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A B S T R A C T

Splitting schemes, a class of numerical integrators for Hamiltonian problems, offer a favorable
alternative to the Störmer–Verlet method in Hamiltonian Monte Carlo (HMC) methodology.
However, the performance of HMC is highly sensitive to the adopted step size. In this paper,
we propose a novel approach for selecting the step size ℎ for advancing with the method defined
by the free parameter 𝑏, within the family of one-parameter second order splitting procedures.
Our methodology utilizes a designated function ℎ𝑏 of the parameter 𝑏 to determine the step
size, i.e. ℎ = ℎ𝑏(𝑏). By appropriately restricting the domain of ℎ𝑏 to a suitable interval 𝐼 , the
pairs (𝑏, ℎ𝑏) with 𝑏 ∈ 𝐼 ensure both stability and Hamiltonian preservation when sampling from
Gaussian distributions. As a result, our technique never rejects a sample within the HMC process,
and this characteristic is the key factor behind its superior performance compared to similar
methods recently introduced in other studies. Additionally, we assess the effectiveness of the
methods defined by the pairs (𝑏, ℎ𝑏) for general not-Gaussian distribution sampling. In this case
we also present a technique based on an adaptive selection of the 𝑏 parameter for improving the
HMC performance. The effectiveness of the proposed approach is evaluated through benchmark
examples from literature and experiments involving the Log-Gaussian Cox process and Bayesian
Logistic Regression.

. Introduction

The Hamiltonian Monte Carlo (HMC) algorithm is a Markov chain Monte Carlo (MCMC) method designed to iteratively generate
andom samples that progressively approximate a target probability distribution. Originally known as Hybrid Monte Carlo in the
ate 1980s, it found its initial application in the field of Lattice Quantum Chromodynamics [1]. Several years later, Radford Neal
ecognized its potential in the field of applied statistics within his work on Bayesian neural networks [2]. However, it was his
eminal paper [3] that ushered this approach into the mainstream of statistical computing. HMC merges the principles of molecular
ynamics and computational statistics by employing a molecular dynamics-inspired approach based on Hamiltonian formalism [4,5]
o guide the Monte Carlo sampling process, enhancing the efficiency and effectiveness of statistical sampling.

At each step of the Markov chain in HMC, a numerical integration of a Hamiltonian system is required. Traditionally, the
törmer–Verlet or Leapfrog algorithm, a second-order splitting method, has been widely used for this purpose (see, for example, [6]).
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However, researchers have been actively exploring alternative algorithms that can offer improved efficiency. Several studies (such
as [7–9], and references therein) have addressed the challenge of developing more effective integration schemes.

A common thread among recent research efforts proposing alternatives to the Störmer–Verlet algorithm is the analysis of their
ffectiveness when applied to Gaussian distributions. It is important to note, as highlighted in [10], that it is not practically
eaningful to use a Markov chain algorithm to sample from a Gaussian distribution, just as it does not make sense to numerically

ntegrate the equations of a simple harmonic oscillator. However, it is a common practice to evaluate the performance of algorithms
n simple problems, such as sampling from Gaussian distributions, as they serve as benchmarks for assessing their performance in
ore complex situations.

In this context, we introduce an innovative approach that relies on the functional form ℎ𝑏(𝑏) =
√

4 𝑏2 −6 𝑏+1
𝑏2 (2 𝑏−1) to assign a suitable

tep size ℎ = ℎ𝑏(𝑏) to each parameter 𝑏 that defines the one-parameter family of second-order splitting procedures provided in [10].
ur proposed criterion, when applied to sampling from Gaussian distributions, ensures that all methods within the splitting family
xhibit a zero expectation value for the energy error random variable. This approach builds upon energy-preserving splitting methods
or Hamiltonian dynamics introduced in [11], which we adapt to the context of HMC. Instead of fixing the step size ℎ and selecting
he parameter 𝑏 that minimizes the expectation of the energy error as generally done in literature (see e.g. [10]), we reverse and
mprove the procedure: first, we choose a specific method within the one-parameter family of second-order splitting procedure by
ixing the parameter 𝑏 in the domain of definition of the function ℎ𝑏. Then, we implement the selected method using ℎ = ℎ𝑏(𝑏) as
tep size. This guarantees that the expected value for the energy error is nullified.

As mentioned, the initial step of our approach involves the selection of the parameter 𝑏 in the definition domain of the function
𝑏. The adopted criterion ensures that the range of the function ℎ𝑏 falls within the stability interval of the one-parameter family of
econd-order splitting methods as established in [10] where the univariate Gaussian distribution is used as test model. This process
etermines the open interval 𝐼 =] 3−

√

5
4 , 1

4 ] from which we ultimately make our selection of 𝑏.
Given the significant impact of energy distortion on calculated energy averages and the resulting high percentage of rejections in

the HMC algorithm, preserving energy as much as possible is crucial, especially in high-dimensional problems [12]. Consequently,
this paper aims to investigate whether the use of the couples (𝑏, ℎ𝑏), with 𝑏 ∈ 𝐼 , which effectively nullifies the energy error for
Gaussian test distributions, can also reduce the number of rejection steps when applied within HMC for sampling from arbitrary
distributions.

As an additional advancement, we introduce a novel variation of the HMC algorithm that includes an adaptive adjustment of the
parameter 𝑏 within the range of 𝐼 . We start with an initial value of 𝑏 sufficiently large and we refine it based on the performance
of the HMC algorithm. During the sampling process, each time a sample is rejected (or each time we reach a given percentage of
rejections) we reduce the value of 𝑏. As a result, at each step of the Markov chain, our adaptive approach selects a different splitting
method for the numerical integration of the Hamiltonian system within the HMC algorithm. Each of these methods is implemented
with the corresponding ℎ𝑏 as the step size.

This adaptive choice of 𝑏 allows us to adapt the splitting method to the specific characteristics of the target distribution and
optimize the sampling performance. It is worth noting that the adaptive selection of the parameter 𝑏 from the one-parameter
family of second-order splitting procedures has been adopted in HMC literature only recently [13]. In their paper the authors extend
their technique into the domain of computational statistics, building upon concepts previously introduced within the framework of
molecular dynamics [14]. The authors suggest an algorithm that, once the system to be integrated has been specified and the user has
chosen a value of the step size, it identifies the ‘best’ 𝑏. In their approach, the best 𝑏 corresponds to minimize a bound for the expectation
of the energy error for the univariate Gaussian distribution. As mentioned earlier, we reverse and improve the procedure: once the
value of 𝑏 ∈ 𝐼 has been selected, the step size is uniquely determined by the function ℎ𝑏. By setting the step size ℎ = ℎ𝑏(𝑏) the
expectation of the energy error for Gaussian distributions, both univariate and multivariate, is nullified.

To assess the efficacy of our approach, we perform various tests, one of which involves the Log-Gaussian Cox model. This model
is commonly employed as a point process to represent the presence of invasive species. It allows us to study the spatial distribution
and occurrence of these species by considering the intensity of their presence as a random field. By applying our technique to this
model, we can evaluate its performance and suitability for capturing the characteristics of invasive species distributions. This model
plays a significant role in understanding and predicting the spread of such species, and it serves as a valuable statistical tool in
related research areas [15–18].

The paper’s structure is organized as follows: Section 2 provides an overview of the general framework for sampling from a target
distribution using the HMC algorithm. It includes a brief discussion of theoretical and practical implementation details. Section 3
introduces the maps constructed using the splitting of the Hamiltonian vector field. The key finding, outlined in Theorem 3.2,
showcases how to determine the interval 𝐼 so that the couple (𝑏, ℎ𝑏), with 𝑏 ∈ 𝐼 leads to a stable and energy-preserving
approximation for univariate Gaussian distributions. Additionally, we extend this result to multivariate Gaussian distributions in
Section 3.3 (Theorem 3.4). Drawing from the aforementioned theorem, we present a novel two-step splitting method in Section 4
for sampling within the HMC algorithm from Gaussian distributions. For sampling from generic distributions, in Section 5, we first
propose a classical implementation of the proposed splitting procedure that consists in a fixed method (identified by a single chosen
𝑏) which advances with the step size ℎ = ℎ𝑏. Subsequently, we implement the adaptive reduction of the parameter 𝑏 by employing
Algorithm 5.1, which corresponds to the utilization of different splitting methods at each step of the Markov chain in the HMC
algorithm. Section 6 presents numerical experiments to validate the theoretical results. Finally, in Section 7, we provide concluding
remarks and discuss potential future developments of the proposed approach. As supplementary information in Appendix, we analyze
the energy-preserving linear maps generated by applying a volume-preserving and momentum flip-reversible integrator within the
HMC method for both univariate and multivariate Gaussian distributions.
2
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2. The Hamiltonian Monte Carlo algorithm

The HMC algorithm, as described below, follows the steps outlined in [3]. Let us consider a dataset 𝑋, and our objective is to
sample the variable 𝐪 ∈ 𝐑𝑑 from a probability distribution of interest (𝐪) with prior density 𝜋(𝐪) and likelihood function 𝐿(𝐪|𝑋),
i.e., (𝐪) = 𝜋(𝐪)𝐿(𝐪|𝑋). The first step is to associate a scalar function 𝑈 (𝐪) to 𝐪 through the canonical distribution. We define it as
follows:

𝑈 (𝐪) = − log
[

(𝐪)
]

− log(𝑍), 𝑍 > 0,

which implies that (𝐪) ∝ exp(−𝑈 (𝐪)) with 𝑍 chosen as the normalizing constant needed for the probability to integrate to one.
Next, we introduce auxiliary variables 𝐩 ∈ 𝐑𝑑 , independent of 𝐪, and specify their distribution using another scalar function 𝐾(𝐩).
In HMC, a common practice is to use a quadratic functional dependence on 𝐩 given by:

𝐾(𝐩) = 1
2
𝐩𝑇𝐷−1

𝛽 𝐩,

here, without loss of generality, we assume that the components of 𝐩 are independent. In this case, 𝐷𝛽 is a diagonal matrix
ith entries 𝛽2𝑖 , representing the variances of the 𝑖th component 𝑝𝑖 of 𝐩. The canonical distribution (𝐩) = exp(−𝐾(𝐩)) results in a

ero-mean multivariate Gaussian distribution. We denote the function for the joint variable of 𝐪 and 𝐩 as

𝐻(𝐪,𝐩) = 𝐾(𝐩) + 𝑈 (𝐪). (2.1)

This function defines a joint canonical distribution satisfying:

(𝐪,𝐩) = 1
𝑍

exp(−𝐻(𝐪,𝐩)) = 1
𝑍

exp(−𝑈 (𝐪)) exp(−𝐾(𝐩)) = (𝐪)(𝐩). (2.2)

e observe that the joint canonical distribution for 𝐪 and 𝐩 factorizes, indicating that the two variables are independent.
he concept behind HMC involves interpreting the variables (𝐪,𝐩) as the position and momentum of a system of particles, each
ith masses equal to the variances 𝛽2𝑖 . These particles move in a potential 𝑈 (𝐪) with a corresponding kinetic energy 𝐾(𝐩). The sum
f kinetic and potential energy is expressed by the function (2.1) which represents the Hamiltonian of this system. The Hamilton’s
quations of motion are defined by the following equations

𝑑𝐪
𝑑𝑡

= ∇𝐩𝐻(𝐪,𝐩) = ∇𝐩𝐾(𝐩), 𝑑𝐩
𝑑𝑡

= −∇𝐪𝐻(𝐪,𝐩) = −∇𝐪𝑈 (𝐪). (2.3)

t can be easily proved that the Hamiltonian is a first integral of (2.3) so that its invariance corresponds to the physical principle of
onservation of total energy (2.1). By defining 𝐲 = (𝑞1,… , 𝑞𝑑 , 𝑝1,… 𝑝𝑑 )𝑇 ∈ 𝐑2𝑑 we write (2.3) in the form

𝑑𝐲
𝑑𝑡

= 𝐽 ∇𝐻(𝐲), 𝐽 =
(

0𝑑 𝑑
−𝑑 0𝑑

)

here 𝑑 is the identity matrix of dimension 𝑑. It can be demonstrated that the flow map 𝛷𝑡(𝐲) is a volume preserving map, as
ndicated by the fact that its Jacobian, denoted as 𝛷′

𝑡(𝐲), has a determinant of 1 for all values of 𝑡. Moreover, Hamiltonian flows
xhibit an additional significant property, often referred to as simplecticity, expressed as (𝛷′

𝑡(𝐲))
𝑇 𝐽 𝛷′

𝑡(𝐲) = 𝐽 .
Given that (2.2) shows that the variables 𝐪 are independent of 𝐩, we can use Hamiltonian dynamics (2.3) to sample from the

joint canonical distribution (𝐪,𝐩) and disregard the momentum contributions. The introduction of the auxiliary variable 𝐩 allows
the Hamiltonian dynamics to operate effectively [3].

Starting with the generation of an initial position state 𝐪(𝑖) ∼ 𝜋(𝐪) for 𝑖 = 0,… , 𝐿, each iteration of the HMC algorithm consists of
two steps. In the first step, the initial momentum 𝐩(𝑖) is chosen by randomly drawing values from a zero-mean multivariate Gaussian
istribution  (0, 𝐷𝛽 ). In the second step, starting at 𝑡 = 0 with initial states 𝐐(0) = 𝐪(𝑖) and 𝐏(0) = 𝐩(𝑖), the Hamiltonian dynamics
re solved for a fixed interval 𝑡 ∈ (0, 𝑇 ∗], given by the equations:

𝑑𝐐
𝑑𝑡

= ∇𝐏𝐾(𝐏) = 𝐷−1
𝛽 𝐏, 𝑑𝐏

𝑑𝑡
= −∇𝐐𝑈 (𝐐), 𝑡 ∈ (0, 𝑇 ∗]. (2.4)

where the Hamiltonian function is defined as:

𝐻(𝐐,𝐏) = 1
2
𝐏𝑇𝐷−1

𝛽 𝐏 + 𝑈 (𝐐). (2.5)

fter simulating the Hamiltonian dynamics, the state of the position at the end of the simulation, 𝐐(𝑇 ∗), is used as the next state
f the Markov chain by setting 𝐪(𝑖+1) = 𝐐(𝑇 ∗).

The selection of the fictitious final time 𝑇 ∗ in the Hamiltonian dynamics of the HMC algorithm plays a crucial role and should
e carefully chosen to preserve ergodicity. Ergodicity ensures that the HMC algorithm explores the entire state space of the target
istribution. In an HMC iteration, the momentum variables can influence the position variables in arbitrary ways. However, if the
hosen value of 𝑇 ∗ leads to exact periodicity for some function of the state, ergodicity can fail. For instance, when 𝑞(𝑖) ∼  (0, 1)
nd 𝑝(𝑖) ∼  (0, 1), the Hamiltonian dynamics for 𝑄 and 𝑃 correspond to the equations of a harmonic oscillator:

𝑑𝑄
𝑑𝑡

= 𝑃 , 𝑑𝑃
𝑑𝑡

= −𝑄. (2.6)

he solutions of these equations are periodic with a period of 2𝜋. If 𝑇 ∗ = 2𝜋 is chosen, the trajectory will return to the same
osition coordinate, and the HMC algorithm will not be ergodic. To address this potential issue of non-ergodicity, one approach
s to randomly choose the value of 𝑇 ∗ and repeat this process regularly. By introducing randomness in the selection of 𝑇 ∗, the
3

rajectory explores different regions of the state space, enhancing the ergodicity of the HMC algorithm.
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2.1. Practical implementation of the HMC algorithm

In practical implementation of HMC algorithm, we need to numerically integrate the Hamiltonian system (2.4) using a map 𝛹ℎ
hat approximates the theoretical flow. Given the initial states 𝐐0 = 𝐐(0) and 𝐏0 = 𝐏(0), the map iteratively updates the states as
𝐐𝑛+1,𝐏𝑛+1) = 𝛹ℎ(𝐐𝑛,𝐏𝑛), for 𝑛 = 0,… , 𝑁 , where 𝑁 and the step size ℎ satisfy 𝑁 ℎ = 𝑇 ∗.

To ensure the validity of the approximation, the chosen map 𝛹ℎ must satisfy two important properties (see, e.g [19]). As the
heoretical flow the numerical map should be volume-preserving, which means that, for all 𝑛 the determinant of its Jacobian matrix
′
ℎ(𝐐𝑛,𝐏𝑛) is equal to 1:

det(𝛹 ′
ℎ(𝐐𝑛,𝐏𝑛)) = 1.

econd, the map should be ‘‘momentum flip’’ reversible, according to the definition in [20]:

𝛹ℎ(𝐐𝑛,𝐏𝑛) = (𝐐𝑛+1,𝐏𝑛+1) ⟺ 𝛹ℎ(𝐐𝑛+1,−𝐏𝑛+1) = (𝐐𝑛,−𝐏𝑛),

or 𝑛 = 0,… , 𝑁 . This symmetry ensures that the dynamics can be reversed, allowing for correct exploration of the target probability
istribution 𝜋(𝐪).

The proposed variables 𝐪∗ = 𝐐(𝑇 ∗) and 𝐩∗ = 𝐏(𝑇 ∗) at the end of the simulation are used, and their acceptance is determined
sing an update rule similar to the Metropolis acceptance criterion. Specifically, this proposed state is accepted as the next state of
he Markov chain with probability

𝛼 = min
(

1, exp
(

𝐻(𝐪(𝑖),𝐩(𝑖)) −𝐻(𝐪∗,𝐩∗)
))

> 𝑢, 𝑢 ∼  (0, 1)

and 𝐪(𝑖+1) = 𝐪∗. If the proposed state is not accepted, the next state is the same as the current state 𝐪(𝑖+1) = 𝐪(𝑖). Combining these steps,
sampling random momentum, followed by Hamiltonian dynamics and Metropolis acceptance criterion, defines the HMC Algorithm
2.1 for drawing 𝐿 samples from a target distribution. This process ensures that the proposed states are accepted or rejected based
on their relative probabilities, allowing for exploration of the target distribution.

Algorithm 2.1 HMC algorithm

Draw 𝐪(1) ∼ 𝜋(𝐪), 𝐪(1) ∈ R𝑑 , 𝐿 ≥ 1, set 𝑖 = 0
while 𝑖 < 𝐿 do

i=i+1
Draw 𝐩(𝑖) ∼  (0, 𝐷𝛽 )
Set (𝐐0, 𝐏0) = (𝐪(𝑖), 𝐩(𝑖)),
Randomly choose 𝑇 ∗ > 0
Set ℎ > 0 and 𝑁 = ⌊

𝑇 ∗

ℎ ⌋

Evaluate (𝐐𝑛+1 𝐏𝑛+1) = 𝛹ℎ(𝐐𝑛, 𝐏𝑛), for 𝑛 = 0,…𝑁 − 1
Set (𝐪∗, 𝐩∗) =

(

𝐐𝑁 , 𝐏𝑁
)

Calculate 𝛼 = min
(

1, exp
(

𝐻(𝐪(𝑖),𝐩(𝑖)) −𝐻(𝐪∗,𝐩∗)
))

Draw 𝑢 ∼  (0, 1)
Update: if 𝛼 > 𝑢 then 𝐪(𝑖+1) = 𝐪∗; otherwise 𝐪(𝑖+1) = 𝐪(𝑖)

end while
return Markov chain 𝐪(1), 𝐪(2),… , 𝐪(𝐿)

Indeed, it has been shown in [10] that for a momentum-flip reversible volume-preserving transformation, the phase space can
e divided into two regions of equal volume. One region corresponds to negative energy errors, where the energy at the end
f the simulation 𝐻(𝐐𝑁 ,𝐏𝑁 ) is less than the energy at the beginning 𝐻(𝐐0,𝐏0), and the other region corresponds to flipping
he momentum with positive energy errors, where the energy increases. If the map used for approximation is energy-preserving,
.e., 𝐻(𝐐𝑁 ,𝐏𝑁 ) = 𝐻(𝐐0,𝐏0), then all proposals will be accepted because there are no positive energy errors. However, if the map
s not energy-preserving, there will be proposals with positive energy errors, leading to potential rejections. In such cases, the
cceptance of proposals depends on the Metropolis acceptance criterion, comparing the probabilities of the joint distributions at the
nd of the simulation and the initial state. This highlights the importance of selecting a map that is as energy-preserving as possible
o minimize the number of rejections and improve the efficiency of the HMC algorithm.

. Splitting methods

The Störmer–Verlet method is indeed a commonly used map within the HMC algorithm. It belongs to the class of symmetric
plitting methods, which have been extensively studied in the context of Hamiltonian dynamics.

Symmetric splitting methods, including Störmer–Verlet, are based on the idea of splitting the Hamiltonian flow into two or
ore subflows and constructing a map as a composition of these subflows. Each subflow is a Hamiltonian flow, which means it is

olume-preserving and reversible. The composition of volume-preserving maps preserves volume, ensuring that the resulting map
s also volume-preserving. Furthermore, since the semiflows are reversible and the composition is symmetric, the overall splitting
4

ap is reversible as well. A detailed proof of this property can be found in the Ref. [10].
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While the Störmer–Verlet method is widely used, there have been efforts in the literature to develop more accurate maps within
he same class of symmetric splitting methods. The focus of these developments is on improving the performance of the map within
he HMC algorithm rather than on the accuracy of approximating the dynamical flow. Several references, such as [9,12], explore
he design of optimal symmetric splitting methods with improved accuracy and efficiency properties. It is worth noting that the
ccuracy of the map within the HMC algorithm refers to its ability to generate proposals with minimal energy errors, leading to a
igher acceptance rate and improved sampling efficiency.

.1. Störmer–Verlet method

The Störmer–Verlet method is based on the splitting of the flow in two semiflows and is built as a symmetric composition of
emiflows. Setting 𝐘 = [𝐐, 𝐏]𝑇 ∈ R2𝑑 , it can be useful to denote the Hamiltonian dynamics (2.4) in vector form as

𝑑𝐘
𝑑𝑡

= 𝑓 (𝐘) ∶=
[

𝐷−1
𝛽 𝐏, −∇𝐐 𝑈 (𝐐)

]𝑇
.

Let 𝜑[𝐏]
𝑡 and 𝜑[𝐐]

𝑡 represent the exact flows associated to the dynamics 𝑑𝐘
𝑑𝑡

= 𝑓 [𝐏](𝐘) and 𝑑𝐘
𝑑𝑡

= 𝑓 [𝐐](𝐘), where 𝑓 = 𝑓 [𝐏] + 𝑓 [𝐐]

nd

𝑓 [𝐏](𝐘) ∶= [𝐷−1
𝛽 𝐏, 𝟎𝑑 ]𝑇 , 𝑓 [𝐐](𝐘) ∶= [𝟎𝑑 , −∇𝐐 𝑈 (𝐐)]𝑇 .

The map 𝐘𝑛+1 = 𝛹 (𝑆𝑉 )
ℎ (𝐘𝑛), with

𝛹 (𝑆𝑉 )
ℎ ∶= 𝜑[𝐐]

ℎ∕2◦𝜑
[𝐏]
ℎ ◦𝜑[𝐐]

ℎ∕2, (3.1)

efines the (velocity) Störmer–Verlet method.1
When a Störmer–Verlet step is applied to the linear test problem described by a harmonic oscillator, as defined in the following

quations:
𝑑𝑄
𝑑𝑡

= 𝑃
𝛽2

, 𝑑𝑃
𝑑𝑡

= − 𝑄
𝛼2

, (3.2)

it leads to a linear transformation represented in matrix form as 𝐘𝑛+1 = (ℎ,𝜎)
2 𝐘𝑛 where

(ℎ,𝜎)
2 =

[

pℎ eℎ + 𝜎−1 qℎ
eℎ − 𝜎 qℎ pℎ

]

, (3.3)

nd

pℎ = 1 −
ℎ2𝜎
2
, eℎ =

𝜎 ℎ𝜎3

4 (𝜎2 + 1)
, qℎ = ℎ𝜎 − 𝜎 eℎ

with 𝜎 =
𝛽
𝛼

and ℎ𝜎 = ℎ
𝛼 𝛽

. For ℎ < 2 𝛼 𝛽 it results ℎ𝜎 ≤ 2, and then the trajectories are stable as it results p2ℎ − 1 < 0 (see Appendix).
Since eℎ ≠ 0, the Störmer–Verlet integrator cannot preserve the energy when applied to the linear test model (3.2). The

xpectation of the random variable 𝛥(𝑁)
2 ∶= 𝐻(𝐘𝑁 ) −𝐻(𝐘0) is given by

E(𝛥(𝑁)
2 ) = 𝑁

2

(

𝜎 + 1
𝜎

)2
(

𝜎 ℎ𝜎3

4 (𝜎2 + 1)

)2

= 𝑁
32

ℎ6𝜎 = 𝑇 ∗
(

ℎ𝜎
2

)5
.

see Theorem A.2 in Appendix).

.2. One-parameter family of second order splitting methods

The literature provides a range of alternatives to the Störmer–Verlet method to enhance the performance of the numerical
ntegrator used in the HMC algorithm. A strategy involves adjusting specific free parameters within a particular class of methods.
n this paper, we conduct this exploration within the context of a one-parameter family of second-order splitting schemes featured
y the desired properties of volume-preservation and reversibility [10]. The family is defined by the composition equation:

𝛹 (𝑏)
ℎ ∶= 𝜑[𝐐]

𝑏 ℎ ◦𝜑
[𝐏]
ℎ∕2◦𝜑

[𝐐]
(1−2 𝑏)ℎ◦𝜑

[𝐏]
ℎ∕2◦𝜑

[𝐐]
𝑏 ℎ , 𝑏 ∈ R, 𝑏 ≠ 0, 1∕2. (3.4)

hen 𝑏 = 0, 1∕2, the method reduces to the classical velocity and position Störmer–Verlet integrators.
Common strategies for selecting the parameter 𝑏 in (3.4) are directed towards improving the numerical performance of the

hosen method when applied to linear test models (3.2). One approach focuses on maximizing the stability interval length while
imultaneously minimizing specific error constants, as proposed in [7]. Another strategy centers on enhancing energy conservation
roperties, thus reducing the expected energy error, as investigated in [10]. With the more ambitious objective of completely

1 We mention that the position Störmer–Verlet method starts the integration by solving the semiflow 𝑓 [𝑃 ] so that 𝛹 (𝑆𝑉 ) ∶= 𝜑[𝑃 ] ◦𝜑[𝑄]◦𝜑[𝑃 ] .
5

ℎ ℎ∕2 ℎ ℎ∕2
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nullifying the expected energy error for the linear test model (3.2), we turn to the energy-preserving integrators introduced in [11]
for the numerical solution of Hamiltonian systems. Our goal is to evaluate their effectiveness within the statistical computing
framework of the HMC algorithm.

The class of second-order splitting methods can be expressed as 𝐘𝑛+1 = 𝛹 (𝑏)
ℎ (𝐘𝑛), where 𝛹 (𝑏)

ℎ is given by Eq. (3.4). When applied
o the model test system (3.2), these methods can be written as a linear map in matrix form: 𝐘𝑛+1 = (ℎ,𝜎)

2 𝐘𝑛, where (ℎ,𝜎)
2 is given

y Eq. (3.3). The coefficients pℎ, qℎ are defined as follows:

pℎ = 1 −
ℎ2𝜎
2

+
ℎ4𝜎
4

𝑏 (1 − 2 𝑏),

qℎ =
𝑏2(1 − 2 𝑏)
4 (𝜎2 + 1)

ℎ𝜎5 +
4 𝑏2 + 2 𝑏 𝜎2 − 4 𝑏 − 𝜎2

4(𝜎2 + 1)
ℎ𝜎3 + ℎ𝜎 .

where 𝜎 =
𝛽
𝛼
, ℎ𝜎 = ℎ

𝛼 𝛽
. The expression for eℎ is given by

eℎ = eℎ (𝑏) =
ℎ3𝜎𝜎

4(𝜎2 + 1)
(

2 𝑏3 ℎ2𝜎 − 𝑏2 ℎ2𝜎 − 4 𝑏2 + 6 𝑏 − 1
)

. (3.5)

The stability interval can be determined from the result in [10], i.e.

0 < ℎ𝜎 = ℎ
𝛼 𝛽

< min

{
√

2
𝑏
,
√

2
1∕2 − 𝑏

}

, 0 < 𝑏 < 1
2
. (3.6)

he expectation of the random variable 𝛥(𝑁)
2

E(𝛥(𝑁)
2 ) = 𝑇 ∗

(

ℎ𝜎
2

)5
(

2 𝑏3 ℎ𝜎2 − 𝑏2 ℎ𝜎
2 − 4 𝑏2 + 6 𝑏 − 1

)2

(see Theorem A.2 in Appendix) which can be nullified exploiting the following result which generalizes Theorem 1 given in [11].

Theorem 3.1. For all 𝑏, ℎ > 0 define

𝑅(𝑏, ℎ) ∶= 2
(

ℎ
𝛼 𝛽

)2
𝑏3 −

(

4 +
(

ℎ
𝛼 𝛽

)2
)

𝑏2 + 6 𝑏 − 1. (3.7)

ix ℎ > 0 and consider 𝑏ℎ a real root of the third degree polynomial (3.7) in the variable 𝑏; then the scheme 𝐘𝑛+1 = 𝛹 (𝑏ℎ)
ℎ (𝐘𝑛), with 𝛹 (𝑏ℎ)

ℎ
iven in (3.4) is energy-preserving for the test model (3.2).

roof. Write eℎ(𝑏) in (3.5) as eℎ(𝑏) = 𝜎
4(𝜎2 + 1)

(

ℎ
𝛼 𝛽

)3
𝑅(𝑏, ℎ); then, from 𝑅(𝑏ℎ, ℎ) = 0 it follows eℎ(𝑏ℎ) = 0. From Theorem A.1,

the result follows. □

In the HMC framework it can be more useful to adopt a different perspective:

Theorem 3.2. Consider the open interval 𝐼 =
]

3−
√

5
4 , 1

4

]

⊂ R and the function ℎ𝑏 ∶ 𝐼 → R+ defined as :

𝑏 ∈ 𝐼 ⟶ ℎ𝑏 =

√

4 𝑏2 − 6 𝑏 + 1
𝑏2 (2 𝑏 − 1)

∈ R+. (3.8)

ix 𝑏 ∈ 𝐼 and consider the symplectic, reversible scheme in (3.4) given by 𝐘𝑛+1 = 𝛹 (𝑏)
ℎ (𝐘𝑛) which advances with step size ℎ ∶= 𝛼 𝛽 ℎ𝑏; then

it provides a stable, energy-preserving approximation of the test model (3.2).

Proof. Fix 𝑏 ∈ 𝐼 . When the scheme 𝐘𝑛+1 = 𝛹 (𝑏)
ℎ (𝐘𝑛) is applied to the linear test model (3.2) with step size ℎ ∶= 𝛼 𝛽 ℎ𝑏, then

ℎ𝜎 =
𝛼 𝛽 ℎ𝑏
𝛼 𝛽

= ℎ𝑏 and

eℎ(𝑏) =
𝜎ℎ3𝑏

4(𝜎2 + 1)
(2ℎ2𝑏 𝑏

3 − (4 + ℎ2𝑏) 𝑏
2 + 6𝑏 − 1)

=
𝜎ℎ3𝑏

4(𝜎2 + 1)
(

𝑏2 (2 𝑏 − 1)ℎ2𝑏 − (4𝑏2 − 6𝑏 + 1)
)

= 0.

From Theorem A.1, the conservation of energy follows. Moreover, since 3−
√

5
4 < 𝑏 ≤ 1

4
, it results

0 < ℎ𝑏 ≤
√

4
1 − 2𝑏

= min
𝑏∈𝐼

{
√

2
𝑏
,
√

2
1∕2 − 𝑏

}

so that ℎ = ℎ satisfies the stability condition (3.6). □
6

𝜎 𝑏
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An important consequence which will be useful to extend the described result to the multivariate case, is the following.

heorem 3.3. With the notations used above, fix 𝑏 ∈ 𝐼 and consider

𝛹̃ (𝑏)
ℎ ∶= 𝜑̃[𝑄]

𝑏ℎ ◦𝜑̃[𝑃 ]
ℎ∕2◦𝜑̃

[𝑄]
(1−2 𝑏)ℎ◦𝜑̃

[𝑃 ]
ℎ∕2◦𝜑̃

[𝑄]
𝑏ℎ (3.9)

where 𝜑̃[𝑃 ]
𝑡 and 𝜑̃[𝑄]

𝑡 represent the exact flows of the dynamics 𝑑𝐘
𝑑𝑡

= [𝜎−1𝑃 , 𝟎]𝑇 and 𝑑𝐘
𝑑𝑡

= [𝟎, −𝜎 𝑄]𝑇 , respectively. Then, the symplectic
nd reversible scheme 𝐘𝑛+1 = 𝛹̃ (𝑏)

ℎ𝑏
(𝐘𝑛), with ℎ𝑏 defined in (3.8), provides a stable, energy-preserving approximation of the test model (3.2).

Proof. It is enough to observe that the scheme 𝐘𝑛+1 = 𝛹̃ (𝑏)
ℎ𝑏

(𝐘𝑛) is equivalent to the scheme (3.4) given by 𝐘𝑛+1 = 𝛹 (𝑏)
ℎ (𝐘𝑛) with

= 𝛼 𝛽 ℎ𝑏. □

.3. Generalization to multivariate Gaussian distributions

Theorem 3.3 presents the construction for a symplectic, reversible, and energy-preserving scheme for the 𝑗th oscillator
𝑑𝑄𝑗

𝑑𝑡
=

𝑃𝑗

𝛽2𝑗
,

𝑑𝑃𝑗

𝑑𝑡
= −

𝑄𝑗

𝛼2𝑗
, for 𝑗 = 1,… 𝑑, (3.10)

here 𝑗 = 1,… , 𝑑. Indeed, as before, fix 𝑏 ∈ 𝐼 and consider

𝛹̃ (𝑏)
ℎ ∶= 𝜑̃

[𝑄𝑗 ]
𝑏ℎ ◦𝜑̃

[𝑃𝑗 ]
ℎ∕2◦𝜑̃

[𝑄𝑗 ]
(1−2 𝑏)ℎ◦𝜑̃

[𝑃𝑗 ]
ℎ∕2◦𝜑̃

[𝑄𝑗 ]
𝑏ℎ . (3.11)

here the flows 𝜑̃
[𝑃𝑗 ]
𝑡 and 𝜑̃

[𝑄𝑗 ]
𝑡 correspond to the exact flows of the following differential equations:

𝑑𝐘(𝑗)

𝑑𝑡
= [𝜎−1𝑗 𝑃𝑗 , 0]𝑇 and 𝑑𝐘(𝑗)

𝑑𝑡
= [0, −𝜎𝑗 𝑄𝑗 ]𝑇 ,

where 𝐘(𝑗) ∶= [𝑄𝑗 , 𝑃𝑗 ] and 𝜎𝑗 =
𝛽𝑗
𝛼𝑗

for 𝑗 = 1,… , 𝑑. Then, the symplectic, reversible scheme 𝐘(𝑗)
𝑛+1 = 𝛹̃ (𝑏)

ℎ𝑏
(𝐘(𝑗)

𝑛 ) where 𝛹̃ (𝑏)
ℎ is defined

in (3.11) is a stable integrator for the 𝑗th oscillator (3.10) which preserves the 𝑗th Hamiltonian 𝐻𝑗 (𝑄𝑗 , 𝑃𝑗 ) = 1
2

(

𝑄2
𝑗

𝛼2𝑗
+

𝑃 2
𝑗

𝛽2𝑗

)

=

1
2 𝛼𝑗 𝛽𝑗

(

𝜎𝑗 𝑄2
𝑗 +

𝑃 2
𝑗

𝜎𝑗

)

.

Now we have all the instruments to provide symplectic, reversible, energy-preserving schemes for the 𝑑-dimensional test model
𝑑𝐐
𝑑𝑡

= 𝐷−1
𝛽 𝐏, 𝑑𝐏

𝑑𝑡
= −𝐷−1

𝛼 𝐐. (3.12)

et 𝐷𝛼 and 𝐷𝛽 as 𝑑 × 𝑑 diagonal matrices with entries 𝛼2𝑗 and 𝛽2𝑗 , respectively, for 𝑗 = 1,… , 𝑑 and define 𝛴 ∶= 𝐷1∕2
𝛽 𝐷−1∕2

𝛼 , we can
ive the following result

heorem 3.4. Fix 𝑏 in the interval 𝐼 =
]

3−
√

5
4 , 1

4

]

⊂ R and, with the notations used above, consider

𝛹̃ (𝑏)
ℎ ∶= 𝜑̃[𝐐]

𝑏 ℎ ◦𝜑̃
[𝐏]
ℎ∕2◦𝜑̃

[𝐐]
(1−2 𝑏)ℎ◦𝜑̃

[𝐏]
ℎ∕2◦𝜑̃

[𝐐]
𝑏 ℎ , (3.13)

here 𝜑̃[𝐏]
𝑡 and 𝜑̃[𝐐]

𝑡 represent the exact flows of

𝑑𝐘
𝑑𝑡

= [𝛴−1 𝐏, 𝟎𝑑 ]𝑇 ,
𝑑𝐘
𝑑𝑡

= [𝟎𝑑 , −𝛴𝐐]𝑇 .

Then, the symplectic and reversible method 𝐘𝑛+1 = 𝛹̃ (𝑏)
ℎ𝑏

𝐘𝑛 with ℎ𝑏 defined in (3.8) provides a stable approximation for the system (3.12)
which preserves the Hamiltonian

𝐻(𝐘) = 1
2
𝐘𝑇 −1

2𝑑 𝐘, 2𝑑 ∶=
[

𝐷𝛼 𝟎𝑑
𝟎𝑑 𝐷𝛽

]

. (3.14)

roof. The method 𝐘𝑛+1 = 𝛹̃ (𝑏)
ℎ𝑏

𝐘𝑛 when applied to approximate system (3.12) can be expressed as 𝐘𝑛+1 = (ℎ𝑏 ,𝛴)
2𝑑 𝐘𝑛 where

(ℎ𝑏 ,𝛴)
2𝑑 =

[

Pℎ𝑏 Eℎ𝑏 + 𝛴−1 Qℎ𝑏

Eℎ𝑏 − 𝛴 Qℎ𝑏 Pℎ𝑏

]

, (3.15)

here the matrix Eℎ𝑏 has, by construction, extra-diagonal entries Eℎ𝑏 (𝑖, 𝑗) = 0 and diagonal ones

Eℎ𝑏 (𝑗, 𝑗) =
ℎ3𝑏𝜎𝑗
2

(

2 𝑏3 ℎ𝑏2 − 𝑏2 ℎ𝑏2 − 4 𝑏2 + 6 𝑏 − 1
)

= 0,
7

4(𝜎𝑗 + 1)
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for the choice of ℎ𝑏. Consequently Eℎ𝑏 = 𝟎𝑑×𝑑 . The error in energy at each step is given by

𝛥(𝑛,ℎ𝑏)
2𝑑 = 𝐻(𝐘𝑛+1) −𝐻(𝐘𝑛) = 1

2
𝐘𝑇
𝑛  (ℎ𝑏)

2𝑑 𝐘𝑛 (3.16)

where  (ℎ𝑏)
2𝑑 ∶= (ℎ𝑏)

2𝑑
𝑇
(ℎ𝑏)

2𝑑 − −1
2𝑑 and (ℎ𝑏)

2𝑑 = −1∕2
2𝑑 (ℎ𝑏 ,𝛴)

2𝑑 . As Eℎ𝑏 = 𝟎𝑑×𝑑 then the matrix  (ℎ𝑏)
2𝑑 results to have the following

expression

 (ℎ𝑏)
2𝑑 =

(

Pℎ𝑏 𝐷𝛼 Pℎ𝑏 + Qℎ 𝐷𝛼 Qℎ𝑏 − 𝐷𝛼 𝟎𝑑
𝟎𝑑 Pℎ𝑏 𝐷𝛽 Pℎ𝑏 + Qℎ 𝐷𝛽 Qℎ𝑏 − 𝐷𝛽

)

.

ith Pℎ𝑏 , Qℎ𝑏 , 𝐷𝛼 and 𝐷𝛽 diagonal matrices which satisfy the relation P2ℎ𝑏 + Q2
ℎ𝑏

= I𝑑 , then  (ℎ𝑏)
2𝑑 = 𝟎2𝑑×2𝑑 . □

As a corollary, we provide the following result

heorem 3.5. Fix 𝑏 in the interval 𝐼 =
]

3−
√

5
4 , 1

4

]

⊂ R and consider the method 𝐘𝑛+1 = 𝛹 (𝑏)
ℎ𝑏

(𝐘𝑛), where 𝛹 (𝑏)
ℎ is defined in (3.4) and the

tep size ℎ𝑏 is given in (3.8). It provides a symplectic, reversible, stable approximation for the system
𝑑𝐐
𝑑𝑡

= 𝐏, 𝑑𝐏
𝑑𝑡

= −𝐐,

hich preserves the Hamiltonian 𝐻(𝐐,𝐏) = 1
2
𝐏𝑇 𝐏 + 1

2
𝐐𝑇 𝐐.

Proof. It is enough to notice that 𝐷𝛼 ≡ 𝐷𝛽 = 𝑑 and 𝛴 = 𝑑 ; then the method 𝐘𝑛+1 = 𝛹 (𝑏)
ℎ𝑏

(𝐘𝑛), where 𝛹 (𝑏)
ℎ is defined in (3.4)

reduces to 𝐘𝑛+1 = 𝛹̃ (𝑏)
ℎ𝑏

(𝐘𝑛), where 𝛹̃ (𝑏)
ℎ is defined in (3.13). □

. Novel splitting two-step method for sampling from Gaussian distributions

Theorem 3.4 constitutes a powerful tool for proposing an effective alternative to the Störmer–Verlet integrator to sample, with
MC algorithm, the variable 𝐪 ∈ 𝐑𝑑 from a Gaussian distribution  (0, 𝐷𝛼) where variance 𝛼2𝑖 of the 𝑖th component 𝑞𝑖 of 𝐪 are

he entries of the diagonal matrix 𝐷𝛼 . The auxiliary variables 𝐩 ∈ 𝐑𝑑 are taken randomly by drawing from a Gaussian distribution
(0, 𝐷𝛽 ) with variances 𝛽2𝑖 . To approximate the Hamiltonian dynamics, given by Eqs. (3.12), we propose to use the splitting method

𝑛+1 = 𝛹̃ (𝑏)
ℎ (𝐘𝑛), with 𝛹̃ (𝑏)

ℎ in (3.13) with 𝑏 in the interval 𝐼 =
]

3−
√

5
4 , 1

4

]

⊂ R and the step size ℎ = ℎ𝑏 given in (3.8). The novel
method is denoted as nSP2S (new splitting two-step method for Gaussian distribution). Within HMC, the proposed procedure can be
implemented without performing the Metropolis test because the Hamiltonian is kept constant. This is an immediate consequence
of Theorem 3.4.

5. Novel splitting two-step method for sampling from generic distributions

As mentioned in the Introduction, recent research efforts seeking alternatives to the Störmer–Verlet algorithm within HMC to
sample from generic distributions have consistently focused on evaluating their performance when applied to Gaussian distributions
taken as test models. In line with the same efforts, in this section, we introduce a criterion for selecting the step size ℎ in HMC
processes when using the splitting method 𝐘𝑛+1 = 𝛹 (𝑏)

ℎ (𝐘𝑛), with 𝛹 (𝑏)
ℎ in (3.4), to sample from generic distributions. We propose to

fix 𝑏 in the interval 𝐼 =
]

3−
√

5
4 , 1

4

]

⊂ R and to adopt the step size ℎ = ℎ𝑏 given in (3.8). With abuse of notation, the novel method
s denoted as nSP2S (new splitting two-step method for generic distribution).

The rationale of our proposal lies in the fact that, in contrast to the Störmer–Verlet method, the one-parameter splitting (3.4),
ith 𝑏 ∈ 𝐼 and the appropriately chosen step size ℎ = ℎ𝑏, provides a method which shows an optimal performance when applied

o Gaussian distributions with unitary variances and zero correlations because it assures the acceptance of all proposals. This is an
mmediate consequence of Theorem 3.5.

.1. Selection of the 𝑏 parameter

Each value of the 𝑏 parameter in the open interval 𝐼 =
]

3−
√

5
4 , 1

4

]

detects a stable method in the class of the splitting methods
3.4). Hence, we may wonder about what is the ‘best’ choice and, consequently, the ‘best method’ to adopt. Classical criteria might
e followed:

1. choose 𝑏 = 0.25 to enlarge ℎ𝑏 as much as possible. Consequently, ℎ𝑏 ≈ 2.828. This is a very large step which can be used, in
practice, only for Gaussian distributions and for very low-dimensional non-stiff problems;

2. enlarge ℎ𝑏 as much as possible increasing 𝑏 but taking into account that stability decreases when we approach the roots of
2 2
8

pℎ𝑏 − 1 = 0. The best choice corresponds to 𝑏 such that pℎ𝑏 = 0. We find 𝑏 = 𝑏𝑠𝑡𝑎𝑏 ≈ 0.2008 and ℎ𝑏𝑠𝑡𝑎𝑏 ≈ 1.3432;
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3. choose 𝑏 to minimize the leading error term 𝑘23,1 + 𝑘23,2 with 𝑘3,1 = 12 𝑏2−12 𝑏+2
24 and 𝑘3,2 = −6 𝑏+1

24 . In this case, the optimal
choice corresponds to 𝑏 = 𝑏𝑀𝐿 ≈ 0.1932 (see [21]) and the resulting step is ℎ𝑏𝑀𝐿

≈ 0.6573;

For fair numerical comparisons with different procedures, it is essential to maintain a fixed step size among integrators. Therefore,
nother possible choice of 𝑏 corresponds to values of ℎ𝑏 equal to those employed as step sizes (ℎ) in the benchmark tests. This is
chieved by setting 𝑏 = ℎ−1𝑏 (ℎ), where the function ℎ−1𝑏 ∶ ]0, ℎ𝑏max ] ⟶ 𝐼 represents the inverse function of ℎ𝑏 in Eq. (3.8) and it is
efined as the smallest real root of the third order polynomial 2ℎ2 𝑏3 − (4 + ℎ2) 𝑏2 + 6𝑏 − 1.

.2. Adaptive selection of the 𝑏 parameter

Here, we are also proposing a promising strategy for an adaptive choice of the method. Starting from 𝑏𝑚𝑎𝑥 set at one of the
lassical choices described above, we decrease this value (according to a fixed percentage) each time a sample is rejected. The HMC
lgorithm with a 99.7% reduction is described in Algorithm 5.1. Another variant involves reducing the parameter 𝑏 each time a
pecified target rejection rate is exceeded. In our simulations, we will also test the performance of the proposed integrator built on
he described adaptive procedures.

Algorithm 5.1 Novel Adaptive HMC algorithm

Draw 𝐪(1) ∼ 𝜋(𝐪), 𝐪(1) ∈ R𝑑 , set 𝐿 ≥ 1, 𝑇𝑚𝑎𝑥 > 0

set 𝑟𝑒𝑑 = 0.997, 𝑏𝑚𝑖𝑛 =
3−

√

5
4 , choose 𝑏𝑚𝑎𝑥 ∈

]

3−
√

5
4 , 1

4

]

,

set 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑏𝑚𝑎𝑥 − 𝑏𝑚𝑖𝑛, set 𝑏 = 𝑏𝑚𝑎𝑥, ℎ =
√

4 𝑏2 −6 𝑏+1
𝑏2 (2 𝑏−1)

set 𝑖 = 0
while 𝑖 < 𝐿 do

i=i+1
Draw 𝐩(𝑖) ∼  (0, 𝐷𝛽 )
Set (𝐐0, 𝐏0) = (𝐪(𝑖), 𝐩(𝑖)),
Draw 𝑢 ∼  (0, 1), set 𝑇 ∗ = ℎ + (𝑇𝑚𝑎𝑥 − ℎ) ⋅ 𝑢, 𝑁 = ⌊

𝑇 ∗

ℎ ⌋

Evaluate (𝐐𝑛+1 𝐏𝑛+1) = 𝛹 (𝑏)
ℎ (𝐐𝑛, 𝐏𝑛), for 𝑛 = 0,…𝑁 − 1

Set (𝐪∗, 𝐩∗) =
(

𝐐𝑁 , 𝐏𝑁
)

Calculate 𝛼 = min
(

1, exp
(

𝐻(𝐪(𝑖),𝐩(𝑖)) −𝐻(𝐪∗,𝐩∗)
))

Update: if 𝛼 > 𝑢 then 𝐪(𝑖+1) = 𝐪∗;
otherwise 𝐪(𝑖+1) = 𝐪(𝑖),

set 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑟𝑒𝑑 ⋅ 𝑓𝑎𝑐𝑡𝑜𝑟, 𝑏 = 𝑏𝑚𝑖𝑛 + 𝑓𝑎𝑐𝑡𝑜𝑟, ℎ =
√

4 𝑏2 −6 𝑏+1
𝑏2 (2 𝑏−1) ;

end while
return Markov chain 𝐪(1), 𝐪(2),… , 𝐪(𝐿)

6. Numerical examples

6.1. Bivariate Gaussian distributions

As an initial example, we consider a simple two-dimensional test from [3] to demonstrate the energy-preserving property of the
roposed splitting technique. The objective is to sample two position variables 𝐗 = [𝑋1, 𝑋2]𝑇 from a bivariate distribution. The
osition variables have zero means, standard deviations of 1, and a correlation of 0.95. Additionally, we introduce two momentum
ariables 𝐏 = [𝑃1, 𝑃2], which follow a Gaussian distribution with zero means, standard deviations of 1, and zero correlation. We then
efine the Hamiltonian as

𝑈 (𝐗) + 𝐾(𝐏) = 1
2
𝐗𝑇 𝑆−1

95 𝐗 + 1
2
𝐏𝑇 𝐏, 𝑆95 =

(

1 0.95
0.95 1

)

.

It is important to highlight that the use of our novel integrator may necessitate suitable preconditioning of the dynamics, similar
to other methods proposed in the literature (see e.g. [22,23]). Indeed, in order to describe the above problem with notations suitable
for the application of the proposed procedure, we diagonalize the symmetric matrix 𝑆95 = 𝑉 𝑇 𝐷𝛼 𝑉 with 𝑉 unitary matrix of
eigenvectors. In doing so, the Hamiltonian can be written as

𝑈 (𝐐) + 𝐾(𝐏) = 1
2
𝐐𝑇 𝐷−1

𝛼 𝐐 + 1
2
𝐏𝑇 𝐏, 𝐷𝛼 =

(

0.05 0
0 1.95

)

with 𝐐 = 𝑉 𝐗.
To illustrate the basic functionality of the nSP2S method 𝐘𝑛+1 = 𝛹̃ (𝑏)

ℎ𝑏
𝐘𝑛 with 𝛹̃ (𝑏)

ℎ defined in (3.13) applied with 𝛴 = 𝐷−1∕2
𝛼 we

compare it with the Störmer–Verlet method 𝐘 = 𝛹 (𝑆𝑉 )𝐘 with 𝛹 (𝑆𝑉 ) in (3.1) (SV-method), and with the two stages and three
9

𝑛+1 ℎ 𝑛 ℎ
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Fig. 1. Accepted (green) and rejected (red) samples of HMC method from the bivariate distribution with covariance matrix 𝑆95 given in Section 6.1 with different
integrators. Target probability density evaluated with built-in Matlab function mvnpdf. Strictly positive values in yellow, null values in blue. Parameters 𝑇 ∗ = 5,
initial state 𝐗(1) = [0, 2]𝑇 .

stages methods presented in [10], (hereafter denoted with SP2S and SP3S). The SP2S method, characterized by the composition

in (3.4) applied with 𝑏 = 𝑏𝐵𝐶𝑆 =
3 −

√

3
6

is defined in [10] within the category of one-parameter second-order splitting methods.
Similarly, within the family of two-parameter second-order splitting methods:

𝛹 (𝑏,𝑎)
ℎ ∶= 𝜑[𝐐]

𝑏 ℎ ◦𝜑
[𝐏]
𝑎 ℎ◦𝜑

[𝐐]
(1∕2−𝑏)ℎ◦𝜑

[𝐏]
(1−2𝑎)ℎ◦𝜑

[𝐐]
(1∕2−𝑏)ℎ◦𝜑

[𝐏]
𝑎 ℎ◦𝜑

[𝐐]
𝑏 ℎ , (6.1)

the SP3S method (also known in the literature as the BlCaSa method [24]) corresponds to the values 𝑏 = 0.11888010966548 and
𝑎 = 0.29619504261126. We include a comparison with SP3S method as it has been shown to be the most effective method when
considering the case of multivariate Gaussian distributions [12].

It is worth emphasizing that the comparison methods we have chosen for evaluation do not necessitate any preconditioning.
Therefore, it may be crucial to consider the computational cost associated with the initial diagonalization step when comparing
our procedure to these methods. Nevertheless, for problems with low dimensions, the inclusion of this added cost does not have a
substantial impact on the results.

We set a sample number 𝐿 = 1000 and we run the experiment using a fixed path length of 𝑇 ∗ = 5 for all integrators. The selection
of step sizes was made to equalize the computational costs with respect to the SV scheme. Specifically, we considered one step of
the three-stage method SP3S to be equivalent in cost to three steps of SV. Similarly, one step of the two-stage methods SP2S and
nSP2S was considered equivalent in terms of cost to the composition of two steps of SV. For this purpose, we utilize a step size
of ℎ𝑆𝑃3𝑆 = 0.6 for the three-stage SP3S method. Subsequently, we employ a step size of ℎ𝑆𝑉 = 1

3 ℎ𝑆𝑃 3𝑆 = 0.2 for the SV scheme
and ℎ𝑆𝑃2𝑆 = 2ℎ𝑆𝑉 = 0.4 for both two-stage schemes SP2S and nSP2S methods, respectively. In our approach, the method nSP2S
runs with 𝑏 = ℎ−1𝑏 (0.4) ≈ 0.191795. Fig. 1 we depict accepted and rejected samples in the plane of the target probability density
function for all of the methods considered. The ellipse presented corresponds to region where the theoretical probability density
function, evaluated with built-in Matlab function mvnpdf, is strictly positive, with the area outside the ellipse representing zero
probability. This visualization makes it evident that nSP2S facilitates a more effective exploration of the entire state space. Moreover,
as theoretically predicted, nSP2S maintains the maximum acceptance rate 𝐴𝑅 = 1.

6.2. Multivariate Gaussian distribution

In a more general case, we consider a multivariate Gaussian distribution as the target distribution [3,10] defined as follows:

𝜋(𝐪) ∝ exp

(

−1
2

𝑑
∑

𝑗2𝑞2𝑗

)

,

10

𝑗=1
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Fig. 2. Multivariate Gaussian target with 𝐿 = 5000 samples of dimension 𝑑 = 256; acceptance rate percentage (green diamonds), mean of 𝛥𝐻 (grey squares) and
ESS percentage (orange points) comparison for SV, SP2S, SP3S and nSP2S integrators, measuring with different step size ℎ (for details, refer to the text).

where 𝐪 = [𝑞1,… , 𝑞𝑑 ]𝑇 represents the position variables. The potential energy function 𝑈 (𝐐) is given by 1
2 𝐐

𝑇 𝐷−1
𝛼 𝐐, where 𝐐 is the

vector of independent variables with zero mean and standard deviations 𝛼𝑗 =
1
𝑗 for 𝑗 = 1,… , 𝑑. The kinetic energy function 𝐾(𝐏) is

set to 1
2 𝐏

𝑇 𝐏, where 𝐏 represents the momentum variables.
As in the previous example, we compared our algorithm nSP2S with SV, SP2S, and SP3S methods. We did not consider further

mprovements of these methods, as provided in [9], since, like the previous methods, they do not preserve the energy of Gaussian
istributions.

To perform the experiments we used the same parameters used in [12]. First, in Fig. 2, we present the results of our experiments
ith 𝑑 = 256, setting the number of samples to 𝐿 = 5000 and choosing a number of burn-in samples equal to 1000. The initial 𝐪(1)

s drawn from the target 𝜋(𝐪). For the chosen methods, we fix the path length to 𝑇 ∗ = 5. To ensure a fair comparison in terms of
computational cost, the SP3S method advances with step size ℎ𝑆𝑃3𝑆 = 5∕(320+40 𝑙) for 𝑙 = 0, 1 …16. Then, we run SV method with
tep size ℎ𝑆𝑉 ∶= 1

3 ℎ𝑆𝑃3𝑆 and we adopt ℎ𝑆𝑃2𝑆 = 2ℎ𝑆𝑉 = 2
3 ℎ𝑆𝑃 3𝑆 for both SP2S and nSP2S methods. To ensure our method running

ith a step size of 2
3ℎ𝑆𝑃3𝑆 , we set 𝑏 = ℎ−1𝑏 ( 23 ℎ𝑆𝑃3𝑆 ). For all the experiments we have measured the acceptance rate, the mean of

4000 samples of the energy errors 𝛥𝐻 (𝑖)(𝐪(𝑖),𝐩(𝑖)) = 𝐻(𝐪∗,𝐩∗) −𝐻(𝐪(𝑖),𝐩(𝑖)) and the effective sample size ESS of the first component
𝑞(𝑖)1 of 𝐪(𝑖) which corresponds to the component with largest standard deviation 𝛼1 = 1 (see [25]).

On the left vertical axis, the mean energy errors (grey squares) are plotted on a logarithmic scale for different step sizes ℎ.
On the right vertical axis, we show the acceptance percentage rate (green diamonds) and the effective sample size (ESS) (orange
circles) in linear scale for SV (top-left), SP2S (top-right), SP3S (down-left) and the novel nSP2S method (down-right). As expected,
our approach achieves a 100% acceptance rate with mean energy errors of the order of 10−16. Moreover, the ESS remains above
50%. It is important to highlight that, unlike the SP2S method, which encounters stability issues with sufficiently large step sizes
as depicted in the top-right section of Fig. 2, the nSP2S method is capable of running with larger step sizes. This results in a lower
computational cost without compromising its performance. It is worth noting that Theorem 3.4 guarantees the stability of the
approximations even when we increase the dimensionality 𝑑 of the problem. This is because the stability condition is inherently
satisfied for each oscillator, without the need for any additional adjustment of the time step, as required by the SP2S method [10,14].
To illustrate this point, we provide an example in Fig. 3 with 𝑑 = 500 and we choose the time step ℎ varying in a large interval
from 0.004 to 0.2. The same Figure includes (on the left) plots for the energy error and acceptance rates for both SP2S and nSP2S

ethods. Additionally, we have included (on the right) the values of 𝑏 used by the nSP2S and SP2S methods during the integration
n the same interval of ℎ.

Furthermore, in Fig. 4, we present the results of the conducted qualitative comparative analysis by estimating the mean and
tandard deviation of the samples for nSP2S and SP3S, using the Gaussian target distribution with 𝑑 = 256 and setting a sample

∗ 2 ℎ = 0.0073 (to which
11

umber 𝐿 = 1000. We set 𝑇 = 5 and we run SP3S with ℎ𝑆𝑃3𝑆 = 0.011 and nSP2S with ℎ𝑆𝑃2𝑆 = 3 𝑆𝑃 3𝑆
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Fig. 3. Multivariate Gaussian target with 𝐿 = 5000 samples of dimension 𝑑 = 500; acceptance rate percentage, mean of 𝛥𝐻 and ESS percentage comparison for
SP2S and nSP2S integrators, measuring with step size ℎ ∈ [0.004, 0.2] (left), Values of stepsizes ℎ ∈ [0.004, 0.2] against values of the corresponding b’s for SP2S
nd nSP2S integrators (right).

Fig. 4. Multivariate distribution. Comparison between the SP3S method, running with ℎ𝑆𝑃3𝑆 = 0.011, and the nSP2S method, running with ℎ𝑆𝑃2𝑆 = 2
3
ℎ𝑆𝑃3𝑆 =

.0073. Estimates of means (left) and standard deviations (right) for the 𝑑 = 256 dimensional example. On the 𝑥-axes are reported the standard deviations 𝛼𝑗 of
each variable 𝑞𝑗 for 𝑗 = 1,… , 𝑑, on the 𝑦-axes the estimated values of means and standard deviations, each evaluated from 𝐿 = 1000 iterations, are reported.

corresponds 𝑏 ≈ 0.1909833). The estimation of means and standard deviations from the obtained samples is compared to the
theoretical values of the distribution, i.e., zero mean and standard deviations 𝛼𝑗 for 𝑗 = 1,… , 𝑑. One can notice that the estimates
generated by the HMC algorithm using trajectories evaluated with nSP2S show a greater accuracy, compared to the SP3S method
which rejects only 6 proposals.

6.3. Perturbed Gaussian models

To highlight the effectiveness of our approach, we consider a generic potential energy function 𝑈 (𝐐), as the specific case 𝜀 = 1
f a potential energy of a perturbed Gaussian class defined by

𝑈𝜀(𝐐) = 1 − 𝜀
2

𝐐𝑇𝐐 + 𝜀𝑈 (𝐐), 0 ≤ 𝜀 ≤ 1.

It is trivial to check that 𝑈1(𝐐) = 𝑈 (𝐐). We associate a kinetic energy function 𝐾(𝐏) = 1
2
𝐏𝑇 𝐏 so that the Hamiltonian can be

written as

𝐾(𝐏) + 𝑈𝜖(𝐐) = 1
2
𝐏𝑇 𝐏 + 1 − 𝜀

2
𝐐𝑇𝐐 + 𝜀𝑈 (𝐐)

and the Hamiltonian system is given by
𝑑𝐐
𝑑𝑡

= 𝐏, 𝑑𝐏
𝑑𝑡

= −∇𝐐 𝑈𝜖(𝐐) = (𝜀 − 1)𝐐 − 𝜀∇𝐐 𝑈 (𝐐).

We apply the method 𝐘𝑛+1 = 𝛹 (𝑏)
ℎ𝑏

𝐘𝑛 with 𝛹 (𝑏)
ℎ defined in (3.4) which provides an energy preserving method for the above

Hamiltonian system when 𝜀 = 0. We investigate the performance of the algorithm with respect to the acceptance rates and to
the error in energy at 𝜀 = 1 for two different specific models: the Log-Gaussian Cox model and the logistic regression.

6.3.1. Log-Gaussian Cox model
As first example we considered, as target, the Log-Gaussian Cox distribution [26]. For this model the data set is organized in

the vector 𝐗 =
[

𝑋 ,… , 𝑋 ,𝑋 ,… , 𝑋 ,…𝑋 ,…𝑋
]𝑇 , representing the number of points 𝑋 in each cell (𝑖, 𝑗) of a 𝑑 × 𝑑
12

1,1 1,𝑑 2,1 2,𝑑 𝑑,1 𝑑,𝑑 𝑖,𝑗
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dimensional grid in [0, 1] × [0, 1]. The purpose is to sample the variable 𝐐 =
[

𝑄1,1,… , 𝑄1,𝑑 , 𝑄2,1,… , 𝑄2,𝑑 ,…𝑄𝑑,1,…𝑄𝑑,𝑑
]𝑇 from the

probability distribution given by

(𝐐) =
𝑑
∏

𝑖,𝑗=1
exp(𝑋𝑖,𝑗𝑄𝑖,𝑗 − 𝑚 exp(𝑄𝑖,𝑗 ) ) exp

(

−1
2
(𝐐 − 𝜇𝟏)𝑇 𝑆−1(𝐐 − 𝜇𝟏)

)

here 𝑚 = 1∕𝑑2 represents the area of each cell and the matrix 𝑆 is given

𝑆 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑇1 𝑇2 𝑇3 … … 𝑇𝑑
𝑇2 𝑇1 𝑇2 … ⋮

𝑇3 𝑇2 … … … …

⋮ … … … 𝑇2 𝑇3
⋮ … 𝑇2 𝑇1 𝑇2
𝑇𝑑 … … 𝑇3 𝑇2 𝑇1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑇𝑖(𝑘, 𝑗) = 𝜎2 𝑒−
√

(1−𝑖)2+(𝑘−𝑗)2
𝛽 𝑑 , 𝑖, 𝑘, 𝑗 = 1,… 𝑑.

with 𝜎2, 𝛽, are fixed parameters and 𝜇 = log
(

∑𝑑
𝑖,𝑗=1 𝑋𝑖,𝑗

)

− 𝜎2∕2. The potential energy function is defined as

𝑈 (𝐐) = − log [(𝐐)] =
𝑑
∑

𝑖,𝑗=1
𝑚 exp(𝑄𝑖,𝑗 ) −𝑋𝑖,𝑗𝑄𝑖,𝑗 + 1

2
(𝐐 − 𝜇𝟏)𝑇 𝑆−1(𝐐 − 𝜇𝟏)

= 1
2
(𝐐 − 𝜇𝟏)𝑇 𝑆−1(𝐐 − 𝜇𝟏) + 𝑚 𝟏𝑇 exp(𝐐) − 𝐗𝑇𝐐.

with

∇𝐐 𝑈 (𝐐) = 𝑆−1(𝐐 − 𝜇𝟏) + 𝑚 exp(𝐐) − 𝐗.

The Log-Gaussian Cox model is particularly relevant as a point process for modeling presence-only species distribution [27], such as
the case of Scots pines in Eastern Finland [26,28] or the spread of the invasive species Eucalyptus sparsifolia in Australia [27].
In our study, we address a similar problem related to alien plants, specifically focusing on the highly competitive invasive
species Ailanthus Altissima (Mill.) Swingle thriving in the Murgia Alta Natura 2000 protected area and National Park in southern
Italy [15]. For the purpose of our tests, we used a dataset consisting of a high-resolution (2 m) mapping of Ailanthus Altissima
presence, obtained through multi-temporal remote sensing satellite data and machine learning techniques using a two-stage hybrid
classification process [29]. The satellite images used in the dataset were provided by the European Space Agency (ESA) under
the Data Warehouse 2011–2014 policy within the FP7-SPACE BIO_SOS project (www.biosos.eu) and the European LIFE project
(www.ispacnr.it/progetto-life-alta-murgia).

From the complete dataset, we extracted a small area, scaled in the square [0, 1] × [0, 1] containing 185 trees plotted in Fig. 7
(top-left). To calculate the parameters of the Log Gaussian Cox model we followed the moment-based estimation methodology
described in [30], resulting in 𝛽 = 0.127, 𝜎2 = 3.5881, and 𝜇 = log(185) − 𝜎2∕2. We collected a Markov chain of 𝐿 = 5000 samples of
dimension 𝑑2 = 400 with HMC, discarding the first 1000 burn-in samples.

In Fig. 5, we present the comparison results with competitors based on acceptance percentage and mean energy errors. We fix
the path length 𝑇 = 3 and we use ℎ𝑆𝑃 3𝑆 = 3

𝑛 with 𝑛 = 60, 40, 30, 20, 15, 12, 10 for the SP3S method. Then we run SV method with
𝑆𝑉 = 1

3 ℎ𝑆𝑃3𝑆 . For both SP2S and nSP2S methods, we adopt ℎ𝑆𝑃2𝑆 = 2ℎ𝑆𝑉 = 2
3 ℎ𝑆𝑃3𝑆 . To ensure that our method nSP2S runs with

he correct step size, we set 𝑏 = ℎ−1𝑏 ( 23ℎ𝑆𝑃 3𝑆 ). In Fig. 5 the horizontal axis of each plot represents the different step sizes. Even if
our approach achieves higher acceptance rates compared to the SP2S, which is considered optimal in literature within the class of
second-order two-stage splitting schemes, these results do not show clearly the superiority of our procedure when applied without
the proposed adaptive approach. Furthermore, compared to the SP3S method, recognized as optimal in the class of second-order
hree-stage splitting schemes, our proposed nSP2S procedure demonstrates only slightly better acceptance rates and, as regards
fficiency, for several choices of ℎ the ESS of SP3S is even greater.

To show the potential advantage deriving from the adaptive approach of our method (Algorithm 5.1) compared with the non-
daptive one, we expanded the step size range ℎ𝑆𝑃3𝑆 = 3

𝑛 , adding values for 𝑛 of 9, 8, 7, 6, 5, 4, for the SP3S method. Subsequently,
n Fig. 6, we compare its performance with nSP2S method, applied both with and without the adaptive procedure. The adaptive
rocedure starts by setting 𝑏max to ℎ−1𝑏 (ℎ𝑆𝑃 2𝑆 ), where ℎ𝑆𝑃2𝑆 = 2

3ℎ𝑆𝑃3𝑆 and the reduction of 𝑏 is determined by the parameter
𝑟𝑒𝑑 = 0.99. The results of this comparison are presented in Fig. 6, where a noticeable enhancement is shown with the novel adaptive
procedure.

Regarding the above comparison, it is important to note that directly comparing the adaptive algorithm to other non-adaptive
methods presents challenges. The provided results, for example, do not consider the increased computational cost resulting from
reductions in 𝑏 coefficient, which in turn lead to corresponding reductions in the step size ℎ𝑏 (refer to Table 1). However, as
mentioned earlier, here we limit on demonstrating the potential benefits of adaptively selecting the pairs (𝑏, ℎ𝑏) within the considered
family of two-step second-order splitting procedures.

Finally, in Fig. 7 (top-right) we display the estimated intensity map of the Ailanthus trees obtained using the novel adaptive
procedure (Algorithm 5.1) in correspondence of the higher dimension 𝑑2 = 4096. Setting 𝑇𝑚𝑎𝑥 = 3, starting from the value
𝑏𝑚𝑎𝑥 = 𝑏𝐵𝐶𝑆 ≈ 0.2113 and a reduction factor of 𝑟𝑒𝑑 = 0.997, the method quickly converges to the shown configuration with acceptance
rate 𝐴𝑅 = 0.6443. In Fig. 7 (down-left) we depict the convergence of values of 𝑏 to the optimal value 𝑏 = 𝑏𝑜𝑝𝑡 = 0.1909970 and their
corresponding values of ℎ approaching ℎ = 0.0527835, with respect to the number of sample iterations 𝐿.
13
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p

Fig. 5. Log-Gaussian Cox target with 𝐿 = 5000 samples of dimension 𝑑2 = 400; acceptance rate percentage (green diamonds), mean of 𝛥𝐻 (grey squares) and
ESS percentage (orange points) comparison for SV, SP2S, SP3S and nSP2S integrators, measuring with different step size ℎ (for details, refer to the text).

Fig. 6. Log-Gaussian Cox target with 𝐿 = 5000 samples of dimension 𝑑2 = 400; comparison for SP3S and nSP2S integrators, and the nSP2S method with adaptive
rocedure and reduction parameter 𝑟𝑒𝑑 = 0.99. Acceptance rate percentage (green diamonds), mean of 𝛥𝐻 (grey squares) and ESS percentage (orange points).
14
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Table 1
Log-Gaussian Cox target with 𝐿 = 5000 samples of dimension 𝑑2 = 400. Range of 𝑏 coefficients and related ℎ𝑏
values for the adaptive nSP2S procedure in Fig. 6.
ℎ𝑆𝑃 2𝑆 𝑏𝑚𝑎𝑥 Range of b Range of ℎ𝑏

0.033 0.1909886 𝑏 ∈ [0.1909884, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0328, ℎ𝑆𝑃2𝑆 ]
0.050 0.1909956 𝑏 ∈ [0.1909955, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0497, ℎ𝑆𝑃2𝑆 ]
0.066 0.1910054 𝑏 ∈ [0.1910045, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0653, ℎ𝑆𝑃2𝑆 ]
0.100 0.1910334 𝑏 ∈ [0.1910282, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0946, ℎ𝑆𝑃2𝑆 ]
0.133 0.1910727 𝑏 ∈ [0.1910521, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.1170, ℎ𝑆𝑃2𝑆 ]
0.166 0.1911232 𝑏 ∈ [0.1910687, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.1303, ℎ𝑆𝑃2𝑆 ]
0.200 0.1911850 𝑏 ∈ [0.1910829, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.1407, ℎ𝑆𝑃2𝑆 ]
0.222 0.1912324 𝑏 ∈ [0.1910935, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.1479, ℎ𝑆𝑃2𝑆 ]
0.250 0.1912989 𝑏 ∈ [0.1911034, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.1544, ℎ𝑆𝑃2𝑆 ]
0.285 0.1913959 𝑏 ∈ [0.1910915, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.1466, ℎ𝑆𝑃2𝑆 ]
0.333 0.1915456 𝑏 ∈ [0.1910912, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.1464, ℎ𝑆𝑃2𝑆 ]
0.400 0.1917948 𝑏 ∈ [0.1911095, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.1583, ℎ𝑆𝑃2𝑆 ]
0.500 0.1922562 𝑏 ∈ [0.1911030, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.1542, ℎ𝑆𝑃2𝑆 ]

Fig. 7. Presence of Ailanthus trees (top-left), position of the trees (green points) suitably scaled between 0 and 1. Estimated intensity map of Ailanthus obtained
accordingly to the Algorithm 5.1 (top-right). Adaptive choice of 𝑏 against sample iteration 𝐿 (down-left), corresponding values of ℎ𝑏 against sample iteration 𝐿
(down-right).

6.3.2. Logistic regression model
As a second test, we consider a Bayesian Logistic regression model, following the notation used in [31]. We denote the 𝑛-

dimensional vector of labels associated with the instances matrix 𝑋 ∈ R𝑛×(𝑑+1) as 𝐘 = [𝑌1,… , 𝑌𝑛]𝑇 . Let 𝐱𝑘 = [𝑋𝑘,0,… , 𝑋𝑘,𝑑 ]𝑇 the
(𝑑 + 1)-dimensional (column) vector corresponding to the 𝑘th row of the matrix 𝑋, for 𝑘 = 1,… , 𝑛. The regression coefficients for
the 𝑑 covariates and the intercept are collected in the vector 𝜷 = [𝛽0, 𝛽1,… , 𝛽𝑑 ]𝑇 . To specify a prior distribution for 𝜷, we assume
a multivariate normal distribution with covariance matrix 𝐷 = 𝜎2𝐼 , where 𝐼 is the (𝑑 + 1)-dimensional identity matrix and 𝜎2 is a
freely chosen variance. The goal is to sample the parameters 𝜷 from the resulting distribution, which can be expressed as follows:

(𝜷) ∝ exp
(

𝜷𝑇𝑋𝑇 (

𝐘 − 𝟏𝐧
)

−
𝑛
∑

𝑗=1

[

log(1 + exp(−𝐱𝑇𝑗 𝜷))
])

exp
(

−1
2
𝜷𝑇𝐷−1𝜷

)

= exp
(

𝜷𝑇𝑋𝑇𝐘 −
𝑛
∑

[

log(1 + exp(𝐱𝑇𝑗 𝜷))
])

exp
(

−1
2
𝜷𝑇𝐷−1𝜷

)

15

𝑗=1



Communications in Nonlinear Science and Numerical Simulation 137 (2024) 108168C. Tamborrino et al.

m
t

T

I
p
ℎ

s
w
ℎ

Fig. 8. Logistic regression model with 𝐿 = 5000 samples of dimension 𝑑 + 1 = 8; acceptance rate percentage (green diamonds), mean of 𝛥𝐻 (grey squares) and
ean of ESS percentage (orange points) comparison for SV, SP2S, SP3S and nSP2S integrators, measuring with different step sizes ℎ (for details, refer to the

ext).

he potential energy function, is defined as:

𝑈 (𝜷) = − log[(𝜷)] = 1
2
𝜷𝑇𝐷−1𝜷 +

𝑛
∑

𝑘=1

[

log(1 + exp(𝐱𝑇𝑘 𝜷))
]

− 𝜷𝑇𝑋𝑇𝐘

Without loosing of generality, we can set 𝜎 = 1 as the same results are obtained on the scaled dataset 𝑋̃ = 𝑋∕𝜎. The gradient of the
potential energy function is given by

∇𝜷 𝑈 (𝜷) = 𝜷 − 𝑋𝑇
(

𝐘 −
[ exp( 𝐱𝑇1 𝜷)

1 + exp(𝐱𝑇1 𝜷)
,

exp(𝐱𝑇2 𝜷)

1 + exp(𝐱𝑇2 𝜷)
,… ,

exp(𝐱𝑇𝑛 𝜷)
1 + exp(𝐱𝑇𝑛 𝜷)

]𝑇)

.

For this experiment, we have tested the method on the logistics regression model using the Pima Indian, Ripley, Heart, German
credit, and Australian credit datasets from the UCI repository [32], which includes various matrices of instances and labels. We
report the results obtained with the Pina dataset, since the tests performed with the other datasets have no significant differences
in terms of performance.

Following standard practice, we applied a normalization procedure to the dataset, ensuring that it has a mean of 0 and a standard
deviation of 1. Prior to normalization, we performed a scaling procedure on the data, taking into account the chosen value of 𝜎.

We collected a Markov chain of 𝐿 = 5000 samples of dimension 𝑑 + 1 = 8 with HMC, discarding the first 1000 burn-in samples.
n Fig. 8, we present the comparison results with competitors based on acceptance percentage and mean energy errors. We fix the
ath length 𝑇 = 3 and we use ℎ𝑆𝑃3𝑆 = 3

𝑛 with 𝑛 = 60, 40, 30, 20, 18, 13, for the SP3S method. Then we run SV method with
𝑆𝑉 ∶= 1

3ℎ𝑆𝑃3𝑆 . For SP2S we adopt ℎ𝑆𝑃2𝑆 = 2ℎ𝑆𝑉 = 2
3ℎ𝑆𝑃 3𝑆 and we set 𝑏 = ℎ−1𝑏 ( 23ℎ𝑆𝑃3𝑆 ) for nSP2S. The horizontal axis of each

plot represents the different step sizes used. While our method demonstrates superior performance compared to SV and similar
performance to other competitors for lower values of the step size, it exhibits poor performance for larger step sizes. It is worth
noting that, although both two-stage integrators, SP2S and nSP2S, frequently experience failures with the large step sizes making it
challenging to conclusively determine the superior two-stage scheme, the SP3S scheme always exhibits the best performance.

To give evidence of the improved behavior of our proposed procedure within the adaptive Algorithm 5.1 we expanded the step
ize range ℎ𝑆𝑃3𝑆 = 3

𝑛 , adding values for 𝑛 of 12, 10, 9, 8, 7, 6, 5, 4, for the SP3S method. In Fig. 9, we compare its performance
ith non-adaptive and adaptive nSP2S methods. As in the previous comparison, the adaptive procedure starts by setting 𝑏max =
−1
𝑏 (ℎ𝑆𝑃2𝑆 ), where ℎ𝑆𝑃2𝑆 = 2

3ℎ𝑆𝑃3𝑆 . The reduction of 𝑏 is then determined by parameter 𝑟𝑒𝑑 = 0.98. The results of this comparison
are presented in Fig. 9, where, once again, the obtained enhancement with the novel adaptive procedure is demonstrated. The range
of values assumed by the 𝑏 coefficient, along with the corresponding ranges for the step size ℎ , is provided in Table 2.
16
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Fig. 9. Logistic regression model with 𝐿 = 5000 samples of dimension 𝑑 + 1 = 8; acceptance rate percentage (green diamonds), mean of 𝛥𝐻 (grey squares) and
ean of ESS percentage (orange points). Comparison for SP3S, and nSP2S integrators in correspondence of 𝑟𝑒𝑑 = 0.98.

Table 2
Logistic regression model with 𝐿 = 5000 samples of dimension 𝑑 + 1 = 8. Range of 𝑏 coefficients and related ℎ𝑏
values for the adaptive nSP2S procedure in Fig. 9.
ℎ𝑆𝑃 2𝑆 𝑏𝑚𝑎𝑥 Range of b Range of ℎ𝑏

0.033 0.1909886 𝑏 ∈ [0.1909882, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0320, ℎ𝑆𝑃2𝑆 ]
0.050 0.1909956 𝑏 ∈ [0.1909942, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0470, ℎ𝑆𝑃2𝑆 ]
0.066 0.1910054 𝑏 ∈ [0.1910006, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0590, ℎ𝑆𝑃2𝑆 ]
0.100 0.1910334 𝑏 ∈ [0.1910188, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0842, ℎ𝑆𝑃2𝑆 ]
0.111 0.1910334 𝑏 ∈ [0.1910221, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0880, ℎ𝑆𝑃2𝑆 ]
0.153 0.1910727 𝑏 ∈ [0.1910256, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0919, ℎ𝑆𝑃2𝑆 ]
0.166 0.1911232 𝑏 ∈ [0.1910273, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0937, ℎ𝑆𝑃2𝑆 ]
0.200 0.1911850 𝑏 ∈ [0.1910231, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0891, ℎ𝑆𝑃2𝑆 ]
0.222 0.1912324 𝑏 ∈ [0.1910219, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0878, ℎ𝑆𝑃2𝑆 ]
0.250 0.1912989 𝑏 ∈ [0.1910266, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0930, ℎ𝑆𝑃2𝑆 ]
0.285 0.1913959 𝑏 ∈ [0.1910287, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0951, ℎ𝑆𝑃2𝑆 ]
0.333 0.1915456 𝑏 ∈ [0.1910221, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0880, ℎ𝑆𝑃2𝑆 ]
0.400 0.1917948 𝑏 ∈ [0.1910300, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0965, ℎ𝑆𝑃2𝑆 ]
0.500 0.1922562 𝑏 ∈ [0.1910241, 𝑏𝑚𝑎𝑥] ℎ𝑏 ∈ [0.0902, ℎ𝑆𝑃2𝑆 ]

Furthermore, in order to show that the estimated samples 𝛽 obtained with the adaptive approach are consistent with the
requency estimates calculated using the generalized linear model (glm) [33] the Algorithm 5.1 has been run by setting, the path
ength 𝑇𝑚𝑎𝑥 = 3, 𝑏𝑚𝑎𝑥 = 0.1932 (case 3 of Section 5.1), 𝑟𝑒𝑑 = 0.98 and we plot the result in Fig. 10 where the red line representing the

frequentist estimates that falls within the central location of the histograms of 𝛽0, 𝛽1,… , 𝛽7. In Fig. 11 we show how the parameter
𝑏 (on the left left) and the value of ℎ𝑏 (on the right) change with respect to sample iterate 𝐿 converging to the value 𝑏𝑜𝑝𝑡 = 0.1910212
to which corresponds ℎ𝑏𝑜𝑝𝑡 = 0.0870547.

7. Conclusions

The recent research literature focuses on the search for efficient volume-preserving and reversible integrators that can replace
the Störmer Verlet method in practical implementations of the HMC method. The effectiveness of these numerical algorithms is
measured by their ability to reduce the expectation of the energy error when applied to univariate and multivariate Gaussian
distributions [10,12].
17
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Fig. 10. Exploration of logistic regression using the Pima Indian dataset. Examination of posterior estimates through Hamiltonian Monte Carlo sampling with
nSP2S (histograms), complemented by a comparison with frequentist estimates (depicted of a vertical lines) using Generalized Linear Model (glm).

Fig. 11. Logistic regression target: adaptive choice of 𝑏 (on the left) and resulting ℎ𝑏 (on the right) against the sample iterate 𝐿 in correspondence of 𝑟𝑒𝑑 = 0.98.

In this paper, we have reversed and improved the adaptive selection of the parameter 𝑏 from the one-parameter family of second-
order splitting procedures, appeared in HMC literature only recently [13,14]. Once the value of 𝑏 in a suitable interval 𝐼 has been
selected to ensure the stability of the chosen method within the family of integrators, the step size used to advance in time is

uniquely determined by the function ℎ𝑏(𝑏) =
√

4 𝑏2 −6 𝑏+1
𝑏2 (2 𝑏−1) . By setting the step size ℎ = ℎ𝑏(𝑏) the expectation of the energy error

for Gaussian distributions, both univariate and multivariate, is nullified. With all proposals being accepted by construction, our
proposed method outperforms the competitors mentioned in [9,10,12]. Consequently, the above competitors cannot be considered
optimal for Gaussian distributions as they do not preserve energy, and they are not more cost-effective than the methods examined
in this study.

Moreover, we propose to use the same the couple (𝑏, ℎ𝑏) with 𝑏 ∈ 𝐼 for sampling with HMC from generic distributions. To
assess the effectiveness of our proposed approach, we conducted tests on general classes of target distributions, such as the Log-
Gaussian Cox model and Bayesian logistic regression. Our criterion proves to be effective in achieving good performance both in
terms of acceptance percentage rate and the effective sample size (ESS). In comparison to the SV scheme, our proposed procedure
demonstrates superior performance for both Log-Gaussian Cox and Bayesian logistic regression models, aligning with the second-
order scheme identified as optimal in two-stage integrators. Compared to three-stage second-order splitting procedures, especially
18
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in the case of the Bayesian logistic regression model, our method demonstrates a lower performance. In our future research, we
will attempt to extend our approach to investigate whether the SP3S method can be surpassed by an energy-preserving integrator
if any), properly choosing the triplets (𝑎, 𝑏, ℎ) in the class of three-stages second order splitting scheme in (6.1).

Additionally, we propose to enhance the performance of the novel integrator nSP2S by incorporating an adaptive selection of the
arameter 𝑏, which identifies a specific method within the family of one-parameter splitting integrators. In this adaptive approach,
e begin with a sufficiently large initial value for 𝑏, and we decrease its value each time a sample is not accepted. Another possible
ariant involves reducing the parameter 𝑏 each time a specified target rejection rate is exceeded. For both examples considered, we
erified the effectiveness in addressing high dimensionality problems and an observed ability to enhance the performance compared
o non-adaptive procedures. As a future research direction we intent to exploit the use of more robust criteria for an adaptive
ethod’s selection in one-parameter families of integrators having the objective of reducing the computational cost.
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ppendix. Energy-preserving linear maps for Gaussian distributions

The chosen step size ℎ > 0 is crucial in the implementation of Algorithm 2.1. Too small a step size will waste computation time
s it will require a large 𝑁 in order to reach the final step 𝑇 ∗ = 𝑁 ℎ. Too large a step size will increase bounded oscillations in

the value of the Hamiltonian, which would be constant if the trajectory were simulated by an energy-preserving map. Moreover,
when values for ℎ are chosen above the critical stability threshold, which is characteristic of each approximating map 𝛹ℎ, then the
Hamiltonian grows without bound, resulting to an extremely low acceptance rate for states proposed by simulated trajectories.

Hence the selection of the step size ℎ should obey to stability constraints. The issue of stability is traditionally faced by means
of a test problem; for HCM flows, it is represented by the problem defined by a Gaussian zero-mean distribution for both 𝑞 and 𝑝.
irstly, we account for the one-dimensional problem and then we extend the analysis to the multi-dimensional case.
19
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A.1. Univariate case

We generalize the approach in both [3,10] by considering generic standard deviations, 𝛼 for 𝑞 and 𝛽 for 𝑝, with zero correlation.
he Hamiltonian dynamics for 𝑄 and 𝑃 define the equations

𝑑𝑄
𝑑𝑡

= 𝑃
𝛽2

, 𝑑𝑃
𝑑𝑡

= − 𝑄
𝛼2

. (A.1)

Setting 𝐘 = [𝑄, 𝑃 ]𝑇 , the Hamiltonian can be expressed as 𝐻(𝐘) = 1
2
𝐘𝑇 −1

2 𝐘 = 1
2

(

𝑄2

𝛼2
+ 𝑃 2

𝛽2

)

where 2 ∶=

[

𝛼2 0

0 𝛽2

]

. Starting

from 𝑄0, 𝑃0, the theoretical solution at 𝑡𝑛 = 𝑛 ℎ is represented as a linear map 𝐘(𝑡𝑛) =  (𝑛 ℎ𝜎 , 𝜎) 𝐘0, where

 (𝑛 ℎ𝜎 , 𝜎) ∶=

[

cos
(

𝑛 ℎ𝜎
)

𝜎−1 sin
(

𝑛 ℎ𝜎
)

−𝜎 sin
(

𝑛 ℎ𝜎
)

cos
(

𝑛 ℎ𝜎
)

]

, 𝜎 ∶=
𝛽
𝛼
, ℎ𝜎 ∶= ℎ

𝛼 𝛽
.

Notice that Hamiltonian can be expressed as 𝐻(𝐘) = 1
2 𝛼 𝛽

(

𝜎 𝑄2 + 𝑃 2

𝜎

)

.
We mentioned that the numerical map used to replace the theoretical solution with an approximation should be volume-

reserving (here equivalent to symplectic) and momentum be flip-reversible. Both characteristics direct our attention to the class
f integrators that, when applied to the test problem (A.1), can be expressed as

𝐘𝑛+1 = (ℎ,𝜎)
2 𝐘𝑛

here (ℎ,𝜎)
2 (1, 1) = (ℎ,𝜎)

2 (2, 2) and det((ℎ,𝜎)
2 ) = 1.

etting pℎ = (ℎ,𝜎)
2 (1, 1) = (ℎ,𝜎)

2 (2, 2), qℎ = 𝜎
𝜎2 + 1

((ℎ,𝜎)
2 (1, 2) − (ℎ,𝜎)

2 (2, 1)) and eℎ = 1
𝜎2 + 1

(𝜎2(ℎ,𝜎)
2 (1, 2) + (ℎ,𝜎)

2 (2, 1)), the

matrix (ℎ,𝜎)
2 can be written as

(ℎ,𝜎)
2 =

[

pℎ eℎ + 𝜎−1 qℎ
eℎ − 𝜎 qℎ pℎ

]

, (A.2)

and, from det((ℎ,𝜎)
2 ) = 1, the following relation holds

p2ℎ − (eℎ + 𝜎−1 qℎ) (eℎ − 𝜎 qℎ) = 1. (A.3)

The stability of the trajectories depends on eigenvalues of (ℎ,𝜎)
2 which solve the polynomial

𝜆2 − 2 pℎ 𝜆 + 1 = 0.

When p2ℎ − 1 ≥ 0 then the eigenvalues are real with at least one having absolute value greater than one, hence the trajectories are
unstable. When p2ℎ − 1 < 0 the eigenvalues are complex with modulus equal to one, hence the trajectories are stable.

The key consideration for what follows is that integrators for which it results eℎ = 0 are energy preserving. Indeed, the error in
nergy at each step is given by

𝛥(𝑛,ℎ)
2 ∶= 𝐻(𝐘𝑛+1) −𝐻(𝐘𝑛) = 1

2
𝐘𝑇
𝑛+1 

−1
2 𝐘𝑛+1 − 1

2
𝐘𝑇
𝑛 −1

2 𝐘𝑛

= 1
2
𝐘𝑇
𝑛 (ℎ,𝜎)

2
𝑇
−1

2 (ℎ,𝜎)
2 𝐘𝑛 − 1

2
𝐘𝑇
𝑛 −1

2 𝐘𝑛

= 1
2
𝐘𝑇
𝑛

(

(ℎ,𝜎)
2

𝑇
−1

2 (ℎ,𝜎)
2 − −1

2

)

𝐘𝑛

= 1
2
𝐘𝑇
𝑛

(

(ℎ)
2

𝑇
(ℎ)

2 − −1
2

)

𝐘𝑛

where (ℎ)
2 = −1∕2

2 (ℎ,𝜎)
2 =

⎛

⎜

⎜

⎜

⎝

pℎ
𝛼

eℎ
𝛼

+
qℎ
𝛽

eℎ
𝛽

−
qℎ
𝛼

pℎ
𝛽

⎞

⎟

⎟

⎟

⎠

.

Let us evaluate

 (ℎ)
2 = (ℎ)

2
𝑇
(ℎ)

2 −−1
2 =

⎛

⎜

⎜

⎜

⎜

⎝

p2ℎ − 1

𝛼2
+
(

eℎ
𝛽

−
qℎ
𝛼

)2 (

1
𝛼2

+ 1
𝛽2

)

eℎ pℎ
(

1
𝛼2

+ 1
𝛽2

)

eℎ pℎ
p2ℎ − 1

𝛽2
+
(

eℎ
𝛼

+
qℎ
𝛽

)2

⎞

⎟

⎟

⎟

⎟

⎠

(A.4)

so that 𝛥(𝑛,ℎ)
2 = 1

2
𝐘𝑇
𝑛  (ℎ)

2 𝐘𝑛, for 𝑛 = 0,… , 𝑁 and

𝛥(𝑁)
2 ∶= 𝐻(𝐘𝑁 ) −𝐻(𝐘0) =

𝑁
∑

𝛥(𝑛,ℎ)
2 = 1

𝑁
∑

𝐘𝑇
𝑛  (ℎ)

2 𝐘𝑛. (A.5)
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Theorem A.1. Consider the Hamiltonian test problem (3.2) and a symplectic and momentum flip - reversible integrator, expressed as
𝑛+1 = (ℎ,𝜎)

2 𝐘𝑛 with (ℎ,𝜎)
2 defined in (A.2), when applied to (A.1). If it results that eℎ = 0, then the integrator preserves the Hamiltonian.

roof. It is enough to observe that, whenever eℎ = 0, the matrix  (ℎ)
2 in (A.4) has null entries on the right-left diagonal. From

elation (A.3), it follows that on the principal diagonal  (ℎ)
2 (1, 1) =

p2ℎ + q2ℎ − 1

𝛼2
=  (ℎ)

2 (2, 2) =
p2ℎ + q2ℎ − 1

𝛽2
= 0 which completes

he proof. □

heorem A.2. Assume that 𝑄0, 𝑃0 are two random variables with Gaussian zero-mean distribution, standard deviations 𝛼 and 𝛽 respectively
nd zero correlation. Suppose that the Hamiltonian dynamics (A.1) is approximated by means of a linear map 𝐘𝑛+1 = (ℎ,𝜎)

2 𝐘𝑛 with (ℎ,𝜎)
2

iven in (A.2). Then, the expectation of the random variable 𝛥(𝑁)
2 in (A.5) is given by

E(𝛥(𝑁)
2 ) = 𝑁

2

(

𝜎 + 1
𝜎

)2
e2ℎ

nd, consequently, E(𝛥(𝑁)
2 ) = 0 iff eℎ = 0.

roof. From 𝛥(𝑛,ℎ)
2 = 1

2
𝐘𝑇
𝑛  (ℎ)

2 𝐘𝑛, we can evaluate

2𝛥(𝑛,ℎ)
2 =

[

p2ℎ − 1

𝛼2
+

(

eℎ
𝛽

−
qℎ
𝛼

)2
]

𝑄2
0 + 2 eℎ pℎ

(

1
𝛼2

+ 1
𝛽2

)

𝑄0 𝑃0

+

[

p2ℎ − 1

𝛽2
+

(

eℎ
𝛼

+
qℎ
𝛽

)2
]

𝑃 2
0

or 𝑛 = 0,… , 𝑁 . From E(𝑄2
0) = 𝛼2, E(𝑃 2

0 ) = 𝛽2, E(𝑄0 𝑃0) = 0, it results that

2E(𝛥(𝑛,ℎ)
2 ) = 2

(

p2ℎ − 1
)

+
(

𝜎−1 eℎ − qℎ
)2 +

(

𝜎 eℎ + qℎ
)2 =

(

𝜎 eℎ + 𝜎−1 eℎ
)2

and the statement trivially follows. □

The following result generalizes Proposition 4.3 in [10] for Gaussian zero-mean distributions with generic standard deviations
𝛼 and 𝛽:

Theorem A.3. Under the same hypothesis of Theorem A.1, assuming |(ℎ,𝜎)
2 | < 1, the expectation of the random variable 𝛥(𝑁)

2 in (A.5)
can be expressed as

E(𝛥(𝑁)
2 ) = 𝑁 sin2 (ℎ𝜒ℎ ) 𝜌(ℎ), 𝜌(ℎ) = 1

2

(

𝜒ℎ − 1
𝜒ℎ

)2
, 𝜒ℎ ∶= 𝜎 𝜒−1

ℎ .

roof. Under the assumption |(ℎ,𝜎)
2 | < 1 then |pℎ| < 1 and we can define ℎ𝜒ℎ = arccos pℎ, ℎ𝜒ℎ ∈ [0, 𝜋] and sinℎ𝜒ℎ =

√

1 − p2ℎ.
rom sin2 (ℎ𝜒ℎ ) = 1 − p2ℎ, and exploiting the relations

1
𝜒ℎ

=
eℎ + 𝜎−1 qℎ
√

1 − p2ℎ

, 𝜒ℎ =
𝜎 qℎ − eℎ
√

1 − p2ℎ

,

which are both satisfied from (A.3), we can prove that

2 sin2 (ℎ𝜒ℎ ) 𝜌(ℎ) = sin2 (ℎ𝜒ℎ )
(

𝜎
𝜒ℎ

−
𝜒ℎ
𝜎

)2
=

(

𝜎 + 1
𝜎

)2
e2ℎ.

rom Theorem A.2 the result follows. □

.2. Multivariate case

The motion of 𝑑 oscillators
𝑑𝑄𝑗

𝑑𝑡
=

𝑃𝑗

𝛽2𝑗
,

𝑑𝑃𝑗

𝑑𝑡
= −

𝑄𝑗

𝛼2𝑗
, for 𝑗 = 1,… 𝑑, (A.6)

can be represented as an Hamiltonian system

𝑑𝐐 = 𝐷−1𝐏, 𝑑𝐏 = −𝐷−1𝐐 (A.7)
21
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where 𝐷𝛼 and 𝐷𝛽 are 𝑑 × 𝑑 diagonal matrices with entries 𝛼2𝑗 and 𝛽2𝑗 , respectively, for 𝑗 = 1,… , 𝑑 and Hamiltonian function
1
2
𝐐𝑇 𝐷−1

𝛼 𝐐 + 1
2
𝐏𝑇 𝐷−1

𝛽 𝐏. Setting 𝐘 = [𝐐, 𝐏]𝑇 , 2𝑑 ∶=

[

𝐷𝛼 𝟎𝑑
𝟎𝑑 𝐷𝛽

]

the Hamiltonian can be written as

𝐻(𝐘) = 1
2
𝐘𝑇 −1

2𝑑 𝐘. (A.8)

Define 𝛴 = 𝐷1∕2
𝛽 𝐷−1∕2

𝛼 ; then a symplectic and momentum flip - reversible integrator for the 𝑑-dimensional system (A.7) can be
xpressed as 𝐘𝑛+1 = (ℎ,𝛴)

2𝑑 𝐘𝑛 where

(ℎ,𝛴)
2𝑑 =

[

Pℎ Eℎ + 𝛴−1 Qℎ

Eℎ − 𝛴 Qℎ Pℎ

]

, (A.9)

where Pℎ, Qℎ and Eℎ are 𝑑 dimensional diagonal matrices satisfying

P2ℎ − (Eℎ + 𝛴−1 Qℎ) (Eℎ − 𝛴 Qℎ) = 𝐼𝑑 .

Similarly to the univariate case, the error in energy at each step is given by

𝛥(𝑛,ℎ)
2𝑑 = 𝐻(𝐘𝑛+1) −𝐻(𝐘𝑛) = 1

2
𝐘𝑇
𝑛

(

(ℎ)
2𝑑

𝑇
(ℎ)

2𝑑 − −1
2𝑑

)

𝐘𝑛 (A.10)

where (ℎ)
2𝑑 ∶= −1∕2

2𝑑 (ℎ,𝜎)
2𝑑 =

⎛

⎜

⎜

⎝

𝐷−1∕2
𝛼 Pℎ 𝐷−1∕2

𝛼 Eℎ +𝐷−1∕2
𝛽 Qℎ

𝐷−1∕2
𝛽 Eℎ −𝐷−1∕2

𝛼 Qℎ 𝐷−1∕2
𝛽 Pℎ

⎞

⎟

⎟

⎠

.

When Eℎ = 𝟎𝑑×𝑑 then the matrix  (ℎ)
2𝑑 ∶= (ℎ)

2𝑑
𝑇
(ℎ)

2𝑑 − −1
2𝑑 is given by

 (ℎ)
2𝑑 ∶=

(

Pℎ 𝐷𝛼 Pℎ + Qℎ 𝐷𝛼 Qℎ − 𝐷𝛼 𝟎𝑑
𝟎𝑑 Pℎ 𝐷𝛽 Pℎ + Qℎ 𝐷𝛽 Qℎ − 𝐷𝛽

)

. (A.11)

Since Pℎ, Qℎ, 𝐷𝛼 and 𝐷𝛽 are diagonal matrices and P2ℎ + Q2
ℎ = I𝑑 , then  (ℎ)

2𝑑 = 𝟎2𝑑×2𝑑 .
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