−1(k) = Φπ(ρ̂k), where Φπ is the channel on
B(
⊕

kHk,2) acting as

Φπ(Z) =
M⊕

k=1

tr(Qπ(k)Z)ρk, Z ∈ B
(

M⊕

k=1

Hk,2

)
, (54)

with Qk being the projection onto Hk,2.
Therefore, the asymptotic map can be written as

Φ̂P(X) = 0⊕ (ΦU⊗Φπ)(X0), X= 0⊕X0 ∈ Attr(Φ), (55)

with

ΦU(Y) = UYU†, Y ∈ B(H1), (56)

being a unitary channel.
The above decomposition, obtained for a permutation consisting of a singleM-cycle, gener-

alizes in a natural way to an arbitrary permutation with L disjoint cycles π = π1 ◦π2 ◦ · · · ◦πL.
We have thus proved the following structure theorem for the asymptotic dynamics, which is
the main result of this section.

Theorem 3.2 (Cyclic decomposition). Let Φ be a quantum channel on B(H).
Then, there exists a decomposition of the Hilbert spaceH,

H=H⊥
0 ⊕

L⊕

#=1

(
H(#)

1 ⊗
(

m!⊕

k=1

H(#)
k,2

))
, (57)

such that the asymptotic manifold of Φ has the form

Attr(Φ) = 0⊕
L⊕

#=1

(
B(H(#)

1 )⊗
(

m!⊕

k=1

Cρ(#)k

))
, (58)

with ρ(#)k being positive definite density operators.
The asymptotic map of Φ, Φ̂P : Attr(Φ)→ Attr(Φ) is given by

Φ̂P(X) = 0⊕
L⊕

#=1

(ΦU! ⊗Φπ!)(X0), X= 0⊕X0 ∈ Attr(Φ), (59)

where

ΦU!(Y) = U#YU#
†, Y ∈ B(H(#)

1 ), (60)

are unitary channels, and

Φπ!(Z) =
m!⊕

k=1

tr(Q(#)
π!(k)

Z)ρ(#)k , Z ∈ B
(

m!⊕

k=1

H(#)
k,2

)
, (61)

are irreducible channels with π# being an m#-cycle, and Q
(#)
k being the projection onto H(#)

k,2 ,
for '= 1, . . . ,L.
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Observe that the decomposition (59) can also be obtained from [30, theorem 2]. In partic-
ular, the map Φπ! corresponds to the peripheral channel of the irreducible map E# appearing
there, up to the identification of Attr(E#)with

⊕m!

k=1Cρ
(#)
k , and π# with the permutation appear-

ing in the expression (27) for the asymptotic map of E#.
Thus, the attractor subspace reads

Attr(Φ) = 0⊕
L⊕

#=1

B(H(#)
1 )⊗Attr(Φπ!). (62)

Notice that, in the absence of permutations π = id, (62) reduces to the decomposition (27). A
sufficient condition and a characterization for π = id will be discussed in section 5.

Armed with this new expression for the asymptotic map Φ̂P, we can decompose the fixed
point space Fix(Φ) of Φ as

Fix(Φ) = 0⊕
L⊕

#=1

Fix(ΦU!)⊗Cρ̃#. (63)

Here

ρ̃# =
1
m#

m!⊕

k=1

ρ(#)k (64)

is the unique (full-rank) fixed point of the irreducible channel Φπ! and

Fix(ΦU!) = {U#} ′ =
{
X ∈ B(H(#)

1 ) : [X,U#] = 0
}
, (65)

where the square brackets denote the commutator. Note that (63) is the Schrödinger analogue
of the structure of the fixed points discussed in [15, theorem 2] for faithful quantum channels
on the space of trace-class operators T (H).

In addition, as already observed in [14, section 5.3], we can obtain from (59) the structure of
the peripheral eigenvalues and eigenvectors of Φ. In particular, the structure of the peripheral
spectrum is consistent with [10, theorem 9].

As discussed above, theorem 3.2 implies that the asymptotic map of any quantum channel
can be decomposed in terms of unitary and irreducible channels. Physically, the former ones
represent a coherent quantum evolution undergoing at large times after the dissipation took
place, whereas the latter ones are related to a (somewhat surprising) residual classical dynamics
in the asymptotic limit. As a result, the decomposition (59) of the asymptotic map allows one
to factorize the classical and quantum contributions to the large-time evolution of an open
quantum system.

4. Unfolding an asymptotic map

In section 2.3, we discussed the expression of the asymptotic map Φ̂P of a quantum channelΦ,
that describes the asymptotic dynamics of the quantum system under investigation. An altern-
ative decomposition (58) of the attractor manifold Attr(Φ) and its corresponding asymptotic
map (59) was then given in section 3.

A fundamental question to be addressed is whether, given an arbitrary subspace K decom-
posed as in (25) and an arbitrary map ΦK of the form (27) acting on it, there always exists a
quantum channel on the whole algebra B(H)whose attractor subspace isK and whose asymp-
totic map is ΦK. The answer is affirmative, as shown in the following theorem.

10
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Theorem 4.1 (Unfolding an asymptotic dynamics). LetH be a d-dimensional Hilbert space
of the form

H=H⊥
0 ⊕H0, H0 =

M⊕

k=1

Hk,1 ⊗Hk,2, (66)

with dimHk,1 = dk. Let ρk be full-rank density operators overHk,2, k= 1, . . . ,M, and consider
the subspace K ⊂ B(H) given by

K = 0⊕
M⊕

k=1

B(Hk,1)⊗Cρk. (67)

Let π be a permutation of {1, . . . ,M} such that dk = dπ(k), and Uk be unitaries in B(Hk,1).
Consider the map ΦK :K→K given by

X= 0⊕
M⊕

k=1

xk⊗ ρk 1→ ΦK(X) = 0⊕
M⊕

k=1

Ukxπ(k)U
†
k ⊗ ρk. (68)

Then, there exists a quantum channel ΦE on B(H) such that

i. Attr(ΦE) =K,
ii. (Φ̂E)P = ΦE|K = ΦK.

Remark 4. This result is along the lines of a series of extension theorems of completely pos-
itive maps [40], such as the classic result by Arveson [28] and the more recent theorem by
Jencova [29]. It is worth mentioning that the proof of theorem 4.1 is constructive and provides
an explicit form for the quantum channel ΦE which unfolds the given asymptotic dynamics.

Proof. We will prove the statement by providing an explicit example of a quantum channel
ΦE satisfying the conditions i. and ii.. First, let us define the pinching channel

Φpinch : B(H)→ B(H⊥
0 )⊕

M⊕

k=1

B(Hk,1 ⊗Hk,2),

Z 1→ Q⊥ZQ⊥ ⊕
M⊕

k=1

PkZPk,

(69)

where Pk are the projections onto Hk,1 ⊗Hk,2, while Q⊥ is the projection onto H⊥
0 . Clearly,

Φpinch is a quantum channel.
Let us post-compose Φpinch with the sum of two maps. The first one is a variant of the

one-state contraction channel

Φ⊥
0 : B(H⊥

0 )⊕
M⊕

k=1

B(Hk,1 ⊗Hk,2)→ 0⊕B(H0),

Z0 ⊕
M⊕

k=1

Zk 1→ 0⊕ tr(Z0)σ,

(70)

with σ ∈ S(H0). It is immediate to check that Φ⊥
0 is a nilpotent completely positive map of

degree 2. [More generally, we could replace tr(Z0)σ with Θ(Z0), with Θ : B(H⊥
0 )→ B(H0)

being an arbitrary quantum channel].

11
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The second map has the form

Φ0 : B(H⊥
0 )⊕

M⊕

k=1

B(Hk,1 ⊗Hk,2)→ 0⊕
M⊕

k=1

B(Hk,1 ⊗Hk,2),

Z0 ⊕
M⊕

k=1

Zk 1→ 0⊕
M⊕

k=1

Uktrπ(k),2(Zπ(k))U
†
k ⊗ ρk,

(71)

where trπ(k),2 is the partial trace over Hπ(k),2.
We claim that the map

ΦE = (Φ0 +Φ⊥
0 )Φpinch, (72)

is indeed the sought extension.
We need to check that ΦE is a quantum channel, and that conditions i. and ii. hold. Clearly,

ΦE is trace-preserving by construction. For what concerns complete positivity, we only need
to prove that Φ0 satisfies this property. The proof is straightforward but lengthy, and it is given
in appendix C.

Furthermore, observe that

(ΦE)
n(B(H)) =K, ∀n" 2, (73)

implyingAttr(ΦE) =K by (11). Condition ii. follows easily from the definition (72) ofΦE.

Remark 5. Observe that, if H⊥
0 = 0, then we have Φ⊥

0 = 0 by (70) and the map (72) reduces
to the faithful channelΦE = Φ0Φpinch, coinciding with its peripheral channel. Incidentally, this
channel appears in the proof of [10, theorem 9] in the particular case mk = 1, k= 1, . . . ,M, i.e.
ρk = 1.

Therefore, we can conclude that any evolution described by equation (68) and acting on
a subspace of the form (67) can always be regarded as the asymptotic dynamics of an open
quantum system. From a physical perspective, the explicit construction of the channel with
given asymptotic dynamics can be exploited in order to engineer specific quantum information
processing in decoherence-free subspaces, obtained as asymptotic manifolds of a quantum
channel.

5. On the role of permutations

One of the most intriguing features of the asymptotic dynamics (27) and (59) is the occurrence
of permutations between the factors of the decomposition (24) and (57), which in general
prevents the asymptotic map Φ̂P to be a unitary channel and, indeed, Hilbert–Schmidt unitary.
For the sake of clarity, we give the following definition.

Definition 5.1. Let Φ be a quantum channel. Then, we say that its asymptotic map

Φ̂P : Attr(Φ)→ Attr(Φ) (74)

is unitary iff

Φ̂P(X) = UXU†, (75)

12
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with X ∈ Attr(Φ), and U ∈ B(H) being unitary, UU† = U†U= I.

Obviously,

π = id ⇒ Φ̂P(X) = UXU† ⇒ Φ̂PΦ̂
†
P = Φ̂†

PΦ̂P = 1P, (76)

where 1P is the identity on Attr(Φ). When the last equality in (76) holds, we say that the
asymptotic map is Hilbert–Schmidt unitary. Here, the adjoint Φ̂†

P is defined via the Hilbert–
Schmidt inner product,

〈X|Φ̂P(Y)〉HS = 〈Φ̂†
P(X)|Y〉HS, X,Y ∈ Attr(Φ), (77)

and can be easily shown to read

Φ̂†
P(X) = 0⊕

M⊕

k=1

U†
π−1(k)xπ−1(k)Uπ−1(k) ⊗

tr(ρ2π−1(k))

tr(ρ2k)
ρk, X ∈ Attr(Φ). (78)

In words, the absence of permutations implies that the asymptotic map is unitary and thus
Hilbert–Schmidt unitary.

However, notice that the converse of the implications (76) does not hold in general. Indeed,
consider the qubit channel [14, section 3.1]:

Φ(X) =
1
2
(σ1Xσ1 +σ3Xσ3), X ∈ B(C2), (79)

where σj, j = 1,2,3 are the Pauli matrices. The peripheral eigenvalues and eigenvectors read

Φ†(I) = Φ(I) = I, Φ†(σ2) = Φ(σ2) =−σ2, (80)

so that

Attr(Φ) = {αI+βσ2 |α,β ∈ C}. (81)

In the basis in which σ2 is diagonal, X ∈ Attr(Φ) has the form

X=

(
α+β 0

0 α−β

)
, (82)

and the action of the asymptotic map Φ̂P on it will be given by

Φ̂P(X) =
(
α−β 0

0 α+β

)
. (83)

Thus, Φ̂P is just the flip of the two diagonal coefficients of X. However, Φ̂P is a unitary channel
and, in particular,

Φ̂P(X) = σ3Xσ3, X ∈ Attr(Φ). (84)

So, to sum up,

Φ̂P(X) = UXU† .⇒ π = id, (85)

implying that

Φ̂†
P = Φ̂−1

P .⇒ π = id. (86)

We conclude that equation (75) and, consequently, the Hilbert–Schmidt unitarity of Φ̂P are not
sufficient conditions for the absence of permutations. Instead, a characterization is given in the
following lemma.

13
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Lemma 5.2. LetΦ be a quantum channel, with asymptotic map Φ̂P. Then Φ̂P has no permuta-
tions iff, for all positive n ∈ N, Φ̂P is the n-fold composition of the asymptotic map of some
quantum channel Φn. Explicitly

π = id iff Φ̂P = (Φ̂n,P)
n ∀n ∈ N, n> 0, (87)

where Φ̂n,P is the asymptotic map of a quantum channelΦn with attractor subspaceAttr(Φn) =
Attr(Φ).

Proof. The ⇒ implication is immediate, since we can simply set ∀n" 1

Φ̂n,P(X) = 0⊕
M⊕

k=1

U1/n
k xk(U

1/n
k )† ⊗ ρk, X ∈ Attr(Φ), (88)

which can be thought as the asymptotic maps of channelsΦn constructed through the extension
theorem 4.1.

With regards to the other implication ⇐, we can explicitly write the maps Φ̂n,P as

Φ̂n,P(X) = 0⊕
M⊕

k=1

Uk,nxπn(k)U
†
k,n⊗ ρk, n" 1 (89)

for some unitaries Uk,n and permutations πn on {1, . . . ,M}. Therefore, our assumption reads

Uk,nUπn(k),n . . .Uπn−1
n (k),nxπn

n(k)U
†
πn−1
n (k),n

. . .U†
πn(k),n

U†
k,n = Ukxπ(k)U

†
k , (90)

for k= 1, . . . ,M, n" 1. In other words,

Ũk,nxπn
n(k)Ũ

†
k,n = xπ(k), k= 1, . . . ,M, n" 1, (91)

where

Ũk,n = U†
k

n−1∏

l=0

Uπl
n(k),n, (92)

with π0
n = id.

We claim that this implies that

π = πnn , (93)

for all n" 1. Indeed, by supposing that there exists some n̄" 1 such that π .= πn̄n̄ we will arrive
at a contradiction.

When M= 2, we have two cases: π = id and πn̄n̄(k) = k+ 1 mod 2, i.e. the transposition,
and vice versa. In the first case condition (91) yields

Ũ1,n̄x2Ũ
†
1,n̄ = x1,

Ũ2,n̄x1Ũ
†
2,n̄ = x2.

(94)

Since the elements x1 and x2 can be freely chosen in B(H1,1) and B(H2,1), respectively,
equation (94) cannot be satisfied in general (take for instance x1 = 0 and x2 .= 0). In the second
case the system (91) is the same up to the exchange 1↔ 2.

The generalization to M> 2 is straightforward. Indeed, suppose that π(k0) .= πn̄n̄(k0) for
some n̄" 1 and k0 ∈ {1, . . . ,M}. Then, equation (91) becomes

Ũk0,n̄xπn̄
n̄(k0)Ũ

†
k0,n̄ = xπ(k0). (95)

14



J. Phys. A: Math. Theor. 56 (2023) 265304 D Amato et al

Again, since xπ(k0) and xπn̄
n̄(k0) are arbitrary, the previous equation cannot be satisfied unless

π(k0) = πn̄n̄(k0). Therefore, equation (91) becomes

Ũk,nxπ(k)Ũ
†
k,n = xπ(k), k= 1, . . . ,M, n" 1. (96)

This means that Ũk,n is an element of B(Hk,1) which commutes with all operators in B(Hk,1).
Since the commutant of B(Hk,1) is trivial, Ũk,n will be in the form

Ũk,n = eiφk,nIk,1, for someφk,n ∈ R. (97)

By choosing n to be the least common multiple of 1, . . . ,M, it will be a multiple of the lengths
of the cycles of the permutation πn, so that π = id.

Now, we use the previous lemma to prove the main result of this section.

Theorem 5.3. Let Φ be an infinitely divisible quantum channel. Then its asymptotic dynamics
has no permutations, π = id, and thus is unitary.

Proof. According to lemma 5.2 it is sufficient to prove that

Φ̂P = (Φ̂n,P)
n, ∀n" 1, (98)

where Φn
n = Φ, as in definition 2.1. First, observe that

Attr(Φ) = Attr(Φn), (99)

spect(Φ) = spect(Φn)
n = {λn |λ ∈ spect(Φn)}, (100)

as it can be seen from the Jordan decompositions of Φ and Φn (see appendix D). So, if PP,n is
the peripheral projection of Φn, we can compute

ΦP = PPΦ
n
n = PP,nΦ

n
n = (PP,nΦn)

n = Φn
n,P, (101)

where we used [PP,n,Φn] = 0, by (11). The statement follows by restricting both sides of (101)
to the attractor subspace Attr(Φ) = Attr(Φn).

An immediate corollary to theorem 5.3 is the following [36].

Corollary 5.4. Let Φ be a quantum channel with asymptotic map Φ̂P.

(i) If Φ = eL, with L being a GKLS generator (Markovian channel), then Φ̂P(X) = UXU†,
with U unitary,

(ii) If Φ2 = Φ (idempotent channel), then Φ̂P(X) = UXU†, with U unitary.

The first implication is consistent with the dynamics at large times of quantum dynamical
semigroups [18, section IV], marking a difference with the discrete-time semigroups at the
level of the asymptotics (see also [12, section 5.2]). Ultimately, the absence of permutations
in the expression (27) for Φ̂P is linked to the divisibility of the channel.

The above results are also consistent with [36, section 4] where it was shown that the unit-
ary Tomita–Takesaki modular dynamics on the attractor subspace Attr(Φ) is the asymptotic
map of ΦM, with M denoting the least common multiple of the lengths of the cycles of the
permutation. In such way, the original discrete-time dynamics (Φn)n∈N associated with Φ was
coarse-grained, becoming ‘sufficiently’ Markovian for the disappearance of permutations.

There are other classes of channels Φ for which no permutations appear in their asymptotic
dynamics Φ̂P. For example, this is clearly true for primitive channels, see definition 3.1.
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Proposition 5.5. Let Φ be a quantum channel. If Φ is primitive, then its asymptotic dynamics
has no permutations, π = id.

Remark 6. More generally, π = id also for quantum channels with one-dimensional attractor
subspace.

Note that the properties of primitivity and infinite divisibility are independent, although
both conditions guarantee π = id. More precisely,

Φ infinitely divisible .⇒ Φ primitive, (102)

as confirmed by the one-state contraction channel (20) with ρ non-invertible. Conversely,

Φ primitive .⇒ Φ infinitely divisible, (103)

as it may be proved by taking into account the indivisible unital qubit channel [35]

Φ(X) =
1
3
(XT+ tr(X)I), X ∈ B(C2), (104)

where XT denotes the transpose of X. It has the non-degenerate eigenvalue λ= 1 and no other
peripheral eigenvalues, namely it is primitive. Thus, from (102) and (103), we can conclude
that infinite divisibility and primitivity are not necessary conditions for π = id.

Now, after characterizing and interpreting the absence of permutations in equation (27), we
conclude this section with a last proposition which characterizes the unitarity and the Hilbert–
Schmidt unitarity of an asymptotic map Φ̂P.

Proposition 5.6. LetΦ be a quantum channel with asymptotic map Φ̂P of the form (27). Then,

(i) Φ̂†
P = Φ̂−1

P , namely Φ̂P is Hilbert–Schmidt unitary iff ‖ρk‖HS = ‖ρπ(k)‖HS, for all
k= 1, . . . ,M.

(ii) Φ̂P(X) = UXU†, X ∈ Attr(Φ) iff ρk = Vkρπ(k)V
†
k , k= 1, . . .M for some unitaries Vk :

Hπ(k),2 →Hk,2.

The proof of the first characterization readily follows from the definition of Hilbert–
Schmidt unitarity (see also section 6), whereas the assertion (ii) with proof may be found
in [36, theorem 3].

Remark 7. From this result it is clear that π = id is not necessary for Φ̂P to be either a unitary
channel or Hilbert–Schmidt unitary, as already discussed previously, see the example of the
qubit channel (79).

Remark 8. As it can be seen by using theorem 4.1

‖ρk‖HS = ‖ρπ(k)‖HS .⇒ ρk = Vkρπ(k)V
†
k , (105)

so that

Φ̂†
P = Φ̂−1

P .⇒ Φ̂P(X) = UXU†. (106)

6. Asymptotics of faithful and non-faithful channels

The aim of this section is twofold. First, we will discuss several results of Novotný et al [8, 9]
by looking in detail at the non-faithful case. Then, we will connect them to the structure
theorems.

Let us start by recalling the following theorem, that expresses the irreversibility of a non-
unitary open-system dynamics.
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Theorem 6.1 ([11]). LetΦ be a quantum channel on B(H). ThenΦ† = Φ−1 iffΦ(X) = UXU†,
with U unitary, i.e. Φ is a unitary channel.

Remark 9. As already discussed in the previous section (see equation (106)), this is not true
in general for the asymptotic map Φ̂P.

More generally, given a quantum channel Φ and a subset M⊆ S(H), we can look for
another quantum channel Φ ′ such that

Φ ′Φ(X) = X, X ∈M. (107)

If such channel exists, then Φ is said to be sufficient (or reversible) with respect to the sub-
set M, and Φ ′ is called the recovery map of Φ for M [41]. Interestingly, this concept finds
applications in quantum error correcting codes [42].

For instance, at least for faithful channels with full-rank fixed state σ, it turns out that [9]

ΦΦ‡(X) = Φ‡Φ(X) = X, X ∈ Attr(Φ), (108)

where Φ‡ is the adjoint map of Φ with respect to the scalar product

〈A|B〉1/2 = 〈A|σ−1/2Bσ−1/2〉HS = tr(A†σ−1/2Bσ−1/2) = tr(σ−1/2A†σ−1/2B)

= tr(σ−1σ1/2A†σ−1/2B) = tr(σ−1A‡B), A,B ∈ B(H),
(109)

i.e. a generalized Hilbert–Schmidt scalar product involving a modified adjoint operation on
B(H) defined by

B‡ = σ1/2B†σ−1/2, B ∈ B(H). (110)

The map Φ‡ explicitly reads

Φ‡(X) =
N∑

k=1

σ1/2A†
kσ

−1/2Xσ−1/2Akσ1/2, X ∈ B(H), (111)

with {Ak}Nk=1 being a system of Kraus operators of Φ. It is clear that Φ‡ is a quantum channel.
Note that Φ‡ is a particular example of Petz’s recovery map [43, 44].

Furthermore, it is worthwhile to observe that

Attr(Φ) = Attr(Φ‡), (112)

as a consequence of a one-to-one correspondence between eigenspaces corresponding to peri-
pheral eigenvalues of Φ and Φ† stated in the following proposition [9, section 4.3].

Proposition 6.2. Let Φ be a faithful quantum channel with full-rank fixed state σ. Then, if λ
is a peripheral eigenvalue, i.e. |λ|= 1,

Xλ ∈ Ker(Φ−λ1B(H)) ⇔ σ−1/2Xλσ
−1/2 ∈ Ker(Φ† − λ̄1B(H)). (113)

The following simple computation

Φ‡(Xλ) =
N∑

k=1

σ1/2A†
kσ

−1/2Xλσ
−1/2Akσ1/2 = λ̄σ1/2σ−1/2Xλσ

−1/2σ1/2 = λ̄Xλ, (114)

thanks to proposition 6.2 and the Kraus representation of Φ†,

Φ†(X) =
N∑

k=1

A†
kXAk, X ∈ B(H), (115)

yields (112).
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Now, let us consider the extension of the result (108) to the non-faithful case that was
discussed in [8]. See also [14]. We look at it in detail and consider the fine print. Consider the
map Φ̃ : B(H0)→ B(H0) defined as

Φ(X) = 0⊕ Φ̃(X̃), X= 0⊕ X̃ ∈ 0⊕B(H0). (116)

Note that Φ̃ is a map between B(H0) and B(H0) because 0⊕B(H0) is invariant under Φ.
It turns out that Φ̃ is a faithful quantum channel, which can be called the induced faithful

channel of Φ. Incidentally, one can repeat the same procedure by considering the support of
any fixed state ρ. From (116) we have

Attr(Φ) = 0⊕Attr(Φ̃), (117)

consistently with (15). Now, we can extend to the non-faithful case the definition of Φ‡ by
inserting a maximum-rank fixed state σ in (111) and intending σ−1 as a generalized inverse of
σ, satisfying

σ−1|H⊥
0
= 0. (118)

The map Φ‡ is a quantum operation, i.e. a trace non-increasing completely positive map, and,
again, we can define the induced faithful channel Φ̃‡ of Φ‡ via

Φ‡(X) = 0⊕ Φ̃‡(X̃) = 0⊕ Φ̃‡(X̃), X= 0⊕ X̃ ∈ 0⊕B(H0), (119)

where the last step readily follows from the definitions. Ultimately, the attractor subspace reads

Attr(Φ‡) = 0⊕Attr(Φ̃‡) = 0⊕Attr(Φ̃‡) = 0⊕Attr(Φ̃) = Attr(Φ), (120)

and (108) can be generalized to arbitrary channels.
Now, let us turn our attention to the relation between the result (108) and the structure of

the asymptotic map given by theorem 2.2. To this purpose, let us define the double adjoint of
the asymptotic map Φ̂P, Φ̂

‡
P : Attr(Φ)→ Attr(Φ) by

〈A|Φ̂P(B)〉1/2 = 〈Φ̂‡
P(A)|B〉1/2, A,B ∈ Attr(Φ), (121)

from which it is possible to obtain, using (27) and (35),

Φ̂‡
P(X) = 0⊕

M⊕

k=1

U†
π−1(k)xπ−1(k)Uπ−1(k) ⊗ ρk, X ∈ Attr(Φ). (122)

Then, it is immediate to check that

Φ̂‡
PΦ̂P = Φ̂PΦ̂

‡
P = 1P. (123)

So we can conclude that the asymptotic map Φ̂P is a unitary operator on the attractor subspace
Attr(Φ) with respect to the modified scalar product (109), depending on the maximum-rank
fixed state σ of Φ.

This is in line with the fact that Φ̂P is not generally Hilbert–Schmidt unitary and, con-
sequently, a unitary channel, as explained in the previous section. In addition, by comparing
the expressions (78) and (122) for Φ̂†

P and Φ̂‡
P respectively, we obtain the characterization (i)

of proposition 5.6.
Also, observe that

(Φ̂‡)P = Φ̂‡
P, (124)
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or, equivalently,

Φ‡Attr(Φ) = Attr(Φ), (125)

as a consequence of (120) and (29).
Now, let us prove that (123) is equivalent to (108). Suppose that (108) holds. Then

〈Φ‡Φ(X)|Y〉1/2 = 〈Φ̂P(X)|Φ̂P(Y)〉1/2 = 〈X|Y〉1/2, X,Y ∈ Attr(Φ), (126)

which gives (123), if one takes into account the invertibility of Φ̂P. The converse implication
follows immediately from (124)

Φ‡Φ(X) = (Φ̂‡)PΦ̂P(X) = Φ̂‡
PΦ̂P(X) = X, X ∈ Attr(Φ), (127)

and analogously for the other equality. To sum up, as anticipated, theorem 2.2 implies (108).
Moreover, from theorems 2.2 and 6.2, it follows that, in the faithful case,

Attr(Φ†) = σ−1/2Attr(Φ)σ−1/2 =
M⊕

k=1

B(Hk,1)⊗ Ik,2, (128)

as observed in remark 2.
Incidentally, notice that in the non-faithful case Attr(Φ†) is an algebra with respect to the

star product [45–47]

A %B= P†
P(AB), (129)

where P†
P is the peripheral projection of Φ† as a consequence of (11). The product (129)

reduces to the composition one if Φ is faithful, as it can be readily seen by taking the adjoint
of (30). For related observations see [14, 38, 39, proposition 3].

Proposition 6.2 may be proved from theorem 2.2. The adjoint map Φ† of a faithful channel
Φ acts on its attractor subspace Attr(Φ†) as follows

Φ†(X) =
M⊕

k=1

U†
π−1(k)xπ−1(k)Uπ−1(k) ⊗ Ik,2, (130)

where X ∈ Attr(Φ†) is of the form (31). Now, the eigenvalue equation for Φ

Φ(X) = λX, |λ|= 1, (131)

namely the condition

Ukxπ(k)U
†
k = λxk, k= 1, . . . ,M, (132)

is equivalent to require that

U†
π−1(k)σ

−1/2
π−1(k)xπ−1(k)σ

−1/2
π−1(k)Uπ−1(k) = λ̄σ−1/2

k xkσ
−1/2
k , k= 1, . . . ,M, (133)

thanks to (34). In conclusion, (133) is an explicit way of writing

Φ†(σ−1/2Xσ−1/2) = λ̄σ−1/2Xσ−1/2, (134)

i.e. the statement. Finally, note that similar bijective mappings between the eigenspaces
Ker(Φ−λ1B(H)) and Ker(Φ† − λ̄1B(H)), established in [8, theorem 3.1] and [9, theorem 2]
(see also [48, lemma 3]), may be proved in the same way by means of theorem 2.2.
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7. Conclusions

In this Article we have explored several aspects of the asymptotic dynamics of quantum chan-
nels of finite-dimensional systems. The starting point of our findings is a structure theorem
that provides an expression for the asymptotic map. It is the restriction of the quantum chan-
nel generating the discrete-time dynamics to the attractor subspace, where the evolution takes
place at large times.

Four main goals were achieved in this paper. First, a structure theorem of the asymptotic
map in terms of disjoint cyclic permutations was given (section 3). Second, a quantum channel
unfolding a given asymptotic map was constructed, thus finding the converse to the structure
theorem (section 4). Third, the role of permutations in the asymptotic dynamics was under-
stood and characterized (section 5). Fourth, several properties of the asymptotics of quantum
channels were derived from the structure theorems of the asymptotic map (section 6).

Regarding the first goal, the structure theorem 3.2 provides a decomposition of any asymp-
totic evolution of an open system in terms of unitary and irreducible channels. Physically,
such building blocks respectively represent the purely quantum and classical contributions
to the large-time dynamics. Also, the decomposition (62) of the attractor subspace Attr(Φ)
clearly identifies the decoherence-free subspaces [2] of the dynamics, where a purely unitary
evolution occurs. For this reason, they can play a crucial role in quantum computing [31] and
quantum error correction [14] tasks.

Also, besides its mathematical interest, the unfolding theorem discussed in section 4 can be
useful for quantum information processing, by explicitly designing a quantum channel extend-
ing a given asymptotic map.

For what concerns the third goal, the asymptotic dynamics is not purely unitary, since partial
permutations between the factors of the attractor manifold may occur. However, the absence
of permutations does not characterize the unitarity of the asymptotic map, but a weaker divis-
ibility property, as stated in proposition 5.2. An almost immediate consequence of this result
is that the asymptotic dynamics of an infinitely divisible channel, such as a Markovian or an
idempotent channel, has no permutations. Again, understanding the presence/absence of per-
mutations in the large-time limit of a given quantum dynamics is relevant for applications in
quantum information processing.

Therefore, given a discrete-time semigroup (Φn)n∈N associated with a quantum channel Φ,
the asymptotic map will be unitary if we look at the coarse-grained dynamics generated by
the quantum channel ΦM, withM being the least common multiple of the lengths of the cycles
of the permutation [36]. To conclude, the occurrence of permutations is related to long-term
non-Markovian effects, making the asymptotic dynamics generally non-unitary. Notice also
that permutations can take place only in the presence of a degenerate attractor subspace (see
remark 6). It is also worthwhile to observe that, as revealed by equation (123), permutations do
not even guarantee the Hilbert–Schmidt unitarity of the asymptotic map, physically implying
that the purity of the asymptotic states is not generally conserved under the dynamics.

These results shed light on the crucial role of the asymptotic dynamics of a quantum chan-
nel in quantum technology applications. With this respect it would be interesting to better
understand its relation with entanglement, a fundamental resource in quantum information
processes, and in particular its role in the class of eventually entanglement breaking [27] and
entanglement saving [26] channels. Such maps generalize entanglement breaking channels,
deeply studied in the last twenty years [49–51] because of their detrimental effects in quantum
communication protocols [52, 53].
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Appendix A. Proof of equation (16)

We want to prove that

RanPP(I) = suppPP(I) =H0. (A.1)

We start by proving that

Q⊥PP(I)Q⊥ = 0, (A.2)

where Q⊥ is the projection onto the orthogonal complement H⊥
0 of H0. Since

Q⊥PP(I)Q⊥ " 0, it is sufficient to prove that

tr(Q⊥PP(I)Q⊥) = 0. (A.3)

We know that, by using (10),

Q⊥P(I)Q⊥ = 0 ⇔ lim
N→∞

1
N
Q⊥

N∑

n=1

Φn(I)Q⊥ = 0, (A.4)

which implies that

lim
N→∞

1
N
tr

(
Q⊥

N∑

n=1

Φn(I)Q⊥

)
= 0. (A.5)

That being said, compute for a given n ∈ N,

tr(Q⊥Φn+1(I)Q⊥) = tr(Q⊥Φ((Q+Q⊥)Φn(I)(Q+Q⊥))Q⊥)

= tr(Q⊥Φ(QΦn(I)Q⊥ +Q⊥Φn(I)Q+Q⊥Φn(I)Q⊥)Q⊥)+ tr(Q⊥Φ(QΦn(I)Q)Q⊥)

! tr(QΦn(I)Q⊥ +Q⊥Φn(I)Q)+ tr(Q⊥Φn(I)Q⊥) = tr(Q⊥Φn(I)Q⊥),

(A.6)

where the inequality arises from the fact that the map ΦQ⊥(X) = Q⊥XQ⊥ is trace non-
increasing and 0⊕B(H0) is an invariant subspace for Φ (see equation (116)). So we can write

1
ni
tr

(
Q⊥

ni∑

n=1

Φn(I)Q⊥

)
" 1
ni
ni tr(Q⊥Φni(I)Q⊥)" 0, (A.7)

for the increasing subsequence {ni }i∈N in (11), yielding (A.3) by squeeze theorem and, con-
sequently, (A.2). Finally, from equation (A.2) we have, for φ ∈H

〈φ|Q⊥PP(I)Q⊥|φ〉= ||PP(I)1/2Q⊥φ||2 = 0, (A.8)

implyingPP(I)1/2Q⊥ = 0. Then, by post-composingwithPP(I)1/2, we getPP(I)Q⊥ = 0, and,
by taking the Hermitian conjugate, Q⊥PP(I) = 0, i.e. (A.1).
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Appendix B. Proof of equation (17)

By (8) it is straightforward to prove that the equality PP(I) = P(I) is equivalent to

Φ(PP(I)) = PP(I), (A.9)

which explicitly reads, in the faithful case,

M⊕

k=1

mπ(k)Ik,1 ⊗ ρk =
M⊕

k=1

mkIk,1 ⊗ ρk ⇔ mπ(k) = mk, k= 1, . . . ,M. (A.10)

However, it is always possile to construct a channel for which (A.10) does not hold through
theorem 4.1.

Appendix C. Complete positivity of the map Φ0 in (71)

By definition of complete positivity, let us consider a D-dimensional Hilbert space H ′, and
check that the map

Φ0 ⊗ 1B(H ′) :A⊗B(H ′) 1→ C⊗B(H ′) (A.11)

is positive, with A and C denoting the algebras

A= B(H⊥
0 )⊕

M⊕

k=1

B(Hk,1 ⊗Hk,2), (A.12)

C = 0⊕
M⊕

k=1

B(Hk,1 ⊗Hk,2). (A.13)

Let us take a positive operator Z over A⊗B(H ′), and write it explicitly as

Z=
D∑

α,β=1

Zαβ ⊗ |α〉〈β|, (A.14)

with Zαβ ∈A and {|α〉}Dα=1 an orthonormal basis of H ′. After expressing the vector state
|φ〉 ∈H⊗H ′ as

|φ〉=
D∑

α=1

|φα〉⊗ |α〉=
D∑

α=1

M⊕

k=0

|φ(k)α 〉⊗ |α〉, (A.15)

for some |φα〉=
⊕M

k=0 |φ
(k)
α 〉 ∈H, the positivity of Z reads

〈φ|Z|φ〉=
D∑

α,β=1

〈φα|Zαβ |φβ〉=
D∑

α,β=1

M∑

k=0

〈φ(k)α |Z(k)αβ |φ
(k)
β 〉" 0. (A.16)

Analogously

〈φ|(Φ0 ⊗ 1B(H ′))(Z)|φ〉=
D∑

α,β=1

〈φα|Φ0(Zαβ)|φβ〉

=
D∑

α,β=1

M∑

k=1

〈φ(k)α |Uktrπ(k),2(Z
(π(k))
αβ )U†

k ⊗ ρk|φ(k)β 〉.

(A.17)
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Now, let

ρk =
mk∑

#=1

λ(k)# |'(k)〉〈'(k)|, (A.18)

|φ(k)α 〉=
mk∑

#=1

|φ(k)α# 〉⊗ |'(k)〉 (A.19)

be the spectral decomposition of ρk and the tensor product decomposition of |φ(k)α 〉 in terms
of the basis |'(k)〉 of eigenvectors of ρk. Therefore, the generic term in the last sum in (A.17)
becomes

〈φ(k)α |Uktrπ(k),2(Z
(π(k))
αβ )U†

k ⊗ ρk|φ(k)β 〉

=
mk∑

#,# ′=1

〈φ(k)α# ⊗ '(k)|Uktrπ(k),2(Z
(π(k))
αβ )U†

k ⊗ ρk|φ(k)β# ′ ⊗ ' ′(k)〉

=
mk∑

#=1

λ(k)# 〈φ(k)α# |Uktrπ(k),2(Z
(π(k))
αβ )U†

k |φ
(k)
β# 〉

=
mk∑

#,# ′=1

〈ψ(k)
α# ⊗ ' ′(k)|Z(π(k))αβ |ψ(k)

β# ⊗ ' ′(k)〉,

(A.20)

with

|ψ(k)
α# 〉=

√
λ(k)# U†

k |φ
(k)
α# 〉. (A.21)

Therefore,

〈φ|(Φ0 ⊗ 1B(H ′))(Z)|φ〉=
mk∑

#,# ′=1

M∑

k=1

D∑

α,β=1

〈ψ(k)
α# ⊗ ' ′(k)|Z(π(k))αβ |ψ(k)

β# ⊗ ' ′(k)〉" 0, (A.22)

as a consequence of (A.16).

Appendix D. Proof of equations (99)–(100)

Let us write the Jordan decompositions of Φ and Φn

Φ=
N∑

k=1

(λkPk+Nk), (A.23)

Φn =
N ′∑

k=1

(λk,nPk,n+Nk,n), (A.24)

where Pk and Nk (Pk,n and Nk,n) are the eigenprojection and eigennilpotent of Φ (Φn) corres-
ponding to the kth eigenvalue λk (λk,n). Since Φ = Φn

n, we obtain

N∑

k=1

(λkPk+Nk) =
N ′∑

k=1

(
λnk,nPk,n+

n−1∑

m=0

(
n
m

)
λmk,nN n−m

k,n

)
. (A.25)

It is straightforward to prove that the right-hand side of (A.25) is an alternative Jordan decom-
position of Φ, so from the uniqueness of the Jordan decomposition, we have
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λk = λnk,n, (A.26)

PP = PP,n, (A.27)

implying equations (99) and (100) of the paper.
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