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Abstract. In this paper we study a class of degenerate second-order elliptic

differential operators, often referred to as Fleming-Viot type operators, in the
framework of function spaces defined on the d-dimensional hypercube Qd of

Rd, d ≥ 1.
By making mainly use of techniques arising from approximation theory, we

show that their closures generate positive semigroups both in the space of all

continuous functions and in weighted Lp-spaces.
In addition, we show that the semigroups are approximated by iterates

of certain polynomial type positive linear operators, which we introduce and

study in this paper and which generalize the Bernstein-Durrmeyer operators
with Jacobi weights on [0, 1].

As a consequence, after determining the unique invariant measure for the

approximating operators and for the semigroups, we establish some regularity
properties of them along with their asymptotic behaviours.
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1. Introduction. The main aim of this paper is to study the class of degenerate
second-order elliptic differential operators defined on the d-dimensional hypercube
Qd of Rd, d ≥ 1, by

A(u)(x) =

d∑
i=1

xi(1− xi)
∂2u

∂x2i
(x) + (ai + 1− (ai + bi + 2)xi)

∂u

∂xi
(x)

for every u ∈ C2(Qd) and x= (x1, . . . , xd) ∈ Qd, where a1, . . . , ad, b1, . . . , bd ∈ R,
ai > −1 and bi > −1 for all i = 1, . . . , d.

The operators defined above arise in the theory of Fleming-Viot processes applied
to some models of population dynamics which, however, usually take places in the
framework of d-dimensional simplices, d ≥ 1 (see, e.g., [1], [2], [5, Section 5.8], [7],
[8], [9], [14] and the references therein).

Due to their intrinsic interest, more recently an increasing attention has been
turned to them also in the setting of hypercubes (see, e.g., [5, Section 5.8], [6], [8],
[13], [16] and the references therein).

In this paper we give some further contributions to this research area by heavily
using techniques arising from approximation theory. The methods we employ allow
to show that these operators generate positive semigroups both in the space of all
continuous functions and in weighted Lp-spaces with respect to the Jacobi weights
determined by the coefficients ai and bi, i = 1, . . . , d.

In addition, we disclose several qualitative properties of the generated semi-
groups.

As a first step we introduce a sequence of polynomial type positive linear oper-
ators which generalize the Bernstein-Durrmeyer operators with Jacobi weights on
[0, 1]. Among other things, we show that these operators constitute an approxima-
tion process for continuous functions as well as for weighted Lp-functions.

By using the Trotter-Schnabl approximation theorem, we show that their closures
generate positive semigroups which, in turn, are approximated by iterates of the
above mentioned positive operators.

As a consequence, after determining the unique invariant measure for the approx-
imating operators and for the semigroups, we describe their asymptotic behaviour
by also evaluating the rate of convergence. Finally, we show that they preserve
the class of Hölder continuous functions and the one of those continuous functions
which are convex with respect to each variable.

2. Preliminaries and notation. We begin by recalling some basic notions about
invariant measures which will play a key role within the whole paper. For more
details on such a subject, and on its relationship with ergodic theory and asymptotic
formulae, we refer the interested reader to [8], [15].

Let X be a compact Hausdorff space and let BX be the σ-algebra of all Borel
subsets of X; we denote by M+(X) (resp., M+

1 (X)) the cone of all regular Borel
measures on X (resp., the cone of all regular Borel probability measures on X).

If µ ∈ M+(X) and 1 ≤ p < +∞, let us denote by Lp(X,µ) the space of all
(the equivalence classes of) Borel measurable real-valued functions on X which are
µ-integrable in the pth power. The space Lp(X,µ) is endowed with the natural
norm

‖f‖p :=

(∫
X

|f |p dµ
)1/p

(f ∈ Lp(X,µ)).
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As usual, the symbol C(X) indicates the linear space of all continuous real-valued
functions on X. C(X) will be endowed with the uniform norm ‖ · ‖∞, with respect
to which it is a Banach space.

A Markov operator T on C(X) is a positive linear operator T : C(X) → C(X)
such that T (1) = 1, where the symbol 1 stands for the constant function of constant
value 1 on X.

By the Riesz representation theorem, for every x ∈ X there exists µx ∈M+
1 (X)

such that

T (f)(x) =

∫
X

f dµx (f ∈ C(X)).

By applying the Hölder inequality to each µx, it follows that

|T (f)|p ≤ T (|f |p) (f ∈ C(X), p ∈ [1,+∞[). (1)

It is well-known that every Markov operator T on C(X) admits at least one
invariant probability measure, i.e., a measure µ ∈M+

1 (X) such that∫
X

T (f) dµ =

∫
X

f dµ for every f ∈ C(X) (2)

(see [15, Section 5.1, p. 178]).
Accordingly, on account of (1), if µ is an invariant measure for T , then for every

f ∈ C(X) and p ∈ [1,+∞[,∫
X

|T (f)|p dµ ≤
∫
X

T (|f |p) dµ =

∫
X

|f |p dµ; (3)

hence, T extends to a unique bounded linear operator Tp : Lp(X,µ) → Lp(X,µ)
such that ‖Tp‖ ≤ 1. Furthermore, Tp is a positive operator, since C(X) is a sublat-
tice of Lp(X,µ); moreover, if 1 ≤ p < q < +∞, then Tp = Tq on Lq(X,µ).

If X is a compact subset of Rd, d ≥ 1, the symbol C2(X) stands for the space of
all real-valued continuous functions on X which are twice-continuously differentiable
on the interior of X and whose partial derivatives of order ≤ 2 can be continuously
extended to X. For u ∈ C2(X) and i, j = 1, . . . , d, we shall continue to denote by
∂u
∂xi

and ∂2u
∂xi∂xj

the continuous extensions to X of ∂u
∂xi

and ∂2u
∂xi∂xj

.

If A is a differential operator on C2(X), a measure µ ∈ M+
1 (X) is said to be

infinitesimally invariant for A if, for every u ∈ C2(X),∫
X

A(u) dµ = 0.

In what follows, we shall also fix some additional notation.
Let γ = (γ1, . . . , γd) ∈ Rd, d ≥ 1. If x = (x1, . . . , xd) ∈ Rd, xi > 0 for every

i = 1, . . . , d, we set

xγ :=

d∏
i=1

xγii .

For x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd, we write x ≤ y if xi ≤ yi for every
i = 1, . . . , d.

Let j = (j1, . . . , jd), k = (k1, . . . , kd) ∈ Nd be two multi-indices such that k ≤ j;
we set (

j

k

)
:=

d∏
i=1

(
ji
ki

)
.
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We also set 0d := (0, . . . , 0), for every n ≥ 1, nd := (n, . . . , n) and

v1 := (1, 0, . . . , 0), . . . , vd := (0, . . . , 0, 1). (4)

All the results of this paper concern function spaces defined on the d-dimensional
hypercube Qd := [0, 1]d, d ≥ 1.

In particular, we consider the space

Lip(Qd) :=

f ∈ C(Qd) | |f |Lip := sup
x,y∈Qd

x 6=y

|f(x)− f(y)|
‖x− y‖1

< +∞

 (5)

and, for M > 0,

Lip(M, 1) := {f ∈ Lip(Qd) | |f(x)− f(y)| ≤M‖x− y‖1} , (6)

where ‖ · ‖1 is the norm on Rd defined by ‖x‖1 :=
∑d
i=1 |xi|, for every x =

(x1, . . . , xd) ∈ Rd.
More generally, given 0 < α ≤ 1, we shall denote by Lip(M,α) the subset of

all Hölder continuous functions on Qd with exponent α and constant M , i.e., those
f ∈ C(Qd) such that

|f(x)− f(y)| ≤M‖x− y‖α1 for every x, y ∈ Qd. (7)

Finally, we denote by Pm the linear subspace generated by the polynomials on
Qd of degree ≤ m.

3. A generalization of Bernstein-Durrmeyer operators with Jacobi wei-
ghts on the hypercube. In this section we introduce and study a sequence of pos-
itive linear operators acting on weighted Lp-spaces. These operators map weighted
Lp-functions into polynomials on Qd and generalize the Bernstein-Durrmeyer oper-
ators with Jacobi weights on [0, 1] (see [7], [8], [11], [12], [18], [20]).

Although we are mainly interested in the role which they play in the approxima-
tion of the semigroups we shall investigate in the subsequent section, it seems that
these operators also have an interest on their own as an approximation process for
continuous functions as well as for weighted Lp-functions.

From now on fix a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Rd with ai > −1 and
bi > −1 for all i = 1, . . . , d. Let us denote by µa,b ∈ M+

1 (Qd) the absolutely
continuous measure with respect to the Borel-Lebesgue measure λd on Qd with
density the normalized Jacobi weight

wa,b(x) :=
xa(1− x)b∫

Qd
ya(1− y)b dy

(x ∈ Qd). (8)

Moreover, for every n ≥ 1, consider the operator Mn : L1(Qd, µa,b) → C(Qd)
defined by setting, for every f ∈ L1(Qd, µa,b) and x ∈ Qd,

Mn(f)(x) :=
∑
h∈Nd

0d≤h≤nd

ωnd,h(f)

(
nd
h

)
xh(1d − x)nd−h,

(9)
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where, for every n ≥ 1 and h = (h1, . . . hd) ∈ Nd, 0d ≤ h ≤ nd,

ωnd,h(f) :=
1∫

Qd
yh+a(1d − y)nd−h+b dy

∫
Qd

yh+a(1d − y)nd−h+bf(y) dy

=

d∏
i=1

Γ(n+ ai + bi + 2)

Γ(hi + ai + 1)Γ(n− hi + bi + 1)

∫
Qd

yh+a(1d − y)nd−h+bf(y) dy,

(10)

Γ(u) (u ≥ 0) being the classical Euler Gamma function.
Clearly, the restriction of each Mn to C(Qd) is a Markov operator on C(Qd).
In order to discuss the main properties of the operators Mn, we briefly examine

the case d = 1, i.e., the classical Bernstein-Durrmeyer operators with Jacobi weights
on [0, 1] (see [11]).

Consider a > −1, b > −1. Then, for every ϕ ∈ L1([0, 1], µa,b), n ≥ 1 and
x ∈ [0, 1], set

Mn,a,b(ϕ)(x) :=

n∑
h=0

ωn,h(ϕ)

(
n

h

)
xh(1− x)n−h, (11)

where

ωn,h(ϕ) :=
Γ(n+ a+ b+ 2)

Γ(h+ a+ 1)Γ(n− h+ b+ 1)

∫ 1

0

th+a(1− t)n−h+bϕ(t) dt. (12)

For every n ≥ 1, consider the positive linear operator Dn,a,b : L1([0, 1], µa,b) →
C([0, 1]) defined, for every ϕ ∈ C([0, 1]) and x ∈ [0, 1], as

Dn,a,b(ϕ)(x) :=
Γ(n+ a+ b+ 2)

Γ(nx+ a+ 1)Γ(n− nx+ b+ 1)

∫ 1

0

tnx+a(1− t)n−nx+bϕ(t) dt (13)

(see [9, formula (4.6)]). Then

Mn,a,b(ϕ) = Bn(Dn,a,b(ϕ)), (14)

where

Bn(ψ)(x) :=

n∑
k=0

(
n

k

)
xk(1− x)n−kψ

(
k

n

)
(ψ ∈ C([0, 1]), 0 ≤ x ≤ 1) is the classical Bernstein polynomial operator of order n
on C([0, 1]) (see, e.g. [4, pp. 218-220]).

In particular, if m,n ≥ 1 and em(t) = tm, t ∈ [0, 1], it is easy to prove that

Dn,a,b(em) =
Γ(n+ a+ b+ 2)

Γ(m+ n+ a+ b+ 2)
(a+ 1 + ne1) · · · (a+m+ ne1), (15)

i.e., Dn,a,b(em) is a polynomial of degree at most m.
Hence

Mn,a,b(em) = Bn(Dn,a,b(em)) (16)

is a polynomial of degree at most m, since it is well-known that the Bernstein
operators map polynomials into polynomials of the same degree.

In particular (see [19, Section 25]), the following result holds true.

Proposition 1. For every n ≥ 1,

Mn,a,b(e1) =
a+ 1 + ne1
n+ a+ b+ 2

, (17)

and

Mn,a,b(e2) =
(a+ 1)(a+ 2) + n(2a+ 3)e1 + n(n− 1)e2

(n+ a+ b+ 2)(n+ a+ b+ 3)
. (18)
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Moreover, for every ϕ ∈ C([0, 1]),

lim
n→∞

Mn,a,b(ϕ) = ϕ uniformly on [0, 1]. (19)

Finally, an asymptotic formula holds for the operators Mn,a,b, n ≥ 1. More
precisely (see [19, formula (25-13)]), for every u ∈ C2([0, 1]),

lim
n→∞

n(Mn,a,b(u)(x)− u(x)) = (a+ 1− (a+ b+ 2)x)u′(x) + x(1− x)u′′(x) (20)

uniformly w.r.t. x ∈ [0, 1].
Coming back to the general case d ≥ 1 and to operators (9), we remark that, if

f =
d∏
i=1

fi ◦ pri, fi ∈ C([0, 1]) for every i = 1, . . . , d, then (see (10) and (11))

Mn(f) =

d∏
i=1

Mn,ai,bi(fi) ◦ pri; (21)

here, for every i = 1, . . . , d, pri stands for the ith coordinate function on Qd, i.e.,
pri(x) := xi for every x = (x1, . . . , xd) ∈ Qd.

In particular, if m1, . . . ,md ∈ N,

Mn

(
d∏
i=1

prmi
i

)
= Mn

(
d∏
i=1

emi
◦ pri

)
=

d∏
i=1

Mn,ai,bi(emi
) ◦ pri. (22)

According to (16), Mn,ai,bi(emi
) is a polynomial in [0, 1] of degree ≤ mi and,

hence, Mn

(∏d
i=1 pr

mi
i

)
is a polynomial in Qd of degree ≤

∑d
i=1mi. Thus,

Mn(Pm) ⊂ Pm (23)

for every n,m ≥ 1.
Next we discuss some approximation properties of the operators Mn in the spaces

C(Qd) and Lp(Qd, µa,b), 1 ≤ p < +∞. To this respect it is useful to point out that
the measure µa,b ∈M+

1 (Qd) defined by (8) is an invariant measure for the operators
Mn, n ≥ 1, on L1(Qd, µa,b) and, in particular, for their restrictions to C(Qd).

This can be easily verified because, for every n ≥ 1 and f ∈ L1(Qd, µa,b),∫
Qd

Mn(f)(x) dµa,b(x)=
1∫

Qd
ya(1−y)b dy

∑
h∈Nd

0d≤h≤nd

ωnd,h(f)

(
nd
h

)∫
Qd

xh+a(1d−x)nd−h+b dx

=
1∫

Qd
ya(1− y)b dy

∑
h∈Nd

0d≤h≤nd

(
nd
h

)∫
Qd

yh+a(1d − y)nd−h+bf(y) dy

=
1∫

Qd
ya(1− y)b dy

∫
Qd

 ∑
h∈Nd

0d≤h≤nd

(
nd
h

)
yh(1− y)nd−h

 ya(1− y)bf(y) dy

=

∫
Qd

f(y) dµa,b(y).

We also remark that each Mn is a contraction from Lp(Qd, µa,b) into Lp(Qd, µa,b).
By using the convexity of the function |t|p(t ∈ R) and the integral Jensen inequality,
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we get indeed that, if f ∈ Lp(Qd, µa,b), then |Mn(f)|p ≤Mn(|f |p) and hence∫
Qd

|Mn(f)|p dµa,b ≤
∫
Qd

Mn(|f |p) dµa,b =

∫
Qd

|f |p dµa,b. (24)

From this remark in particular it follows that each restriction Mn|Lp(Qd,µa,b) coin-
cides with the extension of Mn|C(Qd) to Lp(Qd, µa,b) as discussed in Section 2.

Theorem 3.1. The following statements hold true:

(a) For every f ∈ C(Qd), lim
n→∞

Mn(f) = f uniformly on Qd.

(b) If f ∈ Lp(Qd, µa,b), 1 ≤ p < +∞, then lim
n→∞

Mn(f) = f in Lp(Qd, µa,b).

(c) If f : Qd → R is Borel-measurable and bounded, then lim
n→∞

Mn(f)(x) = f(x)

for every continuity point x ∈ Qd for f .

Proof. In order to prove statement (a) we shall use the Korovkin type theorem due
to Volkov (see, e.g., [4, (4.4.22), p. 245]), from which it follows that{

1, pr1, . . . , prd,

d∑
i=1

pr2i

}
is a Korovkin set in C(Qd). Therefore, it is enough to verify the approximation
formula only for these d+ 2 functions.

Obviously, Mn(1) = 1 for every n ≥ 1. Taking (17) and (22) into account, for
every x = (x1, . . . , xd) ∈ Qd, n ≥ 1 and i = 1, . . . , d, we get

Mn(pri)(x) = Mn,ai,bi(e1)(xi) =
ai + 1 + nxi
n+ ai + bi + 2

→ xi uniformly in Qd.

Analogously,

Mn(pr2i )(x)=Mn,ai,bi(e2)(xi)=
(ai + 1)(ai + 2) + n(2ai + 3)xi + n(n− 1)x2i

(n+ ai + bi + 2)(n+ ai + bi + 3)

so that limn→∞Mn(pr2i ) = pr2i uniformly in Qd, and this completes the proof of
(a).

As regards statement (b), since C(Qd) is dense in Lp(Qd, µa,b) (see, e.g., [10,
Lemma 26.2 and Theorem 29.14]) and since, on account of part (a), limn→∞Mn(f) =
f in Lp(Qd, µa,b) for every f ∈ C(Qd), it is enough to show that the sequence
(Mn)n≥1 is equibounded from Lp(Qd, µa,b) into Lp(Qd, µa,b). This, indeed, is a
consequence of (24).

Finally, statement (c) is a direct consequence of the previous formulas and [3,
Theorem 3.3 and formula (4.3)].

Remark 1. As already pointed out in the previous proof, C(Qd) is dense in
Lp(Qd, µa,b) and, in addition, ‖ · ‖p ≤ ‖ · ‖∞ on C(Qd). Therefore, taking the
Weierstrass-Stone theorem into account, the subalgebra of all (restrictions of) poly-
nomials on Qd is dense in Lp(Qd, µa,b) for the norm ‖ · ‖p. Theorem 3.1, part (b),
furnishes indeed a constructive method showing how each function f ∈ Lp(Qd, µa,b)
can be approximated by a sequence of polynomials with respect to ‖ · ‖p.

Now we present some shape preserving properties of the operators Mn.
First of all, we prove that they preserve the Lipschitz-continuity. To this end it

is useful to evaluate the partial derivatives of Mn(f) (f ∈ C(Qd)). We point out,
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indeed, that, for every n ≥ 1 and for every family (αk)0≤k≤n ∈ Rn+1 and x ∈ [0, 1],
one has

d

dx

n∑
k=0

(
n

k

)
αkx

k(1− x)n−k = n

n−1∑
k=0

(
n− 1

k

)
(αk+1 − αk)xk(1− x)n−k−1. (25)

Hence, for every f ∈ C(Qd), x = (x1, . . . , xd) ∈ Qd and i = 1, . . . , d,

∂Mn(f)

∂xi
(x) =

n∑
h1=0

n∑
h2=0

. . .

n∑
hi−1=0

n∑
hi+1=0

. . .

n∑
hd=0

d∏
j=1
j 6=i

(
n

hj

)
x
hj

j (1− xj)n−hj

×

{
n

n−1∑
hi=0

(ωnd,h+vi(f)− ωnd,h(f))

(
n− 1

hi

)
xhi
i (1− xi)n−hi−1

}
,

(26)

where, for every i = 1, . . . d, the vector vi is given by (4).
The next result shows the behaviour of the operators Mn on the Lipschitz-

continuous functions (see (5) and (6)).

Theorem 3.2. Mn(f) ∈ Lip(Qd) for every n ≥ 1 and f ∈ Lip(Qd); moreover

|Mn(f)|Lip ≤ max
1≤i≤d

n

n+ ai + bi + 2
|f |Lip ≤

(
1 +

ω

n

)
|f |Lip ≤ |f |Lip, (27)

where

ω := − min
1≤i≤d

ai + bi + 2

ai + bi + 3
< 0. (28)

In particular,

Mn(Lip(M, 1)) ⊂ Lip(Nn, 1) ⊂ Lip(M, 1), (29)

where Nn := M max
1≤i≤d

n

n+ ai + bi + 2
≤M

(
1 +

ω

n

)
.

Proof. We shall apply the mean value theorem and, to this end, we prove that

sup
x∈Qd

(
max
1≤i≤d

∣∣∣∣∂Mn(f)

∂xi
(x)

∣∣∣∣) ≤ max
1≤i≤d

n

n+ ai + bi + 2
|f |Lip.

Let x ∈ Qd. Taking (26) into account, for a given i = 1, . . . , d and f ∈ Lip(Qd),
fix n ≥ 1, and set h = (h1, . . . , hd), with h1, . . . , hi−1, hi+1, . . . , hd = 0, . . . , n and
hi = 0, . . . , n− 1. Then

ωnd,h+vi(f)− ωnd,h(f)

=

d∏
j=1
j 6=i

Γ(n+ aj + bj + 2)

Γ(hj + aj + 1)Γ(n− hj + bj + 1)

∫
Qd−1

dy1 . . . dyi−1dyi+1 . . . dyd

×
d∏

j=1
j 6=i

y
hj+aj
j (1− yj)n−hj+bj

(
Γ(n+ ai + bi + 2)

Γ(hi + ai + 2)Γ(n− hi + bi + 1)

×
∫ 1

0

(
(n−hi+bi)yhi+ai+1

i (1−yi)n−hi+bi−1−(hi+ai+1)yhi+ai
i (1−yi)n−hi+bi

)
f(y1, . . . , yi, . . . , yd) dyi).

If we fix (y1 . . . yi−1, yi+1 . . . yd) ∈ Qd−1 and we consider the function

ϕ(s) = f(y1, . . . , yi−1, s, yi+1, . . . , yd) 0 ≤ s ≤ 1,
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we have that ϕ ∈ Lip([0, 1]) and |ϕ|Lip ≤ |f |Lip.
Accordingly, taking (12) into account,∣∣∣∣ Γ(n+ ai + bi + 2)

Γ(hi + ai + 2)Γ(n− hi + bi + 1)

×
∫ 1

0

(
(n−hi+bi)yhi+ai+1

i (1−yi)n−hi+bi−1−(hi+ai+1)yhi+ai
i (1− yi)n−hi+bi

)
f(y1, . . . , yi, . . . , yd) dyi| = |ωn,hi+1(ϕ)− ωn,hi

(ϕ)|.

By means of [8, formula (3.15)],

|ωn,hi+1(ϕ)− ωn,hi(ϕ)| ≤ 1

n+ ai + bi + 2
|ϕ|Lip ≤

1

n+ ai + bi + 2
|f |Lip.

From this and (26), we get that, for every i = 1, . . . , d,∣∣∣∣∂Mn(f)

∂xi
(x)

∣∣∣∣ ≤ n

n+ ai + bi + 2
|f |Lip ≤

(
1− ai + bi + 2

n(ai + bi + 3)

)
|f |Lip

and this completes the proof of (27).
Finally, (29) follows from the previous formula and from the fact that, if f ∈

Lip(M, 1), then |f |Lip ≤M .

Thanks to Theorem 3.2, it is possible to obtain some further information about
the preservation of the Hölder continuity by the operators Mn.

To this end, consider the usual modulus of continuity Ω(f, δ), defined, for every
bounded function f : Qd → R and δ > 0, by

Ω(f, δ) := sup{|f(x)− f(y)| | x, y ∈ Qd, ‖x− y‖1 ≤ δ}. (30)

The next result is a direct consequence of Theorem 3.2 and [4, Corollary 6.1.20].

Corollary 1. If f ∈ C(Qd), then, for every n ≥ 1 and δ > 0,

Ω(Mn(f), δ) ≤
(

2 +
ω

n

)
Ω(f, δ), (31)

where ω is defined in (28).
Moreover, if f ∈ Lip(M,α) for some M > 0 and 0 < α ≤ 1 (cf. (7)), then, for

every n ≥ 1,

Mn(f) ∈ Lip
(
M
(

1 +
ω

n

)α
, α
)
⊂ Lip(M,α). (32)

We proceed to investigate whether the operators Mn preserve convexity. First of
all we consider the case d = 1 and, thus, we shall refer to operators (11).

From (25) it follows that

d2

dx2

n∑
k=0

(
n

k

)
αkx

k(1−x)n−k=n(n−1)

n−2∑
k=0

(
n−2

k

)
(αk+2−2αk+1+αk)xk(1−x)n−k−2

(33)

(x ∈ [0, 1]), and hence, for every ϕ ∈ C([0, 1]), n ≥ 1 and x ∈ [0, 1],

d2

dx2
Mn,a,b(ϕ)(x)=n(n−1)

n−2∑
h=0

(ωn,h+2(ϕ)− 2ωn,h+1(ϕ) + ωn,h(ϕ))xk(1− x)n−h−2.

(34)
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From (34) we infer that the operators Mn,a,b preserve convexity, as stated in the
following result.

Proposition 2. If ϕ ∈ C([0, 1]) is convex, then Mn,a,b(ϕ) is convex for every n ≥ 1.

Proof. Consider a convex function ϕ ∈ C([0, 1]). From (34), it follows that the
statement will be proved once we show that, for every h = 0, . . . , n− 2,

ωn,h+2(ϕ)− 2ωn,h+1(ϕ) + ωn,h(ϕ) ≥ 0. (35)

To this end, fix h = 0, . . . , n− 2; then

ωn,h+2(ϕ)− 2ωn,h+1(ϕ) + ωn,h(ϕ) =
Γ(n+ a+ b+ 2)

Γ(h+ a+ 3)Γ(n− h+ b+ 1)

×
∫ 1

0

(
(n− h+ b)(n− h+ b− 1)th+a+2(1− t)n−h+b−2

−2(h+ a+ 2)(n− h+ b)th+a+1(1− t)n−h+b−1

+(h+ a+ 2)(h+ a+ 1)th+a(1− t)n−h+b
)
ϕ(t) dt .

Set
F (x) = xh+a+2(1− x)n−h+b (0 ≤ x ≤ 1).

It is easy to prove that

ωn,h+2(ϕ)− 2ωn,h+1(ϕ) + ωn,h(ϕ) =
Γ(n+ a+ b+ 2)

Γ(h+ a+ 3)Γ(n− h+ b+ 1)

∫ 1

0

F ′′(t)ϕ(t) dt .

Additionally, assume that ϕ ∈ C2([0, 1]); then, integrating by parts,∫ 1

0

F ′′(t)ϕ(t) dt =

∫ 1

0

F (t)ϕ′′(t) dt ≥ 0,

since ϕ is a convex function; this completes the proof of (35) under the additional
hypothesis that ϕ ∈ C2([0, 1]).

On the other hand, if ϕ ∈ C([0, 1]) is convex, then there exists a sequence
(ϕm)m≥1, ϕm ∈ C2([0, 1]) and convex for every m ≥ 1, such that limm→∞ ϕm = ϕ
uniformly on [0, 1]; take, for example, for every m ≥ 1, ϕm = Bm(ϕ), Bm being the
classical Bernstein polynomial operator of order m on [0, 1] ([4, Corollary 6.3.8]).
Therefore,

ωn,h+2(ϕ)−2ωn,h+1(ϕ)+ωn,h(ϕ)=

∫ 1

0

F ′′(t)ϕ(t) dt= lim
m→+∞

∫ 1

0

F ′′(t)ϕm(t) dt≥ 0.

The proof is now complete.

If d > 1 it is no longer true that, if f ∈ C(Qd) is convex, then Mn(f) is convex
for every n ≥ 1.

As a simple counterexample, it is enough to consider the function f(x, y) =
(x+ y)2 ((x, y) ∈ Q2) . Then, for every (x, y) ∈ Q2 and n ≥ 1,

Mn(f)(x, y) =
(a1 + 1)(a1 + 1) + n(2a1 + 3)x+ n(n− 1)x2

(n+ a1 + b1 + 2)(n+ a1 + b1 + 3)

+ 2
(a1+1+nx)(a2+1+ny)

(n+a1+b1+2)(n+a2+b2+2)
+

(a2+1)(a2+1) + n(2a2+3)y+n(n−1)y2

(n+a2+b2+2)(n+a2+b2+3)

(see (22)), whose Hessian is not positive semi-definite.
Nonetheless, other weaker types of convexity are preserved under the Mn’s, as

the following result shows.
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Theorem 3.3. Let f ∈ C(Qd) be convex with respect to each variable. Then, for
every n ≥ 1, Mn(f) is convex with respect to each variable.

Proof. Fix n ≥ 1 and i = 1, . . . , d. Then, for every n ≥ 1 and x = (x1, . . . , xd) ∈ Qd,

∂2Mn(f)

∂x2i
(x) = n(n− 1)

n∑
h1=0

n∑
h2=0

. . .

n∑
hi−1=0

n∑
hi+1=0

. . .

n∑
hd=0

d∏
j=1
j 6=i

(
n

hj

)
x
hj

j (1− xj)n−hj

×

{
n−2∑
hi=0

(ωnd,h+2vi(f)−2ωnd,h+vi(f)+ωnd,h(f))

(
n− 2

hi

)
xhi
i (1− xi)n−hi−2

}
.

(36)

The proof will be completed once we show that, for every x ∈ Qd,
∂2Mn(f)

∂x2i
(x) ≥

0 or, equivalently, that, for every h = (h1, . . . , hd), 0 ≤ h1, . . . , hi−1, hi+1, . . . , hd ≤
n and hi = 0, . . . , n− 2,

ωnd,h+2vi(f)− 2ωnd,h+vi(f) + ωnd,h(f) ≥ 0.

In fact, fix h = (h1, . . . , hd), with 0 ≤ h1, . . . , hi−1, hi+1, . . . , hd ≤ n and hi =
0, . . . , n− 2. Then

ωnd,h+2vi(f)− 2ωnd,h+vi(f) + ωnd,h(f)

=

d∏
j=1
j 6=i

Γ(n+ aj + bj + 2)

Γ(hj + aj + 1)Γ(n− hj + bj + 1)

∫
Qd−1

dy1 . . . dyi−1dyi+1 . . . dyd

×
d∏

j=1
j 6=i

y
hj+aj
j (1− yj)n−hj+bj (ωn,hi+2(ϕ)− 2ωn,hi+1 + ωn,hi(ϕ)) ,

where
ϕ(s) = f(y1, . . . , yi−1, s, yi+1, . . . , yd) 0 ≤ s ≤ 1,

with (y1, . . . yi−1, yi+1, . . . yd) ∈ Qd−1 being fixed.
Since f is convex with respect to each variable, ϕ is convex in [0, 1] too and this,

together with formula (35) in Proposition 2, completes the proof.

4. The positive semigroups generated by Fleming-Viot type differential
operators on the hypercube. After the necessary preliminaries of the previous
sections, we finally proceed to look more closely at the degenerate second-order
elliptic differential operator defined by

A(u)(x) =

d∑
i=1

xi(1− xi)
∂2u

∂x2i
(x) + (ai + 1− (ai + bi + 2)xi)

∂u

∂xi
(x) (37)

for every u ∈ C2(Qd) and x = (x1, . . . , xd) ∈ Qd, where a1, . . . , ad, b1, . . . , bd ∈ R,
ai > −1 and bi > −1 for all i = 1, . . . , d.

Operators similar to (37) have been already studied in several papers (see, e.g.,
[5, Section 5.8], [6], [8], [13], [16] and the references therein).

The special case where bi = ai+1, with a1, . . . , ad+1 ∈ R and ai > −1 for all
i = 1, . . . , d+ 1, has been investigated in [16].

The difficulties in studying operators (37) lie in the fact that they degenerate
on the boundary of Qd, which is not smooth because of the presence of sides and
corners.
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In this section, we will show that operator (37) is the pregenerator of a Markov
semigroup on C(Qd) and of a positive contraction semigroup in Lp(Qd, µa,b); more-
over, both these semigroups are obtained as a limits of suitable iterates of the
operators Mn we studied in Section 3.

First of all we prove that operator (37) is related to operators Mn through an
asymptotic formula.

For a given x ∈ Qd, we denote by Ψx ∈ C(Qd) the function defined by

Ψx(y) := y − x (y ∈ Qd), (38)

and by dx ∈ C(Qd) the function defined by

dx(y) := ‖y − x‖2 (y ∈ Qd), (39)

where ‖ · ‖2 is the Euclidian norm in Rd.
Since, for every y = (y1, . . . , yd) ∈ Qd, and i = 1, . . . , d

(pri ◦Ψx)(y) = pri(y − x) = yi − xi = pri(y)− xi,

we have that

d2x =

d∑
i=1

(pri ◦Ψx)2 (40)

and

d4x =

d∑
i,j=1

(pri ◦Ψx)2(prj ◦Ψx)2. (41)

Theorem 4.1. For every u ∈ C2(Qd),

lim
n→∞

n(Mn(u)− u) = A(u) uniformly on Qd. (42)

Therefore, considering the measure µa,b ∈ M+
1 (Qd) having as density the function

defined by (8), then ∫
Qd

A(u) dµa,b = 0, (43)

i.e., µa,b is an infinitesimally invariant measure for the operator A.

Proof. According to [5, Theorem 1.5.2], in order to prove (42), we have to show
that, for every i, j = 1, . . . , d, the following conditions hold true:

(a) lim
n→∞

nMn(pri ◦Ψx)(x)− βi(x) = 0 uniformly w.r.t. x ∈ Qd,
(b) lim

n→∞
nMn((pri ◦Ψx)(prj ◦Ψx))(x)− 2αij(x)=0 uniformly w.r.t. x ∈ Qd,

(c) sup
n≥1,x∈Qd

nMn(d2x)(x) < +∞,

and

(d) lim
n→∞

nMn(d4x)(x) = 0 uniformly w.r.t. x ∈ Qd,

where, for a fixed x = (x1, . . . , xd) ∈ Qd, dx and Ψx are given by (39) and (38),
respectively, and, for every i, j = 1, . . . , d,

βi(x) = ai + 1− (ai + bi + 2)xi

and

αij(x) =

{
0 if i 6= j,

xi(1− xi) if i = j.
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We start by verifying condition (a). For any i = 1, . . . , d and x = (x1, . . . , xd) ∈
Qd, according to (17),

Mn(pri ◦Ψx)(x) = Mn(e1 ◦ pri − xi1)(x)

= Mn,ai,bi(e1)(xi)− xi =
(ai + 1)− (ai + bi + 2)xi

n+ ai + bi + 2
,

so that we get the required assertion.
To prove statement (b) we preliminary notice that, according to (22), for every

i, j = 1, . . . , d, i 6= j, and for every x = (x1, . . . , xd) ∈ Qd,
Mn((pri ◦Ψx)(prj ◦Ψx))(x) = Mn((e1 ◦ pri − xi1)(e1 ◦ prj − xj1))(x)

= Mn,ai,bi(e1 − xi1)(xi)Mn,aj ,bj (e1 − xj1)(xj);

hence, taking (17) into account,

lim
n→∞

nMn((pri ◦Ψx)(prj ◦Ψx))(x) = 0

uniformly w.r.t. x ∈ Qd.
Let us now assume that i = j and let us set u := (e1 − xi1)2. Then

lim
n→∞

nMn((pri ◦Ψx)2)(x) = lim
n→∞

n(Mn,ai,bi(u)(xi)− u(xi))

= xi(1− xi)u′′(xi) + (ai + 1− (ai + bi + 2)xi)u
′(xi) = 2xi(1− xi)

uniformly w.r.t. x = (x1, . . . , xd) ∈ Qd (see (20)).
Condition (c) easily follows from the previous calculations and from (40).
Finally, for every x = (x1, . . . , xd) ∈ Qd, from (41) we get

Mn(d4x)(x) =

d∑
i,j=1

Mn((pri ◦Ψx)2(prj ◦Ψx)2)(x).

Let i, j = 1, . . . , d, i 6= j. Then, if we set u = (e1 − xi1)2 and v = (e1 − xj1)2,
we have

nMn((pri ◦Ψx)2(prj ◦Ψx)2)(x)=nMn,ai,bi((e1−xi1)2)(xi)Mn,aj ,bj ((e1−xj1)2)(xj)

= n(Mn,ai,bi(u)(xi)− u(xi))Mn(v)(xj);

hence, taking (19) and (20) into account,

lim
n→∞

nMn((pri ◦Ψx)2(prj ◦Ψx)2)(x) = 0

uniformly w.r.t. x = (x1, . . . , xd) ∈ Qd.
On the other hand, if i = j and w := (e1 − xi1)4, then

lim
n→∞

nMn((pri ◦Ψx)4)(x) = lim
n→∞

n(Mn,ai,bi(u)(xi)− u(xi))

= xi(1− xi)u′′(xi) + (ai + 1− (ai + bi + 2)xi)u
′(xi) = 0

uniformly w.r.t. x = (x1, . . . , xd) ∈ Qd, and this completes the proof of (42).
Finally, formula (43) is a consequence of the invariance of the Mn’s under the

measure µa,b.

The next result shows that the operator (A,C2(Qd)) pregenerates a Markov
semigroup (T (t))t≥0 on C(Qd); moreover, a representation formula for such semi-
group, involving suitable iterates of the operators Mn, is also provided. By means
of such a representation formula, we shall deduce some preservation properties of
the semigroup itself and we shall describe its asymptotic behaviour.
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For unexplained terminology concerning semigroup theory, we refer, e.g., to [5,
Chapter 2].

Theorem 4.2. The differential operator (A,C2(Qd)) defined by (37) is closable
and its closure (B,D(B)) generates a Markov semigroup (T (t))t≥0 on C(Qd) such
that, if f ∈ C(Qd), t ≥ 0 and (k(n))n≥1 is a sequence of positive integers satisfying
lim
n→∞

k(n)/n = t, then

T (t)(f) = lim
n→∞

Mk(n)
n (f) uniformly on Qd, (44)

where each M
k(n)
n denotes the iterate of Mn of order k(n).

Moreover, P∞ :=
⋃∞
m=1 Pm, and hence C2(Qd), is a core for (B,D(B)) and

T (t)(Pm) ⊂ Pm for every t ≥ 0 and m ≥ 1.
Considering the measure µa,b ∈ M+

1 (Qd) with density the function wa,b(x) (x ∈
Qd) defined by (8), then, for every f ∈ C(Qd) and n ≥ 1,

lim
t→+∞

T (t)(f) = lim
m→∞

Mm
n (f) =

∫
Qd

fdµa,b (45)

uniformly on Qd, and the measure µa,b is the unique invariant measure on Qd for
both the sequence Mn≥1 and the semigroup (T (t))t≥0.

Finally, if f ∈ Lip(Qd), then, for every n,m ≥ 1 and t ≥ 0,∣∣∣∣∣∣∣∣Mm
n (f)−

∫
Qd

fdµa,b

∣∣∣∣∣∣∣∣
∞
≤ 2

(
1 +

ω

n

)m
|f |Lip (46)

and ∣∣∣∣∣∣∣∣T (t)(f)−
∫
Qd

fdµa,b

∣∣∣∣∣∣∣∣
∞
≤ 2 exp(ωt)|f |Lip, (47)

where ω is defined by (28).

Proof. First of all we remark that each subspace Pm, m ≥ 1, of C2(Qd) is finite
dimensional, it is invariant under the Mn’s (n ≥ 1) by virtue of (23), and P∞ is
dense in C(Qd).

Moreover, from Theorem 4.1, we get

lim
n→∞

n(Mn(u)− u) = A(u) uniformly on Qd,

for every u ∈ C2(Qd), and hence for every u ∈ P∞.
From [5, Corollary 2.2.11] it follows that (A,C2(Qd)) is closable and its closure

(B,D(B)) is the generator of a contraction C0-semigroup (T (t))t≥0 on C(Qd) such
that, for every t ≥ 0 and f ∈ C(Qd),

T (t)(f) = lim
n→∞

Mk(n)
n (f) uniformly on Qd

for every sequence (k(n))n≥1 of positive integers such that lim
n→∞

k(n)/n = t. More-

over, P∞ is a core for (B,D(B)).
Formula (44) implies that each T (t) (t ≥ 0) is a Markov operator.
From (23) it also follows that, if f ∈ Pm for some m ≥ 1, then Mk

n ∈ Pm for
every n, k ≥ 1; hence, for every t ≥ 0 and every sequence (k(n))n≥1 of positive
integers such that lim

n→∞
k(n)/n = t, we get

T (t)(f) = lim
n→∞

Mk(n)
n (f) ∈ Pm,

since Pm is closed.
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On account of Corollary 2.5 of [8] (see, also, [5, Corollary 1.4.6]), in order to
prove (45)-(47), it is enough to show the following two conditions:

(i) for any n ≥ 1, µa,b is an invariant measure for Mn;
(ii) there exist ω < 0 such that, for every n ≥ 1 and f ∈ Lip(Qd), Mn(f) ∈

Lip(Qd), and |Mn(f)|Lip ≤
(

1 +
ω

n

)
|f |Lip.

This follows at once from what we observed in Section 3 and from Theorem 3.2.
Finally, since the measure µa,b is invariant for the restrictions of the operators

Mn, n ≥ 1, to C(Qd), clearly it is so for each iterate of Mn of order m, m,n ≥ 1,
and for the semigroup T (t) (t ≥ 0), thanks to the approximation formula (44). On
the other hand, if ν ∈M+

1 (Qd) is a further invariant measure for T (t) (t ≥ 0), then,
passing to the limit under the integral sign with respect to ν in (44), we get that∫

X

f dν =

∫
X

f dµa,b

for every f ∈ C(Qd) and hence ν = µa,b. The same reasoning applies if ν is invariant
for Mn, n ≥ 1, because, in this case, ν is also invariant for all the iterates of the
Mn’s.

Remarks 1.
1. In [5, Theorem 5.6.3 and Theorem 5.8.4] the pregeneration property of differ-

ential operators more general than (37) has been also studied with approximation
theory methods. In particular, in that monograph, the authors proved an approxi-
mation formula for (T (t))t≥0, similar to (44), involving another sequence of positive
linear operators on C(Qd), referred to as the modified Bernstein-Schnabl opera-
tors. Anyway, such operators cannot be defined in weighted Lp-spaces and that
wouldn’t allow us to investigate the extension of the semigroup (T (t))t≥0 to spaces
of weighted integrable functions, which is one of the aims of this paper. Moreover,
the present approach allows to derive several qualitative properties of the semigroup
including its asymptotic behaviour.

2. Theorem 4.2 extends similar results obtained in [8, Section 3.1] and [6, Sec-
tion 4] in the special case where ai = bi = 0 for every i = 1, . . . , d. In this case the
measure µa,b is, indeed, the Borel-Lebesgue measure on Qd and the operators Mn

turn into the Kantorovich operators.
3. According to [5, Remark 2.2.12], if u, v ∈ C(Qd) and lim

n→∞
n(Mn(u)− u) = v

uniformly on Qd, then u ∈ D(B) and B(u) = v.
In particular, if lim

n→∞
n(Mn(u) − u) = 0 uniformly on Qd, then u ∈ D(B) and

B(u) = 0 (a saturation result for the operators Mn, n ≥ 1).

Consider the abstract Cauchy problem associated with (B,D(B)) (see Theorem
4.2) 

∂u

∂t
(x, t) = B(u(·, t))(x) x ∈ Qd, t ≥ 0,

u(x, 0) = u0(x) u0 ∈ D(B), x ∈ Qd.
(48)

Since (B,D(B)) generates a Markov semigroup (T (t))t≥0, (48) admits a unique
solution u : Qd × [0,+∞[−→ R given by u(x, t) = T (t)(u0)(x) for every x ∈ Qd
and t ≥ 0 (see, e.g., [17, Chapter A-II]). Hence, taking (44) into account, we may
approximate such a solution in terms of iterates of the Mn’s, namely

u(x, t) = T (t)(u0)(x) = lim
n→∞

Mk(n)
n (u0)(x), (49)
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where (k(n))n≥1 is a sequence of positive integers satisfying lim
n→∞

k(n)/n = t, and

the limit is uniform with respect to x ∈ Qd.
Note that B coincides with A on C2(Qd); therefore, if u0 ∈ Pm (m ≥ 1) then

u(x, t) is the unique solution to the Cauchy problem
∂u

∂t
(x, t)=

d∑
i=1

xi(1−xi)
∂2u

∂x2i
(x, t)+(ai+1−(ai+bi+2)xi)

∂u

∂xi
(x, t) x ∈ Qd, t ≥ 0,

u(x, 0) = u0(x) x ∈ Qd,
and

u(·, t) ∈ Pm for every t ≥ 0. (50)

Moreover, each u(·, t), t ≥ 0, and u0 have the same integrals with respect to the
measure µa,b and, thanks to formula (45),

lim
t→+∞

u(x, t) =

∫
Qd

u0 dµa,b (51)

uniformly w.r.t. x ∈ Qd.
Next, we enlighten other spatial regularity properties of the solution u(·, t) of

(48), which, however, we state in terms of the semigroup (T (t))t≥0.

Theorem 4.3. The following statements hold true:

(a) T (t)(Lip(Qd)) ⊂ Lip(Qd) for every t ≥ 0; moreover, for every f ∈ Lip(Qd)
and t ≥ 0,

|T (t)(f)|Lip ≤ exp(ωt)|f |Lip; (52)

in particular, if f ∈ Lip(M, 1), then, for every t ≥ 0,

T (t)(f) ∈ Lip(M exp (ωt), 1),

where ω is defined by(28).
(b) For every f ∈ C(Qd), t ≥ 0, δ > 0,

Ω(T (t)(f), δ) ≤ (1 + exp (ωt))Ω(f, δ). (53)

Moreover, if M > 0 and 0 < α ≤ 1,

T (t)(Lip(M,α)) ⊂ Lip(M exp(αωt), α) ⊂ Lip(M,α) (54)

(see (7)).
(c) If f ∈ C(Qd) is convex with respect to each variable, then so is T (t)(f) for

every t ≥ 0. In particular, if d = 1 and if f ∈ C([0, 1]) is convex, then T (t)(f)
is convex for every t ≥ 0.

Proof. To prove statement (a) we first note that, in Theorem 3.2 we established
that Mn(Lip(Qd)) ⊂ Lip(Qd) for every n ≥ 1. Since Lip(Qd) is closed under the
uniform norm, by iterating this inclusion and taking (44) into account, we get that
T (t)((Lip(Qd)) ⊂ Lip(Qd).

Inequality (52) along with the last part of the statement, follow from Theorem 3.2
and formula (44), as, given t ≥ 0 and considering a sequence (k(n))n≥1 of positive

integers such that k(n)/n→ t as n→∞, then |Mk(n)
n (f)|Lip ≤

(
1 +

ω

n

)k(n)
|f |Lip

and
(

1 +
ω

n

)k(n)
→ exp(ωt) as n→∞.

Statement (b) is a direct consequence of (52) and [4, Corollary 6.1.20].
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Finally, statement (c) holds true because of Proposition 2, Proposition 3.3 and
formula (44).

The next result shows the semigroup (T (t))t≥0 can be extended to Lp(Qd, µa,b),
(p ∈ [1,+∞[), where µa,b is the Borel probability measure introduced in Theorem
4.2. Moreover, a representation formula similar to (44), as well as the asymptotic
behaviour of the extended semigroup (see (45)), can be established.

Theorem 4.4. For every 1 ≤ p < +∞, the semigroup (T (t))t≥0 on C(Qd) (see
Theorem 4.2) extends to a unique positive contraction semigroup (Tp(t))t≥0 on
Lp(Qd, µa,b), whose generator is an extension of (B,D(B)) to Lp(Qd, µa,b) and P∞
is a core for it.

Moreover, if f ∈ Lp(Qd, µa,b) and (k(n))n≥1 is a sequence of positive integers
satisfying lim

n→∞
k(n)/n = t, then

Tp(t)(f) = lim
n→∞

Mk(n)
n (f) in Lp(Qd, µa,b). (55)

Finally, if f ∈ Lp(Qd, µa,b) and n ≥ 1,

lim
t→+∞

Tp(t)(f) = lim
m→∞

Mm
n (f) =

∫
Qd

fdµa,b (56)

in Lp(Qd, µa,b).

Proof. For every t ≥ 0, denote by Tp(t) the unique extension of T (t) to Lp(Qd, µa,b)
as explained in Section 2. The operator Tp(t) is a positive linear contraction on
Lp(Qd, µa,b). Since C(Qd) is dense in Lp(Qd, µa,b) and ‖ · ‖p ≤ ‖ · ‖∞ on C(Qd),
it is easily seen that (Tp(t))t≥0 is a strongly continuous semigroup on Lp(Qd, µa,b),
its generator is an extension of (B,D(B)) to Lp(Qd, µa,b) and P∞ is a core for it,
by virtue of Theorem 4.2.

Finally, formulas (55) and (56) can be obtained from the corresponding ones (44)
and (45) taking again into account that C(Qd) is dense in Lp(Qd, µa,b) and that,
as remarked before Theorem 3.1, each restriction Mn |Lp(Qd,µa,b) coincides with the
continuous extension of Mn |C(Qd) to Lp(Qd, µa,b).
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