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Abstract: About twenty molecules sharing 1H-chromeno[3,2-c]pyridine as the scaffold and differing
in the degree of saturation of the pyridine ring, oxidation at C10, 1-phenylethynyl at C1 and 1H-indol-
3-yl fragments at C10, as well as a few small substituents at C6 and C8, were synthesized starting from
1,2,3,4-tetrahydro-2-methylchromeno[3,2-c]pyridin-10-ones (1,2,3,4-THCP-10-ones, 1) or 2,3-dihydro-
2-methyl-1H-chromeno[3,2-c]pyridines (2,3-DHPCs, 2). The newly synthesized compounds were
tested as inhibitors of the human isoforms of monoamine oxidase (MAO A and B) and cholinesterase
(AChE and BChE), and the following main SARs were inferred: (i) The 2,3-DHCP derivatives 2 inhibit
MAO A (IC50 about 1 µM) preferentially; (ii) the 1,2,3,4-THCP-10-one 3a, bearing the phenylethynyl
fragment at C1, returned as a potent MAO B inhibitor (IC50 0.51 µM) and moderate inhibitor of both
ChEs (IC50s 7–8 µM); (iii) the 1H-indol-3-yl fragment at C10 slightly increases the MAO B inhibition
potency, with the analog 6c achieving MAO B IC50 of 3.51 µM. The MAO B inhibitor 3a deserves
further pharmacological studies as a remedy in the symptomatic treatment of Parkinson’s disease
and neuroprotectant for Alzheimer’s disease. Besides the established neuroprotective effects of
MAO inhibitors, the role of MAOs in tumor insurgence and progression has been recently reported.
Herein, antiproliferative assays with breast (MCF-7), colon (HCT116) and cisplatin-resistant ovarian
(SK-OV-3) tumor cells revealed that the 10-indolyl-bearing 2,3,4,10-THCP analog 6c exerts anti-tumor
activity with IC50s in the range 4.83–11.3 µM.

Keywords: 1H-chromeno[3,2-c]pyridine; monoamine oxidases A and B; MAO inhibitors; multitarget
directed ligands; neuroprotection; antitumor activity

1. Introduction

Chromone (i.e., 4H-chromen-4-one or 4H-1-benzopyran-4-one), a widely recurring
oxaheterocyclic moiety of plant nature (e.g., flavonoids and xanthones), has gained impor-
tance as a ‘privileged’ scaffold in medicinal chemistry, due to its drug-likeness and diverse
ascertained pharmacological activities, such as neuroprotectant, anticancer, antimicrobial,
antiviral, anti-inflammatory and antioxidant activities [1]. Simple and fused chromones’
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derivatives showed potential in the design of multitarget-directed ligands (MTDLs) for
treating neurodegenerative disorders, i.e., Alzheimer’s (AD) or Parkinson’s disease (PD),
as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), monoamine
oxidases A and B (MAO A and B) and amyloid beta (Aβ) plaque formation and aggrega-
tion [2,3]. Moreover, the exploitation of chromone-containing heterocycles as privileged
scaffolds in anticancer drug discovery is supported by the evidence that naturally oc-
curring and synthetic chromones are endowed with antitumor activity, through diverse
mechanisms (cytotoxicity, antimetastasis, antiangiogenesis, chemoprevention, etc.) [4].

Among the chromone-annulated derivatives, we recently focused on the medicinal
chemistry of piperidine-fused chromone derivatives and investigated in vitro their potential
as anti-AD agents [5]. In our previous work, a number of novel 2-alkyl derivatives of 1,2,3,4-
tetrahydrochromeno[3,2-c]pyridin-10-one (1, Scheme 1), bearing different substituents at C6
and C8, were synthesized and characterized as MTDLs against MAOs A and B, AChE and
BChE, which are targets of drugs alleviating the symptoms of neurodegenerative dementias,
including AD. The synthesized compounds achieved in several cases’ inhibitory potencies
in the low-to-submicromolar range, with isoform selectivity toward MAO B and AChE.
In particular, compound 1 (Scheme 1), bearing Bn and 6-OEt as R and R1 substituents,
respectively, proved to be MAO B-selective (IC50 0.89 µM), whereas the same scaffold 1,
bearing iPr as R and 8-Br as R1, achieved single-digit micromolar potency against either
MAO B (IC50 2.23 µM) and AChE (IC50 3.22 µM).
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Herein, relying on this evidence, we wanted to further explore the reactivity of
1,2,3,4-tetrahydro-2-methylchromeno[3,2-c]pyridin-10-ones (1,2,3,4-THCP-10-ones 1) and
2,3-dihydro-2-methyl-1H-chromeno[3,2-c]pyridines (2,3-DHCP 2), generating novel
chromeno[3,2-c]pyridine derivatives (3, 6–8), which may ultimately expand the toolbox of
MAOs and ChEs inhibitors with potential utility as neuroprotectants in AD and/or PD. A
selection of compounds, endowed with good inhibitory potency towards MAO B, was also
assayed for the tumor growth inhibitory activity in three tumor cell lines, namely breast
(MCF-7), colon (HCT116) and cisplatin-resistant ovarian (SK-OV-3) tumor cells.

2. Results and Discussion
2.1. Chemistry

1,2,3,4-tetrahydrochromeno[3,2-c]pyridin-10-one (1) and 2,3-dihydrochromeno[3,2-
c]pyridines (2), whose scaffold will be henceforth referred as THCP and DHCP, respectively,
were synthesized through a three-stage synthesis. The synthesis of the THCP-10-one
derivatives 1 was described earlier [5–7]. The synthesis of the DHCPs 2 was carried out
through condensation of morpholine with N-methylpiperidone followed by cyclization of
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the resulting enamine with substituted salicylic aldehydes and boiling of the intermediate
hexahydrochromeno[3,2-c]pyridine in o-xylene (Scheme 1).

In this study, the introduction of X-substituted ethinyl fragments onto the tetrahy-
dropyridine cycle expanded the synthetic and biological capabilities of the chromenopy-
ridines. 1,2-Dihydrochromeno[3,2-c]pyridin-10-one (DHCP-10-one) derivatives 3a–d were
obtained by a cross-coupling reaction of 1a–d with terminal alkynes in the presence of CuI
and diisopropylazadicarboxylate (DIAD) (Scheme 2).
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Scheme 2. Alkynylation of 1,2,3,4-tetrahydrochromeno[3,2-c]pyridin-10-ones (1).

The reaction was conducted in dry THF, according to the previously reported synthetic
procedure [8]. Most likely, in the first stage, the dihydropyridine cycle is oxidized under the
action of DIAD to the pyridinium salt B, which is then alkynylated with copper acetylenide
formed from the corresponding alkyne and CuI (Scheme 3).
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The molecular structure of 3a was confirmed by X-ray diffraction analysis (Figure 1).
2,3-Dihydrochromeno[3,2-c]pyridines (2a and 2b) were functionalized with various

nucleophiles under acid catalysis conditions. N-methyl pyrrole, nitromethane and indole
or 5-substituted indoles were used as C-H nucleophiles. The reactions proceeded in
CF3CH2OH under microwave-activation conditions. All nucleophilic addition products
were isolated by column chromatography (Scheme 4).



Int. J. Mol. Sci. 2023, 24, 7724 4 of 21Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 21 
 

 

 

Figure 1. Crystal structure of compound 3a (CCDC 2225696). All atoms are color-labeled as red 

(oxygen), blue (nitrogen), gray (carbon), white (hydrogen). (see Table S1 for the crystal data and 

structure refinement for 3a). 

2,3-Dihydrochromeno[3,2-c]pyridines (2a and 2b) were functionalized with various 

nucleophiles under acid catalysis conditions. N-methyl pyrrole, nitromethane and indole 

or 5-substituted indoles were used as C-H nucleophiles. The reactions proceeded in 

CF3CH2OH under microwave-activation conditions. All nucleophilic addition products 

were isolated by column chromatography (Scheme 4). 

 

Scheme 4. Reaction of 2,3-dihydrochromeno[3,2-c]pyridines with diverse nucleophiles. 

We supposed that the reaction proceeds through the acid-catalyzed transformation 

of the DHCP cycle to benzopyryl salts. The latter readily takes part in the reactions of 

nucleophilic addition. The probable mechanism of these transformations is shown in 

Scheme 5. 

O

N
MeCl

NH
R2

6a R2= H       (21%)

6b R2= OMe  (20%)

6c R2= Br      (51%)

O

N
MeR1

2a R = Cl
2b R = Br

H
N

R2

N

Me

4  (52%)

CF3CH2OH

MW

150°C

CF3CH2OH

MW

150°C

O

N
MeBr

N Me

CH3NO2

CF3CH2OH

MW

150°C

Et3N

5   (56%)

O

N
MeBr

NO2

6a-c

Figure 1. Crystal structure of compound 3a (CCDC 2225696). All atoms are color-labeled as red
(oxygen), blue (nitrogen), gray (carbon), white (hydrogen). (see Table S1 for the crystal data and
structure refinement for 3a).
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We supposed that the reaction proceeds through the acid-catalyzed transformation
of the DHCP cycle to benzopyryl salts. The latter readily takes part in the reactions of
nucleophilic addition. The probable mechanism of these transformations is shown in
Scheme 5.



Int. J. Mol. Sci. 2023, 24, 7724 5 of 21Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 21 
 

 

 

Scheme 5. Mechanism of the nucleophilic addition onto C10 of DHCP. 

Recently, some of us proved that 12H-chromeno[2,3-c]isoquinoline bearing the 1H-

indolyl group at C12 has antiproliferative activity against diverse human tumor cells (i.e., 

MCF-7, HCT116, A2780, SK-OV-3) with IC50s in the low micromolar range [9]. Due to a 

certain degree of molecular similarity with that compound of the indole-bearing THCP 

derivatives 6a–c synthesized in this study, we tried to optimize a simpler procedure for 

their synthesis. Earlier the synthesis of similar compounds had been accomplished 

through multicomponent reactions of salicylic aldehydes with C-H acids and various nu-

cleophiles [10–12]. The key factors for the reactions’ success were the catalytic system, 

temperature, and the type of process activation. 

The interaction of salicylic aldehyde, 4-methylpiperidine and 1H-indole was per-

formed in EtOH under heating in the presence of 10 mol% L-proline. However, instead of 

the expected product 6, hemiacetal 7 was obtained as a white crystalline substance 

(Scheme 6). We tried to optimize the reaction conditions by varying solvents, temperatures 

and catalysts (Table 1). The expected product 6 was obtained in just 12% yield only in 

CF3CH2OH as the solvent. 

 

Scheme 6. Three-component synthesis of 6a, with predominant formation of hemiacetal 7a. 

Table 1. Conditions of the three-component reaction. 

Conditions (Solvent, Temperature) 

Yield of 7 

 

Yield of 6 

 
EtOH, 75 °C, L-proline (10 mol%) 69% - 

H2O, 100 °C, L-proline (10 mol%) 67% - 

H2O, oleic acid (15 mol%) 58% trace amounts 

CF3COOH–EtOH (1:10), 20 °C 10% trace amounts 

CF3CH2OH, 75 °C, L-proline (10 mol%) 49% 12% 

Py-EtOH (1:3), 100 °C 9% - 

O

N
Cl

O

N
Cl

ORH
O

N
Cl H-O-R

Nu

O

N
Cl

Nu

O

N
Cl

ORH

Nu

Nu =

H-O-R

2

6

R = CF3CH2

N

R1

R3

R2 ;

CHO

OH

+

N

O

Me

+

H
N

CF3CH2OH,  75oC O

N
Me

HN

6a

+

L-proline (10 mol%)

O

N

OH

Me

OH
7a

  

Scheme 5. Mechanism of the nucleophilic addition onto C10 of DHCP.

Recently, some of us proved that 12H-chromeno[2,3-c]isoquinoline bearing the 1H-
indolyl group at C12 has antiproliferative activity against diverse human tumor cells
(i.e., MCF-7, HCT116, A2780, SK-OV-3) with IC50s in the low micromolar range [9]. Due
to a certain degree of molecular similarity with that compound of the indole-bearing
THCP derivatives 6a–c synthesized in this study, we tried to optimize a simpler procedure
for their synthesis. Earlier the synthesis of similar compounds had been accomplished
through multicomponent reactions of salicylic aldehydes with C-H acids and various
nucleophiles [10–12]. The key factors for the reactions’ success were the catalytic system,
temperature, and the type of process activation.

The interaction of salicylic aldehyde, 4-methylpiperidine and 1H-indole was per-
formed in EtOH under heating in the presence of 10 mol% L-proline. However, instead
of the expected product 6, hemiacetal 7 was obtained as a white crystalline substance
(Scheme 6). We tried to optimize the reaction conditions by varying solvents, temperatures
and catalysts (Table 1). The expected product 6 was obtained in just 12% yield only in
CF3CH2OH as the solvent.
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Table 1. Conditions of the three-component reaction.
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While we failed in finding the conditions for the three-component synthesis of 6a, it is
worth highlighting that the resulting cyclic hemiacetal 7a has not been described anywhere
before and it was of interest as a new derivative of the chromene series. Keeping this in
mind, we obtained a series of 7a–d hemiacetals by reactions of salicylic aldehyde and its
substituted derivatives with N-methylpyrrolidone in EtOH in the presence of L-proline as
the catalyst. The products were crystallized and isolated by filtration (Scheme 7).
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Scheme 7. Synthesis of hemiacetals 7a–f.

The structure of the cyclic hemiacetal 7c was confirmed by X-ray diffraction data
(Figure 2), which allowed us to establish that two hydroxyl groups of the central cycle have
relative trans-configuration, whereas the azadecalin system of fused two non-aromatic
six-membered cycles has a cis-configuration (Figure 3). In this way, the compound having
4aR*, 10S*, 10aR* configuration of asymmetric centers is formed in the reaction diastereose-
lectively.
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Figure 2. X-ray crystal structure of 7c (crystallized with MeOH) (a) and related unit cell (b). All atoms
are color-labeled as yellow (bromine), red (oxygen), blue (nitrogen), gray (carbon), white (hydrogen).
(see Table S2 for the crystal data and structure refinement for 7c).

It should be noted that according to the X-ray data, compound 7c is formed as a
racemate (the spatial symmetry group of the formed crystal P21/C, i.e., centrosymmetric).
This means the co-crystallization of both enantiomers in one crystal.
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Figure 3. Cis-decalin geometry of the six-membered cycles in 7c (CCDC 2224256). Color labels as in
Figure 2.

Probably, the first stage of the mechanism of hemiacetals 7a–f formation involves
the reaction of a salicylic aldehyde with L-proline yielding the intermediate A. The latter
is nucleophilically attacked by the enol form of piperidone to form intermediate B, the
conformation of which is fixed by the formation of HB between the protonated carbonyl
group of piperidone and the carboxylate group of proline. Thus, free rotation around the
bond between carbon in α-position of the benzene ring and piperidine fragment (marked
on the scheme) is blocked yielding cis-decalin system of the cyclic hemiacetals 7 (Scheme 8).
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Scheme 8. Mechanism of formation of hemiacetals 7.

To confirm the role of L-proline in the stereoselective formation of 7, we performed
reactions of salicylic aldehydes with 4-methylpiperidone without its addition. As a result,
a series of compounds 8a–e was obtained with almost the same yields as for reactions in
the presence of proline (Scheme 9).

However, the stereochemistry of compound 8 differs from the stereochemistry of
compound 7 (Figure 3). The two hydroxyl groups of the central cycle have the same
configuration as in the case of compound 8a, but the fusion of six-membered cycles of the
azadecalin system has trans-configuration (Figure 4). Thus, the reaction diastereoselectively
yields compounds with a relative 4aR*,10S*,10aS* configuration of asymmetric centers.
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Such diastereoselectivity in the synthesis of hemiacetals 8 could be explained by
the formation of the more thermodynamically preferable trans-decalin system due to the
possibility of the attack of phenolic hydroxyl from both possible sides in intermediates B
and C (Scheme 10).
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2.2. Biological Evaluation
2.2.1. Inhibition of Monoamine Oxidases and Cholinesterases

Diverse 1H-chromeno[3,2-c]pyridine derivatives synthesized herein, with different
saturation degree of the pyridine ring and substituents (R, R1, R2 and X), were tested
as inhibitors of the human isoforms of MAO (A and B) and ChE (AChE and BChE).
To extend the knowledge of the structure–activity relationships (SARs) of this class of
annulated oxaza-heterocyclic derivatives, the activities of the previously reported 1,2,3,4-
tetrahydrochromeno[3,2-c]pyridin-10-one (1,2,3,4-THCP-10-one) 1a were evaluated and
compared with those of 2,3-dihydro-1H-chromeno[3,2-c]pyridines (2,3-DHCP) 2a–b, 2-
phenylethynyl-substituted 1,2-dihydrochromeno[3,2-c]pyridin-10-ones (1,2-DHCP-10-ones)
3a–d and 10-indolyl-substituted 2,3,4,10-tetrahydro-1H-chromeno[3,2-c]pyridine (2,3,4,10-
THCP) 6a–c. The MAO B-selective inhibitor pargyline and the AChE-selective inhibitor
galantamine were used as positive controls. All of the compounds were tested against each
enzyme at a single 10 µM concentration, and for those showing more than 60% inhibition
at that concentration, IC50s were determined in at least three independent experiments
(Table 3).

Table 3. Inhibitory potency data on human MAO A, MAO B, AChE and BChE of THCP and DHCP
derivatives 1.

No. R R1 R2 X hMAO-A hMAO-B hAChE hBChE

1a Me H - - (15 ± 4%) (29 ± 3%) (34 ± 5%) n.i.
2a Me 8-Cl - - 1.18 ± 0.07 (45 ± 5%) (25 ± 4%) n.i.
2b Me 8-Br - - 0.703 ± 0.012 7.88 ± 0.02 (31± 5%) n.i.
3a Me H - Ph (35 ± 1%) 0.510 ± 0.021 6.79 ± 0.42 8.42 ± 0.25
3b Me 6-OMe - Ph (32 ± 3%) 0.626 ± 0.059 (39 ± 1%) (19 ± 2%)
3c Et H - CF3 (20± 2%) (26 ± 9%) n.i. (15 ± 2%)
3d iPr 6-OEt - Ph (36 ± 5%) (22 ± 3%) n.i. (10 ± 3%)
6a Me 8-Cl H - (21 ± 4%) 7.30 ± 0.65 (53 ± 3%) (38 ± 3%)
6b Me 8-Cl OMe - (21 ± 5%) 4.72 ± 0.10 (53 ± 1%) (15 ± 2%)
6c Me 8-Cl Br - (29 ± 5%) 3.51 ± 0.20 (37 ± 4%) (23 ± 4%)

Pargyline 10.9 ± 0.6 2.69 ± 0.48
Galantamine 0.721 ± 0.152 8.78 ± 0.36

1 Mean IC50 ± S.D. (µM, bold) of at least three different experiments, each in triplicate, for compounds achieving
more than 60% inhibition at 10 µM concentration; % inhibition mean ± S.D. (n = 3) at 10 µM concentration in
round brackets. n.i.: no inhibition at 10 µM concentration.
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Except for the 1-(2-phenylethynyl) derivative of 1,2-DHCP 3a, which achieved single-
digit micromolar IC50 values against both ChEs, all the newly synthesized chromeno[3,2-
c]pyridine derivatives resulted scarcely active as ChEs inhibitors. 2,3-DHCPs 2a and 2b
returned good MAO A inhibition data (IC50s 1.18 and 0.703 µM, respectively) and about
tenfold selectivity over MAO B, whereas the MAO inhibitory activity of the 1,2-DHCP-
10-ones 3a–c was affected by the substituents at N2 and C1. Within the limits of the
explored property space around the 1,2-DHCP-10-one scaffold, the pattern 2-methyl/1-
phenylethynyl (3a and 3b) solely warranted submicromolar MAO B inhibition and more
than twentyfold MAO B/A selectivity, while bulkier substituents at N2 caused a drop of
the inhibitory potency. These results are congruent with those obtained from a very recent
exploration of the 1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine scaffold of novel MAO
inhibitors [13]. Indeed, the 1-(2-(4-fluorophenyl)ethynyl)-2-methyl analog proved to be
in vitro a potent MAO B inhibitor with IC50 of 1.35 µM. Comparing the MAO B inhibition
data of 3a–b with those of 3c–d, and 1a as well, it appears that (i) the phenylethynyl group
at C1 may be accommodated into the MAO B binding site better than into that of MAO A,
(ii) the presence of the OMe or OEt substituents at C6 does not affect the MAO B inhibition,
whereas (iii) alkyls (Et, iPr) bulkier than the Me group on N2 cause at least a twentyfold
decrease in MAO B inhibition potency.

Moreover, the 2,3,4,10-THCP compounds 6a–c, bearing a 1H-indol-3-yl group at C10,
achieved a fair activity as MAO B-selective inhibitors (IC50s ranging between 3.51 and
7.30 µM), with a slightly favorable lipophilic effect of the substituent R2 at C5’ position of
the 1H-indole moiety (Br > OMe > H).

We sampled a few hemiacetals, three with cis-ring fusion (7a,c,e) and three with
trans-ring fusion (8a,c,e), and assayed them for MAOs and ChEs inhibitory activities
(Table 4). Regardless, the ring fusion stereochemistry (4aR,10S,10aR for compounds 7 and
4aR,10S,10aS for compounds 8), position and lipophilicity of the substituents, all the cyclic
hemiacetals resulted poor inhibitors of MAO B with IC50s > 10 µM and in most cases even
poorer inhibitors of AChE. The inhibitory activity of all the tested hemiacetals toward MAO
A and BChE at 10 µM concentration was found to be very weak or null.

Table 4. Inhibition data of MAO A, MAO B, AChE and BChE by diastereomeric hemiacetals of
2,3,4,4a,10,10a-hexahydro-2-alkyl-1H-chromeno[3,2-c]pyridine derivatives 1.

No. R R1 R2 hMAO-A hMAO-B hAChE hBChE

7a Me H H (14 ± 5%) (22 ± 5%) (24 ± 4%) n.i.
7c Me Br H (21 ± 13%) (35 ± 6%) n.i. (12 ± 2%)
7e Me H OEt (19 ± 2%) (25 ± 9%) n.i. n.i.
8a Me H H (8 ± 3%) (42 ± 4%) (22 ± 4%) n.i.
8c Me Br H (14 ± 2%) (15 ± 4%) (45 ± 2%) n.i.
8e Bn H H (12 ± 4%) (41 ± 3%) (25 ± 4%) (19 ± 4%)

1 Mean % inhibition ± S.D. (n = 3) at 10 µM concentration in round brackets. n.i.: no inhibition at 10 µM
concentration; data of pargyline and galantamine, used as positive controls, in Table 3.

The investigation of the inhibition kinetics of 3b and 6c, taken as representative of the
two subsets of MAO B-selective inhibitors, resulted in Michaelis-Menten curves’ fitting
for competitive MAO B inhibition (Figure 5), with inhibition constant (Ki) values equal to
1.41 ± 0.21 µM and 6.47 ± 0.22 µM, respectively.
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2.2.2. Antiproliferative Activity on Tumor Cell Lines

Some years ago, some of us investigated the antiproliferative activity of 12H-chromeno
isoquinoline derivatives [9], among which the analog bearing 1H-indol-3-yl moiety at
C12 achieved a 50% inhibition of cell growth in some tumor cell lines, including the
cisplatin-resistant ovarian carcinoma one, in the low micromolar range. Considering the
molecular similarity of that compound with 10-(1H-indol-3-yl)-bearing 2,3,4,10-THCP
analogs (6), we assayed compounds 6a–c, along with 2a–b and 3b–c, in three human tumor
cell lines, i.e., breast (MCF-7), colon (HCT116) and ovarian resistant (SK-OV-3) tumor
cells. Cisplatin (CDDP) and doxorubicin (DXR) were used as positive controls. Besides
the antitumor activity, we were also interested in challenging recent studies supporting
the role of monoamine oxidases in tumor proliferation [14]. Such evidence would give
new chances to MAO inhibitors for being repositioned as coadjutants in the chemotherapy
of drug-resistant tumors. In this light, disclosing compounds with multitarget activity,
combining MAO inhibition and antiproliferative effects, would strengthen the validity of
the multitargeting approach in anticancer therapy.

The cytotoxicity data in Table 5 indicate that 10-indolyl THCP analogs 6a–c are the
most active among the tested compounds. They showed selectivity towards the MCF-7 line,
with single-digit micromolar IC50s (4.80 ÷ 6.82 µM). Compounds 2a–b and 3b–c resulted
in lower antitumor activity in MCF-7 cell line and poorly active at 50 µM concentration in
SK-OV-3 cells.

Table 5. Antiproliferative activity 1 on tumor cell lines 2 of representative THCP and DHCP derivatives.

No. MCF-7 HCT116 SK-OV-3

2a 48.1 ± 4.21 54.2 ± 18.1 >50
2b 42.9 ± 4.82 >50 >50
3b 39.7 ± 11.3 36.1 ± 2.10 >50
3c 27.8 ± 9.60 47.2 ± 5.42 >50
6a 4.80 ± 0.81 8.62 ± 2.21 14.7 ± 2.81
6b 6.62 ± 2.70 18.6 ± 2.22 22.3 ± 1.42
6c 4.83 ± 0.79 9.40 ± 0.22 11.3 ± 0.32

Cisplatin 4.80 ± 2.20 5.02 ± 2.12 4.43 ± 0.32
Doxorubicin 0.18 ± 0.02 0.38 ± 0.03 2.20 ± 0.02

1 Effects of the test compounds on the cell viability of cancer cell lines, expressed as the concentration for
half-maximal inhibition of cell proliferation (IC50) at 72 h exposure; cisplatin and doxorubicin were used as
positive controls. The values represent mean IC50 ± S.D. of three independent determinations, each in triplicate;
>50 indicates less than 50% growth inhibition at 50 µM concentration. 2 Tumor cell lines: MCF-7, human breast
carcinoma cell; HCT116, colon cancer cell line; SK-OV-3, human ovarian carcinoma with intrinsic resistance to
cisplatin.

Spearman’s rank analysis [15] for the pairs 6a/CDDP/DXR, 6b/CDDP/DXR and
6c/CDDP/DXR provided very low values of Spearman indexes (ρ = −0.5), suggesting
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that the growth inhibition profile of the most active 6a–c in all the examined tumor cell
lines is different from both CDDP and DXR. Considering that the SK-OV-3 cell line is
characterized by intrinsic resistance, the antiproliferative activity of compounds 6a–c led
us to hypothesize their use towards resistant lines and/or a synergistic action with drugs
used in conventional therapies.

2.2.3. Structure–Activity Relationships

The biological evaluation of the newly synthesized molecules provided us with SARs
which may helpfully suggest and support future ‘hit-to-lead’ molecular optimization
studies of 1H-chromeno[3,2-c]pyridine analogs as MAO isoform-selective inhibitors or
MAO-targeted neuroprotectant MTDLs, in combination with molecular modeling results
obtained by others on chromone-based natural and synthetic compounds [2,16]. From the
SAR perspective, within the limits of the biological and physicochemical space explored,
this ‘target-to-hit’ study proves that: (i) The 2,3-DHCP derivatives 2a–b inhibit preferen-
tially MAO A with IC50s of about 1 µM; (ii) the most potent MAO B-selective inhibitors are
the 2-methyl 1,2,3,4-THCP-10-one derivatives 3a and 3b (IC50s 0.51 and 0.63 µM), which
bear a phenylethynyl fragment at C1; 3a achieved also IC50s of 7–8 µM against both ChEs;
(iii) installing the 1H-indol-3-yl fragment on C10 of the starting compound 2a did slightly
improve the MAO B inhibition potency, and AChE as well, with a small effect of the 5-Br-
indolyl on the activity of 6c, which inhibited MAO B with a potency (IC50 3.51 µM) close
to that of pargyline; (iv) irrespective of their diastereisomerism, the cyclic hemiacetals 7
and 8 lose inhibition potency against the tested enzymes, likely owing to a loss of flatness
compared to their more closely related compounds 2.

In addition, the tumor growth inhibitory activity assayed in three cell lines (i.e., MCF-7,
HCT116 and SK-OV-3) suggests that the 10-(1H-indol-3-yl)-bearing 2,3,4,10-THCP analogs
6a–c are noteworthy. Based on molecular docking models and fluorescence quenching
experiments, carried out by some of us on similar molecules [9], a propensity of compound
6 to bind DNA cannot be ruled out. However, 6c exerted antiproliferative effects with
IC50s < 10 µM, with a value of 11 µM measured toward the cisplatin-resistant ovarian
tumor cells (SK-OV-3). Alongside a more in-depth mechanistic investigation and molecular
optimization, the hit compound 6c would also deserve to be tested against other tumor cell
lines, trying to improve its delivery through suitable formulations [17].

3. Materials and Methods
3.1. Chemistry
3.1.1. General Methods

Materials and general procedures. All reagents and solvents were purchased from
Merck (Darmstadt, Germany), J.T. Baker (Phillipsburg, NJ, USA) or Sigma-Aldrich Chemical
Co. (St. Louis, MO, USA) and, unless specified, used without further purification. The
melting points (m.p.) of all the compounds were determined on a SMELTING POINT
10 apparatus in open capillaries (Bibby Sterilin Ltd., Stone, UK). IR spectra were recorded
on an Infralum FT-801 FTIR spectrometer (ISP SB RAS, Novosibirsk, Russia). The samples
were analyzed as KBr disk solids, and the most important frequencies in cm−1 are reported.
1H and 13C NMR spectra were recorded in chloroform-d3 (CDCl3) or dimethylsulfoxide-d6
(DMSO-d6) solutions at 25 ◦C, with a 600-MHz NMR spectrometer (JEOL Ltd., Tokyo,
Japan). Peak positions were given in parts per million (ppm) referenced to the appropriate
solvent residual peak, and signal multiplicities were collected by: s (singlet), d (doublet), t
(triplet), q (quartet), dd (doublet of doublets), ddd (doublet of doublet of doublet), tt (triplet
of triplets), br.s (broad singlet) and m (multiplet). MALDI mass spectra were recorded
using a Bruker autoflex speed instrument operating in positive reflectron mode (Bremen,
Germany). The data of 3a, 7c and 8a were collected at room temperature using a STOE
diffractometer Pilatus100K detector, focusing on mirror collimation Cu Kα (1.54086 Å)
radiation, in rotation method mode. STOE X-AREA software was used for cell refinement
and data reduction. Data collection and image processing were performed with X-Area 1.67
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(STOE and Cie GmbH, Darmstadt, Germany, 2013). Intensity data were scaled with LANA
(part of X-Area) to minimize the differences in intensities of symmetry equivalent reflections
(multi-scan method). The structures were solved and refined with SHELX (Sheldrick, G.M.
Acta Crystallogr. 2008, A64, 112–122.) program. The non-hydrogen atoms were refined by
using the anisotropic full matrix least-square procedure. Molecular geometry calculations
were performed with the SHELX program, and the molecular graphics were prepared by
using DIAMOND software (Brandenburg, K. DIAMOND, Release 2.1d; Crystal Impact
GbR: Bonn, Germany, 2000).

3.1.2. Synthesis of Tetrahydro- and Dihydrochromeno[3,2-c]pyridines 1 and 2

The synthesis of compounds 1a–d was described in the article [5–7].
The synthesis of 2-alkyl-2,3-dihydro-1H-chromeno[3,2-c]pyridines 2.
Compound 1, para-toluene sulfonic acid (20 mol%) and hydroquinone (10 mol%) were

placed into a 100 mL flask and o-xylene (50 mL) was added. The mixture was boiled for
6 h with a Dean-Stark Moisture Trap, until the calculated amount of water was released.
The solvent was evaporated, and the product was obtained by crystallization from diethyl
ether in the form of a grayish-yellow powder, filtered on a glass filter and dried in air.

8-Chloro-2,3-dihydro-2-methyl-1H-chromeno[3,2-c]pyridine (2a). Yield 45%, brown
crystals, m.p. = 133–134 ◦C. 1H NMR (600 MHz, CDCl3) δ (ppm): 2.40 (s, 3H), 3.18 (d,
J = 4.1 Hz, 2H), 3.24 (d, J = 1.5 Hz, 2H), 5.08 (dt, J = 4.2, 1.8 Hz, 1H), 5.99 (s, 1H), 6.70 (d,
J = 8.6 Hz, 1H), 6.89 (d, J = 2.5 Hz, 1H), 7.01 (dd, J = 8.6, 2.5 Hz, 1H). 13C NMR (151 MHz,
CDCl3) δ (ppm): 44.7, 53.7, 56.9, 98.5, 115.9, 117.0, 123.0, 125.7, 126.9, 128.4, 129.5, 147.6,
151.6. HRMS (MALDI+) m/z calcd for C13H12ClNO in form of [M + H]+ ion 234.0686,
found: 234,0693.

8-Bromo-2,3-dihydro-2-methyl-1H-chromeno[3,2-c]pyridine (2b). Yield 38%, brown
crystals, m.p. = 137–138 ◦C. 1H NMR (600 MHz, CDCl3) δ (ppm): 2.40 (s, 3H), 3.18 (d,
J = 4.1 Hz, 2H), 3.25 (d, J = 1.4 Hz, 2H), 5.08 (td, J = 4.2, 1.8 Hz, 1H), 5.98 (s, 1H), 6.64 (d,
J = 8.6 Hz, 1H), 7.03 (d, J = 2.4 Hz, 1H), 7.15 (dd, J = 8.6, 2.4 Hz, 1H). 13C NMR (151 MHz,
CDCl3) δ (ppm): 44.8, 53.7, 56.9, 98.6, 114.2, 116.5, 116.9, 123.6, 128.6, 129.6, 131.3, 147.6,
152.2. HRMS (MALDI+) m/z calcd for C13H12BrNO in form of [M + H]+ ion 278.0181,
found: 278,0193.

3.1.3. Synthesis of 2-Alkyl-1-(ethinyl)-1H-chromeno[3,2-c]pyridine-10(2H)-ones (3a–e)

A solution of compound 1 (0.4 g, 0.00163 mol) in THF was cooled to 0 ◦C, and 1.2
equiv. of DIAD was added and stirred at room temperature for 1 h. Then, it was cooled
again to 0 ◦C, 3 equiv. of phenylacetylene and a CuI (20 mol %) catalyst were added. The
reaction was conducted at r.t. and constant stirring, and reaction was monitored by TLC.
The solvent was evaporated, and the product was purified by column chromatography.

2-Methyl-1-(phenylethinyl)-1H-chromeno[3,2-c]pyridine-10(2H)-one (3a). Yield 44%,
yellow crystals, m.p. = 140–141 ◦C. 1H NMR (600 MHz, CDCl3) δ (ppm): 3.19 (s, 3H),
5.11 (d, J = 7.3 Hz, 1H), 5.94 (d, J = 1.2 Hz, 1H), 6.62 (dd, J = 7.3, 1.3 Hz, 1H), 7.22–7.26
(m, 3H), 7.29–7.36 (m, 2H), 7.37–7.42 (m, 2H), 7.55 (ddd, J = 8.7, 7.1, 1.7 Hz, 1H), 8.19 (dd,
J = 7.9, 1.6 Hz, 1H). IR spectra (KBr), cm−1: 2250.8 (-C≡C-). HRMS (MALDI+) m/z calcd
for C21H15NO2 in form of [M + H]+ ion 314.1181, found: 314.1195. Crystals suitable for
X-ray crystallography were obtained by slow crystallization of a solution in methanol.

6-Metoxy-2-methyl-1-(phenylethinyl)-1H-chromeno[3,2-c]pyridine-10(2H)-one (3b).
Yield 38%, yellow crystals, m.p. = 169–170 ◦C. 1H NMR (600 MHz, CDCl3) δ (ppm): 3.19 (s,
3H), 3.97 (s, 3H), 5.22 (d, J = 7.3 Hz, 1H), 5.93 (d, J = 1.2 Hz, 1H), 6.62 (dd, J = 7.3, 1.2 Hz, 1H),
7.09 (dd, J = 8.0, 1.5 Hz, 1H), 7.22–7.26 (m, 4H), 7.37–7.40 (m, 2H), 7.76 (dd, J = 8.0, 1.5 Hz,
1H). 13C NMR (151 MHz, CDCl3) δ (ppm): 41.2, 49.0, 56.5, 84.2, 85.7, 88.5, 102.6, 113.8,
116.9, 122.7, 124.0, 125.7, 128.2 (2C), 128.4, 132.2 (2C), 145.6, 147.5, 148.5, 161.3, 173.3. HRMS
(MALDI+) m/z calcd for C22H17NO3 in form of [M + H]+ ion 344.1287, found: 344.1273.

2-Ethyl-1-(3,3,3-trifluoroprop-1-yn-1-yl)-1,2-dihydro-10H-chromeno[3,2-c]pyridin-
10-one (3c).
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A solution of 2-ethyl-1H-chromeno[3,2-c]pyridin-10(2H)-one 0.4 g (1.74 mmol) in THF
was cooled to 0 ◦C, and 3 equiv. excess of DIAD was added and stirred at r.t. for 1 h. Then,
the reaction mixture was cooled to −70 ◦C, the CuI catalyst was added and a two-fold
excess of gaseous alkyne was condensed to the mixture. The ampoule with the reaction
mixture was sealed and placed in a protective metal cylinder. The reaction mixture was
kept at 6 ◦C for one day, and then 5 days at room temperature. The reaction was controlled
by TLC using ethyl acetate/n-hexane 1:1 v/v as eluent, Silufol. The solvent was evaporated
under a vacuum. The reaction product was purified by column chromatography for SiO2,
eluent- ethylacetate/n-hexane 1:3 v/v. Yellow crystals, 23% yield, m.p. = 96–97 ◦C. 1H
NMR (600 MHz, CDCl3) δ (ppm): 1.34 (t, J = 7.3 Hz, 3H), 3.35 (dt, J = 14.4, 7.3 Hz, 1H),
3.41–3.53 (m, 1H), 5.18 (d, J = 7.3 Hz, 1H), 5.93–6.03 (m, 1H), 6.70 (dd, J = 7.3, 1.3 Hz, 1H),
7.30–7.40 (m, 2H), 7.58 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H), 8.18 (dd, J = 7.9, 1.7 Hz, 1H). 13C NMR
(151 MHz, CDCl3) δ (ppm): 13.9, 46.1, 49.0, 70.8, 84.5, 89.3, 100.4, 114.9, 117.7, 124.3, 124.8,
125.6, 133.1, 146.2, 155.4, 161.8, 173.2. IR (KBr), cm−1: 2270.8 (-C≡C-). HRMS (MALDI+)
m/z calcd for C17H12F3NO2 in form of [M + H]+ ion 319.0820, found: 319.0832.

6-Ethoxy-2-isopropyl-1-(phenylethynyl)-1,2-dihydro-10H-chromeno[3,2-c]pyridin-
10-one (3d). Green crystals, 20% yield, m.p. = 157–158 ◦C. 1H NMR (600 MHz, CDCl3) δ
(ppm): 1.43 (d, J = 6.56, 6H), 1.53 (t, J = 7.06, 3H), 4.19 (q, J = 7.06, 2H), 5.01 (m, 1H), 5.59
(s, 1H), 6.57 (d, J = 7,06, 1H), 6.77 (d, J = 8,07, 1H), 6.94 (t, J = 7.57, 1H), 7.17 (t, J = 7.57,
2H) 7.33–7.40 (m, 4H), 7.44 (d, J = 8.07, 1H). 13C NMR (151 MHz, CDCl3) δ (ppm): 193.2,
158.3, 148.3, 142.1, 140.6, 136.6, 133.0, 132.4, 131.8, 130.4, 129.6, 128.1, 128.0, 125.4, 123.5,
120.3, 117.1, 112.9, 111.8, 109.3, 98.6, 65.3, 54.3, 30.0, 22.3 (2C), 15.2. IR (KBr), cm−1: 2250.8
(-C≡C-). HRMS (MALDI+) m/z calcd for C25H23NO3 in form of [M + H]+ ion 386.1756,
found: 386.1770.

3.1.4. Synthesis of 8-Bromo-2-methyl-10-(1-methyl-1H-pyrrole-2-yl)-2,3,4,10-tetrahydro-1H-
chromeno[3,2-c]pyridine (4)

Chromenopyridine 2b (0.2 g, 0.85 mmol) and pyrrole (1.5 equiv.) were dissolved in
trifluoroethanol (4 mL) and heated in a microwave oven at 150 ◦C for 1.5 h (3 times for
30 min). The solvent had evaporated. The product was isolated by column chromatography.
Red oil, 52% yield. 1H NMR (600 MHz, CDCl3) δ (ppm): 2.34 (s, 3H), 2.41–2.46 (m, 2H),
2.54–2.63 (m, 2H), 2.69–2.74 (m, 1H), 2.80 (d, J = 14.8 Hz, 1H), 3.30 (s, 3H), 4.67 (s, 1H), 6.02
(t, J = 3.1 Hz, 1H), 6.04–6.06 (m, 1H), 6.49 (t, J = 2.3 Hz, 1H), 6.79 (d, J = 8.7 Hz, 1H), 7.04 (d,
J = 2.5 Hz, 1H), 7.22 (dd, J = 8.7, 2.5 Hz, 1H). HRMS (MALDI+) m/z calcd for C18H19BrN2O
in form of [M + H]+ ion 359.0759, found: 359.0772.

3.1.5. Synthesis of 8-Bromo-2-methyl-10-(nitromethyl)-2,3,4,10-tetrahydro-1H-
chromeno[3,2-c]pyridine (5)

Chromenopyridine 2b (0.2 g, 0.00085 mol), nitromethane (3 equiv.) and triethylamine
(2 equiv.) were dissolved in trifluoroethanol (4 mL) and heated in a microwave oven
at 150 ◦C for 1.5 h (3 times for 30 min). The solvent was evaporated, and the product
was isolated by column chromatography. Beige crystals, 56% yield, m.p. 140–142 ◦C. 1H
NMR (600 MHz, CDCl3) δ (ppm): 2.34–2.40 (m, 1H), 2.40–2.45 (m, 4H), 2.52–2.57 (m, 1H),
2.73–2.79 (m, 1H), 2.96–3.03 (m, 2H), 4.02 (t, J = 6.1 Hz, 1H), 4.41 (dd, J = 12.1, 6.8 Hz,
1H), 4.50 (dd, J = 12.1, 5.2 Hz, 1H), 6.86 (d, J = 8.8 Hz, 1H), 7.23 (d, J = 2.3 Hz, 1H), 7.33
(dd, J = 8.6, 2.3 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ (ppm): 27.4, 37.3, 45.5, 52.0, 55.2,
80.1, 102.1, 115.9, 118.6, 121.6, 130.7, 131.9, 147.0, 150.9. HRMS (MALDI+) m/z calcd for
C14H15BrN2O3 in form of [M + H]+ ion 339.0344, found: 339.0357.

3.1.6. Synthesis of 8-Chloro-10-(1H-indol-3-yl)-2-methyl-2,3,4,10-tetrahydro-1H-chromeno
pyridines 6a–c

Compound 2a (0.2 g, 0.85 mmol) and indole (0.85 mmol) were dissolved in trifluo-
roethanol (4 mL) and heated in a microwave oven at 150 ◦C for 1.5 h (3 times for 30 min).
The solvent had evaporated. The product was isolated by column chromatography in the
form of yellow-brown foamed oil.
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8-Chloro-10-(1H-indole-3-yl)-2-methyl-2,3,4,10-tetrahydro-1H-chromeno[3,2-c]pyridine
(6a). Beige foamed oil, yield 21%. 1H NMR (600 MHz, CDCl3) δ (ppm): 2.41 (s, 3H),
2.58 (d, J = 16.5 Hz, 1H), 2.65–2.75 (m, 1H), 2.74–2.89 (m, 2H), 2.96–3.05 (m, 1H), 3.13 (d,
J = 14.7 Hz, 1H), 4.67 (s, 1H), 6.90 (d, J = 8.7 Hz, 1H), 6.94 (s, 1H), 7.00–7.06 (m, 2H), 7.10 (s,
1H), 7.15 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 8.49 (s, 1H). 13C
NMR (151 MHz, CDCl3) δ (ppm): 27.2, 34.8, 45.3, 52.2, 55.4, 106.5, 111.4, 117.6, 119.1, 119.3,
119.9, 122.4, 122.5, 125.4, 126.2, 127.6, 127.6, 129.4, 136.9, 142.3, 149.3. HRMS (MALDI+) m/z
calcd for C21H19ClN2O in form of [M + H]+ ion 351.1264, found: 351,1250.

8-Chloro-10-(5-metoxy-1H-indole-3-yl)-2-methyl-2,3,4,10-tetrahydro-1H-chromeno
[3,2-c]pyridine (6b). Beige foamed oil, yield 20%. 1H NMR (600 MHz, CDCl3) δ (ppm):
2.27 (s, 2H), 2.40–2.49 (m, 2H), 2.44–2.59 (m, 3H), 2.65 (d, J = 14.7 Hz, 1H), 2.68–2.77 (m,
1H), 2.85 (d, J = 14.7 Hz, 1H), 3.76 (s, 3H), 4.63 (s, 1H), 6.82 (dd, J = 8.8, 2.4 Hz, 1H), 6.89 (d,
J = 8.8 Hz, 1H), 6.93 (d, J = 2.5 Hz, 1H), 6.97 (dd, J = 2.5, 0.8 Hz, 1H), 6.99–7.07 (m, 2H), 7.22
(d, J = 8.8 Hz, 1H), 8.14 (s, 1H). 13C NMR (151 MHz, CDCl3) δ (ppm): 27.2, 34.8, 45.3, 52.2,
55.4, 55.8, 101.2, 105.3, 112.0, 112.2, 117.4, 118.7, 123.1, 125.3, 126.6, 127.5, 127.6, 129.4, 132.0,
142.2, 149.4, 154.0. HRMS (MALDI+) m/z calcd for C22H21ClN2O2 in form of [M + H]+ ion
381.1370, found: 381,1391.

8-Chloro-10-(5-bromo-1H-indole-3-yl)-2-methyl-2,3,4,10-tetrahydro-1H-chromeno
[3,2-c]pyridine (6c). Beige foamed oil, yield 51%. 1H NMR (600 MHz, CDCl3) δ (ppm): 2.33
(3H, s), 2.53–2.58 (2H, m), 2.69–2.76 (2H, m), 2.84–2.89 (1H, m), 2.96 (1H, d, J = 14.9 Hz),
4.59 (1H, s), 6.87–6.92 (2H, m), 7.02 (1H, s), 7.05 (1H, dd, J = 8.6, 1.9 Hz), 7.19 (2H, s), 7.53
(1H, s), 8.99 (1H, s).13C NMR (150 MHz, CDCl3), δ (ppm): 25.27, 34.12, 43.66, 51.21, 53.81,
113.18, 113.27, 117.31, 117.78, 121.20, 124.33, 124.41, 125.33, 125.41, 127.56, 128.03, 128.21,
129.13, 135.50, 141.88, 148.69. HRMS (MALDI+) m/z calcd for C21H18ClBrN2O in form of
[M + H]+ ion 429.0369, found: 429.0382.

3.1.7. Synthesis of (4aR*,10S*,10aR*)-2-Alkyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-
c]pyridine-4a,10-diol 7a–f

Corresponding salicylic aldehyde (2.6 mmol) and N-alkylpiperidone (2.6 mmol) and
L-proline (10 mol%) were dissolved in ethanol (~10 mL). The mixture was heated and
stirred at 75 ◦C for one day. The crystals that fell out after cooling were filtered and dried
in air. In some cases, an additional portion of the substance was isolated from the liquor
after partial evaporation of the solvent.

(4aR*,10S*,10aR*)-2-Methyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-c]pyridine-4a,
10-diol (7a). White crystals, yield 79%, m.p. = 192–194 ◦C. 1H NMR (DMSO-d6, 600 MHz)
δ (ppm): 1.78–1.91 (m, 3H), 1.94 (t, J = 10.9 Hz, 1H), 2.14–2.20 (m, 1H), 2.22 (s, 3H), 2.67–2.72
(m, 1H), 3.00 (dd, J = 10.7, 2.5 Hz, 1H), 4.33 (d, J = 10.7 Hz, 1H), 5.21 (s, 1H), 6.30 (s, 1H),
6.68–6.71 (m, 1H), 6.87–6.90 (m, 1H), 7.11 (td, J = 7.9, 1.6 Hz, 1H), 7.41 (dt, J = 7.9, 1.6 Hz,
1H). 13C NMR (151 MHz, DMSO-d6) 36.7, 45.6, 45.7, 52.2, 55.3, 63.3, 96.8, 116.0, 120.0,
127.2, 127.9, 128.0, 151.5. IR (KBr), cm−1: 2790–3100 (OH). HRMS (MALDI+) m/z calcd for
C13H17NO3 in form of [M + H]+ ion 236.1287, found: 236.1299.

(4aR*,10S*,10aR*)-8-Chloro-2-methyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-c]
pyridine-4a,10-diol (7b). White crystals, yield 84%, m.p. = 172–173 ◦C. 1H NMR (600 MHz,
DMSO-d6) δ (ppm): 1.78–1.86 (m, 2H), 1.89–1.97 (m, 2H), 2.13–2.17 (m, 1H), 2.22 (s, 3H),
2.68–2.73 (m, 1H), 2.99 (ddd, J = 10.8, 4.1, 1.6 Hz, 1H), 4.32 (dd, J = 10.8, 7.9 Hz, 1H), 5.41
(d, J = 8.0 Hz, 1H), 6.46 (d, J = 1.7 Hz, 1H), 6.73 (d, J = 8.7 Hz, 1H), 7.13–7.16 (m, 1H), 7.39
(dd, J = 2.8, 1.0 Hz, 1H). 13C NMR (DMSO-d6, 151 MHz) δ (ppm): 36.5, 45.1, 45.6, 52.1, 55.2,
63.2, 97.3, 118.0, 123.9, 126.8, 127.8, 130.1, 150.4. IR (KBr), cm−1: 2720–3300 (OH). HRMS
(MALDI+) m/z calcd for C13H16ClNO3 in form of [M + H]+ ion 270.0897, found: 270.0878.

(4aR*,10S*,10aR*)-8-Bromo-2-methyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-c]
pyridine-4a,10-diol (7c). White crystals, yield 86%, m.p. = 160–161 ◦C. 1H NMR (600 MHz,
DMSO-d6) δ (ppm): 1.77–1.86 (m, 2H), 1.88–1.92 (m, 1H), 1.93–1.96 (m, 1H), 2.13–2.16 (m,
1H), 2.22 (s, 3H), 2.68–2.73 (m, 1H), 2.99 (ddd, J = 10.6, 4.1, 1.6 Hz, 1H), 4.33 (dd, J = 10.9,
7.9 Hz, 1H), 5.41 (d, J = 8.1 Hz, 1H), 6.47 (d, J = 1.7 Hz, 1H), 6.69 (d, J = 8.6 Hz, 1H),
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7.25–7.29 (m, 1H), 7.51 (dd, J = 2.6, 1.0 Hz, 1H). 13C NMR (DMSO-d6, 151 MHz) δ (ppm):
36.5, 45.1, 45.6, 52.1, 55.1, 63.1, 97.3, 111.6, 118.5, 129.7, 130.6, 130.6, 150.9. IR (KBr), cm−1:
2723–3329 (OH). HRMS (MALDI+) m/z calcd for C13H16BrNO3 in form of [M + H]+ ion
314.0391, found: 314.0407. Crystals suitable for X-ray crystallography were obtained by
slow crystallization of a solution in methanol.

(4aR*,10S*,10aR*)-6-Methoxy-2-methyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno
[3,2-c]pyridine-4a,10-diol (7d). White crystals, yield 74%, m.p. = 134–135 ◦C. 1H NMR
(600 MHz, DMSO-d6) δ (ppm): 1.78–1.87 (m, 2H), 1.90–1.93 (m, 1H), 1.93–1.96 (m, 1H),
2.12–2.16 (m, 1H), 2.22 (s, 3H), 2.67–2.73 (m, 1H), 2.97–3.02 (m, 1H), 3.71 (s, 3H), 4.31 (d,
J = 10.8 Hz, 1H), 5.17 (s, 1H), 6.32 (s, 1H), 6.80–6.82 (m, 2H), 7.00–7.02 (m, 1H). 13C NMR
(DMSO-d6, 151 MHz) δ (ppm): 36.8, 45.4, 45.7, 52.2, 55.3, 55.3, 63.4, 96.7, 110.4, 118.9, 119.4,
128.4, 140.9, 147.6. HRMS (MALDI+) m/z calcd for C14H19NO4 in form of [M + H]+ ion
266.1392, found: 266.1405.

(4aR*,10S*,10aR*)-6-Ethoxy-2-methyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-c]
pyridine-4a,10-diol (7e). White crystals, yield 71%, m.p. = 168–169 ◦C. 1H NMR (600 MHz,
DMSO-d6) δ (ppm): 1.30 (t, J = 6.9 Hz, 3H), 1.74–1.91 (m, 2H), 1.91–1.95 (m, 2H), 2.10–2.19
(m, 1H), 2.22 (s, 3H), 2.66–2.72 (m, 1H), 2.95–3.03 (m, 1H), 3.92–4.00 (m, 2H), 4.31 (dd,
J = 10.8, 8.0 Hz, 1H), 5.19 (d, J = 8.2 Hz, 1H), 6.35 (d, J = 1.7 Hz, 1H), 6.79 (d, J = 1.9 Hz,
1H), 6.80 (s, 1H), 6.96–7.03 (m, 1H). 13C NMR (DMSO-d6, 151 MHz) δ (ppm): 14.9, 36.8,
45.4, 45.7, 52.3, 55.4, 63.5, 63.7, 96.7, 111.9, 119.0, 119.4, 128.6, 141.2, 146.8. IR (KBr), cm−1:
3475, 2773–3118 (OH). HRMS (MALDI+) m/z calcd for C15H21NO4 in form of [M + H]+ ion
280.1549, found: 280.1536.

(4aR*,10S*,10aR*)-2-Methyl-8-nitro-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-
c] pyridine-4a,10-diol (7f). Orange crystals, yield 96%, m.p. = 158–159 ◦C. 1H NMR
(600 MHz, DMSO-d6) δ (ppm): 1.86–1.94 (m, 2H), 1.99–2.05 (m, 2H), 2.20–2.24 (m, 1H), 2.26
(s, 3H), 2.72–2.81 (m, 1H), 3.03–3.09 (m, 1H), 4.43 (d, J = 11.1 Hz, 1H), 5.75 (br.s, 1H), 6.90
(br.s, 1H), 6.95 (dd, J = 9.0, 1.4 Hz, 1H), 8.04 (dd, J = 9.0, 2.9 Hz, 1H), 8.33 (dd, J = 2.9, 1.1 Hz,
1H). 13C NMR (DMSO-d6, 151 MHz) δ (ppm): 36.6, 45.3, 45.9, 52.5, 55.5, 63.3, 99.3, 117.8,
124.0, 124.7, 129.6, 141.3, 157.9. IR (KBr), cm−1: 2670–3263 (OH), 1339, 1511 (NO2). HRMS
(MALDI+) m/z calcd for C13H16N2O5 in form of [M + H]+ ion 281.1137, found: 281.1149.

3.1.8. Synthesis of (4aR*,10S*,10aS*)-2-Alkyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-
c]pyridine-4a,10-diols 8a–e

The corresponding salicylic aldehyde (0.0026 mol) and N-alkylpiperidone (0.0026 mol)
were dissolved in ethanol (~10 mL). The mixture was heated and stirred at 75 ◦C for one
day. The crystals that fell out after cooling were filtered and dried in air. In some cases, an
additional portion of the substance was isolated from the liquor after partial evaporation of
the solvent.

(4aR*,10S*,10aS*)-2-Methyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-c]pyridine-
4a,10-diol (8a). White crystals, yield 92%, m.p. = 187–188 ◦C. 1H NMR (600 MHz, DMSO-
d6) δ (ppm): 1.80–1.87 (m, 2H), 1.87–1.92 (m, 1H), 1.93–1.98 (m, 1H), 2.12–2.23 (m, 1H), 2.23
(s, 3H), 2.68–2.73 (m, 1H), 3.01 (ddd, J = 10.6, 4.0, 1.6 Hz, 1H), 4.34 (dd, J = 10.9, 7.9 Hz, 1H),
5.22 (d, J = 8.2 Hz, 1H), 6.30 (d, J = 1.8 Hz, 1H), 6.70 (dd, J = 8.1, 1.2 Hz, 1H), 6.89 (td, J = 7.5,
1.3 Hz, 1H), 7.11 (td, J = 7.7, 1.8 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H). 13C NMR (DMSO-d6,
151 MHz) δ (ppm): 36.7, 45.6, 45.7, 52.2, 55.3, 63.3, 96.8, 116.0, 120.0, 127.2, 127.9, 128.0,
151.5. IR (KBr), cm−1: 2720–3300 (OH). HRMS (MALDI+) m/z calcd for C13H17NO3 in
form of [M + H]+ ion 236.1287, found: 236.1300. Crystals suitable for X-ray crystallography
were obtained by slow crystallization of a solution in methanol.

(4aR*,10S*,10aS*)-8-Chloro-2-methyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-c]
pyridine-4a,10-diol (8b). White crystals, yield 87%, m.p. = 167–168 ◦C. 1H NMR (600 MHz,
DMSO-d6) δ (ppm): 1.79–1.87 (m, 2H), 1.89–1.97 (m, 2H), 2.14–2.17 (m, 1H), 2.22 (s, 3H),
2.68–2.73 (m, 1H), 3.00 (ddd, J = 10.6, 4.1, 1.6 Hz, 1H), 4.32 (dd, J = 10.9, 7.9 Hz, 1H), 5.42 (d,
J = 8.0 Hz, 1H), 6.46 (d, J = 1.7 Hz, 1H), 6.73 (d, J = 8.6 Hz, 1H), 7.15 (ddd, J = 8.6, 2.7, 0.7 Hz,
1H), 7.39 (dd, J = 2.7, 1.0 Hz, 1H). 13C NMR (DMSO-d6, 151 MHz) δ (ppm): 36.5, 45.1, 45.6,
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52.1, 55.2, 63.2, 97.3, 118.0, 123.9, 126.8, 127.8, 130.1, 150.4. IR (KBr), cm−1: 2720–3300 (OH).
HRMS (MALDI+) m/z calcd for C13H16ClNO3 in form of [M + H]+ ion 270.0897, found:
270.0905.

(4aR*,10S*,10aS*)-8-Bromo-2-methyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-c]
pyridine-4a,10-diol (8c). White crystals, yield 90%, m.p. = 173–174 ◦C. 1H NMR (600 MHz,
DMSO-d6) δ (ppm): 1.78–1.87 (m, 2H), 1.87–1.92 (m, 1H), 1.92–1.97 (m, 1H), 2.13–2.17 (m,
1H), 2.22 (s, 3H), 2.68–2.73 (m, 1H), 2.99 (ddd, J = 10.7, 4.1, 1.6 Hz, 1H), 4.33 (dd, J = 10.9,
7.9 Hz, 1H), 5.41 (d, J = 8.0 Hz, 1H), 6.47 (d, J = 1.7 Hz, 1H), 6.69 (d, J = 8.6 Hz, 1H), 7.27 (dd,
J = 8.6, 2.6 Hz, 1H), 7.52 (dd, J = 2.6, 1.0 Hz, 1H). 13C NMR (DMSO-d6, 151 MHz) δ (ppm):
37.0, 45.7, 46.1, 52.6, 55.7, 63.6, 97.8, 112.1, 119.0, 130.2, 131.1, 131.2, 151.4. IR (KBr), cm−1:
2723–3329 (OH). HRMS (MALDI+) m/z calcd for C13H16BrNO3 in form of [M + H]+ ion
314.0391, found: 314.0401.

(4aR*,10S*,10aS*)-6-Methoxy-2-methyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-c]
pyridine-4a,10-diol (8d) Light-pink crystals, yield 83%, m.p. = 148–149 ◦C. 1H NMR
(600 MHz, DMSO-d6) δ (ppm): 1.79–1.87 (m, 2H), 1.90–1.96 (m, 2H), 2.14–2.18 (m, 1H),
2.22 (s, 3H), 2.67–2.72 (m, 1H), 3.00 (ddd, J = 10.6, 4.1, 1.6 Hz, 1H), 3.71 (s, 3H), 4.31 (d,
J = 10.8 Hz, 1H), 5.17 (s, 1H), 6.32 (s, 1H), 6.80–6.82 (m, 2H), 7.00–7.02 (m, 1H). 13C NMR
(DMSO-d6, 151 MHz) δ (ppm): 37.3, 45.9, 46.2, 52.7, 55.8, 55.9, 63.9, 97.2, 110.9, 119.4, 119.9,
128.9, 141.4, 148.1. HRMS (MALDI+) m/z calcd for C14H19NO4 in form of [M+H]+ ion
266.1392, found: 266.1407.

(4aR*,10S*,10aS*)-2-Benzyl-1,2,3,4,10,10a-hexahydro-4aH-chromeno[3,2-c]pyridine-
4a,10-diol (8e). White crystals, yield 62%, m.p. 141–142 ◦C. 1H NMR (600 MHz, DMSO-d6)
δ (ppm): 1.79–1.86 (m, 2H), 1.89–1.92 (m, 1H), 1.99–2.02 (m, 1H), 2.23–2.30 (m, 1H), 2.73–2.79
(m, 1H), 3.09 (ddd, J = 10.7, 4.1, 1.6 Hz, 1H), 3.49–3.60 (m, 2H), 4.31 (d, J = 10.9 Hz, 1H), 5.19
(s, 1H), 6.33 (s, 1H), 6.69 (dd, J = 8.1, 1.2 Hz, 1H), 6.88 (td, J = 7.4, 1.2 Hz, 1H), 7.08–7.12 (m,
1H), 7.25–7.33 (m, 5H), 7.37–7.40 (m, 1H). 13C NMR (DMSO-d6, 151 MHz) δ (ppm): 36.7,
45.6, 49.9, 52.9, 61.9, 63.4, 97.1, 116.0, 120.0, 126.9 (2C), 127.2, 127.9, 128.0, 128.2 (2C), 128.9,
138.5, 151.5. IR (KBr), cm−1: 2820–3357 (OH). HRMS (MALDI+) m/z calcd for C19H21NO3
in form of [M + H]+ ion 312.1600, found: 312.1590.

All 1H NMR and 13C NMR spectra presented in the Supporting Information
(Figures S1–S40).

3.2. Biological Assays
3.2.1. Inhibition of Monoamine Oxidases and Cholinesterases

Human isoforms of MAOs (from baculovirus-infected insect cells) and ChEs (human
recombinant AChE and BChE from human serum), purchased from Sigma Aldrich (Milan,
Italy), were used for inhibition assays. Experiments were performed in 96-well plates
(Greiner Bio-One, Kremsmünster, Austria) on the Infinite M1000 Pro plate reader (Tecan,
Cernusco s.N., Italy), using already published protocols [5,18,19]. Inhibition data and
constants (IC50s and Kis) were calculated with Prism (version 5.01 for Windows; GraphPad
Software, San Diego, CA, USA).

In MAOs’ inhibition assays, each test compound, at 10 µM concentration, was prein-
cubated for 20 min at 37 ◦C with 50 µM kynuramine as the substrate in 0.1 M phosphate
buffer solution (PBS) pH 8.0 made 0.39 osmolar with KCl. After the addition of human
recombinant MAO A (250 U/mg) or MAO B (59 U/mg) and a further 30 min of incubation,
NaOH was added, and the fluorescence read at 310/400 nm excitation/emission wave-
length. For compounds achieving at least 60% inhibition of MAO at 10 µM concentration,
seven scalar concentrations of each inhibitor were tested and the concentration producing
50% inhibition of the MAO activity (IC50) was calculated by nonlinear regression. IC50
is expressed as mean ± SD of three independent measurements, each one performed in
duplicate. For the kinetic study on the inhibition mechanism of MAO B, three diverse scalar
concentrations of the inhibitor and seven concentrations of kynuramine were used.

The inhibition of human recombinant AChE or BChE from human serum was de-
termined by applying Ellman’s spectrophotometric method as described in previously
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reported protocols [18,19]. The AChE activity was determined in an assay solution con-
taining AChE (0.09 U/mL), 5,5′-dithiobis(2-nitrobenzoic acid) (i.e., the Ellman’s reagent,
0.33 mM), the test compound (10 µM concentration, or seven scalar concentrations for
compounds achieving > 60% enzyme inhibition at 10 µM), in 0.1 M PBS pH 8.0. After
20 min incubation at 25 ◦C, the substrate acetylthiocholine iodide (5 µM) was added, and
its hydrolysis rates were monitored for 5.0 min at 412 nm. The BChE inhibitory activity was
similarly determined by using BChE (0.09 U/mL) and butyrylthiocholine iodide (5 µM) as
the substrate. IC50 value, determined by the nonlinear regression method ‘log[inhibitor] vs.
response’, or the % inhibition at 10 µM, is expressed as the mean± SD of three independent
measurements, each one performed in duplicate.

The IC50 values, Michaelis–Menten curve fitting and inhibition constant (Ki) were
calculated by nonlinear regression, using Prism software.

3.2.2. Cell Viability Assays

The SK-OV-3 ovarian cancer cell line, MCF-7 breast cancer line and HCT-116 colon
cancer cell line were obtained from the National Cancer Institute, Biological Testing Branch
(Frederick, MD, USA), and maintained in the logarithmic phase at 37 ◦C in a 5% CO2
humidified air in RPMI 1640 medium supplemented with 10% fetal calf serum, 2 mM
glutamine, penicillin (100 U/mL) and streptomycin (0.1 mg/mL).

The growth inhibitory effects of compounds under investigation were compared to
those of cisplatin (CDDP) and doxorubicin (DXR), used as positive controls, and evaluated
by using the sulforhodamine-B (SRB) assay [20]. Briefly, cells were seeded into 96-well
microtiter plates in 100 µL of the appropriate culture medium at plating densities at 2500,
5000 and 8000 cells/well for MCF-7, HCT-116 and SKOV-3, respectively, depending upon
the doubling time of individual cell lines. After seeding, microtiter plates were incubated at
37 ◦C for 24 h before adding the test compounds. After 24 h, several samples of each cell line
were fixed in situ with cold trichloroacetic acid (TCA) to represent a measurement of the cell
population at the time of compound addition. The test compounds were freshly dissolved
in dimethyl sulfoxide (DMSO, 10−2 M) and gradually diluted to different concentrations
(0.79–50 µM) with a complete medium, so that the maximum DMSO/well ratio was 0.5%
v/v. After the addition of different compound concentrations to triplicate wells, the plates
were further incubated at 37 ◦C for 72 h. Cells were fixed in situ by the gentle addition of
50 µL of cold 50% w/v TCA (final concentration 10%) and incubated for 1 h at 4 ◦C. The
supernatant was discarded, and the plates were washed with tap water and air-dried. SRB
solution (100 µL) at 0.4% (w/v) in 1% acetic acid was added to each well, and the plates
were incubated for 30 min at room temperature. After staining, the unbound dye was
removed by washing with 1% acetic acid and the plates were air-dried. The bound stain
was then solubilized with 10mM Trizma base and the absorbance was read on an automatic
plate reader at 570 nm. The compound concentration able to inhibit cell growth by 50%
(IC50 ± SD) was then calculated from semi-logarithmic dose–response plots.

3.3. Accession Codes

CCDCs 2225696, 2224240, 2224256 contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/
structures/ (accessed on 13 April 2023), or by emailing data_request@ccdc.cam.ac.uk, or by
contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, U.K.; Fax: +44-1223-336033.

4. Conclusions

The study of the reactivity of 2,3-dihydro-2-methyl-1H-chromeno[3,2-c]pyridines (2,3-
DHPCs, 2) and 1,2,3,4-tetrahydro-2-methylchromeno[3,2-c]pyridin-10-one (1,2,3,4-THCP-
10-ones, 1), gave us the opportunity to synthesize novel compounds (3, 6 and the diastere-
omeric hemiacetals 7 and 8) targeted at MAOs and ChEs, whose abnormal activity is impli-
cated in neurological disorders, such as PD and AD. Regarding AD, although advances in

https://www.ccdc.cam.ac.uk/structures/
https://www.ccdc.cam.ac.uk/structures/
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understanding the multifactorial feature of the disease exist [21,22], its etiopathology still
remains not completely clear, and to date, the available therapy is only symptomatic and
essentially based on AChE (or BChE) inhibitors, with some promise coming from inhibitors
of MAO B and amyloid beta (Aβ) plaque formation and aggregation. Over the last few
decades, some of us, using suitable in silico (Q)SAR approaches, actively contributed to
discovering novel inhibitors of MAO B [23,24], AChE/BChE and Aβ aggregation and
toxicity [25,26]. In this context, the present study significantly added to our knowledge of
potentially neuroprotectant small molecules.

Beyond some important SARs deduced from the biological evaluation of the newly
synthesized compounds, all sharing a common 1H-chromeno[3,2-c]pyridine scaffold, potent
MAO B inhibitors, namely 3a and 3b, were disclosed. Compound 3a, also endowed
with moderate activity against AChE/BChE, is a hit deserving further pharmacological
studies, as a possible remedy in early symptoms of PD [27] and/or as an anti-oxidative
neuroprotectant in AD patients [28].

While the neuroprotective effects of MAO inhibitors in neurological diseases have
long been studied, albeit with a low success rate in terms of clinical entries, the role of
MAOs in tumor insurgence and progression has been only recently reported [29]. The
inhibition of tumor cell growth, as assessed for several newly synthesized derivatives
in antiproliferative assays with MCF-7, HCT116 and SK-OV-3 cell lines, suggest that the
10-(1H-indol-3-yl)-bearing 2,3,4,10-THCP analog 6c is noteworthy. Although these findings
do not allow us to establish how much the inhibition of MAOs affects the antitumor effect,
the combination of MAO inhibition with cytotoxicity toward tumor cells, such as that
observed herein in 6a–c, might represent an approach worthy of study in cancer treatment.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24097724/s1.
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