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Abstract

In this study we evaluate the performance of a fully automated analytical framework for FDOPA PET neuroimaging data,

and its sensitivity to demographic and experimental variables and processing parameters. An instance of XNAT imaging

platform was used to store the King’s College London institutional brain FDOPA PET imaging archive, alongside indi-

vidual demographics and clinical information. By re-engineering the historical Matlab-based scripts for FDOPA PET

analysis, a fully automated analysis pipeline for imaging processing and data quantification was implemented in Python and

integrated in XNAT. The final data repository includes 892 FDOPA PET scans organized from 23 different studies. We

found good reproducibility of the data analysis by the automated pipeline (in the striatum for the Kicer: for the controls

ICC¼ 0.71, for the psychotic patients ICC¼ 0.88). From the demographic and experimental variables assessed, gender

1Department of Neuroimaging, Institute of Psychiatry, Psychology &

Neuroscience, King’s College London, London, UK
2Department of Psychosis Studies, Institute of Psychiatry, Psychology &

Neuroscience, King’s College London, London, UK
3MRC London Institute of Medical Sciences, Hammersmith Hospital,

London, UK
4Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College

London, UK
5Department of Information Engineering (DEI), University of Padua,

Padua, Italy
6Psychiatric Imaging Group, MRC London Institute of Medical Sciences,

Hammersmith Hospital, Imperial College London, London, UK
7Institute of Clinical Sciences, Faculty of Medicine, Imperial College,

Imperial College London, London, UK
8South London and Maudsley NHS Foundation Trust, London, UK
9COMPASS Pathways plc, London, UK
10Psychiatric Neuroscience Group, Department of Basic Medical

Sciences, Neuroscience and Sense Organs, University of Bari "Aldo

Moro", Bari, Italy
11Department of Psychiatry, Warneford Hospital, University of Oxford,

Oxford, UK
12Department of Psychiatry, Seoul National University Bundang Hospital,

Gyeonggi-do, Republic of Korea
13Department of Psychiatry, College of Medicine, Seoul National

University, Seoul, Republic of Korea

14Department of Brain & Cognitive Sciences, College of Natural Sciences,

Seoul National University, Seoul, Republic of Korea
15Division of Psychiatry, Faculty of Brain Sciences, University College of

London, London, UK
16Department of Child and Adolescent Psychiatry, Institute of Psychiatry,

Psychology & Neurosicences, King’s College London, London, UK
17Centre for the Developing Brain, Division of Imaging Sciences &

Biomedical Engineering, King’s College London, London, UK
18Early Intervention Psychosis Clinical Academic Group, South London &

Maudsley NHS Trust, London, UK
19Division of Neuroscience and Experimental Psychology, School of

Biological Sciences, Faculty of Biology, Medicine and Health, University of

Manchester, Manchester, UK

*These authors contributed equally to this work.

Corresponding authors:

Giovanna Nordio, Department of Neuroimaging, Institute of Psychiatry,

Psychology & Neuroscience (IoPPN), King’s College London, PO89 De

Crespigny Park, London SE5 8AF, UK.

Email: giovanna.nordio@kcl.ac.uk

Mattia Veronese, Department of Information Engineering, University of

Padua, Via Gradenigo 6/B, 25131 Padova, Italy.

Email: mattia.veronese@unipd.it

Journal of Cerebral Blood Flow &

Metabolism

2023, Vol. 43(8) 1285–1300

! The Author(s) 2023

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0271678X231168687

journals.sagepub.com/home/jcbfm

https://orcid.org/0000-0002-7835-2992
https://orcid.org/0000-0003-3562-0683
https://orcid.org/0000-0001-9774-3860
https://orcid.org/0000-0003-2939-064X
mailto:giovanna.nordio@kcl.ac.uk
mailto:mattia.veronese@unipd.it
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/0271678X231168687
journals.sagepub.com/home/jcbfm
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0271678X231168687&domain=pdf&date_stamp=2023-04-07


was found to most influence striatal dopamine synthesis capacity (F¼ 10.7, p< 0.001), with women showing greater

dopamine synthesis capacity than men. Our automated analysis pipeline represents a valid resourse for standardised and

robust quantification of dopamine synthesis capacity using FDOPA PET data. Combining information from different

neuroimaging studies has allowed us to test it comprehensively and to validate its replicability and reproducibility

performances on a large sample size.
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Introduction

Positron emission tomography (PET), in combination

with the 6-[18F]fluoro-L-dopa (FDOPA) radiolabelled

tracer, has been extensively used to image the dopa-

mine system in vivo in living human brain.1

Accumulation of FDOPA in the brain parenchyma

reflects its transport, decarboxylation into labelled

dopamine, and vesicular uptake in the nigrostriatal

presynaptic nerve terminals (Figure 1). The tracer was

introduced in 19832 to quantify the integrity of the

nigrostriatal dopamine and it found immediate appli-

cation in subclinical models of dopamine neuronal

damage and in Parkinson’s Disease (PD) studies.3,4

However, it took 39 years before it received FDA

approval as an imaging agent to visualize dopaminergic

nerve terminals in the striatum of patients with sus-

pected Parkinsonian syndromes.5 In neuro-oncology,

the use of FDOPA PET and F-fluoroethyl-L-tyrosine

(FET) PET tracers have shown higher uptake in neuro-

plastic tissue and relatively low uptake in normal brain

when compared to 18F-fluoro-deoxy-glucose (FDG).6,7

Particularly, FDOPA PET has been used as an amino-

acid tracer to detect both primary and recurrent glio-

mas, outperforming standard FDG PET integrated with

computed tomography (18F-FDG PET/CT) in terms of

both accuracy and sensitivity for differentiating

high-grade from low-grade gliomas.8,9 In psychiatry,

FDOPA PET has been extensively used to quantify

the dopamine system in the pathophysiology of

psychotic and other symptoms across conditions,

including schizophrenia,10,11 bipolar disorder,12 22q11

syndrome,13 attention deficit disorders (ADHD),14 and

substance dependence.15 Several lines of evidence have

linked FDOPA PET to treatment response in psycho-

sis16–19 suggesting that it might be used as a neurochem-

ical basis to discriminate between patients likely to

respond and those unlikely to respond to first-line anti-

psychotic drugs.20

The use of FDOPA PET in discriminating response

in psychsosis or as diagnostic biomarker for oncology

would require further validation on larger clinical data-
sets, aiming to support future individualized treatment
and patient stratification across the different brain dis-
eases. However, to reach clinical translation, FDOPA
PET would also require a suitable data infrastructure
and robust analytical protocols to ensure high quality
of the data, accurate quantification, and replicable
results. As for any modern neuroimaging biomarker,
the inhability to provide sufficient companion data and
the lack of a reproducible analytical framework would
hamper FDOPA PET applicability.21,22 An additional
obstacle in the creation of such infrastructure is the
inconsistency and variety in neuroimaging data and
file format, which has a direct impact on the quality
and confidence of the data. The creation of large neu-
roimaging repositories that gather data from multiple
sites and sources inevitably faces the problem of data
harmonization,23 and with the current fragmentation,
it is very difficult (if not impossible) to create a single
data management and analysis system that works for
all the possible scenarios.

The reproducibility of the data analysis is another
requirement for any clinical translation of a neuroim-
aging biomarker to be effective. Poor scientific repro-
ducibility is in fact embedded in the complexity of the
data as well as in their analysis pipelines, making dif-
ficult to guarantee transparent and certified analytical
processes.24 For example, it is well-known that the neu-
roimaging results can be highly dependent on the ana-
lytical method chosen. A recent study, in which 70
independent teams were asked to analyse the same
MRI dataset, led to significant discrepancies between
execution and results, and demonstrates how the flex-
ibility of the analytical approaches leads to important
differences in the quantification of the data.25 Similar
findings were also observed for PET neuroimaging.26

In the case of FDOPA PET, there are several different
analytical methods available, and ensuring reproduc-
ibility between these methods is far from trivial.27

Kinetic modelling and imaging pre-processing methods
are necessary steps to isolate the biological components
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of interest from the measured FDOPA PET signal
(Figure 1). Furthermore, quantification of FDOPA
PET imaging consists of the measurement of the activ-
ity of aromatic amino acid decarboxylase for dopamine
production, which returns information about the func-
tional integrity of the presynaptic dopaminergic synthe-
sis.27 This information of interest needs to be isolated
from the total measured PET radioactivity, removing
the contribution of the tracer metabolism and non-
specific binding.27 It follows that the statistical propri-
eties of the radioligand in term of reproducibility and
biological variability are not sufficient to guarantee the
applicability of the method in clinical setting, and both
the tracer kinetic modelling and the imaging data

analysis pipeline need to be validated as constitutive
parts of the FDOPA PET imaging biomarker.

This study aims to present and validate a new infra-
structure for automated analysis of FDOPA PET neu-
roimaging, designed with the aspiration to provide a
robust benchmark for the analysis of PET data
acquired with this radiotracer, facilitating FDOPA
PET imaging implemetation across sites and research
institutions. The project takes advantage of a large
FDOPA PET data repository available at the
Institute of Psychiatry Psychology and Neuroscience
(IoPPN) at King’s College London that has been
exploited to test analysis pipeline replicability and
reproducibility, as well as its sensitivity to processing

Figure 1. [18F]Fluorodopa (FDOPA) PET tracer kinetics in brain and periphery. After intravenous injection, the FDOPA in circulation
is O-methylated at apparent rate constant k0

D (min�1) by cathecol-O-methyltransferase (COMT) to form 3-O-methyl-fluorodopa
(3-O-MFD). Alternatively, the FDOPA in circulation can be decarboxylated at apparent rate constant k-1

D (min�1) by the enzyme
DOPA decarboxylase (DDC) to form [18F]fluorodopamine (FDA). Both FDOPA and its COMT metabolite are subsequently cleared
from circulation by renal elimination or reversibly transferred across the blood-brain-barrier by the common carrier of large neutral
amino acids (LNAAtransp). This reversible plasma-to-brain transport is defined through the unidirectional blood-brain clearances of
FDOPA (K1

D; mL/g min) and 3-O-MFD (K1
M; mL/g min), and the corresponding rate constants for clearance back to circulation (k2

D,
k2

M; min�1). FDOPA in brain tissue can be O-methylated at apparent rate constant k5
D (min�1) by COMTor decarboxylated at the

rate constant k3
D (min�1) to form FDA. FDA is reversibly sequestered in vesicles by the vesicular monoamine transporter (VMAT)

and then released into the synaptic cleft as part of both tonic and phasic dopamine release. FDA can then be reabsorbed into the
presynaptic terminal and possibly be restored or metabolized by monoamine oxidase (MAO). Cytosolic FDA can also diffuse away
from its source neuron to undergo metabolic destruction at another site; or it can be decomposed by MAO at rate constant k7

DA

(min�1), yielding the acid metabolites [18F]fluorodihydroxyphenylacetic acid (FDOPAC) and [18F]fluorohomovanillic acid (FHVA). The
acidic metabolites of FDA are together eliminated from brain by passive diffusion at rate constant k9

ACIDS (min�1). FDOPA PET signal
in striatum might require 3 different levels of modelling: a compartmental model representing FDOPA accumulation in brain (red
compartments), a compartmental model representing the exchange between blood and brain of the FDOPA metabolite 3-O-MFD
(blue compartments), and a compartmental model representing the clearance of [18F]fluorodopamine (FDA) and its acidic metabolites
FDOPAC and FHVA (green compartments). None of these models include the coefficient of brain tissue methylation of FDopa k5

D,
because it is assumed to be negligible throughout the brain.
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parameters and experimental and demographic
covariates.

Methods

FDOPA PET data acquisition

All FDOPA PET imaging sessions in the database were
acquired with a continuous dynamic acquisition (no
blood sampling), with scanning beginning with the
tracer injection and lasting for 90-95 minutes. During
this time, the participant was required to lie still in the
PET scanner, with head rests to limit subject head
motion. All participants received carbidopa (150mg)
and entacapone (400mg) orally �1 hour before imag-
ing. Both drugs are used to increase the signal-to-noise
(SNR) of the tracer uptake in brain tissue by reducing
the peripheral formation of radiolabelled dopamine
and the 3-O-methyl-[18F]fluorodopa brain-penetrating
metabolite, respectively.20 The FDOPA tracer (injected
dose ranging from 86.4 to 414.4MBq,) was adminis-
tered by intravenous bolus injection after the acquisi-
tion of a brain CT or MRI for attenuation correction,
depending on the scanner availability at each imaging
site. PET data reconstruction varied across imaging
sites and scanner types, but all included correction
for random noise, scatter and tissue attenuation.

All the research protocols for data acquisitions were
approved by local ethics committees and institutional
revision boards including the Institute of Psychiatry,
King’s College, London, England, research ethics com-
mittee; the South London and Maudsley/Institute of
Psychiatry NHS Trust, London-West London &
GTAC Research Ethics Committee; the Administration
of Radioactive Substances Advisory Committee
(ARSAC); the Hammersmith Research Ethics
Committee; the East of England-Cambridge East NHS
Research Ethics Committee; Seoul National University
Hospital, Seoul, Korea. Full details on approval protocol
numbers are reported on.12,13,15,18–20,28–31 Informed writ-
ten consent was obtained for all the participants and the
studies were conducted following the Declaration of
Helsinki and Good Clinical Practice.

Data management infrastructure

Our data management infrastructure was built using
XNAT imaging technology.32 A bespoken installation
of XNAT platform was deployed using the
Neuroimaging Analysis Network at the Centre for
Neuroimaging Sciences (King’s College London) to
store for each subject’s demographic, clinical informa-
tion and FDOPA PET imaging data. Representational
State Transfer (REST) Application-Program Interface
(API) was used to upload data.

For each subject, a scan imaging session was defined
by a minimum amount of data which included dynamic
FDOPA PET images (both attenuation-corrected and
not attenuation-corrected), together with an ancillary
file containing information regarding radiochemistry,
date and time of scanning, timing of the acquisition
and dynamic framing. Prior to storage in XNAT, the
data were anonymized, harmonized in neurological
convention, and corrected for radioisotope decay to
ensure consistency across the data (Supplementary
Figure 1). These features are quite standard in
modern neuroimaging PET scanners, but they were
not the standard for some of the oldest FDOPA PET
scans included in the historical archive.

XNAT includes the Container Service plugin, which
permits processes to be run on the stored data via
REST API, using the processing utilities available in
Docker containers.33 Taking advantage of this feature,
analytical pipelines can be integrated in XNAT, allow-
ing their automatic execution directly on the stored
data and the storage of the outcomes at scan level
(Supplementary Figure 1). An overview of the all the
software tools included in the platform is reported in
Supplementary Table 1.

Automated analysis pipeline

The analysis pipeline was developed to align with our
previous FDOPA imaging studies published by the
Psychiatric Imaging Group (King’s College London)
over the last two decades.28–31,34–36 In all these studies,
the analysis of FDOPA PET imaging data was per-
formed in MATLAB (Mathworks) and organised
using a set of in-house scripts, which were manually
executed and quality-controlled for each individual
scan.

The overall process of FDOPA PET data analysis
can be described as follows. First, dynamically non-
attenuated and attenuated FDOPA PET images are
inputted into the pipeline. The non-attenuated dynamic
images are motion corrected frame-to-frame to a single
reference frame with a linear transformation using
Statistical Parametric Mapping (SPM) realign func-
tion.37 The reference frame is chosen at 15min, as it
represents an optimum trade-off between signal-
to-noise ratio and radiotracer activity across all the
brain tissues for a bolus injection FDOPA brain PET
imaging scan (Supplementary Figure 2). The motion
information is then used to realign the attenuated
dynamic images, which are then summed together to
create a motion-corrected individual static PET image.
The information extrapolated during the motion cor-
rection step is used to quality control the data. This
includes the “total motion”, estimated from geometri-
cal realignment (i.e. combination of the translations in
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x, y and z directions and rotations in pitch, yaw and
roll) of the individual PET frames, and the “number of
spikes”, calculated as number of between-frames
realignments exceeding a predefined threshold (5mm,
corresponding to the minimal spatial resolution detect-
able with standard clinical PET scanners38) If one or
more spikes are detected, the scan is flagged with
potential motion artifacts as this could indicate a
potential miss-alignment with scan attenuation correc-
tion map (eigher CT-based or MR-based). A tracer-
specific template and atlas defining the striatum and
cerebellum are co-registered to each individual
motion-correct static PET image, using SPM 12
(https://www.fil.ion.ucl.ac.uk/spm/). To segment both
the basal ganglia (main area of activity for FDOPA
PET) and whole brain, two different atlases are used
to extract the radiotracer activity at region of interest
level: 1) an in-house Montreal Neurological Institute
(MNI)-based atlas including the whole striatum and
its limbic, associative, and sensorimotor functional
subdivisions as defined by Martinez et al;39 2) the
adult maximum probability brain atlas developed by
Hammers et al to quantify extrastriatal regions.40 An
overview of these regions is reported in Supplementary
Figure 3. The Gjedde-Patlak Graphical approach,41,42

with the cerebellum as reference region extracted as
defined in the Martinez atlas,39 is applied region-wise
and voxel-wise to quantify Kicer (unit 1/min), a kinetic
parameter used as a proxy of dopamine synthesis
capacity.27 The t* for this analysis was fixed to 20
minutes, accordingly with previous literature.12 Prior
to calculation of the Kicer parametric images, the
images are denoised using a Chambolle Total
Variation43 method. The parametric image for each
scan is finally normalised into MNI standard coordi-
nates using the participant’s PET summation image to
calculate the image transformation field (non linear
transformation). The FDOPA quantification is per-
formed at individual space in order to avoid any alter-
ation that might have been introduced with the
normalization. The Standardized Uptake Value Ratio
(SUVr) is also calculated as ratio of the tracer activity
to that in the reference region (i.e. mean cerebellar
FDOPA PET activity). The interval 60–75min after
the injection of the radiotracer is used for this analysis,
since in this time window the Gjedde-Patlak plot is
linear and used to derive Kicer.20,27

Starting from the available MATLAB code, a fully
automated version of this analysis pipeline was written
in Python using its standard libraries (NumPy, SciPy,
NiBabel, etc.), and integrated in XNAT. Specifically,
SPM functions were implemented using the Nipype
SPM interfaces, while for image denoising the
Chambolle Total Variation function from the scikit-
image package was used. Image quantification with

Patlak analysis was rewritten starting from the mathe-
matical formulation. An additional set of functions was
integrated with the system to extract demographic,
clinical, and analytical information in a summary
report associated to each scan, automatically created,
and stored in XNAT.

Validation of the automated data analysis pipeline
for FDOPA PET quantification

Comparison between automated and manual results. All the
historical FDOPA scans were automatically re-analysed
using the XNAT-based pipeline. A total sample of 521
scans was used to evaluate agreement between XNAT-
based and the already available MATLAB-based
results, using the same analysis settings.

Asssessment of test and retest reproducibility. Data from
two independent different datasets were used to test
XNAT-based pipeline reproducibility.

The first dataset comprised FDOPA PET test-retest
imaging data from 7 healthy controls, dynamically
acquired using an ECAT/EXACT3D: Siemens/CTI
(Knoxville, Tennessee) PET tomograph. Approximately
150MBq of 18F-DOPA was administered by bolus intra-
venous injection 30 seconds after the start of the PET
imaging. Data were acquired in emission mode for 95
minutes, for a total of 26 time-frames reconstructed
using a 3-dimensional reprojection algorithm. Full details
of the research protocol and subject inclusion criteria are
reported in the original reference.36

The second dataset comprised FDOPA PET imaging
data from 7 patients with psychosis before and after
placebo, dynamically acquired using a Siemens Hi-Rez
Biograph 6 PET scanner (Siemens, Erlangen, Germany)
in 3D mode. Approximately 150MBq of 18F-DOPA
was administered by bolus intravenous injection after
acquiring a CT scan for attenuation correction. PET
data were acquired in 32 frames of increasing duration
over the 95min scan (frame intervals: 8� 15 s, 3� 60 s,
5� 120 s, 16� 300 s).

Impact of motion-correction and atlas coregistration to kinetic

modelling. The effect of the detected number of spikes
during motion correction on the FDOPA quantifica-
tion was evaluated on all the data stored in XNAT,
using a linear mixed model implemented with Jamovi
(Version 2.0).

The effect of using the reliagned summed PET
(PETtoPET) or individual structural MRI data
(MRItoPET) for the atlas coregistration was investi-
gated on the patient test-retest dataset. The sensitivity
of dopamine synthesis capacity estimates and their
reproducibility to the atlas coregistration method
were evaluated in the striatal region and its
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subdivsions, as well as in extra-striatal regions (globus
pallidus, substantia nigra, thalamus, hippocampus,

amygdala, anterior cingulate cortex) which are known
to be involved in the dopamine pathways.

Identification of experimental and demographical
covariates for FDOPA PET imaging

To investigate the presence of potential confounding
factors to account in statistical analysis of FDOPA
PET imaging data, the baseline scans (no pre-scan

intervention) of healthy controls were selected from
the database together with their experimental and
demographic information. The final sample included
115 scans acquired from 3 different PET tomographs

(Siemens Biograph 6 Hi-Rez, Siemens Biograph
6TruePoint, ECAT/EXACT3D) with an injected
radioactivity below 200MBq and acquisition time of
95 minutes. The experimental variables included tomo-
graph type and radiochemistry measures (i.e. injected

radioactivity, injected cold mass, specific activity) and
the demographic variables included participant gender,
age and weight at the time of scanning. A similar anal-
ysis was then repeated on a subsample (N¼ 103 scans),

where the data were acquired using the Biograph PET
tomographs (Siemens Biograph 6 Hi-Rez, Siemens
Biograph 6 TruePoint) only.

Statistical methods

For statistical analysis, GraphPad Prism v9 for Mac
(GraphPad Software, La Jolla, CA) and SPSS (Version
27) were used. The Kicer estimates obtained from the
XNAT and MATLAB analysis pipelines were compared

using the Bland-Altman plot with 95% limits of agree-
ment.44 Correlation and mean absolute percentage differ-
ence between the two pipelines were also calculated for
the following six regions of interest (ROIs): whole stria-

tum, right striatum, left striatum, whole sensorimotor
subdivision, whole limbic subdivision, and whole associa-
tive subdivision. These ROIs are commonly the primary
areas of analysis in PET imaging dopamine studies.39,45

For both XNAT and MATLAB pipelines, test-retest reli-
ability was estimated with the Intraclass Correlation coef-
ficient (ICC) using a 2-way mixed-model in SPSS (version
27, IBMVR ), while the within-subject variation was calcu-
lated as the absolute percentage test-retest difference.36

A p-value <0.05 was considered statistically significant.
Similar statistical methods were also used to evaluate the
effect of atlas coregisgtration on the reproducibility of the
FDOPA quantification.

To investigate the effect of demographic and exper-
imental variables on dopamine measures, a multi-linear
regression model analysis was run with the Ki

cer and

SUVr of the whole striatum as dependent variable and

both experimental and demographic variables as

covariates.

Results

Database

The final infrastructure included 892 FDOPA PET

scans from 23 different studies. Both primary and sec-

ondary data were organized following the same struc-

ture and naming convention, which facilitates data

management and ensures homogeneity across the data-

base. After removing commercials studies for which we

did not have permission for data reuse, the infrastruc-

ture consisted of 792 FDOPA PET scans from 666

individuals (female 33.9%, healthy controls 29.1%)

collected from four different imaging sites between

2004–2021 (Table 1). The mean age of the participants

was 28.7 years (range¼ 18–65, S.D.¼ 8.5) with a mean

weight of 75.9 kg (range¼ 38–136, S.D.¼ 17.3). All

scans were acquired from five separate tomographs

(Siemens Biograph 6 Hi-Rez, Siemens Biograph 40

TruePoint, Siemens Biograph 6 TruePoint, ECAT/

EXACT3D, GE SIGNA PET/MR) with a mean

injected radioactivity of 188.2MBq (range¼ 86.4–

414.4, S.D.¼ 80.1).
All the scans were manually quality controlled in

order to identify possible artifacts. The criteria used

were: 1) plausible FDOPA PET signal distribution

(identified by visual inspection), where the areas with

highest PET uptake match anatomical regions with

highest dopamine content, 2) max between frame

motion realignment <8mm (as derived by between-

frame image realignment), 3) adequate anatomical

atlas co-registration (identified by manually checking

the striatal and cerebellar anatomical masks on individ-

ual FDOPA PET summed image).46

The Kicer distributions across the brain are pre-

sented in Figure 2. Among the ROIs, the highest esti-

mates were reported in the whole striatum (Kicer

mean�SD: 0.0137� 0.0015min�1; min–max: 0.0102–

0.0246min�1//SUVr mean�SD: 2.30� 0.22; min-max:

1.71–.11). Outside the basal ganglia, the substantia

nigra showed the highest signal (Kicer mean�SD:

0.0072� 0.0012min�1; min–max: �0.0019–0.0122min�1//

SUVr mean�SD: 1.53� 0.15; min–max: 0.822.49) fol-

lowed by the pallidum, the amygdala, the thalamus and

the prefrontal cortex. The occipital lobe, which is

sometimes used as reference region for FDOPA PET

quantification instead of the cerebellum,47 showed

the lowest estimates in ratio to the cerebellum (Kicer

mean�SD: 0.0005� 0.0004min�1; min-max: �0.0009–

0.0041min�1//SUVr mean�SD: 0.97� 0.06; min–max:

0.79–1.72).
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Validation of the automated data analysis pipeline

for FDOPA PET quantification

Comparison between automated and manual results. There

was consistency between the XNAT and MATLAB

pipeline, with a Kicer mean relative difference of

3.0� 5.5% and a Pearson’s correlation of 0.86.

About 71% of the scans reported Kicer relative differ-

ences less than 5%.
In the test-retest datasets, the Bland-Altman plot

confirmed good agreement between the XNAT and

MATLAB pipelines for all the parameters, levels of

analysis, datasets, and regions of interest. In the

whole striatum, both XNAT-based Kicer and SUVr

estimates are higher than the corresponding

MATLAB ones within 5% mean relative difference
(Figure 3). We found a significant correlation between
XNAT vs MATLAB relative differences and the magni-
tude of dopamine synthesis capacity estimates in
patients, while the same correlation was not significant
in the healthy control group. Given our relatively small
sample size, any conclusions regarding the existence of
true group differences in these correlations must be made
with caution. In addition, using the Welch’s test we found
a significant higher Kicer and SUVr variability in the
healthy control group (p< 0.0001 and p¼ 0.0322,
respectively), which could be possibly explain by the dif-
ferent technologies and performances of the PET tomo-
graphs used. Consistently with the Bland-Altman
analysis, XNAT-MATLAB Pearson’s correlation

Figure 2. Distribution of Kicer and SUVr. Distribution of the Kicer (on the left) and SUVr (on the right) of the main region of interests
(occipital lobe, prefrontal cortex, thalamus, amygdala, pallidum, substantia nigra, whole striatum) for all the subjects stored in XNAT.

Table 1. Demographic, experimental and imaging site information of the data (excluding the
commercial studies) stored in XNAT.

Attributes

Imaging Sites

Invicro, London, 455

Imperial IMANET PET centre, London 190

Wolfson Molecular Imaging Centre, Manchester 33

Seoul National University Bundang Hospital, Republic of Korea 114

Controls (%) 195 (29.1)

Age year, mean (min-max) 28.7 (18–65)

Weight kg, mean (min-max) 75.9 (38–136)

Gender female (%) 243 (33.9)

Tomograph

Hi-Rez Biograph 6 (voxel size¼ 2.05� 2.05� 2mm) 366

Biograph 40 Truepoint (voxel size¼ 1.59� 1.59� 1.5mm) 113

Biograph TruePoint 6 (voxel size¼ 2.05� 2.05� 2mm) 70

ECAT/EXACT3D (voxel size¼ 2.1� 2.1� 2.43mm) 49

SIGNA PET/MR (voxel size¼ 2� 2.05� 2mm) 19

Injected Radioactivity MBq, mean (min-max) 188.2 (86.4–414.4)
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ranges from 0.64 to 0.99 for Kicer, and from 0.79 to

1.00 for SUVr, with the lowest values for the limbic

subvidision and the highest for the whole striatum/

associative subdivision (Supplementary Table 2). The

mean absolute difference between the two pipelines

ranges from 3.4% to 9.4% for Kicer, and from 2.5%

to 12.4% for SUVr (Supplementary Table 2).

Assessment of test-retest reproducibility. In terms of test-

retest reliability and within-subject variation, the auto-

mated pipeline provided reproducibility and reliability

of FDOPA PET in the striatum and its subdivisions

(Figures 4 and 5) comparable to the ones previously

described.36 Averaging the results from healthy con-

trols and patients, the ICC for the Kicer estimates

ranged from 0.421 for the limbic subdivision to 0.810

for the associative subdivision. The %VAR for the

Kicer estimates ranged from 6.1 for the right striatum

to 12.3 for the limbic subdivision. For the SUVr, the

ICC ranged from 0.865 for the limbic subdivision to

0.965 for the right striatum, while %VAR ranged from

3.0 for the right striatum to 5.1 for the whole limbic

subdivision.

Impact of motion-correction and atlas coregistration to kinetic

modelling. Analysis of motion correction statistics

highlighted that 6% of the scans (N¼ 46/792) had at

least one motion spike, and 2.8% (N¼ 22/792) two or

more spikes. The 85% of the total scans were patients.

The mean and standard deviation of the motion

detected for the healthy controls and patients (10.9�
6.6mm and 13.8� 10.9mm, respectively) were signifi-

cantly different using the Mann-Whitney test.
There was a significant effect of the spikes on the

Kicer estimates (F¼ 8.84, p< 0.001). Post-hoc tests

showed that the Kicer significantly decreases for scans

with two or three spikes (p< 0.001) (Supplementary

Figure 4, graph on the left). Similarly, the SUVr signif-

icantly decreases for scans with five spikes (p< 0.001)

(Supplementary Figure 4, graph on the right).
Analysis of the impact of atlas coregistration to

kinetic modelling (Supplementary Table 3) showed

Figure 3. Bland-Altman. Plots comparing Kicer and SUVr estimates of the whole striatum with the XNAT-based and MATLAB-based
pipelines, for both Dataset 1 and Dataset 2 [Difference (MATLAB – XNAT) vs. average]. The bias and 95% limits of agreement are
reported in each graph.
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that there is no difference in the Kicer estimates in the

striatum and its subdivisions when using PETtoPET

coregistration as compared with MRItoPET (striatal

PETtoPET Kicer ICC¼ 0.884, striatal MRItoPET Kicer

ICC¼ 0.831). On the other side, for the extrastriatal

regions, MRItoPET coregistration signaficantly

improved Kicer reprocibibility particularly in the globus

pallidus (PETtoPET Kicer ICC¼ 0.259, MRItoPET Kicer

ICC¼ 0.733), substantia nigra (PETtoPET Kicer

ICC¼ 0.051, MRItoPET Kicer ICC¼ 0.825), amygdala

(PETtoPET Kicer ICC¼ 0.402, MRItoPET Kicer

ICC¼ 0.885) and anterior cingulate cortex (PETtoPET

Kicer ICC¼ 0.609, MRItoPET Kicer ICC¼ 0.823). The

%VAR for the Kicer estimates ranged from 5.4 for the

hippocampus to 14.6 for the substantia nigra when using

PETtoPET coregistration, and it ranged from 4.1 for the

hippocampus to 13.2 for the thalamus when using the

MRItoPET coregistration.

Identification of demographical and experimental

covariates for FDOPA PET imaging

There was a significant relationship between gender

and striatal Kicer estimates (F(1,109)¼10.7,

Figure 4. Test-retest intraclass correlation coefficient. Comparison of ICC between the XNAT (blue) and MATLAB (orange)
pipelines for Kicer and SUVr of the whole striatum for both Dataset 1 and Dataset 2.
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p< 0.001), with dopamine synthesis capacity being

higher in women than men (marginal means, women

Kicer: 0.01353� 0.00147min�1, men Kicer: 0.01270�
0.00131min�1, effect size¼ 2.056E-5). Age, weight,
injected radioactivity, injected cold mass, specific activ-

ity and tomograph were not significantly associated

with striatal Kicer. A similar association between

FDOPA PET and gender was also found when consid-
ering the subsample of scans (N¼ 103) acquired only

using the Siemens Biograph tomograph only

(F(1,98)¼ 10, p¼ 0.002, women Kicer: 0.01354�
0.00145min�1, men Kicer: 0.01268� 0.00130min�1)

(Table 2). In contrast, none of the experimental and

demographic variables were significantly associated

with SUVr (Table 2).

Discussion

In this study we characterized a standardised infra-

structure for FDOPA PET neuroimaging to quantify

brain dopamine function in living human brains. The

platform was built from a harmonized FDOPA repos-

itory, integrating clinical and demographic informa-

tion, together with FDOPA PET data. To our

Figure 5. Test-retest mean percentage variability. Comparison of mean and 95% confidence intervals of %VAR between the XNAT
(blue) and MATLAB (orange) pipelines for Kicer and SUVr of the whole striatum for both Dataset 1 and Dataset 2.
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knowledge, this is the largest dataset of this type to
date, including hundreds of scans with a very compa-
rable acquisition protocol. The automated analysis
framework for FDOPA PET quantification, directly
embedded in the platform, ensured full control on the
analytical process and replicable results on the stored
data, confirming the good replicability and reproduc-
ibility of the FDOPA PET measures in the striatum
and its subdivisions.

Data harmonisation

All the FDOPA PET imaging data were acquired using
similar methods, which facilitated their integration in a
unique storage infrastructure. However, the collection
of FDOPA PET data from multicenter studies and
acquired with multi generation of PET scanners with
more 20 years of technological differences inevitably
led to inconsistencies in the data structure and format
used. In our cases most of the issues were linked to the
different time point of data acquisition and scanner
manufactures used, which led to different image for-
mats (e.g. dicom, analyze, nifty, ecat v7), different
data decay correction and attenuation correction and
different voxel size. To overcome these differences, the
data were renamed using the same file name conven-
tion and manually converted to the same format prior
uploading them in the XNAT platform, following same
PET imaging standard as implemented in MIAKAT
(e.g.neurological convention, 2mm isotropic voxelsize,
data tracer decay corrected).48 A rigid name conven-
tion was also used for the processed data obtained from
the analysis pipeline, to ensure traceability across the
entire dataset. This solution has been bespoken for the
particular case study; however other name conventions

might have been equally effective. The brain PET imag-
ing community has lacked data format standards, and
only very recently it has been recognised the need of
more standardized data structure.49,50 The hope is that
initiatives like PET-BIDS will address the heterogene-
ity of data organization by following the FAIR princi-
ples (findability, accessibility, interoperability, and
reusability).51

Validation of the automated analysis framework for
FDOPA PET quantification

Consistently with our research objectives, the automat-
ed pipeline of analysis demonstrated to provide robust
and replicable results consistent with current stardard
of FDOPA brain PET data analyisis.

The percentage difference in the Kicer quantification
between the manual and automated pipeline was within
the acceptable threshold of 10% for 94% of the data.
The percentage difference can be partially explained by
the intrinsic complexity of the neuroimaging data anal-
ysis.52 In this study, the XNAT-based pipeline was
implemented from the available MATLAB code, but
reproducing the exact results when using different ana-
lytical pipelines can be quite challenging due to the lack
of standardized analytical pipelines and the lack of
complete description of the used methodologies.26

The programming frameworks used, the computer
environment and the choice of the pre-processing strat-
egies are just few of the possible reasons behind differ-
ent analytical outcomes. The discrepancies in the
FDOPA quantification between the MATLAB and
XNAT pipelines found in this study might come
primarily from the pre-processing steps, which
include motion correction, atlas coregistration and

Table 2. Association of demographical and experimental variables with Kicer and SUVr of whole striatum region.

Dependant variable: Whole striatum Kicer

Full sample (n¼ 115) With Siemens biograph only (n¼ 103)

Pearson r T p Pearson r t p

Age �0.082 �1.448 0.151 �0.143 �1.449 0.151

Weight 0.002 1.015 0.312 �0.028 0.960 0.339

Gender �0.289 �3.267 <0.001* �0.299 �3.162 0.002*

Injected radioactivity 0.025 0.005 0.996 0.024 0.053 0.958

Tomograph 0.059 1.028 0.306 0.053 0.796 0.428

Full sample (n¼ 115) With Siemens biograph only (n¼ 103)

Dependant variable: Whole striatum SUVr Pearson r T p Pearson r t p

Age �0.116 �1.072 0.286 �0.040 �0.206 0.837

Weight 0.011 0.679 0.498 0.017 0.575 0.567

Gender �0.094 �1.102 0.273 �0.108 �1.166 0.246

Injected radioactivity 0.003 0.303 0.762 0.126 1.383 0.170

Tomograph �0.057 �0.117 0.907 0.039 0.768 0.444

Significance is indicated with asterisks.
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noise filtering. It is well-known that pre-processing
steps are a critical part of a PET analysis framework,
and small differences can impact the results.53 In sup-
port of this aspect, we confirmed that the same Kicer

and SUVr estimates were obtained when MATLAB-
based preprocessed data were given in input to the
XNAT-based pipeline (results not shown). It is also
relevant to note that the two pipelines use different
programming languages, MATLAB and Python, and
different software packages, introducing another
source of discrepancies in the data quantification.
Unfortunately these are third-party components that
are difficult to be controlled for. Hence the importance
of keeping track of the software, libraries and packages
used, as well as of all the steps used in the analysis
framework, to ensure replicability and reproducibility.

The FDOPA Kicer and SUVr measures obtained
with the XNAT pipeline have reproducibility and reli-
ability in the striatum and its subdivisions comparable
to the ones presented in Egerton et al in terms of test-
retest variability and within-subject variation,36 except
for the limbic subdivision. The limbic subdivision
showed in fact high Kicer variability and low ICC
with the XNAT pipeline compared to the MATLAB
for the healthy controls. These discrepancies in the
Kicer quantification could be in part explained by the
image pre-processing (motion correction, segmentation
and coregistration). The limbic subdivision is a small
region, more susceptible to motion artefacts and partial
volume effects, and this can affect the amount of activ-
ity measured.54 The reproducibility and replicability of
dopamine synthesis capacity estimates in the striatum
and its subdivisions were also insensitive to the type of
atlas coregistration method used. This was not the case
for the extrastriatal regions, for which only the use of
MRI mediated coregistration allowed to obtained sta-
tistically reproducible estimates. This is well-known in
PET imaging analysis, for which structural MRI are
typically used to facilitate the tissue brain segmenta-
tion, otherwise difficult when using only PET-based
imaging data.54

Technical and biological factors impacting FDOPA
PET quantification

The availability of the proposed dataset allowed to
characterise the distribution of the FDOPA PET
signal across regions. The Kicer estimates in the whole
striatum are the highest, ranging from 0.0102 to
0.0246min�1 across individuals. In contrast to some
recently published studies,55,56 Kicer estimates smaller
than 0.010min�1 were only detected in scans with high
head motion parameters, and rejected as outliers.
Given the association between motion parameters
and dopamine synthesis estimates, it becomes

extremely important to physically limit head move-
ments during the image acquisition. However, this
can be uncomfortable and practically challenging.
Alternative strategies to control and correct for data
with high motion might be necessary, expecially in
long acquisition. Usually the approach used to detect
and exclude data affected by motion is study/site
dependent and this can introduce further discrepancies
in the results, which become hardly comparable. In
addition, motion in patients and controls are different
and this could have an effect in cross sectional studies.
It is important to note that we assumed our data to
have satisfactory alignment between transmission (CT
or MRI) and emission scans. Before any type of anal-
ysis, all the PET scans had to pass a quality control
step where we looked for the presence of image arte-
facts due to misregistration of PET data with transmis-
sion scans. In case of major issues, individual PET
frames were realigned to the attenuation scans offline
and re-input into the scanner for new reconstruction.
Moreover, our protocol allowed to reacquire a second
attenuation scan when the acquisition was interrupted
halfway through (i.e. the participant needs to go to the
toilet).

The type of analysis pipeline is not the only factor
that leads to FDOPA PET differences between pub-
lished studies: in Eisenberg et al,56 for example, the
study participants did not receive entacapone prior imag-
ing acquisition, which is known to have a significant
effect on FDOPA PET quantification both in animal57

and humans.58,59 It would be interesting to analyse
FDOPA PET imaging without pre-administration of
entacapone but unfortunately these data are not available
as part of our repository. However, it is worth noting that
differences in the acquisition protocol would not impact
the proposed analytical framework, even if differences in
signal-to-noise ratio across protocols could affect the
comparability of the estimates of dopamine synthesis
capacity obtained with other protocols. Differences in
timing of acquisition60 are an additional source of vari-
ability to consider: kinetic parameters quantified by
shorter PET acquisitions (e.g. 60 minutes) do not return
the same estimates.20,61 Intermittent rather than continu-
ous acquisition have also been proposed, but without a
direct comparison with standard approaches the interpre-
tation remains difficult.60

A standardized protocol of data analysis allows to
reduce variability61 across studies. For example, the use
of apparently “innocent” different experimental set-
tings or analytical options, such as the use of different
atlases for defining the reference region can introduce
variability, which can be problematic if collinear with
the effects of interest, i.e. different impact on estimates
obtained from patients and controls (Supplementary
Table 4). Taken together, these factors highlight the

1296 Journal of Cerebral Blood Flow & Metabolism 43(8)



importance of using a standardised acquisition proto-
col as well as common data analysis platform to com-
pare results across studies.

The finding of a gender effect on the FDOPA meas-
ures, with higher Kicer and SUVr in female than men, is
in agreement with established gender differences in brain
dopaminergic activity.62,63 Such differences might be
explained by the effect of gonadal hormones, which mod-
ulate behavioral and neurochemical indices of activity in
the striatum. Recent rodents studies have shown that, in
female rats, estrogen increases presynaptic dopaminergic
activity,64 while a higher density of the striatal dopamine
transporter is found in male rats.65,66 If such findings
translate to humans, they may explain some of the differ-
ences found in our study. Recently both higher diffuse
cortical and lower subcortical FDOPA uptake were
found in women compared to man.67 The authors
linked these differenes to multiple factors including cere-
bral blood flow and effects of estrogen to cerebral metab-
olism.67 Despite gender is an important biological
variable for different mental disorders, its influence on
FDOPA uptake remains poorly known. Having a more
comprehensive understanding on how it affects dopamine
function would be of particular interest for the future
development of individualized treatment response
algorithms.68

Limitations

In this study the data were manually quality controlled
by visually inspecting the raw FDOPA tracer time-
activity course, and the Kicer estimates and motion
parameters obtained from the FDOPA quantification
pipeline. This type of analysis is vulnerable to incon-
sistencies due to between-operator differences.
Automatic pipelines for data quality control tailored
to investigate specific characteristics of the data collect-
ed and possible mis-alignement of the data from a ref-
erence space would reduce such issues,46 but validated
solutions are still missing.

Data provenance, defined as the documentation of
where the data comes from and the processes and
methodology by which it was produced, is fundamental
to ensure full reproducible experimental and analytical
processes.69 The pipeline for FDOPA PET quantifica-
tion, embedded in the platform, will need to be
supported by documentation of the whole analytical
process to further support and ensure full reproducibil-
ity of the scientific results. In terms of harmonization,
the data were renamed using the same file name con-
vention and manually converted to the same format to
guarantee homogeneity across the database. However,
the future aim is to use a unique standardized data
format and structure, such as PET-BIDS, which
would facilitate the integration of data from different

sources and sites and ensure a more reliable data
harmonization.

The analysis pipeline implemented in this work fol-
lows the pipeline described in the variety of FDOPA
imaging studies published by the Psychiatric Imaging
Group (King’s College London). The pipeline could be
further improved by integrating information from
structural data like T1w MRI, which were not yet
available for all the FDOPA PET scans, which could
be used to enhance the atlas coregistration step, as
shown for the patient test-retest dataset. However,
this study is only based on PET coregistration, since
additional MRI data were available only for a restrict-
ed number of FDOPA PET scans.

XNAT was chosen as the platform for the imple-
mentation of the proposed infrastructure and no
other alternatives were considered. XNAT was estab-
lished in 2006 and since then it has been extensively
used by research groups to host and collect clinical
and other data associated with the initial raw imaging
studies, enabling a broad range of collaborative
research.70 The system can be easily extended to other
applications and new XNAT instances can be tailored to
the different neuroimaging biomarkers, and the corre-
sponding analytical methods can be integrated as
automatic pipelines. However, XNAT is strongly
imaging-driven and struggles to capture the variety
and complexity of non-imaging data that are often
acquired in modern experimental medicine studies.
This information is important and could be integrated
with neuroimaging data to provide a deeper individual
phenotyping. The integration of this information in a
unique system would permit to create a patient-centric
platform, moving towards precision medicine.

In terms of analysis of the demographical and exper-
imental covariates, only gender showed a significant
effect on FDOPA measures. Whether this is a true
effect or rather reflects differences in tracer metabolism
or intravascular activity between genders, it is some-
thing our data cannot yet fully explain. Future studies
attempting to replicate this finding and including the
measurement of metabolites in both plasma and brain
tissue would be important to clarify whether the effect
of gender we report here is due to differences in sys-
temic rather than central dopamine synthesis and
metabolism. In addition, Participants included in the
dataset had a limited rage of age variation [18–65
years], with the majority being situated between 18
and 30 years old. Including data from older cohorts
will be a necessary step to more robustly explore a pos-
sible association between age and the FDOPA PET
signal.

In addition, we modelled the effect of PET tomo-
graph as covariate to account for the cumulative effect
of differences among datasets in aspects of the PET
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physics (e.g. reconstruction, attenuation correction,

sensitivity of scanners, etc), without exploring the

effect of each factor separately.

Conclusions

This study presents an automatic pipeline for FDOPA

PET quantification, which has been validated on a

unique harmonized FDOPA PET repository. The

availability of such large FDOPA PET repository has

permitted to investigate the reproducibility and reliabil-

ity of the analytical method, as well as to study the

effect of processing parameters, demographic and

experimental variables on the FDOPA quantification.

The proposed robust analytical framework aims to

facilitate FDOPA PET imaging implementation

across sites and research institutions and to boost the

use of FDOPA PET as a clinical biomarker in psycho-

sis and other mental disorders.
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