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Abstract

In this paper we propose a novel self-exciting jump-diffusion model for oil price dynamics

based on a Hawkes-type process. In particular, the jump intensity is stochastic and path

dependent, implying that the occurrence of a jump will increase the probability of observing

a new jump and this feature of the model aims at explaining the jumps clustering effect.

Moreover, volatility is described by a stochastic process, which can jump simultaneously

with prices. The model specification is completed by a stochastic convenience yield. In

order to estimate the model we apply the two-stage Sequential Monte Carlo (SMC) sampler

(Fulop and Li, 2019) to both spot and futures quotations. From the estimation results we

find evidence of self-excitation in the oil market, which leads to an improved fit and a better

out of sample futures forecasting performance with respect to jump-diffusion models with

constant intensity. Furthermore, we compute and discuss two optimal hedging strategies

based on futures trading. The optimality of the first hedging strategy proposed is based on

the variance minimization, while the second strategy takes into account also the third-order

moment contribution in considering the investors attitudes. A comparison between the two

strategies in terms of hedging effectiveness is provided.
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1 Introduction

An accurate description of oil price dynamics is crucial for financial applications like risk manage-

ment, portfolio allocation and derivatives pricing. In addition, the oil market has a strong impact

on most aspects of economics in a wider sense; for example, from a macroeconomic perspective

oil prices can affect the world GDP growth (Kilian and Figfusson, 2013), the efficiency of oil

usage and energy consumption (Wang, 2013), and the term structure of interest rates (Ioannidis

and Ka, 2018). This explains the huge amount of literature devoted to provide reliable and

accurate methods for oil price dynamics calibration and forecast (Baumeister and Kilian, 2015).

One of the most popular approaches for modeling commodities is represented by factor models, in

which continuous time stochastic differential equations describe the factors moving the price dy-

namics. In particular, among the others we recall the two factor model proposed by Gibson and

Schwartz (1990), where the spot price is described by a Geometric Brownian Motion (GBM) and

the convenience yield by a Ornstein-Uhlenbeck (OU) process. Later, Ribeiro and Hodges (2004)

proposed a multi-factor model, in which the convenience yield is driven by a Cox-Ingersoll-Ross

(CIR) process. This ensures that the convenience yield does not take negative values and hence

the model excludes arbitrage. None of these models accounts neither for stochastic volatility nor

for jumps.

In order to provide a better description of oil prices dynamics, Larsson and Nossman (2011)

introduced jumps in both stochastic volatility and returns. They analysed daily spot prices of

WTI crude oil from 1989 to 2009, and exploited a Markov Chain Monte Carlo (MCMC) method

for the model estimation. In contrast to the literature mentioned before, they did not consider

mean reversion in the spot price and also the convenience yield was not introduced as a stochastic

factor (they only considered a constant convenience yield in the risk-neutral specification of the

model). A similar framework has been adopted also by Brooks and Prokopczuk (2013).

Another stochastic volatility model with jumps for oil prices can be found in two recent papers by

Fileccia and Sgarra (2015, 2018), where the authors included also a stochastic convenience yield.

In their paper information from futures prices is included and the model is estimated under both

the historical and risk-neutral measure via Particle Markov Chain Monte Carlo (PMCMC).

In our paper we address the problem of describing oil prices dynamics by implementing a dif-

ferent modeling strategy. In particular, we want to investigate if the inclusion of self-exciting

effects provides a better understanding of price movements. Self-exciting features have been
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already systematically investigated in several asset classes. Fulop et al. (2015) estimate a model

that considers co-jumps between prices and volatility and self-exciting jump clustering, on the

S&P 500 index data from 1980 to 2012; Ait-Sahalia et al. (2015) model financial contagion with

mutually exciting jump processes and Maneesoonthorn et al. (2016) extend the latter model by

introducing self-exciting jumps in volatility in a univariate framework, i.e. no mutual excitation

between different assets is considered. Finally, we mention the paper by Fulop and Li (2019),

in which the authors propose a non-affine self-exciting jump diffusion model with stochastic

volatility together with a new estimation method, namely the two-stage SMC sampler. Their

methodology is applied on the S&P500 and variance swaps observations.

In order to detect self-exciting features in the oil price dynamics we estimate the parameters of a

Hawkes-type jump-diffusion model by a particle filtering method. The data set consists of both

spot and future quotations of WTI Cushing (Oklahoma) crude oil ranging from January 8, 2008

to December 31, 2018. The particle filtering methodology we apply is based on a hybrid particle

filter with a two-stage density tempered Sequential Monte Carlo Method of the same kind of

that proposed by Fulop and Li (2019). The model we propose in the present paper exhibits

some similarities with the models mentioned above. In particular, our model is similar to the

affine version of that considered by Fulop and Li (2019), where in addition we introduce another

stochastic differential equation, which describes the evolution of the convenience yield as an OU

process. However, an interesting feature of the present work is that we apply this kind of jump

diffusion model to WTI crude oil spot and futures quotations. Indeed, there is in the literature

some intuition behind the existence of this feature also in commodity markets. For example,

Filimonov et al. (2014) fit a simple Hawkes process to high frequency data related to many

different asset classes, including oil market. Ma et al. (2018) consider a plethora of realized

range-based volatility models and document an increasing accuracy in futures price volatility

forecasting when a Hawkes process is included in the model.

In the present modelling framework jumps with self-exciting features are included in the crude

oil spot price dynamics. A remarkable property of the resulting jump-diffusion model is that

it is affine, and it allows an explicit computation of the prices of futures contracts as functions

of the model parameters, thus providing accurate estimation results. In this paper we address

also the issue of hedging against oil price variations. We provide the computation of an optimal

dynamic hedging strategy, where optimality refers to an objective function taking into account

not only second order effects (variance), but also skewness. The hedging results highlight the
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importance of high order effects with respect to the standard approach based only on variance

minimization.

The paper is organized as follows. In Section 2 we present our self-exciting jump diffusion model

and introduce the optimal dynamic hedging problem. In Section 3 we present our estimation

method, while in Section 4 we describe the data set and the results obtained. In section 5 we

discuss the empirical results of the hedging application based on minimization of variance and

skewness. In section 6 we provide some concluding remarks.

2 The Model

In this section we introduce the most relevant features of Hawkes processes by following the

exposition of Da Fonseca and Zaatour (2014).

The Hawkes process we shall consider throughout the paper exhibits an exponentially decaying

intensity. This is a special kind of point process whose conditional intensity depends on the

history of the events. Then, let us define in broader terms the conditional intensity function:

Definition 1. Let Nt be a point process and let FNt be the natural filtration generated by N

itself. Then, the left continuous process defined by:

λ(t | FNt−) = lim
h→0+

P
[
Nt+h −Nt > 0 | FNt−

]
h

(1)

is called the conditional intensity function of the point process.

Therefore, we have the following

Definition 2. The univariate Hawkes process N with conditional intensity λ(t | FNt−) = λt, can

be defined for all t > 0 and h→ 0+ as:


P
[
Nt+h −Nt = 1 | FNt−

]
= λth+ o(h)

P
[
Nt+h −Nt > 1 | FNt−

]
= o(h)

P
[
Nt+h −Nt = 0 | FNt−

]
= 1− λth+ o(h)

(2)

In particular, we can represent the intensity of a Hawkes process by a stochastic differential

equation (SDE):

dλt = β(λ∞ − λt)dt+ αdNt, (3)
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where, α ∈ R+ is the magnitude of self-excited jump, β ∈ R+ is the constant rate of decay and

λ∞ ∈ R+ is the so called background intensity. Then, by applying Itô formula to f(t, λt) = eβtλt,

we obtain the solution to the above SDE:

λt = λ∞ + (λ0 − λ∞)e−βt +

∫ t

0

αe−β(t−s)dNs,

= λ∞ + (λ0 − λ∞)e−βt +
∑
j:tj<t

αe−β(t−tj). (4)

The solution given by (4) allows to simulate the intensity process. Indeed, different simulation

methods are proposed in the literature; for example, one of the most popular procedures is the

Ogata’s modified thinning algorithm (Ogata, 1981), which is based on the thinning method

developed by Lewis and Shedler (1969) and further modified by Daley and Vere-Jones (2008).

However, more recently Dassios and Zhao (2013) provided an ”exact simulation” algorithm,

which is faster than the previous approach. We can see an example of a simulated path of λt in

Figure 1, where the simulation is performed by applying the algorithm of Dassios and Zhao.
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Figure 1: Simulated conditional intensity and counting measure of a Hawkes process on [0, T ]

with parameters: T = 250, λ0 = λ∞ = 0.1, α = 0.2 and β = 0.3.

From figure 1 we can clearly see the clustering of jumps exhibited by the Hawkes process; for
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example, in the interval [200, 240] the self-excitation effect looks quite relevant.

An important property of the Hawkes process under consideration is that, although λt is clearly

non-Markovian, it can be proved that the two-dimensional process (Nt, λt) is jointly both a

Markov and an affine process and this property improves significantly the analytical tractability

of the model. In particular, in Da Fonseca and Zaatour (2014) the infinitesimal generator and

the Dynkin’s formula can be used in order to find some moments of the process as solutions of

ordinary differential equations.

2.1 Model Dynamics Under The Historical Measure

Now, we can introduce our dynamic model, which takes into account co-jumps between stock

price and volatility, stochastic convenience yield and self-excitation. Let (Ω,F ,P) be a probabil-

ity space with a complete filtration (Ft)t≥0, then our model for Xt = ln(St/S0) is described by

the following system of SDEs:

dXt =

(
µ− 1

2
Vt − δt

)
dt+

√
VtdWt + dJx,t, (5)

dVt = k(V̄ − Vt)dt+ σv
√
VtdWv,t + dJv,t, (6)

dδt = γ(δ̄ − δt)dt+ σδ dWδ,t, (7)

dλt = β(λ∞ − λt)dt+ αdNt, (8)

From equation (5) we see that changes in the underlying are given by a standard Brownian

motion Wt and compound Poisson process Jx,t, where the number of jumps Nt is an Hawkes

process with stochastic intensity λt. Furthermore, the amplitude of jumps is dictated by i.i.d

Gaussian random variables with mean µJ and variance σ2
J . On the other hand, Equation (6)

describes the evolution of the volatility, which is a mean reverting jump-diffusion process, where

Wv,t is a standard Brownian motion, possibly correlated with Wt, i.e. Corr(dW, dWv) = ρvdt.

This feature of the model is important in order to capture the so called leverage effect. Further-

more, recent studies find the presence of co-jumps of prices and volatility, not only on the equity

market (Eraker, 2004, Eraker et al., 2003, Fulop and Li, 2019), but also on the commodity mar-

ket (Larsson and Nossman, 2011, Brooks and Prokopczuk, 2013). Moreover, there is evidence of

jump clustering (Ait-Sahalia et al., 2015, Fulop et al., 2015), i.e. an extreme movement tends to

be followed by another extreme movement. As a consequence, we introduce jumps in volatility
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with Jv,t, which is a compound Poisson process with counting process Nt. To be more precise,

returns and volatility jump together with the same self-exciting intensity λt and the jump size of

volatility follows an exponential distribution with mean µv. Finally, since we are dealing with oil

prices, there is an additional SDE, which describes the evolution of the convenience yield with

a standard Ornstein-Uhlenbeck process as in Gibson and Schwartz (1990); Schwartz (1997); Lai

and Mellios (2016); Yan (2002). The convenience yield includes both the reduction in cost of

acquiring inventory and the value of being able to profit from temporary local shortage of the

commodity (Yan, 2002), so it is natural to adopt a stochastic process, which could assume both

positive and negative values.

In our empirical application we consider two nested models:

• Model I defined by Equations (5)-(8),

• Model II without self-exciting effect, i.e. β = α = 0.

2.2 Risk-Neutral Dynamics and Futures Pricing

In order to perform joint estimation using spot and futures data, we need to derive a pricing

formula for futures contracts. As usual, we employ a suitable change of measure form the real

world measure P to the risk-neutral measure Q. To this end consider the following Radon-

Nikodym derivative:

dP
dQ

∣∣∣
Ft

= exp

{
−
∫ t

0

rsds−
1

2

∫ t

0

ϕ2
x(u)du−

∫ t

0

ϕx(u)dWu−
1

2

∫ t

0

ϕ2
δ(u)du−

∫ t

0

ϕδ(u)dWu

}
, (9)

where, rt is the risk-free interest rate. Actually, as we shall see in next lines, we are pricing only

the convenience yield risk, neither volatility nor jump risk. This is motivated by the fact the

futures price cannot be a function of spot volatility, jumps or their associated parameters1 (see

Yan, 2002). However, volatility and jumps are important in order to describe appropriately spot

prices and for hedging purpose, as we shall see later. Thus, by following the literature (e.g. Yu

et al., 2011, Pan, 2002, Fulop and Li, 2019) we left ϕx(t) unspecified and choose the convenience

1The economic justification for this result relies in the linearity of the futures payoff, the local martingale
behavior of the price with respect to the risk-neutral measure and the structure-preserving property of the measure
change. Indeed, volatility and jumps affect higher order moments, but not the first one. From the mathematical
point of view, the payoff of the contract is just the expected spot price under Q; thus in the spot price dynamics
we compensate the drift with the jump compensator λtµ? and the Itô term 1/2Vt. As a consequence the solution
of the respective ODEs is equal to zero.
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yield risk premium as follows:

ϕδ(t) =
ϕδ
σδ

⇒ dWQ
δ,t = dW P

δ,t +
ϕδ
σδ
dt. (10)

Thus, under the risk-neutral measure the structure of the model is preserved:

dXt =

(
r − 1

2
Vt − λtµ? − δt

)
dt+

√
VtdWt + dJ̃x,t, (11)

dVt = k(V̄ − Vt)dt+ σv
√
Vt dWv,t + dJv,t, (12)

dδt = γ(δ̄Q − δt)dt+ σδdW
Q
δ,t, (13)

dλt = β(λ∞ − λt)dt+ αdNt, (14)

where, µ? = E
[
eJx − 1

]
and δ̄Q = δ̄ − ϕδ/γ.

We remark again that the jump process appearing in the log-returns dynamics is a com-

pensated compound Poisson process and that the oil price (properly discounted) is now a local

martingale with respect to Q, in order to be consistent with the no-arbitrage principle. The

model we are proposing belongs to the class of affine models, which means that we know the

characteristic function in closed-form. This feature of affine models is very important in order

to price financial derivatives as we shall see below. The payoff of a futures contract F (t, τ), with

time to maturity τ = T − t, is given by the usual relation:

F (t, τ) = EQ[ST | Ft] = EQ[eXT | Ft], (15)

where XT = ln(ST ). We start by considering the moment generating function (MGF) of XT :

G(w,Xt, Vt, δt, λt, t, τ) = E
[
ewXT | Ft

]
Now, since under the risk-neutral measure the model structure is the same we drop the Q

superscript to lighten the notation, and by Feynman-Kac theorem we obtain the following PDE:

−Gτ +

(
r − 1

2
Vt − λtµ? − δt

)
Gx +

1

2
VtGxx + k(V̄ − Vt)Gv+

+
1

2
σ2
vVtGvv + ρvσvVtGxv + β(λ∞ − λt)Gλ + γ(δ̄ − δt)Gδ +

1

2
σ2
δGδδ

+ λt

∫
[G(w,Xt + Jx, Vt + Jv, δt, λt + α, t, T )−G(w,Xt, Vt, δt, λt, t, T )] ν(dJx, dJv) = 0

(16)
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with terminal condition GT = exp(wXT ). Now, we guess a solution of the form:

G(w,Xt, Vt, δt, λt, t, τ) = exp {wXt +A(w, τ) +B(w, τ)Vt + C(w, τ)δt +D(w, τ)λt} (17)

subject to A(0) = 0, B(0) = 0, C(0) = 0 and D(0) = 0. From the PDE (16) we obtain the

following system of ODEs:



∂A(w,τ)
∂τ = rw + βλ∞D(w, τ) + kV̄ B(w, τ) + γδ̄C(w, τ) + 1

2σ
2C2(τ),

∂B(w,τ)
∂τ = − 1

2 (w − w2)− (k − ρσvw)B(w, τ) + 1
2σ

2
vB

2(w, τ),

∂C(w,τ)
∂τ = −w − γC(w, τ),

∂D(w,τ)
∂τ = −βD(w, τ) +

∫ [
ewJx+B(w,τ)Jv+D(w,τ)α − 1

]
ν(dJx, dJv)− µ?w.

(18)

Now, the futures price is given simply by the MGF computed in w = 1; then the solution of

the second ODE is B(τ) = 0, since it is a Riccati equation without the constant term. Due to

this result we also have D(τ) = 0. Hence, as we said before, by construction future prices are

not affected by volatility and jumps. Therefore, the solution for the log-futures is of the form:

lnF (t, τ) = lnSt +AQ(τ) + CQ(τ)δt, (19)

where,

AQ(τ) = rτ +
δQ (−γτ − e−γτ + 1)

γ
+
σδ
(
0.5γτ − 0.25e−2γτ + e−γτ − 0.75

)
γ3

, (20)

CQ(τ) =
e−γτ − 1

γ
. (21)

2.3 An Optimal Dynamic Hedging Strategy

Hedging in crude oil market is an important issue not only for producers, but also for energy

traders and investors (Billio et al., 2018). Indeed, price fluctuations lead to an increase in

volatility, and so the risk coming from investing in the spot market need to be mitigated. In

particular, the natural way to hedge a long (short) position in the spot market is to sell (buy) a

certain number of futures contracts. The quantity of futures needed to cover a spot position is

called hedge ratio. The determination of the optimal hedge ratio depends on the chosen objective

function. In the literature, the hedge ratio is modeled as a time-varying variable (see Kroner
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and Sultan, 1993; Liu et al., 2014; Billio et al., 2018; Chang et al., 2011; Batten et al., 2019;

Alizadeh et al., 2008), which minimizes the variance of the portfolio Π = S − hF , obtaining as

solution

h?t−1 =
Covt(S, F )

Vart(F )
. (22)

At this point, it is important to remark that our approach is different from that usually con-

sidered in the literature. In particular, the most popular choice is given by discrete time models

like multivariate GARCH models (Chang et al., 2011; Batten et al., 2019) and Markov switching

models (Billio et al., 2018; Alizadeh et al., 2008). On the other hand, continuous time models

have received much less attention and one example of such an approach is given by Liu et al.

(2014). In their paper, related to industrial metals’ market, they specify one dynamics for the

spot price and one for the futures and then the estimation is carried out separately. However, our

model provides a direct link between spot and futures, meaning that in our estimation framework

we cannot avoid no arbitrage issues and we need to resort to a risk-neutral argument. In view

of possible extensions of the present estimation method including different derivatives contracts,

European options for example, the risk-neutral approach represents the most convenient and

natural modelling framework. In the present setting, the risk-neutral approach provides the

necessary consistency relations between spot and futures prices.

Now, let us properly specify the hedging portfolio. In particular, the log-spot price is given

by:

dXt =

(
r − 1

2
Vt − λtµ? − δt

)
dt+

√
VtdWx,t + dJ̃x,t.

Moreover the latent states are described by the following equations:

dVt = k(V̄ − Vt)dt+ σv
√
Vt

(
ρvdWx,t +

√
1− ρ2vdWv,t

)
+ dJv,t,

dδt = γ(δ̄ − δt)dt+ σδdWδ,t,

dλt = β(λ∞ − λt)dt+ αdNt.

Then, By applying Itô’s lemma on the log-futures pricing function f(X,V, λ, δ, t, T ) = Xt +
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A(τ) + C(τ)δt we get the dynamics of Yt:

dYt =
[
r − 1

2
Vt − λtµ? − δt −A′(τ)− C ′(τ)δt + C(τ)γ(δ̄ − δt)

]
dt

+
√
VtdWx,t + C(τ)σδdWδ,t + dJ̃x,t

Then, the MV hedging ratio is given by

h? =
Vt + (µ2

J + σ2
J)λt

Vt + C2(τ)σ2
δ + (µ2

J + σ2
J)λt

. (23)

Additional details are given in subsection 5.1 and in Appendix B, where we also introduce a

skewness-type objective function.

3 Parameters Estimation Method

In order to estimate the parameters using real data, we cast our model in a state-space form and

apply a simple Euler scheme. Denoting by ∆t a small time interval, the observation equation

for stock prices is given by

lnSt = lnSt−1 +

(
µ− 1

2
Vt−1 − λt−1µ? − δt−1

)
∆t+

√
Vt−1∆tWt + Jx∆Nt, (24)

where, Jx ∼ N (µJ , σ
2
J), Wt ∼ N (0, 1) and ∆Nt = Nt −Nt−1 ∼ Bernoulli(λt−1∆t).

In this work we also consider futures prices with n maturities. As usual in the literature, we

observe derivatives data with measurement errors (Eraker, 2004, Fulop and Li, 2019, etc.); then

we have an additional observation equation:

lnF (t, T )O = lnF (t, T )M + εt,

where, lnF (t, T )O is a vector of observed futures prices at time t with maturity T , and lnF (t, T )M

are corresponding prices obtained with Equation (19). The measurement errors follow a multi-

variate normal, i.e. εt ∼ N (0,Ω), with Ω = ΣΣT and Σ = σeIn.

Our model features latent states, which cannot be observed. The discretized version of

Equations (6)-(7)-(8) reads as follows:
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Vt = Vt−1 + k(V̄ − Vt−1)∆t+ σv
√

∆tVt−1Zt + Jv∆Nt (25)

δt = δt−1 + γ(δ̄ − δt−1)∆t+ σδ
√

∆tWδ,t (26)

λt = λt−1 + β(λ∞ − λt−1)∆t+ α∆Nt (27)

where, Zt is a standard normal correlated with Wt in Equation (24), Jv ∼ Exp(µv) and

Wδ,t is an independent standard normal. To address the estimation of the model we rely on

Sequential Monte Carlo Methods (SMC). In particular, we shall consider the two-stage density

tempered SMC, recently proposed by Fulop and Li (2019). This method provides a direct route

from the prior to the posterior using all data in a row. To be more precise, by starting from

the prior, we temper the distribution in order to gradually reach the final posterior through the

tempering coefficient ξ, which is chosen adaptively to ensure satisfactory particle diversity, as

in Fulop and Li (2019). In this framework we proceed in two steps: in the first stage we use

a small number of state particles M1 in order to provide a coarse exploration of the posterior

and then in the second stage we increase the number of particles M2 to correct the error in the

likelihood estimation. Usually, the second stage is much faster then the first one leading to an

overall advantage with respect to an SMC sampler which runs throughout with a fixed M2. The

other main feature of this procedure is the smoothing of the likelihood in the particle filter and

the introduction of common random numbers in order to reduce the variance in the likelihood

estimation, which is crucial to obtain reliable estimates. Furthermore, our estimation approach

delivers an approximation of the marginal likelihood,

p(y1:T ) =

∫
p(y1:T | Θ)p(Θ)dΘ,

which can be used to construct Bayes factors for model comparison. More precisely, for two

models M1 and M2 the Bayes factor is given by the ratio of their marginal likelihoods,

BF1,2 =
p(y1:T |M1)

p(y1:T |M2)
.

The Bayes factor does not rely on asymptotic distribution theory and provides a simple way

to evaluating different models. Besides, it contains a penalty for using more parameters. For
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a complete exposition about the two-stage SMC sampler algorithm we refer to Fulop and Li

(2019).

4 Empirical Application

4.1 Data Description

In this section we present the data we are going to examine in our empirical analysis. In

particular, we consider WTI Cushing (Oklahoma) crude oil spot and futures quotations obtained

from Bloomberg2. In Figure 2 we plot a time series of daily log-returns: Yt = log(St/St−1),

ranging from 08/01/2008 to 31/12/2018, thus 2767 spot data are considered. The data cover

some crucial historical periods as the global financial crisis, when oil prices experienced huge

fluctuations between 2008 and 2010. Moreover, in the middle of 2014, price started declining

due to a significant increase in oil production in USA, and declining demand in the emerging

countries. Besides, from 2016 to 2018, complex negotiations with OPEC led to higher variability

in oil prices.
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Figure 2: WTI crude oil log-returns from 08/01/2008 to 31/12/2018.

2spot data ticker: USCRWTIC, futures data ticker: CLm, for m = {3, 6, 9, 12, 18, 21, 24}.
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First, a preliminary statistical analysis is performed on log-returns. To this end in Table 1 we

show some descriptive statistics and the result of a Jarque-Bera (JB) normality test. In addition

a QQ-plot is provided in Figure 3. This simple analysis suggests that observations do not come

from a Gaussian distribution.

Statistics Log-return

Observations 2767

Mean -2.7179e-04

Standard Deviation 0.0245

Skewness 0.1181

Kurtosis 7.3057

Min value -0.1307

Max value 0.1533

JB test Rejected

Table 1: Descriptive statistics and JB test on WTI crude oil log returns observed with daily

frequency over the period 08/01/2008 to 31/12/2018.
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Figure 3: Q-Q Plot for daily frequency returns on WTI crude oil.
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On the other hand, we consider futures contracts written on WTI crude oil. In Figure 4 we

show log-futures prices from 08/01/2008 to 31/12/2018, for maturities τ equal to 3, 12 and 24

months. For estimation purpose, we retain 8 futures contracts with fixed maturities ranging from

3 to 24 months. Contracts with more than 2 years of maturity are less liquid (Lai and Mellios,

2016), therefore they are not considered in our estimation procedure. As for spot observations,

we conduct a statistical analysis on the whole futures data in Table 2.

2008 2010 2012 2014 2016 2018
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3.8
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12M

24M

Figure 4: WTI futures contracts from 08/01/2008 to 31/12/2018.

Statistics CL3 CL6 CL9 CL12 CL15 CL18 CL21 CL24

Mean 4.2842 4.2968 4.3019 4.3041 4.3047 4.3046 4.3043 4.3039

Standard Dev 0.3217 0.3058 0.2956 0.2879 0.2814 0.2760 0.2713 0.2673

Skewness -0.3142 -0.2751 -0.2547 -0.2422 -0.2337 -0.2277 -0.2224 -0.2201

Kurtosis 2.0059 1.9591 1.9465 1.9358 1.9328 1.9388 1.9475 1.9598

Min value 3.3908 3.4825 3.5293 3.5656 3.5943 3.6168 3.6368 3.6548

Max value 4.9845 4.9894 4.9895 4.9858 4.9822 4.9782 4.9747 4.9716

Table 2: Descriptive statistics on WTI crude oil log futures prices observed with daily frequency

over the period 08/01/2008 to 31/12/2018.
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4.2 Estimation Results

In this subsection we present the results obtained from the estimation procedure. In our empirical

application, for the two-stage SMC sampler, we set the number of parameter particles N equal

to 1000, the number of state particles at first stage M1 equal to 30, and the number of state

particles M2 at second stage equal to 500. The algorithm is initialized using the priors in Table

3 and with Σ = σeIn. The choice of the hyper-parameters of the prior distributions is based on

calibration using the training sample approach, which is widely used to calibrate the objective

priors (Fulop and Li, 2013, 2019; Fulop et al., 2015). Notably, we find that most parameters are

not sensitive to the selection of the priors. Moreover, we take the random walk proposal, trigger

the resample-move step when the ESS reaches N/2, and then keep moving until the cumulative

average acceptance rate across the population reaches 2.

Θ Dist Support (µ0, σ0) Θ Dist Support (µ0, σ0)

µ Normal (−∞,∞) (0.02, 0.15) ϕδ Tr. Normal (−∞,∞) (0.5, 0.1)

µJ Tr. Normal (0,∞) (-0.02, 0.08) γ Normal (0,∞) (0.9, 0.5)

σJ Tr. Normal (0,∞) (0.05, 0.1) δ̄ Tr. Normal (0,∞) (0.15, 0.05)

k Tr. Normal (0,∞) (3.0, 4.0) σδ Tr. Normal (0,∞) (0.25, 0.1)

V̄ Tr. Normal (0,∞) (0.05, 0.06) α Tr. Normal (0,∞) (2.5, 1.5)

σv Tr. Normal (0,∞) (0.25, 0.25) β Tr. Normal (0,∞) (4.0, 3.0)

ρv Tr. Normal [−1, 1] (-0.7, 0.5) λ∞ Tr. Normal (0,∞) (2, 0.8)

µv Tr. Normal (0,∞) (0.02, 0.1)

Table 3: Priors specification.

To appreciate the efficiency of our estimation method, we can have a look at the acceptance

rates related to the moving step in Figure 5. The star-line indicates the acceptance rates from

the first stage and the circle line those from the second stage. We clearly see that the acceptance

rates remain high during both the first and second stage. Furthermore, as demonstrated in Fulop

and Li (2019), the number of density-bridging iterations is much smaller in the second stage with

respect to the first stage.
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Figure 5: The figure plots the last acceptance rate in moving steps at each density-bridging

iteration with respect to ξi for model I (upper) and model II (bottom). In the algorithm, ξ is

automatically selected using a grid search approach. The blue line refers to the first stage, while

the orange line refers to the second stage.

Figures 6 and 7 plot the filtered volatility, convenience yield and jump intensity obtained

by running our smooth particle filter (see Appendix A) at the posterior mean. In particular,

volatility is quite persistent and in periods when prices fall down we observe a rise in volatility

according to the well known leverage effect. The convenience yield is moving in the same direction

of oil prices, which is consistent with its definition and provides a clear economic intuition. A

large amount of literature devoted to commodities provides a confirmation and an explanation

of this behavior, we just mention Alquist et al. (2014) and Lautier (2009) among many other

contributions on this topics, some based on Normal Backwardation Theory (Litzenberger and

Rabinowitz, 1995), some on Theory of Storage (Casassus et al., 2005). The intensity process

present a self-exciting behaviour; this will be confirmed later when focusing on the parameters

estimates.
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Figure 6: The figure presents the filtered volatility and convenience yield from model I (left) and

II (right). The posterior mean and (5, 95)% quantiles are reported at each time point.
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Figure 7: The figure presents the filtered jump intensity from model I. The posterior mean and

(5, 95)% quantiles are reported at each time point.
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Table 4 presents the parameter estimates for the two models obtained with the two-stage SMC

sampler. As a first remark, when self-excitation is considered, volatility is less persistent. Indeed,

k is equal to 9.2692 (2.1103) in Model I and 2.9157 (0.4418) in Model II. One possible explanation

for this is that much of the variation is due to the self-exciting jump intensity, dampening the

contribution of volatility. However, the vol-of-vol parameter σv is equal to 0.3566 (0.0960) in

Model I and 0.8498 (0.0656) in Model II, confirming that volatility dynamics in oil market is

clearly stochastic. Second, in line with the previous literature (Larsson and Nossman, 2011;

Brooks and Prokopczuk, 2013), we find evidence of volatility jumps. In particular, the estimate

for µv is 0.0223 (0.0063) in Model I and 0.0311 (0.0089) in Model II. Third, the posterior mean

of the parameter controlling the self-exciting effect, α, is equal to 23.4601 (4.1515); then α is

well identified and constitutes a key feature of the jump dynamics in the oil market. Fourth, the

convenience yield dynamics is pretty much the same within the two models. The parameters are

well identified and the convenience yield risk premium is statistically significant, which confirms

previous studies in the literature.

Furthermore, it is possible to compare the models by looking at the marginal likelihood and the

log Bayes factor. In both cases we can say that Model I performs better than Model II. For

instance, the log Bayes factor3 of Model I with respect to Model II is 9.1271, which means that

Model I is decisively better than Model II in fitting the data.

3For any two given models, M1 and M2, if the value of the log Bayes factor is between 0 and 1.1, M1 is barely
worth mentioning; if it is between 1.1 and 2.3, M1 is substantially better than M2; if it is between 2.3 and 3.4,
M1 is strongly better than M2; if it is between 3.4 and 4.6, M1 is very strongly better than M2; and if it is larger
than 4.6, M1 is decisively better than M2.
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Model I Model II

Θ Mean Std Mean Std

µ 0.1451 0.0944 0.0109 0.0691

µJ 0.0022 0.0047 0.0118 0.0827

σJ 0.0408 0.0038 0.1104 0.0537

k 9.2692 2.1103 2.9157 0.4418

V̄ 0.0131 0.0067 0.1309 0.0134

σv 0.3566 0.0960 0.8498 0.0656

ρv -0.7628 0.1645 -0.4621 0.0414

γ 0.6708 0.0041 0.6721 0.6721

δ̄ 0.2304 0.0086 0.2639 0.0079

σδ 1.7690 0.0183 1.7646 0.0197

β 30.0566 3.7743 ( — ) ( — )

α 23.4601 4.1515 ( — ) ( — )

λ∞ 1.3921 0.0079 8.0900 0.0518

ϕδ 0.1272 0.0052 0.1500 0.0048

µv 0.0223 0.0063 0.0311 0.0089

MLLH 4.1901e+4 4.1550e+4

Table 4: Parameter estimates for model I and II. For each parameter, the posterior mean and

standard deviation are reported. The last row reports the marginal log likelihood estimated with

the smooth particle filter.

Now, we can provide some additional insights regarding the convenience yield dynamics and

the forecasting ability of the models in terms of futures pricing. In particular, with this kind of

models it is common to observe a lack of fit in the filtered convenience yield process (Carmona

and Ludkovski, 2004). To check if our approach could give a reliable estimate of this variable,

we follow Carmona and Ludkovski (2004) and compute the implied convenience yield using the

estimated parameters together with the price of traded futures contracts F (t, Ti). Then, we

compare the filtered convenience yield from our smooth particle filter with the implied one. The

result of this exercise is shown in Figure 8 and confirms that our filtering method is able to well

reproduce the convenience yield dynamics implied from data (especially for longer maturities).
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Figure 8: The figure compares the filtered convenience yield (orange) against the implied con-

venience yield (blue) computed using futures contracts with τ = {3, 6, 9, 12} and the posterior

mean parameter estimates from Model I.

Second, we check the pricing errors of futures contracts when Model I and Model II are

considered. For example, in Figure 9, we can see how the models behave in terms of futures

pricing out of the sample, i.e. from 02/01/2019 to 17/01/2020 (263 observations). To this end

we run our smooth PF on the new data using the parameters obtained during the previous

estimation and then we filter out the convenience yield. As we can see the results are good with

both models, with better performances for Model I.
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Figure 9: The figure presents the out of sample Mean Absolute Error (MAE) in terms of pricing

futures contracts with Model I and Model II.

5 Financial Application: Dynamic Hedging

In our application we follow previous studies (e.g. Liu et al., 2014; Billio et al., 2018) and consider

as hedging instrument the most liquid futures, i.e. the futures with the shortest maturity, which

in our data set are the CL3 contracts. Thus, we compute a daily hedge ratio according to the

MV approach. In Figure 10 the optimal time varying hedge ratio h?t computed with Model

I and Model II is shown. The time varying hedge ratio indicates that the portfolio should be

frequently re-balanced as the market conditions change. In particular, during the global financial

crisis (2008-2010) we observe a positive jump in the hedge ratio, which means that investors are

more cautious and they prefer to hedge more. Then, from 2011 to 2014 the market is less volatile

and the hedge ratios are smaller providing to the hedgers a lower exposition on futures. Finally,

from 2015-2017 we observe again an increase in the optimal hedging strategy due to another

period of market turmoil. Then, we provide some descriptive statistics about the hedge ratios

in Table 5.
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Figure 10: The figure presents the optimal MV hedge ratio time series for Model I (blue) and

Model II (orange).

Mean Std Dev Skewness Kurtosis Min Max

MV Hedge I 0.4326 0.1250 0.4134 2.7714 0.0851 0.7571

MV Hedge II 0.5552 0.0801 0.9150 3.6083 0.4199 0.8149

Table 5: MV Hedge ratio statistics.

In the literature it is common to evaluate a particular hedging strategy in terms of variance

reduction and utility improvements with respect to the un-hedged position (Kroner and Sultan,

1993; Alizadeh et al., 2008; Batten et al., 2019). Therefore, we consider the following measure

of hedging effectiveness:

HE1 = 1−
[

Var(Πh)

Var(Πun)

]
, (28)

where the hedging portfolios Πh are computed by using percentage log-returns of spot and

futures and the corresponding optimal hedge ratios. Hence, we are evaluating the variance

reduction with respect to the un-hedged portfolio Πun, which is composed only by the spot

position. If HE1 = 0 we do not reduce risk at all, whereas HE1 = 1 imply a 100% reduction in
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the variance. According to our previous findings about the hedge ratio variability, we consider

the whole sample and two different sub-periods: 2008-2010 and 2015-2017. In this way we are

able to assess the hedging performances related to specific turbulent periods. The results are

shown in Table 6.

Interval Model I Model II

2008-2018 0.6030 0.5554

2008-2010 0.6394 0.6117

2015-2017 0.6568 0.6040

Table 6: The table presents the variance reduction with respect to the un-hedged portfolio.

Overall, we obtain clear improvements with respect to the un-hedged position. For instance,

during the whole sample, we reduce the portfolio variance by 60.30% with Model I and by

55.54% with model II. Moreover, even during periods of financial turmoil we are able to reduce

significantly the variance of the portfolio. This confirms the importance of hedging for producers

and investors.

According to Alizadeh et al. (2008), hedging effectiveness is more appropriately assessed by

considering the economic benefits from hedging using the hedger’s utility function. Then, if ξ

represents the risk aversion of an investor and Rh is the return on the hedged portfolio, the

expected utility function is given by

E[U(Rh)] = E[Rh]− ξVar[Rh]. (29)

By assuming that expected returns from the hedged portfolio are equal to zero and the degree

of risk aversion is 44, we compute the realized utility for Model I, Model II and the un-hedged

portfolio in Table 7.

Interval Model I Model II Un-hedged

2008-2018 -9.5137 -10.6541 -23.9646

2008-2010 -19.3052 -20.7915 -53.5398

2015-2017 -9.3984 -10.8453 -27.3873

Table 7: The table presents the realized MV utility for Model I, Model II and the un-hedged

portfolio.

4These assumptions are in line with most empirical studies as Kroner and Sultan (1993); Alizadeh et al. (2008).
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Now, some comments are needed. First, by adopting the optimal hedging strategy we obtain

substantial utility improvements with respect to the un-hedged position, no matter which sub-

period is considered. Second, during the global financial crisis we get the worst results and this

is due to the increased portfolio variance. Third, Model I is performing better than Model II,

both regarding variance reduction and utility improvement, by confirming the importance of a

more elaborate jump structure with respect to the standard Poisson framework with constant

intensity.

In the next subsection we are going to explore if the inclusion of high order effects in the objective

function could provide some improvements in the present hedging application.

5.1 Higher Order Hedging

The evidence of jumps and stochastic volatility in the oil market raises a question about the

adequacy of a minimum variance objective function. Indeed, by adopting the MV approach we

are not fully exploiting the distributional properties of these models, i.e. we are neglecting higher

order effects, which could influence the hedging ratio. For instance, the relevance of skewness in

characterizing risk preferences has been pointed out in a rich amount of literature: we mention

the papers by Post et al. (2008), Chiu (2010), Dahlquist et al. (2017) and Kraus and Litzenberger

(1976). Therefore, we consider the minimization of the following objective function:

min
h

[Vart(Πt)− ηAsyt(Πt)], (30)

where, Πt = Xt−hYt is the portfolio formed by Xt = log(St) and Yt = log(Ft,τ ); η is a constant

risk-aversion parameter and Asy[x] = E[(x− E[x])3].

In order to compute the optimal hedging ratio we need Vart[Πt] and Asyt[Πt]. Hence, in analogy

with Liu et al. (2014) we can proceed by computing the instantaneous conditional moments.

The detailed derivation of the hedging ratio is given in Appendix B. Once we have obtained the

expression for the hedging portfolio we take the first derivative with respect to h and set it equal
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to zero. In the end we get two solutions for h?:

h? = ± 1

2 (3ηλtµ3
J + 9ηλtµJσ2

J)

( (
2C2σ2

δ − 6ηλtµ
3
J − 18ηλµJσ

2
J + 2λtµ

2
J + 2λtσ

2
J + 2V

)2
− 4

(
3ηλtµ

3
J + 9ηλtµJσ

2
J

) (
3ηλtµ

3
J + 9ηλtµJσ

2 − 2λtµ
2
J − 2λtσ

2
J − 2Vt

)
− 2C2σ2

δ + 6ηλtµ
3
J

+ 18ηλtµJσ
2
J − 2λtµ

2
J − 2λtσ

2
J − 2Vt

)1/2
.

(31)

Since crude oil spot and futures are positively correlated, from now on, we shall consider only

the positive solution of (31). As in the previous section, we compute daily hedge ratios according

to our optimal strategy. Nevertheless, in Figure 11 we observe a surprising result: the MV and

the Asy-Variance hedging strategies give substantially the same hedge ratio. This mean that the

contribution given by the third-order moment is negligible in computing the optimal hedging

strategy.
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Figure 11: The figure presents the optimal MV and Asy-Variance hedge ratios time series for

Model I (top) and Model II (bottom).

Given this result, we include the skewness instead of the third order central moment; then
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the optimization problem reads as follows

min
h

[Vart(Πt)− ηSkewt(Πt)], (32)

where,

Skew(x) =
E[(x− E[x])3]

Var(x)3/2
.

In this way we are not able to get a closed-form solution, so a numerical minimization method

is adopted. Hence, the hedge ratio obtained numerically is compared to the MV hedging ratio

in Figure 12, from which it is clear that the contribution of skewness is not negligible. This

intuition will be formally tested empirically in what follows, where we denote the Variance-

Skewness hedging by VS.
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Figure 12: The figure presents the optimal MV and VS hedge ratios time series for Model I in

the top panel and Model II in the middle panel. The bottom panel plots the VS hedge ratios

for Model I (blue) and Model II (orange).

Now, in order to investigate the performance of this new strategy we need to consider a
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metric which is coherent within the optimizations goals. Then, we resort again to the realized

utility:

E[U(Rh)] = −Var[Rh] + ηSkew[Rh], (33)

where, η is the risk aversion parameter related to skewness and it is set equal to 4. The result

of this computation is given in Table 8.

Interval Model I Model II Un-hedged

2008-2018 -1.0730 -1.5485 -5.5189

2008-2010 -1.9980 -2.5387 -12.6846

2015-2017 -1.9193 -2.2930 -5.7923

Table 8: The table presents the realized VS utility for Model I, Model II and the un-hedged

portfolio.

From the results we infer that the realized utility is giving good performances. In particular,

Model I is performing better than Model II in every scenario. Moreover, both models implied

utilities achieve better results with respect to the un-hedged position. The explanation stems

from the fact that positive skewness is increasing the utility of the investor.

In order to further investigate this phenomenon we test the MV and VS hedging strategies out

of sample, i.e. we consider 263 observations from 02/01/2019 to 17/01/2020. Hence, we filter

out the state variables by running our smooth particle filter by using the parameters estimated

in the sample. Then, we compute the realized utility for each strategy. The results are shown

in Table 9. By this way we can appreciate the performance of each strategy with respect to the

un-hedged position, by matching their respective optimization goals.

Utility Model I Model II Un-hedhged

MV -6.0292 -4.0241 -17.9647

VS -0.9270 -1.1730 -3.9147

Table 9: The table presents the out of sample MV and VS realized utility for Model I and Model

II. The realized utility of the un-hedged portfolio is also reported.

The results indicate that both strategies give better results with respect to the un-hedged

portfolio. In particular, we observe that Model I performs better than Model II when the VS

utility is considered.
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By resuming the previous results, it seems that the inclusion of high order effects lead to sub-

stantial improvements in the present hedging application with respect to the usual MV approach.

Moreover, the model with self-exciting jump intensity outperforms the one with constant jump

intensity.

6 Concluding Remarks

In this paper we propose a jump-diffusion model for oil price dynamics including self-exciting

effects. Our model includes a stochastic dynamics for both the volatility and the yield coefficient.

We provide an estimation method of Bayesian type based on a suitable adaptation of a SMC

method proposed by Fulop and Li (2019). Our results show that the introduction of a jump

intensity of Hawkes type improves the forecasting ability of this model with respect to a model

without self-exciting effects. Moreover its affine feature allows to compute explicitly futures

contracts prices providing a setting for accurate parameters estimation. Finally we compute an

optimal hedging strategy based on futures trading. This optimal hedging strategy is obtained

not only by minimizing variance, but by taking into account higher order moments, i.e. skew-

ness. This optimal hedging strategy exhibits some interesting features and gives to the hedger

better results with respect to the most popular MV approach. Furthermore, from the empirical

application we infer that Model I, equipped with the self-exciting component, outperforms Model

II in terms of hedging effectiveness and realized utility.
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A An Hybrid Particle Filter

Our estimation strategy is based on Bayesian inference. Hence, if we denote the set of model

parameters as Θ and all observations and latent states as y1:T = {lnSt, lnF (t, T )O}Tt=1 and

x1:T = {Vt, δt, λt}Tt=1 respectively, we can define the joint posterior distribution as

p(Θ, x1:T | y1:T ) = p(x1:T | Θ, y1:T )p(Θ | y1:T ) (34)

The state-space model we are concerned with is clearly non-linear and non-Gaussian, thus

standard Kalman filtering techniques cannot be applied. Therefore, we rely on the application

of particle filtering methods, which are simulation based methods able to take into account the

complexity of our model. The general idea is to approximate continuous time distributions with

discrete points, called particles.

Given a set of particles {x(i)t−1}Mi=1 representing the filtering distribution p(Xt−1 | y1:t−1) at time

t− 1, we can decompose the filtering distribution at time t as follows:

p(xt | y1:t) ∝
∫
p(yt | xt)p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1. (35)

Now, by importance sampling we can sample from a proposal density q(xt | xt−1) and then

attach importance weights wt to account for the difference between the target and the proposal:

w
(i)
t =

p(yt | x(i)t )p(x
(i)
t | x

(i)
t−1)

q(x
(i)
t | x

(i)
t−1)

, (36)

and denote with W
(i)
t = w

(i)
t /

∑M
j=1 w

(j)
t the normalized weights. This algorithm is known as

sequential importance sampling and suffers from the so called particle degeneracy. To solve this

problem we resample the particles proportional to W
(i)
t , obtaining an equally weighted sample

that can be used to approximate the filtering distribution:

p̂(xt | y1:t) =
1

M

M∑
i=1

δ
x
(i)
t

(x̃
(i)
t ), (37)

where, x̃
(i)
t are the resampled particles. This is known in the literature as sequential importance

resampling (SIR). As a byproduct, the particle filter algorithm delivers an unbiased estimate of
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the marginal likelihood:

p̂(y1:t | Θ) =

T∏
l=2

p̂(yl | y1:l−1,Θ)p̂(y1 | Θ), (38)

where,

p̂(yl | y1:l−1,Θ) =
1

M

M∑
i=1

w
(i)
l . (39)

The most common particle filter is the bootstrap filter presented in Gordon et al. (1993),

where the proposal density is simply the state transition law, i.e. q(xt | xt−1) = p(xt | xt−1),

which does not take into account the new observation yt, leading to poor performances if the

observation is highly informative (e.g. in the case of a jump). In our setting we are not able

to derive the optimal proposal, but we can design an hybrid smooth SIR, which is a relatively

efficient particle filter with respect to outliers. In particular, to robustify the filter against

outliers, we propose jump times ∆Nt from a Bernoulli with probability 0.5. Furthermore (as

in Fulop and Li, 2019) instead of resampling, we fit a multivariate normal distribution on the

smoothing distribution and sample from this normal using the inverse CDF method. The detailed

algorithm is outlined below.

At time t we have from time t− 1 a weighted sample of M particles representing the filtering

distribution: x
(i)
t−1 = {V (i)

t−1, λ
(i)
t−1, δ

(i)
t−1}Mi=1.

Hence, for each particle, the PF works as follows:

• Step 1 (Sample ∆N
(i)
t from proposal): ∆N

(i)
t ∼ Ber(0.5). Then, sample return

jumps J
(i)
x ∼ N (µJ , σ

2
J), variance jumps J

(i)
v ∼ Exp(µv) and the latent states from their

transitions:

λ
(i)
t = λ

(i)
t−1 + β(λ∞ − λ(i)t−1)∆t+ α∆N

(i)
t

V
(i)
t = V

(i)
t−1 + k(V̄ − V (i)

t−1)∆t+ σv

√
∆tV

(i)
t−1

(
ρvZ

(i)
t +

√
1− ρ2vW

(i)
v,t

)
+ J (i)

v ∆N
(i)
t

δ
(i)
t = δ

(i)
t−1 + γ(δ̄ − δ(i)t−1)∆t+ σδ

√
∆tW

(i)
δ,t

where, W
(i)
v,t and W

(i)
δ,t are independent normals and

Z
(i)
t =

lnSt − lnSt−1 − µx∆t− J (i)
x ∆N

(i)
t

V
(i)
t−1∆t

,
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with, µx = µ− 1
2Vt−1 − λt−1µ

? − δt−1.

• Step 2 (Reweight): Compute log-weights according to

log p(lnSt | lnSt−1, x(i)t−1,∆Nt) + log p(lnFt,T | lnSt, δ(i)t−1) + log πt → logw
(i)
t

where,

if ∆N
(i)
t = 0 ⇒ log πt = −λ(i)t ∆t− log(0.5)

if ∆N
(i)
t = 1 ⇒ log πt = − log(1− exp(λ

(i)
t ∆t))− log(0.5)

• Step 3 (Smooth approximation): Generate from xt−1|t = {Vt−1|t, δt−1|t, λt−1|t} fitting

a multivariate normal. As suggested by Fulop and Li (2019) we add a moment-matching

step.

B Optimal Hedging Solution

In this appendix we provide detailed calculations of the optimal hedge ratio. Let us start from

the portfolio variance:

1

dt
Vart[dΠt] =

1

dt

(
Vart[dXt] + h2Vart[dYt]− 2hCovt[dXt, dYt]

)
.

consider the first term:

1

dt
Vart[dXt] =

1

dt
Vart

[(
r − 1

2
Vtt− δt

)
dt+

√
VtdWx,t + dJx,t

]
,

=Vt +
1

dt
Vart [JxdNt] ,

where,

Vart [JxdNt] =E[J2
xdN

2
t ]− (E[JxdNt])

2
= E[J2

x ]E[dNt]− (E[Jx]E[dNt])
2
,

= (µ2
J + σ2

J)λtdt− µJλ2tdt2 = (µ2
J + σ2

J)λtdt.
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Therefore we have

1

dt
Vart[dXt] = Vt + (µ2

J + σ2
J)λt.

The next object is the instantaneous variance of log-futures:

1

dt
Vart[dYt] =

1

dt
Vart

[√
VtdWx,t + C(τ)σδdWδ,t + JxdNt

]
,

= Vt + C2(τ)σ2
δ + (µ2

J + σ2
J)λt.

The covariance between X and Y is given by

1

dt
Covt[dXt, dYt] =

1

dt
Covt

[√
VtdWx,t + JxdNt,

√
VtdWx,t + C(τ)σδdWδ,t + JxdNt

]
,

= Vt + (µ2
J + σ2

J)λt.

Then we obtained the conditional variance of the portfolio:

1

dt
Vart[dΠt] = Vt + (µ2

J + σ2
J)λt + h2

[
Vt + C2(τ)σ2

δ + (µ2
J + σ2

J)λt

]
− 2h

[
Vt + (µ2

J + σ2
J)λt

]
.

Now we consider the (non-standardized) third moment:

1

dt
Et
[
(dΠ− E(dΠ))

3
]

=
1

dt
Et
[
dΠ3 − (E(dΠ))3 − 3dΠ2E(dΠ) + 3dΠ(E(dΠ))2

]
.

The first element can be computed as follows

1

dt
Et
[
dΠ3

]
=

1

dt
Et
[
dX3 − h3dY 3 − 3hdX2dY + 3h2dXdY 2

]
,

= (µ3
J + 3µJσ

2
J)λt − h3(µ3

J + 3µJσ
2
J)λt − 3h(µ3

J + 3µJσ
2
J)λt + 3h2(µ3

J + 3µJσ
2
J)λt.

Now define,

µX = r − 1

2
Vt − δt,

µY = r − 1

2
Vt − δt −A′(τ)− C ′(τ)δt + C(τ)γ(δ̄ − δt).
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Then we compute,

Et [dΠ] = Et [dX]− hEt [dY ] ,

= µXdt+ µJλtdt− h (µY dt+ µJλtdt) .

given this we have that (Et [dΠ])3 = (Et [dΠ])2 = Et
[
dΠ2Et [dΠ]

]
= 0. Therefore,

1

dt
Et
[
(dΠ− E(dΠ))

3
]

=
1

dt
Et
[
dΠ3

]
,

= (µ3
J + 3µJσ

2
J)λt − h3(µ3

J + 3µJσ
2
J)λt − 3h(µ3

J + 3µJσ
2
J)λt + 3h2(µ3

J + 3µJσ
2
J)λt.

Now, we take the derivative of the objective function with respect tot h,

Vart(Πt)− ηAsyt(Πt) = Vt + (µ2
J + σ2

J)λt + h2
[
Vt + C2(τ)σ2

δ + (µ2
J + σ2

J)λt
]
− 2h

[
Vt + (µ2

J + σ2
J)λt

]
− η

[
(µ3
J + 3µJσ

2
J)λt − h3(µ3

J + 3µJσ
2
J)λt − 3h(µ3

J + 3µJσ
2
J)λt + 3h2(µ3

J + 3µJσ
2
J)λt

]
.

If we set this quantity equal to zero and solve for h we get (31).
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